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Foreword 

The Deep Space Communications and Navigation Systems Center of 
Excellence (DESCANSO) was established in 1998 by the National Aeronautics 
and Space Administration (NASA) at the California Institute of Technology’s 
Jet Propulsion Laboratory (JPL). DESCANSO is chartered to harness and 
promote excellence and innovation to meet the communications and navigation 
needs of future deep-space exploration. 

DESCANSO’s vision is to achieve continuous communications and precise 
navigation—any time, anywhere. In support of that vision, DESCANSO aims 
to seek out and advocate new concepts, systems, and technologies; foster key 
technical talents; and sponsor seminars, workshops, and symposia to facilitate 
interaction and idea exchange. 

The Deep Space Communications and Navigation Series, authored by 
scientists and engineers with many years of experience in their respective 
fields, lays a foundation for innovation by communicating state-of-the-art 
knowledge in key technologies. The series also captures fundamental principles 
and practices developed during decades of deep-space exploration at JPL. In 
addition, it celebrates successes and imparts lessons learned. Finally, the series 
will serve to guide a new generation of scientists and engineers. 
 
 Joseph H. Yuen 
 DESCANSO Leader 
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Preface 

The steady march of radio receiver technology over the decades has 
enabled smaller and increasingly capable radio terminals. The development of 
the transistor in the 1950s enabled the replacement of heavy tubes, which 
reduced receiver weight dramatically. To take advantage of the lighter 
transistor, engineers in the second half of the twentieth century engaged in a 
sustained effort to replace each analog component of the radio with a digital 
component. For example, the analog phase-locked loop comprising a linear 
multiplier, voltage-controlled oscillator, and resistor capacitor (RC) loop filter 
was replaced by a digital phase-locked loop comprising a digital multiplier, 
numerically controlled oscillator, and digitally implemented filter. Over the 
years, the digital domain was pushed further and further toward the front end of 
the receiver, until eventually the all-digital receiver was born in the 1990s. This 
receiver converts the intermediate frequency signal directly to digital samples, 
with all processing thereafter accomplished digitally. 

With all operations done digitally, radios began to become more flexible as 
well, because loop bandwidths, gains, data rates, etc., were easier to adjust in 
the digital domain. This increasingly capable reconfigurable radio evolved into 
what is now called a software-defined radio (SDR), or cognitve radio, in which 
nearly all aspects of the radio are redefinable. A premier example of an SDR is 
the National Aeronautic and Space Administration (NASA) Electra radio, in 
which the baseband processing is entirely implemented in a reconfigurable field 
programmable gate array (FPGA). Virtually any channel code, modulation, and 
data rate may be accommodated via suitable reprogramming of this SDR. 

The purpose of this monograph, and the natural next step in the evolution 
of radio receiver technology, is the development of techniques to autonomously 
configure an all-digital SDR receiver for whatever type of signal happens to hit 
its antenna. We describe automatic identification of the carrier frequency, 
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modulation index, data rate, modulation type, and pulse shape, based on 
observations of the received signal.  These are functions that typically are 
configured manually by the user of an SDR, prior to reception, based on a priori 
knowledge. We also describe how the conventional receiver estimators for the 
signal-to-noise ratio, carrier phase, and symbol timing require knowledge of the 
modulation type, data rate, and so on, and we show how these conventional 
functions can be implemented in the absence of this information. 

For each of the estimators described above, we develop the optimal 
solution using a maximum-likelihood (ML) approach, and we offer 
simplifications and low-complexity approximations. When the solutions are 
highly complex or intractable, we present ad hoc estimators. Finally, we show 
how the suite of estimators may be combined into a working radio receiver. 

Although the title of this monograph indicates that the autonomous radio 
technology described herein is for deep-space applications—and it certainly 
applies there, for auto-configuration of both Deep Space Network (DSN) and 
situ relay radio receivers—the development here is actually quite general. 
Indeed, virtually any terrestrial radio with the capability to process more than 
one type of signal can take advantage of the theoretical development and 
algorithms presented in the monograph. 
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Chapter 1
Introduction and Overview

Jon Hamkins and Marvin K. Simon

The National Aeronautics and Space Administration (NASA) has embarked
on an ambitious project to develop new technology for a radio to receive a signal
without much a priori knowledge about its defining characteristics [1]. As a first
step in this direction, a suite of modules has been developed to autonomously
recognize various signal attributes, including the angle of arrival, data rate, sym-
bol timing, carrier frequency and phase, modulation index, modulation type, and
signal-to-noise ratio (SNR). This chapter is an overview of the architecture of
the autonomous radio receiver, describing what each module does and how the
modules interact to produce the desired effect.

The primary application of this technology is in relaying communication sig-
nals from multiple deep-space assets. For example, one might want two or more
rovers on a distant planet to relay data through an orbiter, as the two Mars
Exploration Rovers have done via Mars Global Surveyor and Mars Odyssey [2].
Multiple landed assets communicating through relays will continue to be an im-
portant part of NASA’s exploration plans throughout the next two decades [3,4].
Over a period of years, we may expect NASA and other space agencies to launch a
set of diverse orbiters and landers,1 and because technology continues to emerge,
it is unlikely that they will all use the same data rates, protocols, error-correcting
codes, and modulation types.

The advantage of an autonomous radio in this emerging scenario is that
it can communicate to each asset that comes into view, automatically, without
having to be reconfigured from Earth for each pass to account for differences in
the signal characteristics. The radio would receive whatever each landed asset

1 See http://www.jpl.nasa.gov/missions/future missions.cfm.

1
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sent. Since an orbital period may be a few hours, an orbiter may come within
view of various landed assets several times a day, and the automatic reconfigura-
tion would be this frequent. By comparison, manual radio reconfiguration would
be a daunting task.

In addition to easing the scheduling and configuration burden, an au-
tonomous radio also will gracefully handle unpredictable or anomalous events.
For example, during entry, descent, and landing (EDL), a spacecraft can un-
dergo large Doppler swings caused by rocket firings, parachute openings, back-
shell ejection, and a bouncing landing on the surface. Even when all scheduled
events occur successfully, there may be Doppler uncertainty due to unpredictable
properties of the atmosphere. Ideally, the communication link should operate
whether or not each of the EDL events is successful, but the uncertainties in-
volved typically lead to liberal link margins—for example, the Mars Exploration
Rovers observed link margins that sometimes exceeded 10 dB. An autonomous
radio could substantially reduce this margin because it would handle any Doppler
swing nearly optimally.

Unfortunately, such flexible technology is not available on NASA’s currently
flying missions. In perhaps the most glaring example of this, NASA engineers
discovered in 2000 that a receiver aboard Cassini, launched in 1997, would fail
during the Huygens probe descent onto Titan because it did not properly ac-
count for the Doppler profile of the probe [5]. Increasing the loop bandwidth
of the synchronization loops would have easily fixed the problem, but, unfortu-
nately, these loop bandwidths were hard-wired to fixed values on the spacecraft.
With superior engineering and enormous dedication, NASA and the European
Space Agency were still able to save the mission by slightly altering the original
trajectory, but this solution required forming a large and expensive international
recovery team to find the appropriate recommendations on how to overcome the
radio’s severe limitations.

This chapter is an overview of the architecture of an autonomous radio of
the type described above. In Section 1.1 we describe a general model for a re-
ceived signal that will be used throughout the monograph, and we define many
parameters one might desire to estimate from the signal. In Section 1.2 we
describe in detail the differences between a conventional receiver, a reconfig-
urable receiver such as the first-generation Electra, and an autonomous receiver.
In Sections 1.3 and 1.4 we describe a suite of individual modules that estimate or
classify the signal parameters, along with a message-passing strategy to improve
performance, and in Section 1.5 we describe a software implementation of these
cooperative modules.
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1.1 Preliminaries

1.1.1 Signal Model

We describe here a common signal model that is used throughout the mono-
graph. The received bandpass waveform can be written as

r(t) = s(t) + n(t) (1 1)

where s(t) is the signal component and n(t) is a passband additive white Gaussian
noise (AWGN) process with two-sided power spectral density (PSD) N0/2 W/Hz.
We may write

r(t) = Re
{
r̃(t)ejωct

}

s(t) = Re
{
s̃(t)ejωct

}

n(t) = Re
{
ñ(t)ejωct

}

(1 2)

where

r̃(t) = s̃(t) + ñ(t) (1 3)

is the complex baseband representation of the bandpass signal r(t) centered at a
carrier frequency of ωc rad/s. The complex baseband AWGN noise process can
be expanded as ñ(t) =

√
2[nc(t) + jns(t)], where nc(t) and ns(t) are indepen-

dent AWGN processes, each with two-sided power-spectral density N0/2 W/Hz.
Thus, we may rewrite the passband noise process as

n(t) =
√

2nc(t) cos(ωct) −
√

2ns(t) sin(ωct) (1 4)

The transmitted signal s̃(t) is assumed to be a single-channel amplitude- and
phase-modulated signal with or without a residual carrier, of the form

s̃(t) =
√

2Pd

∞∑

k=−∞
dk(t)p(t − kT )ej[θc(t)−π/2] +

√
2Pce

j[θc(t)−π/2] (1 5)
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where

• Pd and Pc are the powers of the real passband data and residual-carrier
signals,2 respectively

• dk(t) �= Akejθkg(t) is the complex modulation for the kth symbol, where

− Ak is the normalized amplitude satisfying E[A2
k] = 1

− θk is the phase modulation for the kth symbol

− g(t) represents the subcarrier modulation and is typically of the form
g(t) = sin(ωsct) or g(t) = sgn[sin(ωsct)], where ωsc is the subcarrier
frequency in radians per second, or g(t) = 1 if there is no subcarrier

• p(t) is a pulse shape satisfying T−1
∫ T

0
p2(t)dt = 1

• T is the symbol duration in seconds

• θc(t) is the carrier phase

Equation (1-5) represents a binary phase-shift keying (BPSK) signal when
θk = ckπ/2, ck ∈ {−1, 1}, Ak = 1, g(t) = 1, and p(t) ∈ {−1, 1} for all t ∈ [0, T ),
in which case we may rewrite Eq. (1-5) as

s̃(t) =
√

2Pt

∞∑

k=−∞
p(t − kT )ej[βck+θc(t)−π/2] (1 6)

where Pt = Pc + Pd is the total passband signal power and β = tan−1
√

Pd/Pc

is the modulation angle, also referred to as the modulation index. For an M -ary
phase-shift keying (M -PSK) signal with no residual carrier, Eq. (1-5) becomes

s̃(t) =
√

2Pt

∞∑

k=−∞
ej[θk+θc(t)−π/2]p(t − kT ) (1 7)

where θk = [2qk + (1 + (−1)M/2)/2]π/M is the phase modulation for the kth
M -PSK symbol, with independent and uniformly distributed qk∈{0, 1,· · · ,M−1).

2 If the power of a signal x(t) is defined as 1/T ′
∫ T ′

0
x(t)x∗(t)dt, then the power of the complex

baseband signals is twice that of the corresponding passband signal. Thus, the complex
baseband signal s̃(t) in Eq. (1-5) has power 2(Pd +Pc), while the power of the corresponding
passband signal s(t) is Pd + Pc.
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Quadrature amplitude modulation (QAM) may also be represented by Eq. (1-5)
by appropriately defining dk(t).
At the receiver, the timing and carrier phase are initially unknown, and noise is

present. If we also assume that the carrier frequency ωc is imperfectly estimated
as ω̂c at the front end of the receiver, then a residual frequency component
ωr = ωc − ω̂c will remain after conversion to baseband, and the resulting signal
will have the form

r̃(t) =

√
2Pd

∞∑

k=−∞
dk(t)p[t − kT − εT ]ej[ωrt+θc(t)−π/2] +

√
2Pce

j[ωrt+θc(t)−π/2] + ñ(t)

(1 8)

where ε is the unknown fractional symbol timing. A priori, ε is uniformly dis-
tributed on [0, 1) and θc(t) is uniformly distributed on [0, 2π). For our purposes,
we assume that the carrier phase θc(t) is slowly varying with respect to the data
rate; thus, we shall hereafter drop the dependence on time in the notation.

1.1.2 Anatomy of the Received Signal

Figure 1-1 graphically indicates the dependence of the received signal on
several factors. We group the signal dependence graph into three primary
components: the forward error-correcting (FEC) code encoder, the modula-
tor/amplifier, and the channel. Each of these is affected by several sub-factors,
including the ones shown in Fig. 1-1 as well as others which we call out in italics
in the more detailed discussion below.

1.1.2.1 FEC Code. The FEC code can be one of several code types. The
code types standardized by the Consultative Committee for Space Data Systems
(CCSDS) for deep-space [6] or in situ [7] communications include Reed–Solomon
(RS) codes, convolutional codes, turbo codes, Bose–Chaudhuri–Hocquenghem
(BCH) codes, and cyclic redundancy check (CRC) codes. Work is also pro-
gressing rapidly both academically and in various standards (Digital Video
Broadcast/Satellite, the Institute of Electrical and Electronics Engineers (IEEE)
802.{11n,15.3a,16e}, and CCSDS deep space and in situ) on low-density parity-
check codes and progressive parity-type codes such as tornado and raptor codes.

Associated with each FEC code is its code rate, which is the fraction of
symbols carrying information, and its code length, which indicates the number
of symbols in each codeword. For some code types, these parameters alone are
nearly enough to completely identify the code. For example, the best-performing
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convolutional codes for a given rate and constraint length are tabulated in text-
books (e.g., [8]), and applications using convolutional codes nearly always use
codes from these tables. CRC codes of a given length also typically use standard
generator polynomials [7]. RS codes are specified by their blocklength, rate, field
generator polynomial, and code generator polynomials. The latter two can be
one of several possibilities, but in practice space communication systems have
primarily used the one that is specified in the CCSDS standard [6].

The techniques of puncturing, shortening, and expurgating are commonly
used to modify a code. Puncturing raises the code rate, and it is the stan-
dard technique to obtain the CCSDS turbo codes of rate 1/4, 1/3, and 1/2
from the rate 1/6 mother code [6]. Shortening is often used with the standard
RS(255,223) code—the full-length code with interleaving depth 5 has input-
length 223 × 8 × 5 = 8920, but missions often shorten this to 8800, a multiple
of 32, which is a convenient quantity for spacecraft processors to handle. The
(63,56) BCH code used for uplink commanding [9] is an expurgated (63,57) Ham-
ming code, with odd-weight codewords removed.

In addition to the substantive factors mentioned above, there are a number of
superficial factors that determine the FEC encoder output. The precise bit order-
ing, use of trellis termination, and placement of frame headers, synchronization
bits, and filler bits are examples of these factors.

1.1.2.2 Modulator and Amplifier. The modulator uses the coded binary
sequence from the output of the FEC encoder to modulate a carrier signal. This
process depends on several factors. The modulation type identifies the signal
constellation from which the transmitted symbols are chosen. BPSK, quadra-
ture phase-shift keying (QPSK), quadrature amplitude modulation (QAM), and
Gaussian-filtered minimum-shift keying (GMSK) are commonly used modula-
tion types [10]. In the case of GMSK and other filtered modulation types, the
bandwidth–time (BT ) product is also needed to fully specify the modulation.

The assignment of FEC-encoded bits to symbols is defined by a mapping,
which may be a static mapping such as a natural ordering, Gray code, or anti-
Gray code, which maps each block of bit(s) to a symbol; or, the mapping may
be dynamically controlled through a state machine, as it is with trellis-coded
modulation [11].

The symbol rate, or baud, defines the number of discrete signal constellation
elements transmitted per second. Within each symbol epoch, a pulse shape (rect-
angular, raised-cosine, etc.) is applied. With BPSK signaling, the data format
may be non-return to zero (NRZ) or Manchester encoded. The modulation in-
dex determines the fraction of total power that is allocated to an unmodulated
carrier signal.

The carrier signal to be modulated is generated by an imperfect oscillator,
whose quality can be measured by its spectrum, or by distilling its spectrum to
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a single quantity such as Allan deviation, phase noise at a given offset, or drift
rate. Ultrastable oscillators can achieve a phase noise of −100 dBc/Hz at a 1-Hz
offset [12], although not all missions have the mass budget to carry one onboard
the spacecraft.

There are several signal-dependent factors in the amplifier as well. Nomi-
nally, the amplifier output is larger than the input by the gain of the ampli-
fier. However, depending on the input, distortion may affect the amplitude
or phase. Amplitude-modulation-to-amplitude-modulation (AM/AM) distortion
occurs when the amplitude of the amplifier output is not proportional to the
amplitude of the amplifier input. Amplitude-modulation-to-phase-modulation
(AM/PM) conversion occurs when variations in the input amplitude result in
unwanted phase modulation. Additionally, the group delay is the rate of change
of the total phase shift with respect to angular frequency, and the polarization
(right- or left-handed, circular or elliptical) describes the time-varying direction
and amplitude of the electric field vector propagated from the transmitter.

1.1.2.3 Channel. Typically, deep-space communications channels are quite
benign, with AWGN being the dominating impairment. If fading is present, it
may be due to multipath interference or solar scintillations caused by a small
Sun–Earth–probe angle. Doppler affects carrier and timing parameters. The
angle of arrival, symbol timing, and carrier phase are also modeled in the channel
component of the dependency graph shown in Fig. 1-1.

1.2 Radio Receiver Architectures

1.2.1 A Conventional Radio Receiver

A functional block diagram of a radio receiver and decoder is shown in
Fig. 1-2. Factors that are known a priori in a conventional radio are shown in el-
lipses, while the tasks it performs are shown in rectangles. A conventional radio
receiver has complete a priori knowledge of the signal-dependent factors relat-
ing to the FEC encoder and modulator/amplifier components shown in Fig. 1-1.
Only the channel-related factors are not completely known—although even those
may be partially known through the use of predicts.

Knowledge of the transmitted signal parameters greatly simplifies the de-
sign and implementation of the receiver. For example, if a residual carrier is
present, then the carrier phase-tracking loop may be a simple phase-locked loop
(PLL); hence, a Costas loop need not be implemented. Or, if the modulation
type is known to be BPSK, then the receiver need not include any processing
of the quadrature component of the signal. Every rectangular block in Fig. 1-2
is similarly simplified by knowing the basic properties of the transmitted signal.
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On the other hand, a conventional radio usually does not have much capa-
bility to receive signals types different from the single-signal type for which it was
primarily designed, or, when it does have such capability, it requires specific pre-
configuration according to a predetermined schedule. For example, if the radio
can receive both suppressed-carrier and residual-carrier BPSK signals, it would
typically carry both PLL and Costas loops, or a hybrid loop that incorporates
both components and would have to be pre-configured to use the appropriate
loop (or to set the relative gains in the hybrid loop) based on knowledge of when
each type of signal will be arriving. This is the approach taken by the highly
capable advanced receiver design [13] that eventually became the Deep Space
Network Block V Receiver.

1.2.2 Electra

Electra is NASA’s first highly capable software-defined radio [14]. Unlike
other massively flexible radios, the Electra radio is an elegant, compact design
based around a reprogrammable radiation-tolerant field programmable gate ar-
ray (FPGA). The FPGA performs all the baseband processing for reception,
including carrier tracking, timing recovery, and demodulation. It also includes
all the baseband processing necessary for transmission.

Unlike the Block V Receiver, the massive capability of this radio is not
achieved through multiple simultaneous implementations of tracking loops and
demodulators for all the various signal types it might encounter in its lifetime.
Rather, the radio is simply redefined in the same small footprint by reprogram-
ming the baseband processor module. This compact, flexible design makes it
ideally suited for in situ radios, and in fact, it is now the NASA standard in situ
radio and will fly on the Mars Reconnaissance Orbiter, Mars Telecommunications
Orbiter, and Mars Science Laboratory missions, among others.

1.2.3 An Autonomous Radio

The fundamental difference between a conventional radio, or even a soft-
ware-defined radio such as Electra, and a truly autonomous radio is that an
autonomous radio has the ability to recognize features of an incoming signal and
to respond intelligently, without explicit pre-configuration or reprogramming to
define the functions of the radio.

In an autonomous radio, the parameters shown in ellipses in the functional
block diagram in Fig. 1-2 are assumed unknown a priori and must be determined
based on the incoming signal. The quality of each of the estimators and classi-
fiers of the autonomous radio is limited by its lack of knowledge of any of the
other parameters. As such, the order in which the estimations/classifications
are performed is critical. For example, it would not be feasible to classify the
modulation type prior to classifying the data rate and obtaining the symbol tim-
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ing. Using conventional estimation and tracking designs, one quickly gets into a
chicken and egg problem, with nearly every estimator needing the output of the
other estimators before it can make a maximum-likelihood (ML) estimate.

To resolve this problem, we have arranged the estimators/classifiers in the
partially ordered set shown in Fig. 1-3, which defines the order in which they
may be operated, at least sub-optimally, during the first iteration of estimation.
Details about the order of estimation and the interaction of the estimators in the
first and subsequent iterations are discussed in Chapter 11. There is a cluster
of four estimators—data rate, SNR, pulse shape, and symbol timing—that are
highly dependent on each other. For these, we propose a joint estimation algo-
rithm, described in Chapter 7.

After the first estimate of the parameters is obtained, the estimates may be
fed laterally and upward to other estimation modules to improve performance.
For example, the modulation classifier operates noncoherently at first, without
input from the phase-tracking loop, but once a phase estimate is available, it
may switch to a better-performing coherent modulation classifier.

This approach yields a workable boot-strapping approach to estimating/
classifying all of the parameters necessary for the proper operation of the en-
tire receiver.

Code

Bit

Phase Modulation Type

Frame Synchronization

Fine Symbol Timing

Modulation Index

Frequency

Data Rate SNR Pulse Shape Coarse Symbol Timing

Fig. 1-3. The order of estimation in the autonomous radio.
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1.3 Estimators and Classifiers of the Autonomous Radio
After identifying the proper order for the estimator modules shown in

Fig. 1-3, a design for the individual modules can begin. At first glance, it may
seem that some of these estimator modules are simply long-established, conven-
tional designs. For example, phase-tracking loops have been designed and ana-
lyzed for nearly every reasonable signal type. However, the authors were unable
to find any literature for the design of a phase-tracking loop for suppressed-
carrier signals in which the modulation type is unknown. A loop is needed that
works adequately for any phase-modulated signal, and which can improve its
performance by later taking input from the modulation classifier when it starts
producing an output.

The other seemingly standard modules had similar design challenges because
of unknown signal attributes. Conventional implementations of frequency esti-
mators, symbol-timing loops, and SNR estimators also assume the modulation
type is known.

In addition, there are a number of estimators that are not conventional and
occur only in an autonomous radio. These include the blocks that estimate or
classify the data rate, modulation index, and modulation type. This monograph
derives architectures for each of these from scratch, in most cases by formulating
the ML criterion for the estimator and attempting to solve it analytically. This
led to excellent solutions for modulation classification, SNR estimation, and fre-
quency tracking. In some other cases, the ML solution was not tractable, and
promising ad hoc schemes were identified.

We briefly summarize the status of the design and analysis of some of these
estimators below.

1.3.1 Carrier Phase Tracking

In autonomous radio operation, it is desired that the receiver contain a carrier-
synchronization structure that is generic in the sense that it is capable of tracking
the carrier phase independently of the modulation. If the modulation is restricted
to the M -PSK class, then it is possible to construct a universal structure that
performs the carrier-synchronization function for all values of M . This structure
is derived by first determining the maximum a posteriori (MAP) estimate of car-
rier phase based on an observation of the received signal, namely, M -PSK plus
AWGN, and then using this to motivate a closed-loop carrier-synchronization
loop. Such a structure, referred to as the MAP estimation loop, has been previ-
ously proposed in the literature for cases where the modulation is known before-
hand. The most convenient form for use in the autonomous radio application is
its simplification based on low SNR approximations applied to the nonlinearities
inherent in the MAP phase estimate. When this is done, the error signal in the
loop for M -PSK is of the form sin(Mφ), where φ is the phase error, which from
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simple trigonometry can be written as sin(Mφ) = 2 sin[(M/2)φ] cos[(M/2)φ].
Thus, it is seen that the error signal in the loop for M -PSK is formed from the
product of the error signal sin[(M/2)φ] and the lock detector signal cos[(M/2)φ]
in the loop for (M/2)-PSK modulation. This simple relationship forms the basis
for implementing a universal structure.

1.3.2 Modulation Classification

The autonomous radio determines the modulation type from the incoming
signal. Approximations are derived of the ML classifier to discriminate between
M -ary and M ′-ary PSK transmitted on an AWGN channel and received nonco-
herently, partially coherently, or coherently, and when symbol timing is either
known or unknown. A suboptimum classifier can be shown to be ten times less
complex than the ML classifier and to have less than 0.1 dB of performance loss
for symbol SNRs in the range (−10,10) dB and any number of observed symbols.
Other methods reduce complexity by a factor of 100 with less than 0.2 dB of per-
formance loss. We also describe a classifier that does not require an estimate of
the symbol SNR, and a new threshold optimization technique that improves the
high-SNR performance of a previously published classifier. We discuss a classifi-
cation error floor that exists for any classifier on any memoryless channel, even
a noiseless one, by deriving a lower bound on the misclassification probability as
a function of the number of observed samples.

1.3.3 Signal-to-Noise Ratio Estimation

In the design of receivers for autonomous operation, it is desirable that the
estimation of SNR take place with as little known information as possible re-
garding other system parameters such as carrier phase and frequency, order of
the modulation, data symbol stream, data format, etc. While the ML approach
to the problem will result in the highest quality estimator, it typically results
in a structure that is quite complex unless the receiver is provided with some
knowledge of the data symbols typically obtained from data estimates made at
the receiver (which themselves depend on knowledge of the SNR). Instead, we
focused our attention on estimators that perform their functions without any
data symbol knowledge and, despite their ad hoc nature, maintain a high level
of quality and robustness with respect to other system parameter variations.
One such ad hoc SNR estimator is the so-called split-symbol moments estimator
(SSME) that forms its SNR estimation statistic from the sum and difference
of information extracted from the first and second halves of each received data
symbol. Our initial investigations focused on demonstrating that the scheme,
which was previously investigated only for BPSK modulations, is readily appli-
cable to the class of M -PSK (M ≥ 2) modulations and furthermore showed that
its performance is independent of the value of M ! Even more generally, it was
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pointed out that the complex symbol version of the SSME structure could also
be used to provide SNR estimation for two-dimensional signal sets such as QAM.
Performance results were obtained for a variety of different scenarios related to
the degree of knowledge assumed for the carrier-frequency uncertainty and to
what extent it is compensated for in obtaining the SNR estimate.

Following this, a modification of the conventional SSME architecture was
discovered that provides significant improvement in performance (as measured
by the variance of the estimator). The reconfiguration consists of partitioning
the symbol interval into a larger (but even) number of subdivisions than the
two that characterize the conventional SSME, where the optimum number of
subdivisions depends on the SNR region in which the true SNR lies. It also was
shown that these SNR regions can be significantly widened with very little loss
in performance. Most important is the fact that, with this reconfiguration, the
SNR estimator tracks the Cramer–Rao bound (with a fixed separation from it)
on the variance of the estimator over the entire range of SNR values, whereas the
conventional SSME deviates considerably from this bound at high SNR. Finally,
an adaptive algorithm based on the modified SSME was developed that allows
the system to automatically converge on the true SNR, starting with an initial
guess (estimate) derived from a partition of two subdivisions.

1.3.4 Frequency Tracking

We present a robust frequency-tracking loop for a residual-carrier system that
is capable of tracking the offset frequency without knowledge of received SNR.
The proposed frequency-tracking loop can operate robustly not only over an
AWGN channel but also over a Rayleigh fading channel. This loop does not
require knowledge of carrier phase. We begin by deriving the likelihood function
of the frequency, given the received observations. The derivative of this likelihood
is then used as an error signal in a closed-loop structure, which therefore tends
to converge near the ML estimate of the frequency. This design technique is
similar to the one used for the MAP-motivated carrier phase-tracking loop. To
reduce the implementation complexity with only a small loss in optimality, we
simplified the derivation of the error signal.

1.4 An Iterative Message-Passing Architecture
As mentioned above, the autonomous radio begins by producing estimates at

the highest level in Fig. 1-3 and then proceeding to progressively deeper levels.
Initially, no estimator at an upper level can make use of any signal attribute es-
timated at a level beneath it. This limitation significantly impacts performance
and is inherent to any non-iterative autonomous signal parameter estimation al-
gorithm.
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A fundamental innovation of the autonomous radio envisioned here is that,
after each estimator completes its first estimate in the proper boot-strap order,
the deeper-level estimators send soft information to the upper estimators. A sec-
ond iteration then begins, wherein each estimator makes use of this additional
extrinsic information to improve its performance. After several iterations, the
message-passing system will reach a reasonable convergence. We have shown
that such coupled systems are typically quite robust and can provide near-ML
joint estimation/decoding [15–17].

We now informally describe a non-exhaustive list of the type of soft informa-
tion that can be passed upward during the estimation iterations.

1.4.1 Messages from the Symbol-Timing Estimator

The symbol-timing module estimates the boundaries of symbol epochs and
can produce a signal that indicates whether or not it is in lock. The lock indi-
cator, which may be a soft value, can be fed up to the data rate classifier. For
example, if the symbol-timing tracker is unable to lock onto symbol timing at one
data rate, the data rate classifier can make use of that knowledge in reclassifying
the data rate.

1.4.2 Messages from the Phase Tracker

The phase-tracking loop output can be used to generate a coherent reference
that can be used to improve the symbol timing and SNR estimators, effectively
improving the noncoherent performance to coherent performance.

1.4.3 Messages from the Modulation Classification

Estimates from the modulation classifier can assist in improving SNR, fre-
quency correction, data rate, and symbol-timing estimators. The likelihood
functions for each modulation have expected values that obey a known relation-
ship to the SNR and symbol timing—for example, the modulation classification
becomes more certain with increasing SNR and number of symbol observations.
If the observed modulation-type likelihoods are inconsistent with the estimates
from the SNR and symbol-timing modules, the likelihoods can be fed back to
those modules so they can revise their estimates.

1.4.4 Messages from the Decoder

The output of the decoder includes likelihoods for each message bit. Depend-
ing on the code, it is usually simple to hard-limit these likelihoods and test if
the result is a codeword. Typically, codes are designed so that the undetected
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probability of codeword error is 10−10 or lower, which implies that if the output
is a codeword, it is nearly certainly the correct one, and no further iterations of
the radio are necessary.

If the correct codeword is not obtained, then the bit likelihoods can be used
to generate a soft data-wipe of the received signal. This makes the signal more
like a continuous wave (CW) signal, which will allow the SNR, frequency, and
phase estimates to be substantially improved, which will in turn produce better
inputs for the decoder to operate on in its second iteration. This behavior of
coupled or iterative estimation has been observed before [16,18].

1.5 A Demonstration Testbed
NASA is developing a software demonstration testbed of the autonomous ra-

dio described in this chapter. The testbed contains two parts. In the first part,
the attributes of the signal may be configured, including the data rate, pulse
shape, data format, modulation type, and so forth. Channel effects such as SNR
and Doppler also can be configured. Based on these settings, a simulated signal
is generated. This is similar to the signals used in software simulations of the
Electra modulator, for example.

The second part of the testbed implements the autonomous receiver esti-
mators and classifiers. In most cases, these are either ML or motivated by
low-complexity approximations to ML estimation or hypothesis testing. The
testbed produces a graphical output that illustrates the performance of the var-
ious estimators and compares them to performance bounds, if such bounds are
available.
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Chapter 2
The Electra Radio

Edgar Satorius, Tom Jedrey, David Bell, Ann Devereaux,
Todd Ely, Edwin Grigorian, Igor Kuperman,

and Alan Lee

This chapter provides an overview of the Electra radio [1]. This is the first
programmable software radio that has been developed for space missions. The
radio currently accommodates digital binary phase shift keying (BPSK) mod-
ulation with both suppressed- and residual-carrier capabilities. The radio is
designed to operate over a wide range of data rates from 1 kilobit per second
(kbps) to 4 megabits per second (Mbps) and must accommodate frequency un-
certainties up to 20 kHz with navigational Doppler tracking capabilities. As
such, it is highly programmable and incorporates efficient front-end digital deci-
mation architectures to minimize power consumption requirements. The Electra
radio uses field programmable gate array (FPGA) technology to provide the real-
time and programmable capabilities. Emphasis in this chapter is focused on the
programmable features of the software algorithms implemented in the Electra
transceiver as well as the hardware functional specifications.

The objective of the Electra radio, which is based on the original Micro
Communications and Avionics Systems (MCAS) prototype [2], is to develop pro-
grammable telecommunications systems to meet the unique needs of the National
Aeronautics and Space Administration (NASA) for low-power space and planet-
surface communications. NASA is moving into an era of much smaller space
exploration platforms that require low mass and power. This new era will usher
in increasing numbers of miniature rovers, probes, landers, aerobots, gliders, and
multiplatform instruments, all of which have short-range communications needs
(in this context short-range is defined as non-deep-space links). Presently these
short-range (or in situ) communications needs are being met by a combination

19
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of modified commercial solutions (e.g., Sojourner) and mission-specific designs
[e.g., Mars ‘96, Mars ‘98, Space Technology-2 (ST-2)]. The problem with
commercial-based solutions is that they are high-power, high-mass, and single-
application-oriented; achieve low levels of integration; and are designed for a
benign operating environment. The problem with the mission-specific designs is
that the resultant short-range communication systems do not provide the per-
formance and capabilities to make their use for other missions desirable.

Electra is primarily targeted at potential Jet Propulsion Laboratory (JPL)
users in the space exploration arena, such as the Mars Exploration Office, which
will use this for various microspacecraft short-range communication links, such as
orbit–lander, orbiter–rover, orbiter–microprobe, orbiter–balloon, orbiter–sample
return canister), ST-4 (orbiter to/from lander link), ST-3 (inter-spacecraft links),
and multiple proposed Discovery missions (e.g., balloons, gliders, probes). Elec-
tra also has applicability to any space mission that has a short-range commu-
nications requirement, such as International Space Station intravehicular and
extravehicular wireless communications, X-33 wireless sensor and short-range
ground links, Moon missions (e.g., Moonrise), etc. To this end, Electra has been
designed to be compatible with the Proximity-1 Space Link Protocol [3].

The ultimate goal of Electra is to achieve a higher level of system integra-
tion, thus allowing significant mass, power, and size reductions, at lower cost,
for a broad class of platforms. The realization of this goal has resulted in maxi-
mizing the transceiver functions performed in the digital domain. These digital
functions are implemented with space-qualified FPGA technology. The receiver
functions that must be in the analog domain consist primarily of the radio fre-
quency (RF) up- and down-conversions. A space-qualified RF design has been
developed through proper selection of parts.

The functionality of the digital portion of the Electra transceiver is exhibited
in the block diagram presented in Fig. 2-1. Emphasis in this chapter will be fo-
cused primarily on the programmable digital portions of the Electra transceiver
(receiver and digital modulator). The programmable digital receiver front-end
processing is described in Section 2-1, and the Electra data demodulator is dis-
cussed in Section 2-2. Finally, the programmable digital modulator is described
in Section 2-3.

2.1 Electra Receiver Front-End Processing
In this section, we describe the Electra receiver front end. With reference to

Fig. 2-1, this comprises the automatic gain control (AGC), the analog-to-digital
converter (ADC), and the digital downconverter/decimator. These are described
separately in this section.
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2.1.1 AGC

The AGC controls the voltage level input to the ADC based on a control
voltage signal generated digitally in the FPGA. In particular, the AGC is based
on a single feedback control loop design with the AGC control voltage extending
back from the carrier-tracking loop (CTL) arm-filter outputs, as indicated in
Fig. 2-2. The digital AGC error signal, EAGC, is generated from the CTL arm-
filter outputs, I and Q, via

EAGC = Kgain · (1 −
√

I2 + Q2) (2 1)

where Kgain controls the time constant of the AGC as well as the variance of the
resulting amplitude gain estimate. Note that Kgain is the only programmable
AGC constant. Typically, Kgain = 2−15 provides a reasonable compromise be-
tween a fast AGC response time (<10 ms) and a low noise gain estimate.

The AGC error signal, Eq. (2-1), is chosen such that the AGC forces the
complex magnitude of the CTL arm-filter outputs,

√
I2 + Q2, to be unity on

average. This in turn helps to regulate the CTL loop bandwidth over a reason-
ably wide range of input signal levels. The error signal, Eq. (2-1), is integrated
in the AGC loop filter, i.e.,

Vout[k + 1] = Vout[k] + EAGC[k] (2 2)

and the magnitude of the result, |Vout|, is used to generate the AGC gain, KAGC,
via the nonlinear transfer curve, f(·), i.e.,

KAGC (dB) = f
(
|Vout|

)
(2 3)

This gain then is used to scale the AGC input.
A critical issue with this approach is the impact of the AGC on the operation

of the ADC as well as the internal digital arithmetic implemented in the FPGA.
Ideally the input ADC voltage is scaled to achieve an optimal trade-off between
ADC quantization noise and clipping distortion. In contrast, the AGC loop
attempts to maintain the complex magnitude of the CTL arm-filter outputs to
be unity on average. Thus, there is no guarantee that this criterion of unity root-
mean-square (rms) CTL arm-filter outputs will enable the ADC to operate at its
optimal input scaling (loading) point or even prevent the ADC from saturating.
To alleviate this situation, fixed gains are distributed throughout the digital data
paths. These gains are programmable, dependent upon the data rate, and used
for purposes of minimizing the effects of digital quantization noise and saturation.
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2.1.2 ADC

The Electra receiver employs first-order, bandpass sampling wherein the
intermediate frequency (IF) band is mapped directly down to digital baseband.
Denoting the IF and ADC sampling frequencies by fIF and Fs, respectively, then
as long as the frequency band fIF −Fs/4 ≤ f ≤ fIF +Fs/4 coincides with one of
the image bands, kFs/2 ≤ f ≤ (k + 1)Fs/2 for some integer k, the input at fIF

will be mapped into the baseband interval 0 ≤ f ≤ Fs/2 as a result of bandpass
sampling. This leads to the following condition on fIF and Fs:

fIF = (2n + 1) · Fs

4
(2 4)

where n is a positive integer. Choosing fIF and Fs to satisfy Eq. (2-4) guarantees
that the IF frequency will be mapped down to the center of the Nyquist band, i.e.,
down to Fs/4. Furthermore, to maintain the lowest possible ADC sample rate
and avoid aliasing, it is desired that Fs just exceed twice the IF filter bandwidth
(2BIF).

In designing the bandpass sampling system, the ADC sampling rate was
chosen to accommodate an integral, power-of-two number of samples per symbol
at all symbol rates: 4.096 megasymbols per second (Msps), 2.048 Msps, · · ·,
1 kilosymbol per second (ksps). To achieve a minimum of 4 samples per symbol
at the highest symbol rate of 4.096 Msps, an ADC sampling rate in excess of
16.384 MHz is required. In the Electra receiver, Fs is a sub-multiple of the
master clock frequency that is provided by an ultra-stable oscillator (USO). A
nominal USO frequency, FUSO, is 76.72 MHz, and thus the lowest sub-multiple
of 76.72 MHz that meets the 4.096-MHz requirement is Fs = 19.18 MHz, as
indicated in Fig. 2-1. This in turn results in a digital IF frequency of Fs/4 =
4.795 MHz. Given Fs, admissible IF frequencies are obtained from Eq. (2-4).
An IF near the standard 70 MHz is desired. The closest admissible IF frequency
satisfying Eq. (2-4) occurs when 2n + 1 = 15, corresponding to fIF = 15 ·
19.18/4 MHz = 71.775 MHz.

Note that different ADC sampling rates may be accommodated simply by
choosing different sub-multiples K of the USO frequency, i.e., Fs = FUSO/K.
This would allow the Electra receiver the flexibility of operating the ADC at
slower rates for lower data rate missions, which in turn saves power. However,
this flexibility is quite limited since changing the data rate typically requires a
change in the IF frequency by virtue of Eq. (2-4), and the analog IF frequency
is fixed in the Electra design. For example, if K = 8, then Fs = FUSO/8 =
9.57 MHz, and the nominal IF frequency, fIF = 71.775 MHz is no longer an odd
multiple of Fs. This of course would result in severe digital aliasing.
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2.1.3 Digital Downconversion and Decimation

Programmable digital downconversion and decimation directly follow the
ADC. The digital complex baseband downconversion scheme depicted in
Fig. 2-3 is used and comprises Eq. (2-1), digital complex mixing from Fs/4 =
4.795 MHz down to baseband, followed by Eq. (2-2), and digital decimation via
a first-order, cascaded integrator-comb (CIC) filter [4,5]. Note that the digital
mixing functions do not require multiplication, and furthermore the CIC filters
are multiplierless; thus, the entire structure can be implemented efficiently in
the FPGA.1

The decimation factor M is programmable and is dependent upon the in-
put data rate. To accommodate symbol-timing recovery, M typically is chosen
so that there are at least 16 samples per symbol after decimation, except at
the highest data rates. So at 1.024 Msps, 2.048 Msps, or 4.096 Msps, M will
nominally be set to 1 (no decimation), in which case the remainder of the digi-
tal receiver (CTL, symbol-timing recovery, etc.) will run at the input sampling
rate, Fs. As the data rate is lowered below Rs = 1.024 Msps down to 8 ksps,
M is increased proportionately such that

Fs

Rs · M
=

Fs

1.024 MHz
(2 5)

Below Rs = 8 ksps, M remains fixed at 128 to accommodate Doppler offsets.
Note that as M increases up to 128, more of the input noise to the ADC is filtered
out by the CIC filters, thereby reducing the total CIC output power. This is
compensated by the AGC as well as programmable, fixed gains following the
CIC filters.

2.2 Electra Demodulation
In this section, the various programmable elements of the demodulation pro-

cess are presented, including the frequency-acquisition and carrier-recovery loop
(Section 2.2.1), the Doppler frequency extraction for navigation (Section 2.2.2),
and the symbol-timing recovery (Section 2.2.3). In addition, a description of
the Electra symbol signal-to-noise (SNR) estimator and convolutional node syn-
chronization (sync) algorithm also are provided (Section 2.2.4). The remaining
demodulation functions depicted in Fig. 2-1 (de-scrambling and decoding) are
primarily non-programmable, standard functions and thus are not discussed here.
In fact, the decoder is implemented outside of the FPGA.

1 Additional, fixed digital (multiplierless) half-band filters [5] are also included in the digital
downconverter to remove images—especially when digital decimation is not used (M = 1).
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2.2.1 Frequency-Acquisition and Carrier-Tracking Loop

The Electra frequency acquisition and CTL are fully programmable and are
designed to acquire and track the frequency and phase of the received signal. The
signal can be suppressed-carrier BPSK, residual-carrier BPSK with a modulation
index of π/3, or unmodulated.2 The CTL operates at all of the required symbol
rates from 1 ksps to 4 Msps, signal-to-noise ratios, and CIC-filter-decimated sam-
pling rates. It tracks the carrier reliably when the received signal strength varies
over many orders of magnitude. The tracking-loop bandwidth is programmable
from 10 Hz to 10 kHz to meet the tracking and acquisition requirements for var-
ious communications scenarios. In addition, the frequency acquisition acquires
and tracks received signals with maximum frequency offsets of ±20 kHz, which
are typical of ultra-high frequency (UHF), but is programmable to accommo-
date larger offsets, e.g., at S-band (around 2 GHz) or X-band (around 8 GHz).
The CTL also supports navigation by supplying the instantaneous phase of the
received signal.

Figure 2-4 shows the block diagram of the Electra CTL, including frequency
acquisition. The loop follows the ADC, digital downconverter, and CIC decima-
tion filter as indicated in Fig. 2-1. The complex baseband loop input is multiplied
by the complex output of the numerically controlled oscillator (NCO). The prod-
uct of the complex multiplication is split into the real and the imaginary data
paths.

Both the real and imaginary signals are filtered by a pair of identical low-
pass arm filters, G(f), with a programmable cut-off frequency. After the arm
filters, one or both of the arm filter outputs is used to form the input to the
loop filter, F (f), depending on whether the tracking loop is operated in the
suppressed-carrier- (Costas) or the residual-carrier-tracking mode (labeled PLL
mode in Fig. 2-4). There are three switches (SWs) in the CTL. SW1 and SW2
are selected depending on whether the loop is operated in the Costas loop or
the residual-carrier-tracking mode. SW3 is used in the Costas-loop mode. Its
position is chosen depending on whether the tracking loop is in the acquisition
mode or the tracking mode.

Aside from SW1–3, the CTL loop bandwidth, BL, as well as the arm filters
are programmable. The arm filters are discrete implementations of a first-order
low-pass Butterworth filter with programmable cut-off frequency. The arm filters
are used to reduce noise in the carrier-tracking loop, but the cut-off frequency
should not be so low that the signal power is reduced appreciably by the arm
filters. It is found that the cut-off frequency that minimizes the tracking-loop
error for the arm filters is approximately equal to the received symbol rate, Rs,
for non-return to zero (NRZ)-coded data. Therefore, for the Electra receiver, the

2 Currently, the Electra FPGA is being re-programmed to also accommodate suppressed-
carrier quadrature phase-shift keying (QPSK).
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cut-off frequency needs to be programmable between fs/128 and fs/4, where
fs = Fs/M is the decimated sampling rate.

The tracking-loop bandwidth, BL, should be chosen small enough to provide
sufficient loop SNR,

ρ ≡ P × SL

N0BL
(2 6)

(P is the signal power input to the loop, SL is the loop squaring loss, and N0/2 is
the two-sided noise power spectral density), and yet large enough to reduce ac-
quisition time. Maintaining a loop SNR ρ in the 15- to 20-dB range requires that
BL vary between 10 Hz and 10 kHz, depending on the data rate and the symbol
energy-to-noise spectral level, Es/N0 = P/(N0 ·Rs). For example, BL = 10 kHz
is acceptable at Rs = 4.096 Msps and Es/N0 = 0 dB (corresponding to a
23-dB loop SNR when SL = 3 dB), whereas BL = 10 Hz is more appropri-
ate at Rs = 1 kHz.

The CTL bandwidth thus is chosen as the largest value that satisfies the
15- to 20-dB loop SNR requirement (assuming Es/N0 = 0 dB). These values
for BL are pre-computed as a function of the data rate and are programmed
into the FPGA. In general, two sets of BL settings are programmed: one for
tracking and one for acquisition. The frequency-acquisition algorithm is fully
programmable and uses simple saw-tooth sweeping. In particular, the frequency
sweep starts at Finit (a programmable input parameter) and is incremented
in frequency steps, fstep, i.e., Facqn+1 = Facqn

+ fstep. The fstep is also a pro-
grammable input parameter that is typically set to 0.375 ·BL. At each frequency
step, either the real arm output from the CTL, In (residual-carrier mode), or
the difference between the magnitude of the real and imaginary arm outputs
from the CTL, |In|− |Qn| (suppressed-carrier mode), is accumulated over Ndwell

samples (at the decimated sampling rate) and compared to a threshold Zthresh.
Both Ndwell, the number of samples per dwell, and Zthresh are programmable

input parameters that are pre-computed based on data rate and modulation type
(residual or suppressed carrier). Once Zthresh is exceeded, the sweep is termi-
nated and data demodulation begins. If the threshold is not exceeded, the sweep
continues to a maximum of N × fstep (programmable input parameter depen-
dent upon the sweep range and CTL bandwidth BL), at which point the sweep
returns to the starting frequency, Finit, and is repeated until the threshold test
succeeds. By re-programming the various input parameters (fstep, N , Ndwell,
and Zthresh), a wide range of Doppler search uncertainties and data rates can be
accommodated.
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2.2.2 Navigation: Doppler Phase Measurement

Missions like the Mars Relay Orbiter will be required to provide Doppler
estimates derived from the received signal. This section describes how Electra
Doppler frequency estimates are obtained. The method described herein is appli-
cable to either the suppressed- or residual-carrier CTL mode of operation. The
technique basically derives the Doppler frequency estimate from the difference
between two instantaneous phase outputs from the phase register of the NCO.
The resulting frequency estimate is equivalent to counting the elapsed phase
cycles over a fixed time interval, T .

The Electra Doppler frequency estimate, fest, is given by

fest ≡
θ(t + T ) − θ(t)

2πT
(2 7)

where T is the time between two instantaneous NCO phase measurements, θ(t)
and θ(t + T ). Assuming that T is sufficiently large such that θ(t + T ) and θ(t)
are independent (i.e., T � 1/BL), then the variance of fest, σ2

f , is approximated
by

σ2
f =

2σ2
θ

(2πT )2
(2 8)

where σ2
θ denotes the variance of the NCO phase measurements. Simulation

results have verified the accuracy of Eq. (2-8) for both the suppressed- and
residual-carrier CTL modes [2]. As seen from Eq. (2-8), the standard deviation
of the Doppler frequency estimation error is inversely proportional to T . Thus,
T should be as large as possible while still yielding a meaningful frequency es-
timate. Typically, T is on the order of 10s to 60s for a 10-minute pass [6]. It
should be noted that a model suitable for operational use requires a more detailed
development than is presented here [6].

2.2.3 Symbol-Timing Recovery

The Electra symbol-tracking loop is based on a digital data-transition track-
ing loop (DTTL) with a window size of half-symbol period [7]. The block diagram
shown in Fig. 2-5 includes both the DTTL and the DTTL lock-detection logic
and provides the word lengths used in the DTTL implementation, e.g., the no-
tation “〈6,1,t〉” indicates that the data path is 6 bits wide with 1 integer bit and
twos complement representation. The notation “〈6,1,u〉” also indicates that the
data path is 6 bits wide with 1 integer bit but that the arithmetic representation
is unsigned. The primary function of the DTTL is to synchronize the receiver
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logic to the received bit stream with the aid of the symbol transitions. The loop
is designed to track the symbol boundaries for both NRZ and Manchester-coded
data. As a result, a window size of 1/2 a symbol is chosen for the design. The
DTTL lock-detection logic is used to determine if the received bit stream has
only the carrier or carrier with active symbols. It is used by the downstream
Viterbi decoders and to determine when the output of the DTTL has valid sym-
bols.

The DTTL begins with a scaling stage. The only purpose for this stage is
to normalize the amplitude of the input to the DTTL to 1. The scaling factor
is entered via a programmable input parameter called “DTTL K.” The values
for this parameter are obtained via simulation. It is a function of data rate and
signal-to-noise ratio. Varying this scaling factor can change the bandwidth of
the DTTL. The constant is pre-computed as a function of data rate and is pro-
grammed into the FPGA.

The next stage of the DTTL contains a set of integrators. Each integrator
is designed to integrate the symbol level over a different segment of the symbol
period. Since the window size of this DTTL is 1/2 a symbol, four integrators
must be used. Two of them are used for detecting symbol transitions at sym-
bol boundaries, and two are used for the mid-symbol boundaries. The timing
of these integrators is controlled by the DTTL timing logic. “DTTL SHIFT”
is a programmable input parameter used to scale the integrator output by
1/2DTTL SHIFT. Again, DTTL SHIFT is pre-computed as a function of data
rate and is programmed into the FPGA.

The DTTL employs a second-order loop that requires the programmable loop
bandwidth input parameter, BLD. Like the CTL bandwidth parameter, the
DTTL bandwidth should be chosen small enough to provide sufficient DTTL
SNR yet large enough to track data rate changes—which is especially important
given that the master (e.g., USO) clock is not necessarily an integral multiple of
the data rate. Based on measurements, BLD is computed as a function of data
rate and is programmed into the FPGA. There are various other programmable
DTTL parameters used to control the integrators and the DTTL phase accumu-
lator (Fig. 2-5). All of these are pre-computed as a function of data rate and
programmed into the FPGA.

Finally we describe the DTTL lock detector. A typical Proximity-1 session [3]
starts with carrier-only transmission. Therefore, carrier-lock detection alone can-
not determine the presence of valid data. This is the purpose for introducing
the DTTL-lock detector. It is used to calculate the “power” of the received
bit stream. The difference between the current power level and that for the
carrier-only case hence can be used to determine the presence of valid data. The
top half of Fig. 2-5 depicts the design of the DTTL lock detector. The DTTL
lock detector is essentially a power-threshold detector. It converts the signal
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level to signal power and compares that against a user input value to determine
the lock detection.

Due to the difference in format between the data from the residual-carrier
mode (Manchester coded) and those from the suppressed-carrier mode (NRZ
coded), the raw data from the DTTL are reformatted before its power can be
calculated. The next step is to calculate the respective signal power. The out-
put of this stage is sent to an integrate-and-dump (or sum-and-dump) logic that
produces an averaged power measurement on the incoming bit stream. The size
of the sample space used for calculating the average is determined by the pro-
grammable input parameter “DTTL AVGD R.” There are only 8 possible values
for “DTTL AVGD R” ranging from 64 samples to 8192 samples. These are pre-
computed as a function of data rate and are programmed into the FPGA.

The absolute value of the output from the integrate-and-dump is checked
against a programmable threshold called “dttl threshold.” Taking the absolute
value of the integrate-and-dump output causes the drop of the sign bit and re-
duces the data size by 1 bit. The output of the integrate-and-dump is always
positive, and the sign bit is superfluous. Depending on whether the received sig-
nal is in the residual-carrier mode or the suppressed-carrier mode, the threshold
comparison is performed differently. In the case of the suppressed-carrier mode
(NRZ), the averaged signal power must be less than or equal to the threshold to
be indicative of the valid data. For the residual-carrier case (Manchester), the
averaged signal power must be greater than or equal to the threshold to indicate
the presence of valid data. The final DTTL data detection flag (dttl lock) is
gated by carrier lock to avoid false indication. The Viterbi decoder is constantly
monitoring this flag to determine when the data are valid for processing.

2.2.4 Viterbi Node Sync and Symbol SNR Estimation

The Viterbi decoder is utilized to provide error correction of the received
symbols that were convolutionally encoded at the transmitter. Proper Viterbi
decoding requires that the correct pair of demodulated data symbols be assigned
to the Viterbi code segment. This is termed Viterbi node sync. The method
used by Electra to achieve node sync is based on re-encoding [8] as depicted in
Fig. 2-6. The Viterbi decoding and re-encoding functions are performed outside
of the FPGA on the commercial Temic chip. As is seen from Fig. 2-6, the key
behind node sync is the proper choice of the threshold, T . Based on extensive
testing, we find that T is a function of the symbol SNR, Es/N0. A typical
empirically determined threshold curve is defined as follows:

T =
{
−50 · Es/N0 + 730, if Es/N0 ≤ 7.5
355, if Es/N0 > 7.5 (2 9)
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Thus, once Es/N0 is estimated (as described below), it is converted to an error
threshold (count) T via Eq. (2-9).

A flow diagram of the node sync algorithm that has been incorporated into
Electra is presented in Fig. 2-7. There are three basic components of the al-
gorithm: (1) the acquisition portion, wherein initial symbol-sequence phasing
is determined, (2) the tracking portion, wherein lock status is continuously up-
dated, and (3) threshold computation, which uses a combination of symbol SNR
estimates and empirically derived estimates based on measurements of the de-
coder errors. These are described herein.

Viterbi sync acquisition starts once the DTTL is in lock. A large error-count
threshold of TΦ = 255 is used to prevent the hardware (Temic) chip from pre-
maturely halting its operation. The first steps in the acquisition process are
computation of errors for the two node phases. This is done sequentially. The
results of these error counts are denoted by the “Integrate Φ0(S0, NΦ)” and “In-
tegrate Φ1(Si, NΦ)” blocks in Fig. 2-7. NΦ is the number of bits used in the
integration process (a multiple of 1000 bits), and Si denotes error count for
each code phase, Φi. If the difference in the error counts is sufficiently large,
|S0 − S1| ≥ α0 (α0 is a pre-determined threshold between 0 and 255) and the
smallest of the two error counts, SΦ min, is less than a second pre-determined
threshold α1 (between 0 and 2048), then the node phase is set to the phase asso-
ciated with the minimum error count and acquisition is completed. If not, then
the decoder resets and the above process is repeated.

Once acquisition is declared, the node sync algorithm enters the tracking
phase. The first steps in the tracking portion are to (1) initialize an un-lock
counter UL to zero and (2) initialize a running error-count average, XA. During
tracking, the number of bits used in computing the error counts is set to a multi-
ple, K = 1, 2, 4, 8, · · · , of NΦ used for acquisition. Consequently, XA is initialized
to K · SΦ min. This is used in setting the tracking-error-count threshold TS , as
will be described in the next paragraph. Once this initialization occurs, then the
error count is measured (SS in Fig. 2-7) and compared against TS . If SS < TS ,
then UL is maintained at 0 and the error count average, XA, is updated via
XA = (XA + SS)/2. Note that this represents a simple, exponential running
average of the form

XA(n) = α · XA(n − 1) + (1 − α) · SS(n) (2 10)

where α = 1/2 and n is a sequential time index. This average converges quite
quickly (in just a few steps) and provides a reasonably smoothed estimate of the
error count. If SS ≥ TS in Fig. 2-7, then UL is incremented by 1 and compared
against a threshold, LT , between 0 and 15. As long as UL ≤ LT , then the tracking
loop proceeds. If not, then the decoder resets and acquisition is re-initiated.
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The tracking-error-count threshold TS is computed based on both the av-
eraged error count XA and the symbol SNR estimate. Initially, the threshold is
set equal to TR ≡ XA+∆S (∆S is a pre-determined constant between 0 and 255).
Then, assuming the symbol SNR estimator is enabled, a threshold TSNR is com-
puted from the above empirical relationship, Eq. (2-9). The tracking-error-count
threshold TS then is set to the minimum of TR and TSNR (if the symbol SNR
estimator is not enabled, TS = TR). In addition, a manual override threshold,
0 ≤ TECS ≤ 2048, is available if desired.

The various parameters defined above (e.g., TECS , α0, α1, NΦ, etc.) are pro-
grammable and typically are determined from calibration measurements made
on a given Electra unit. The symbol SNR, Es/N0, on the other hand, must be
estimated from the received data. Techniques for estimating symbol SNR are
described in Chapter 6. A different technique has been incorporated into the
current Electra radio based more on FPGA constraints than on performance
considerations. However, the Electra FPGA will be re-programmed to accom-
modate a better symbol SNR estimator based on the techniques described in
Chapter 6.

A block diagram of the symbol SNR estimator currently used in Electra is pre-
sented in Fig. 2-8. The one-bit control signal, pll mode, indicates whether sup-
pressed carrier (pll mode = 0) or residual carrier (pll mode = 1) is being received.
In the former case, the carrier-tracking loop is set to the Costas mode and the
input data to the SNR indicator comprise time-averaged samples of the magni-
tude I- and Q-arm filter outputs (see Figs. 2-2 and 2-4). When pll mode = 1, the
carrier-tracking loop is set to the phase-locked loop (PLL) mode and the input
data to the SNR indicator comprise time-averaged samples of the I- and residual-
I-arm filter outputs. In practice, symbol SNR estimates are obtained via a table
lookup procedure. Specifically, smoothed measurements of I ampk/Q ampk are
collected at different symbol SNRs (see Fig. 2-8). A table of ratios then is created
by curve fitting the measurements (two such tables are created, corresponding
to suppressed- or residual-carrier mode). The resulting table comprises 64 ratios
corresponding to symbol SNRs ranging from 0 dB to (10 − 1/64) dB in 1/64-
dB steps. Given the measurements, I ampk, Q ampk, the lookup procedure
comprises the following steps: (1) Find min

j
|ρ ∗ Q ampk ∗ Table (j) − I ampk|,

where “Table (j)” denotes the 64-element table of ratios and ρ is a constant that
is nominally set to 1 but can be fine-tuned so that the single table can accom-
modate the different data rates, and (2) given the table index j0 corresponding
to the smallest magnitude residual in the first step, compute the symbol SNR
estimate (dB) from Ês/N0 = j0/8+ j0/32+bias. The bias is nominally zero but
is also fine-tuned for different data rates.
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As currently implemented in the residual-carrier mode, ρ is always equal
to 1 for all data rates. The table entries “Table (j)” and bias offsets are obtained
during system calibration and are uploaded to the Electra FPGA.

2.3 Electra Digital Modulator
The Electra modulator is fully programmable and is implemented on the

FPGA. A block diagram of the modulator is depicted in Fig. 2-9. The coding
(differential, convolutional encoding) and scrambling functions also are imple-
mented on the FPGA. However, these typically are not programmed and thus
are not described herein. Instead, we describe the programmable digital modu-
lator section extending from the coders to the digital-to-analog converter (DAC)
outputs. It is noted that in order to support carrier-only operations as required
for the Proximity-1 protocol, a user-controlled variable called “enc enable” is
provided to force the final output of the encoder chain to a constant when
needed. The output of the encoder is forced to 0 when setting “enc enable”
to 0. It is also noted that the modulator can accommodate dual-channel data
inputs (an, bn as depicted in Fig. 2-9). For BPSK modulation, only one input is
required (and thus only one coder). However, the modulator also can accommo-
date QPSK modulation and in fact currently is being reprogrammed to include
the suppressed-carrier, QPSK mode. The general purpose software that imple-
ments a protocol on an actual spacecraft is described in [9].

Manchester encoding typically is enabled for residual-carrier transmissions.
It follows the coder chain as indicated in Fig. 2-9 and is considered part of
the digital modulator. When enabled, the encoder converts NRZ waveforms to
biphase-level-represented waveforms. In either case (Manchester or NRZ), the
output is initially a binary (1,0) stream. After Manchester or NRZ encoding, the
encoded binary data are converted to bipolar data. Typically, a logical zero is
mapped into a phase of zero radians, and a logical one is mapped into a phase of
π radians. This requires that for suppressed carrier, BPSK, the in-phase channel
depicted in Fig. 2-9 (with cosβ = 0) is always zero. However, for hardware im-
plementation, it is difficult to output an algebraic zero to the analog modulator
(following the DACs). Thus, for the suppressed-carrier BPSK mode, the data
are put on both I and Q channels (an = bn), which essentially rotates the BPSK
modulation by 45 deg. For the residual-carrier mode, the in-phase channel in
Fig. 2-9 (prior to multiplication by cosβ) is always set equal to 1.

Prior to describing the different operational modes of the Electra digital mod-
ulator, we first point out that there are several programmable parameters that
determine the power output from the modulator as well as gain and bias shifts on
the two output channels from the digital modulator that are input to the DACs
and analog modulator (Fig. 2-9). Specifically, for suppressed-carrier BPSK,
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the bipolar input levels to the complex multiplier depicted in Fig. 2-9 are identical
and are computed from

±0.5 ·
√

Tpow (2 11)

where Tpow is a programmable input parameter controlling the modulator output
power. For residual-carrier BPSK, the input levels to the complex multiplier are
computed from

In phase = 0.5 ·
√

Tpow · cos β (2 12)

Quadrature = ± 0.5 ·
√

Tpow · sinβ (2 13)

where β is the programmable modulation index parameter (nominally set to
π/3 radians). Note that the in-phase component is unipolar and is the source
of the residual carrier. The quadrature channel represents the data component
of the residual-carrier waveform. In addition to β and Tpow, programmable gain
and bias shifts are incorporated on the two output channels from the digital
modulator that are input to the DACs. These are critical during system calibra-
tion in minimizing mixer images and carrier bleed-through at the output of the
analog modulator.

Six operational modes have been implemented in the Electra digital modu-
lator:

(1) Data only

(2) Doppler turnaround

(3) Offset frequency with no Doppler turnaround

(4) Offset frequency with Doppler turnaround

(5) Frequency sweeping with no Doppler turnaround

(6) Frequency sweeping with Doppler turnaround

These different operational modes are controlled via a user-controlled vari-
able modulator mode (3 bits wide). For mode 0, the modulator NCO is effec-
tively turned off by forcing the NCO outputs to be constant. Mode 1 is the basic
Doppler turnaround mode where the input frequency FNCO to the demodulator
CTL NCO phase accumulator is multiplied by a turnaround ratio (Fig. 2-9). The
turnaround ratio is a programmable input parameter. For Mode 2, the modu-
lator NCO generates in-phase and quadrature sinewave components based on a
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fixed carrier offset that is a programmable input parameter. Doppler turnaround
is disabled for Mode 2, whereas for Mode 3 it is enabled along with the fixed
carrier offset. As indicated in Fig. 2-9, the input to the NCO phase accumulator
for Mode 3 is the sum of the turnaround and fixed offset frequencies. Modulator
modes 4 and 5 are similar to modes 2 and 3 except that, instead of a fixed-
frequency waveform, the modulator NCO generates a swept-frequency waveform
that can be used to aid frequency acquisition at the receiver. The transmit sweep
parameters (sweep rate, frequency limits, etc.) are all programmable input pa-
rameters. These different modes allow a large range of operational scenarios for
the Electra transceiver.
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Chapter 3
Modulation Index Estimation

Marvin K. Simon and Jon Hamkins

Of the many possible modes available for communicating information over
a coherent communication channel, one that is quite common is to allocate a
portion of the total transmitted power Pt to a discrete carrier for purposes of
carrier synchronization. In the case of binary phase-shift keying (BPSK) mod-
ulation, the simplest way to accomplish this is to employ a phase modulation
index β other than 90 deg. When this is done, the fraction of power allocated to
the discrete carrier becomes Pc = Pt cos2 β with the remaining fractional power
Pd = Pt sin2 β available for data detection. When using this signaling mode, one
must assure oneself that the power spectrum of the data modulation is such that
it does not interfere with the extraction of the discrete carrier by an appropriate
carrier-tracking loop such as a phase-locked loop (PLL). In other words, the dis-
crete carrier should be inserted at a point where the power spectrum of the data
modulation is minimum, preferably equal to zero. In the case of digital data, this
rules out direct modulation of the carrier with a non-return-to-zero (NRZ) data
stream whose spectrum is maximum at zero frequency, which at radio frequency
(RF) would correspond to the carrier frequency. Instead one can first modulate
the data onto a subcarrier whose frequency is selected significantly higher than
the data rate so that the sidebands of the data modulation are sufficiently re-
duced by the time they reach the carrier frequency. Alternatively, one can use
a data format such as biphase-L (Manchester coding), whose power spectrum is
identically equal to zero at zero frequency, and directly modulate the carrier.

On other occasions it might be preferable to use a coherent communication
mode where carrier synchronization is established directly from the data-bearing
signal, e.g., using a Costas loop. In this case, none of the transmitted power is
allocated to a discrete carrier, and the system is said to operate in a suppressed-

45
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carrier mode, which in the case of BPSK corresponds to β = 90 deg. Although a
Costas loop operates with a less efficient performance (e.g., larger mean-squared
phase-tracking error) than a PLL, it offers the advantage of not requiring a dis-
crete carrier to lock onto, and thus all of the transmitted power can be used for
the purpose of data detection.

Given that either of the transmission modes discussed above is possible, in
the case of autonomous receiver operation it is essential to have a means of es-
timating the modulation index or, equivalently, the ratio of transmitted carrier
to data power. In this chapter, in Section 3.1 we first pursue the maximum-
likelihood (ML) estimation approach to estimating modulation index along with
appropriate approximation of the nonlinearities that result to allow for practi-
cal implementations at low and high signal-to-noise ratio (SNR) scenarios. In
Section 3.2, we consider modulation index estimation for the case where carrier
synchronization has not yet been established, i.e., the carrier phase is random.
Here the ML estimation problem is too difficult to handle analytically and so we
propose an ad hoc scheme instead. Finally, in Section 3.3, we describe how this
scheme may be applied when the modulation type, symbol timing, and data rate
are also unknown.

3.1 Coherent Estimation

3.1.1 BPSK

We begin by considering BPSK modulation where the received signal is given
in complex baseband by Eqs. (1-3) and (1-6), or in passband by

r (t) =
√

2Pt sin

(
ωct + β

∞∑

n=−∞
cnp (t − nT )

)
+ n (t)

=
√

2Pt cos2 β sinωct +
√

2Pt sin2 β

∞∑

n=−∞
cnp (t − nT ) cos ωct + n (t)

=
√

2Pc sin ωct +
√

2Pd

∞∑

n=−∞
cnp (t − nT ) cos ωct + n (t) (3 1)

where, in addition to the aforementioned parameter definitions, {cn} is a binary
sequence, which for our purposes may be treated as independent, identically
distributed (iid) data taking on values ±1 with equal probability; p (t) is the
pulse shape, also taking on values ±1; ωc is the carrier frequency in rad/s;
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1/T is the data (symbol) rate; and n (t) is a bandpass additive white Gaussian
noise (AWGN) source with two-sided power spectral density N0/2 W/Hz. Based
on the above AWGN model, then for an observation of K data intervals, the
conditional probability of the received signal given the data and the modulation
index is given by

p
(
r(t)|{cn}, β

)
=

1√
πN0

exp

(
− 1

N0

∫ KT

0

[
r(t) −

√
2Pc sinωct

−
√

2Pd

∞∑

n=−∞
cnp(t − nT ) cos ωct

]2

dt

⎞
⎠

= C exp

(
2
√

2Pc

N0

∫ KT

0

r(t) sinωct dt

)

× exp

(
2
√

2Pd

N0

∫ KT

0

r(t)
∞∑

n=−∞
cnp(t − nT ) cos ωct dt

)

(3 2)

where C is a constant that has no bearing on the modulation index estimation
to be performed. With some additional manipulation, Eq. (3-2) can be put in
the form

p
(
r(t)|{cn}, β

)
= C exp

(
2
√

2Pt cos β

N0

∫ KT

0

r(t) sinωct dt

)

×
K−1∏

k=1

exp

(
2
√

2Pt sinβ

N0
ck

∫ (k+1)T

kT

r(t)p(t − kT ) cos ωct dt

)

(3 3)

Averaging over the iid data sequence gives what is referred to as the condit-
ional-likelihood function (CLF), namely,

p
(
r(t)|β

)
= C exp

(
2
√

2Pt cos β

N0

∫ KT

0

r(t) sinωct dt

)

×
K−1∏

k=1

cosh

(
2
√

2Pt sinβ

N0

∫ (k+1)T

kT

r(t)p(t − kT ) cos ωct dt

)
(3 4)
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Next, taking the logarithm of Eq. (3-4), we obtain the log-likelihood function
(LLF)

Λ �= ln p
(
r(t)|β

)
=

2
√

2Pt cos β

N0

∫ KT

0

r(t) sinωct dt

+
K−1∑

k=0

ln cosh

(
2
√

2Pt sinβ

N0

∫ (k+1)T

kT

r(t)p(t − kT ) cos ωct dt

)
(3 5)

where we have ignored the additive constant lnC.
Finally, differentiating the LLF with respect to β and equating the result to

zero, we get

d

dθ
ln p

(
r(t)|β

)
= − 2

√
2Pt sinβ

N0

∫ KT

0

r(t) sinωct dt

+
K−1∑

k=0

tanh

(
2
√

2Pt sinβ

N0

∫ (k+1)T

kT

r(t)p(t − kT ) cos ωct dt

)

× 2
√

2Pt cos β

N0

∫ (k+1)T

kT

r(t)p(t − kT ) cos ωct dt = 0 (3 6)

from which the ML estimate of β, namely, β̂, is the solution to the transcendental
equation

∫ KT

0

r(t) sinωct dt =

(
cot β̂

) K−1∑

k=0

tanh

(
2
√

2Pt sin β̂

N0

∫ (k+1)T

kT

r(t)p(t − kT ) cos ωct dt

)

× 2
√

2Pt

N0

∫ (k+1)T

kT

r(t)p(t − kT ) cos ωct dt (3 7)

In order to arrive at an estimation algorithm that is practical to implement,
one must now make suitable approximations to the nonlinearity in Eq. (3-7) cor-
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responding to low and high data detection SNR conditions. For large arguments,
the hyperbolic tangent nonlinearity can be approximated as

tanhx ∼= sgn x (3 8)

Applying this approximation to Eq. (3-7), we arrive at the simple result

cot β̂ =

∫ KT

0
r(t) sinωct dt

K−1∑
k=0

∣∣∣
∫ (k+1)T

kT
r(t)p(t − kT ) cos ωct dt

∣∣∣
(3 9)

which for rectangular pulses simplifies further to

cot β̂ =

∫ KT

0
r(t) sinωct dt

K−1∑
k=0

∣∣∣
∫ (k+1)T

kT
r(t) cos ωct dt

∣∣∣
(3 10)

The result in Eq. (3-10) is intuitively satisfying since, in the absence of noise, it
becomes

cot β̂ =

∫ KT

0

√
2Pc sin2 ωct dt

K−1∑
k=0

∣∣∣
∫ (k+1)T

kT
ck

√
2Pd cos2 ωct dt

∣∣∣
=

√
2Pc(KT/2)√
2Pd(KT/2)

=
√

Pc

Pd
(3 11)

For small arguments, the hyperbolic tangent nonlinearity can be approximated
as

tanhx ∼= x (3 12)

Applying this approximation to Eq. (3-7), we arrive at the simple result

cos β̂ =
N0

∫ KT

0
r(t) sinωct dt

2
√

2Pt

K−1∑
k=0

(∫ (k+1)T

kT
r(t)p(t − kT ) cos ωct dt

)2
(3 13)
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which for rectangular pulses simplifies further to

cos β̂ =
N0

∫ KT

0
r(t) sinωct dt

2
√

2Pt

K−1∑
k=0

(∫ (k+1)T

kT
r(t) cos ωct dt

)2
(3 14)

Unfortunately, there is no guarantee that the right-hand side of Eq. (3-13) will
be less than or equal to unity and thus a solution to this equation may not always
exist.

3.1.2 M-PSK

For M -phase shift keying (M -PSK) modulation (M > 2), the received sig-
nal can be represented in complex baseband using Eqs. (1-3) and (1-7), or in
passband by

r(t) =
√

2Pc sinωct +
√

2Pd cos

(
ωct +

∞∑

n=−∞
θnp(t − nT )

)
+ n(t) (3 15)

where θn = [2qn + (1 + (−1)M/2)/2]π/M is the data modulation for the nth
M -PSK symbol, with independent and uniformly distributed qn ∈ {0, 1, · · · , M−
1}. The CLF analogous to Eq. (3-3) now becomes

p
(
r(t)|{θk}, β

)
= C exp

(
2
√

2Pc

N0

∫ KT

0

r(t) sinωct dt

)

×
K−1∏

k=0

exp

(
2
√

2Pd

N0

∫ (k+1)T

kT

r(t) cos
(
ωct + θkp(t − kT )

)
dt

)

(3 16)

Once again averaging over the data symbols, then because of the symmetry of
the constellation around the circle, i.e., for each phase value there is one that is
π radians away from it, we obtain
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p
(
r(t)|, β

)
= C exp

(
2
√

2Pt cos β

N0

∫ KT

0

r(t) sinωct dt

)

×
K−1∏

k=0

2
M

(M/2)−1∑

q=0

cosh
[
2
√

2Pt sinβ

N0

×
∫ (k+1)T

kT

r(t) cos
(

ωct +
(2q + 1)π

M
p(t − kT )

)
dt

]
(3 17)

where we have artificially introduced the modulation index β to have the same
meaning as in the BPSK case. Once again taking the logarithm of Eq. (3-17),
we obtain the LLF

Λ �= ln p
(
r(t)|β

)
=

2
√

2Pt cos β

N0

∫ KT

0

r(t) sinωct dt +
K−1∑

k=0

ln
2
M

×
(M/2)−1∑

q=0

cosh

(
2
√

2Pt sinβ

N0

∫ (k+1)T

kT

r(t) cos
(

ωct +
(2q + 1)π

M
p(t − kT )

)
dt

)

(3 18)

Finally, differentiating Eq. (3-18) with respect to β and equating the result to
zero results in the transcendental equation

∫ KT

0

r(t) sinωct dt =

(
cot β̂

) K−1∑

k=0

(M/2)−1∑
q=0

xk(q) sinh

(
2
√

2Pt sin β̂

N0
xk(q)

)

(M/2)−1∑
q=0

cosh

(
2
√

2Pt sin β̂

N0
xk(q)

)

xk(q) �=
∫ (k+1)T

kT

r(t) cos
(

ωct +
(2q + 1)π

M
p(t − kT )

)
dt

(3 19)

whose solution is the ML estimate of the modulation index. As for the BPSK
case, to get an implementable estimator we must invoke suitable approximations
to the nonlinearities in Eq. (3-19).
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For large arguments, the hyperbolic sine and cosine nonlinearities can be
approximated as

sinhx ∼= 1
2

exp (|x|) sgn x

cosh x ∼= 1
2

exp (|x|)

(3 20)

from which we obtain

∫ KT

0

r(t) sinωct dt =
(
cot β̂

) K−1∑

k=0

(M/2)−1∑

q=0

|xk(q)| exp

(
2
√

2Pt sin β̂

N0
|xk(q)|

)

(M/2)−1∑
q=0

exp

(
2
√

2Pt sin β̂

N0
|xk(q)|

)

(3 21)

Noting further that for large SNR the summations in Eq. (3-21) are dominated
by their largest term, we can make the further simplification

(M/2)−1∑

q=0

|xk(q)| exp

(
2
√

2Pt sin β̂

N0
|xk(q)|

)
∼=

|xk(q)|max exp

(
2
√

2Pt sin β̂

N0
|xk(q)|max

)
(3 22)

(M/2)−1∑

q=0

exp

(
2
√

2Pt sin β̂

N0
|xk(q)|

)
∼= exp

(
2
√

2Pt sin β̂

N0
|xk(q)|max

)
(3 23)

where

|xk (q)|max

�= max
q

|xk (q)| (3 24)

Finally, applying Eq. (3-22) to Eq. (3-21) gives the desired simplified solution
for the ML estimate of modulation index for M -PSK, namely,



Modulation Index Estimation 53

cot β̂ =

∫ KT

0
r(t) sinωct dt

K−1∑
k=0

|xk(q)|max

(3 25)

=

∫ KT

0
r(t) sinωct dt

K−1∑
k=0

max
q

∣∣∣∣
∫ (k+1)T

kT
r(t) cos

(
ωct +

(2q + 1)π
M

p(t − kT )
)

dt

∣∣∣∣
(3 26)

which for rectangular pulses simplifies further to

cot β̂ =

∫ KT

0
r (t) sinωct dt

K−1∑
k=0

|xk (q)|max

=

∫ KT

0
r (t) sinωct dt

K−1∑
k=0

max
q

∣∣∣∣
∫ (k+1)T

kT
r (t) cos

(
ωct +

(2q + 1)π
M

)
dt

∣∣∣∣

(3 27)

For low SNR, we can apply the small argument approximations

sinh ∼= x

cosh x ∼= 1
(3 28)

Note that these approximations are consistent with the approximation of the
hyperbolic tangent nonlinearity given in Eq. (3-12). Thus, applying the approx-
imations in Eq. (3-28) to Eq. (3-19) results in the ML estimate

cos β̂

=
N0

∫ KT

0
r (t) sinωct dt

2
√

2Pt

K−1∑
k=0

2
M

(M/2)−1∑
q=0

x2
k (q)

=
MN0

∫ KT

0
r (t) sinωct dt

4
√

2Pt

K−1∑
k=0

(M/2)−1∑
q=0

(∫ (k+1)T

kT
r (t) cos

(
ωct +

(2q + 1)π
M

p (t − kT )
)

dt

)2

(3 29)

which has the same difficulty as that in the discussion following Eq. (3-14).
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3.2 Noncoherent Estimation
In the noncoherent case, the modulation index estimate must be formed

in the absence of carrier synchronization. For simplicity, we again begin the
investigation for BPSK modulation. The received signal is again modeled as in
Eq. (3-1) with the addition of an unknown (assumed to be uniformly distributed)
carrier phase to both the discrete and data-modulated carriers. Thus, analogous
to Eq. (3-4), we now have the CLF

p
(
r(t)|β, θc

)
= C exp

(
2
√

2Pt cos β

N0

∫ KT

0

r (t) sin (ωct + θc) dt

)

×
K−1∏

k=1

cosh

(
2
√

2Pt sinβ

N0

∫ (k+1)T

kT

r (t) p (t − kT ) cos (ωct + θc) dt

)
(3 30)

The next step would be to average over the uniformly distributed carrier
phase, which is an analytically intractable task. Even after approximating the
nonlinearities as was done in the coherent case, performing this average is still
analytically intractable. Thus, we abandon our search for the ML estimate and
instead propose the following ad hoc approach.

Consider demodulating the received signal of Eq. (3-1), including now the
unknown carrier phase θc, with the in-phase (I) and quadrature (Q) carriers
(arbitrarily assumed to have zero phase relative to the unknown carrier phase of
the received signal)

rc (t) =
√

2 cos ωct

rs (t) =
√

2 sinωct

(3 31)

Then, the outputs of these demodulations become

yc (t) = r (t) rc (t) =
√

Pc sin θc +
√

Pd

∞∑

n=−∞
cnp (t − nT ) cos θc + nc (t)

ys (t) = r (t) rs (t) =
√

Pc cos θc −
√

Pd

∞∑

n=−∞
cnp (t − nT ) sin θc + ns (t)

(3 32)

where
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nc (t) = n (t)
(√

2 cos ωct
)

ns (t) = n (t)
(√

2 sinωct
)

(3 33)

Integrating yc (t) and ys (t) over K symbol durations and summing the squares
of these integrations gives

(∫ KT

0

yc (t) dt)2 +

(∫ KT

0

ys (t) dt

)2

= (KT )2 Pt cos2 β

+ (KT )2Pt sin2 β

(
1
K

K−1∑

k=0

1
T

∫ (k+1)T

kT

ckp (t − kT ) dt

)2

+ N1 (t) (3 34)

where N1 (t) is composed of S × N and N × N terms. For sufficiently large K,
the data-dependent term becomes vanishingly small, in which case Eq. (3-34)
simplifies to

(∫ KT

0

yc (t) dt

)2

+

(∫ KT

0

ys (t) dt

)2

= (KT )2 Pt cos2 β + N1 (t) (3 35)

Next, noting that the first terms in Eq. (3-32) are constant with time, form the
difference signals

yc (t) − yc (t − T ) =
√

Pt sinβ

∞∑

n=−∞
(cn − cn−1) p (t − nT ) cos θc

+ nc (t) − nc (t − T )

ys (t) − ys (t − T ) = −
√

Pt sinβ

∞∑

n=−∞
(cn − cn−1) p (t − nT ) sin θc

+ ns (t) − ns (t − T )

(3 36)

Now first squaring these signals and then integrating them over K symbol dura-
tions, the sum of these integrations becomes
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∫ KT

0

(
yc(t)−yc(t − T )

)2
dt +

∫ KT

0

(
ys(t) − ys(t − T )

)2
dt =

Pt sin2 β

K−1∑

k=0

∫ (k+1)T

kT

(2 − 2ckck−1) p2 (t − kT ) dt + N2 (t) (3 37)

where again N2(t) is composed of S × N and N × N terms. Once again, for
sufficiently large K, the data-dependent term becomes vanishingly small and,
assuming for convenience rectangular pulses, Eq. (3-37) simplifies to

∫ KT

0

(
yc(t) − yc(t − T )

)2
dt +

∫ KT

0

(
ys(t) − ys(t − T )

)2
dt =

2KTPt sin2 β + N2(t) (3 38)

Finally then, from observation of Eqs. (3-35) and (3-38), it is reasonable to
propose the ad hoc noncoherent estimator of modulation index

cot β̂ =

√√√√√√
2

[(∫ KT

0
yc(t)dt

)2

+
(∫ KT

0
ys(t)dt

)2
]

KT
[∫ KT

0

(
yc(t) − yc(t − T )

)2
dt +

∫ KT

0

(
ys(t) − ys(t − T )

)2
dt

]

(3 39)

Clearly, in the absence of noise this estimator produces the true value of the
modulation index. Also, it has an advantage over Eqs. (3-14) and (3-29) in that
the SNR need not be known to compute it. The architecture given by Eq. (3-39)
is shown in Fig. 3-1.

3.3 Estimation in the Absence of Knowledge of the
Modulation, Data Rate, Symbol Timing, and SNR

The modulation index estimators in Section 3.1 do not require an SNR esti-
mate, and the ones in Section 3.2 require neither an SNR estimate nor a carrier
phase estimate. However, they both require explicit knowledge of the phase-shift
keying (PSK) modulation size, data rate, and symbol timing, as seen by the use
(either explicitly or implicitly) of the parameters M and T and precise integra-
tion limits in Eqs. (3-10), (3-14), (3-27), (3-29), and (3-39).

In this section, we extend the ad hoc modulation index estimator of
Eq. (3-39) for BPSK signals to a general M -PSK modulation where M is un-
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known, and where the symbol rate (1/T ) and fractional symbol timing (ε) are
also unknown. We assume that T takes on values in a finite set T , and we define

T ∗ �= max
T

{T ∈ T } (3 40)

The received signal can be represented as

r (t) =
√

2Pc sin(ωct + θc)

+
√

2Pd cos

(
ωct + θc +

∞∑

n=−∞
θnp (t − nT − εT )

)
+ n (t) (3 41)

which is the same as Eq. (3-15) except that we have introduced unknown pa-
rameters θc and ε, and we now allow for the possibility of BPSK as well, so that
θn = [2qn + (1 + (−1)M/2)/2]π/M is the data modulation for the nth M -PSK
symbol, with independent and uniformly distributed qn ∈ {0, 1, · · · , M − 1}.

After mixing with in-phase and quadrature signals [see Eq. (3-31)], we have

yc(t) = r (t) rc (t) =
√

Pc sin θc +
√

Pd cos

[
θc +

∞∑

n=−∞
θnp(t − nT − εT )

]

+ nc(t)
(3 42)

ys (t) = r (t) rs (t) =
√

Pc cos θc −
√

Pd sin

[
θc +

∞∑

n=−∞
θnp(t − nT − εT )

]

+ ns(t)

where nc(t) and ns(t) are described by Eq. (3-33), as before.
Following the same strategy for ad hoc estimation as in Section 3.2, we inte-

grate over a long duration. In this case, the integration limits are not necessarily
aligned to the symbols, and T ∗ is used in place of the (unknown) T , to obtain

1
KT ∗

∫ KT∗

0

yc(t)dt =
√

Pc sin θc

+
1

KT ∗

∫ KT∗

0

[
√

Pd cos

(
θc +

∞∑

n=−∞
θnp(t − nT − εT )

)
+ nc(t)

]
dt (3 43)

and
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1
KT ∗

∫ KT∗

0

ys(t)dt =
√

Pc cos θc

+
1

KT ∗

∫ KT∗

0

[
√

Pd sin

(
θc +

∞∑

n=−∞
θnp(t − nT − εT )

)
+ ns(t)

]
dt (3 44)

Using the facts that (1) M -PSK, for all M even, has the property that if θn is
an allowable modulation angle, θn +π is as well, (2) each point in the signal con-
stellation is equally likely, (3) both NRZ and Manchester satisfy p(t) ∈ {−1, 1}
for all t, and (4) cos(α) = − cos(α+π) and sin(α) = − sin(α+π), it follows that
the integrals in Eqs. (3-43) and (3-44) each approach zero as K → ∞. Thus, for
sufficiently large K, we may write

(
1

KT ∗

∫ KT∗

0

yc(t)dt

)2

∼= Pc sin2 θc (3 45)

(
1

KT ∗

∫ KT∗

0

ys(t)dt

)2

∼= Pc cos2 θc (3 46)

or

(
1

KT ∗

∫ KT∗

0

yc(t)dt

)2

+

(
1

KT ∗

∫ KT∗

0

ys(t)dt

)2

∼= Pc (3 47)

It remains to obtain an estimate of Pd. We may form the difference

yc(t) − yc(t − T ∗) =
√

Pd

[
cos

(
θc +

∞∑

n=−∞
θnp(t − nT − εT )

)

− cos

(
θc +

∞∑

n=−∞
θnp(t − T ∗ − nT − εT )

)]

+ nc(t) − nc(t − T ∗)

=
√

Pd

{
−2 sin

[
1
2

(
2θc +

∞∑

n=−∞
(θn + θn+l)p(t − nT − εT )

)]

× sin

[
1
2

∞∑

n=−∞
(θn − θn+l)p(t − nT − εT )

]}

+ nc(t) − nc(t − T ∗)
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where l
�= T ∗/T . Although l is unknown, since T is unknown, we will see that

this parameter will drop out of the final metric. Forming a similar expression
for the difference of ys(t) terms, squaring, and ignoring noise terms, we obtain

(yc(t) − yc(t − T ∗))2 ∼= 4Pd

{
sin2

[
1
2

(
2θc +

∞∑

n=−∞
(θn + θn+l)p(t − nT − εT )

)]

× sin2

[
1
2

( ∞∑

n=−∞
(θn − θn+l)p(t − nT − εT )

)]}

(ys(t) − ys(t − T ∗))2 ∼= 4Pd

{
cos2

[
1
2

(
2θc +

∞∑

n=−∞
(θn + θn+l)p(t − nT − εT )

)]

× sin2

[
1
2

( ∞∑

n=−∞
(θn − θn+l)p(t − nT − εT )

)]}

Thus,

1
2KT ∗

∫ KT∗

0

[(
yc(t) − yc(t − T ∗)

)2 +
(
ys(t) − ys(t − T ∗)

)2
]
dt ∼=

2Pd

KT ∗

∫ KT∗

0

sin2

[
1
2
(
(θn − θn+l)p(t − nT − εT )

)]
dt ∼= Pd (3 48)

where we have used sin2 x = (1/2)(1 − 2 cos x) and the fact that the integration
of the cosine term approaches zero for sufficiently large K.

Thus, an ad hoc estimator of the modulation index β = cot−1
√

Pc/Pd is
given by

β̂ = cot−1

⎡
⎢⎢⎢⎣

√√√√√√
2

[(∫ KT∗

0
yc(t)dt

)2

+
(∫ KT∗

0
ys(t)dt

)2
]

KT ∗ ∫ KT∗

0

[(
yc(t) − yc(t − T ∗)

)2 +
(
ys(t) − ys(t − T ∗)

)2
]
dt

⎤
⎥⎥⎥⎦

(3 49)
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which is identical to Eq. (3-39) when T is replaced by T ∗. Thus, the same
architecture shown in Fig. 3-1 may be used when modulation type, data rate,
symbol timing, and SNR are unknown, by replacing T with T ∗.

3.4 Noncoherent Estimation in the Absence of
Carrier Frequency Knowledge

Consider now demodulating the received signal of Eq. (3-1) with I and Q
references as in Eq. (3-31) with ωc replaced by ωc − ∆ω, where ∆ω denotes the
uncertainty in the knowledge of the true carrier frequency ωc. Then, the outputs
of these demodulations are given by Eq. (3-32) with θc replaced by ∆ωt + θc.
Squaring yc (t) and ys (t) and summing these squares gives

y2
c (t) + y2

s (t) =

Pc + Pd

⎛
⎜⎝

∞∑

n=−∞
p2 (t − nT ) +

∞∑

n=−∞

∞∑

m=−∞
n �=m

anamp (t − nT ) p (t − mT )

⎞
⎟⎠ + N1 (t)

(3 50)

where as before N1 (t) is composed of S ×N and N ×N terms. Integrating the
sum in Eq. (3-50) over K symbol durations and recognizing that for sufficiently
large K the time average over the data-dependent term can be replaced by
the statistical average, which for random data equates to zero, we obtain the
simplified result

∫ KT

0

[
y2

c (t) + y2
s (t)

]
dt = KT (Pc + Pd)+

NA︷ ︸︸ ︷∫ KT

0

N1 (t) dt = KTPt +NA (3 51)

Next, form the complex signal

ỹ (t) = ys (t) + jyc (t)

=

[
√

Pc + j
√

Pd

∞∑

n=−∞
anp (t − nT )

]
ej(∆ωt+θc) + ns (t) + jnc (t) (3 52)
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and multiply it by its complex conjugate delayed by one symbol ỹ∗ (t − T ), which
gives

ỹ (t) ỹ∗ (t − T ) =

[
Pc + Pd

∞∑

n=−∞
anan−1p (t − nT )

]
ej∆ωT

+ j
√

PcPd

∞∑

n=−∞
(an − an−1) p (t − nT )ej∆ωT + N2 (t) (3 53)

where again N2 (t) is composed of S × N and N × N terms. Now integrate this
complex product over K symbol intervals, once again ignoring the averages over
the data-dependent terms, valid for large K. Thus,

∫ KT

0

ỹ (t) ỹ∗ (t − T ) dt = KTPce
j∆ωT +

NB(t)︷ ︸︸ ︷∫ KT

0

N2 (t) dt (3 54)

Finally, from observation of Eqs. (3-51) and (3-54), it is reasonable to propose
the ad hoc noncoherent estimator of modulation angle

cos β =

√√√√√

∣∣∣
∫ KT

0
ỹ (t) ỹ∗ (t − T ) dt

∣∣∣
∫ KT

0
|ỹ (t)|2 dt

(3 55)



Chapter 4
Frequency Correction

Dariush Divsalar

Over the years, much effort has been spent in the search for optimum syn-
chronization schemes that are robust and simple to implement [1,2]. These
schemes were derived based on maximum-likelihood (ML) estimation theory. In
many cases, the derived open- or closed-loop synchronizers are nonlinear. Linear
approximation provides a useful tool for the prediction of synchronizer perfor-
mance.

In this semi-tutorial chapter, we elaborate on these schemes for frequency ac-
quisition and tracking. Various low-complexity frequency estimator schemes are
presented in this chapter. The theory of ML estimation provides the optimum
schemes for frequency estimation. However, the derived ML-based scheme might
be too complex for implementation. One approach is to use theory to derive the
best scheme and then try to reduce the complexity such that the loss in perfor-
mance remains small. Organization of this chapter is as follows: In Section 4.1,
we show the derivation of open- and closed-loop frequency estimators when a
pilot (residual) carrier is available. In Section 4.2, frequency estimators are de-
rived for known data-modulated signals (data-aided estimation). In Section 4.3,
non-data-aided frequency estimators are discussed. This refers to the frequency
estimators when the data are unknown at the receiver.

4.1 Frequency Correction for Residual Carrier
Consider a residual-carrier system where a carrier (pilot) is available for

tracking. We consider both additive white Gaussian noise (AWGN) and Rayleigh
fading channels in this section.
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4.1.1 Channel Model

Let r̃c[k] be the kth received complex sample of the output of a low-
pass filtered pilot. The observation vector r̃c with components r̃c[k]; k = 0,

1, · · · , N − 1 can be modeled as

r̃c[k] = Aej(2π∆fkTs+θc) + ñ[k] (4 1)

where the r̃c[k] samples are taken every Ts seconds (sampling rate of 1/Ts).
In the above equation, ñ[k], k = 0, 1, · · · , N − 1, are independent, identically
distributed (iid) zero-mean, complex Gaussian random variables with variance σ2

per dimension. The frequency offset to be estimated is denoted by ∆f , and θc is
an unknown initial carrier phase shift that is assumed to be uniformly distributed
in the interval [0, 2π) but constant over the N samples. For an AWGN channel,
A =

√
2Pc is constant and represents the amplitude of the pilot samples. For a

Rayleigh fading channel, we assume A is a complex Gaussian random variable,
where |A| is Rayleigh distributed and arg A

�= tan−1
(
Im(A)/Re(A)

)
is uniformly

distributed in the interval [0, 2π), where Im(·) denotes the imaginary operator
and Re(·) denotes the real operator.

4.1.2 Optimum Frequency Estimation over an AWGN Channel

We desire an estimate of the frequency offset ∆f based on the received ob-
servations given by Eq. (4-1). The ML estimation approach is to obtain the
conditional probability density function (pdf) of the observations, given the fre-
quency offset. To do so, first we obtain the following conditional pdf:

P (r̃c|∆f, θc) = C0e
−(1/2σ2)Z (4 2)

where C0 is a constant, and

Z =
N−1∑

k=0

∣∣∣r̃c[k] − Aej(2π∆fkTs+θc)
∣∣∣
2

(4 3)

Define

Y =
N−1∑

k=0

r̃c[k]e−j(2π∆fkTs) (4 4)

Then Z can be rewritten as
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Z =
N−1∑

k=0

∣∣r̃c[k]
∣∣2 − 2ARe(Y e−jθc) +

N−1∑

k=0

A2 (4 5)

The first and the last terms in Eq. (4-5) do not depend on ∆f and θc. Denoting
the sum of these two terms by C1, then Z can be written as

Z = C1 − 2A|Y |cos(θc − arg Y ) (4 6)

Using Eq. (4-6), the conditional pdf of Eq. (4-2) can be written as

P (r̃c|∆f, θc) = C2 exp
[

A

σ2
|Y |cos(θc − arg Y )

]
(4 7)

where C2 = Ce−(C1/2σ2). Averaging Eq. (4-7) over θc produces

P (r̃c|∆f) = C2I0

(
A|Y |
σ2

)
(4 8)

where I0(·) is the modified Bessel function of zero order and can be represented
as

I0(x) =
1
2π

∫ 2π

0

excos(ψ)dψ (4 9)

Since I0(x) is an even convex cup ∪ function of x, maximizing the right-hand side
of Eq. (4-8) is equivalent to maximizing |Y |. Thus, the ML metric for estimating
the frequency offset can be obtained by maximizing the following metric:

λ(∆f) = |Y | =

∣∣∣∣∣

N−1∑

k=0

r̃c[k]e−j(2π∆fkTs)

∣∣∣∣∣ (4 10)

4.1.3 Optimum Frequency Estimation over a Rayleigh
Fading Channel

We desire an estimate of the frequency offset ∆f over a Rayleigh fading
channel. The ML approach is to obtain the conditional pdf of the observations,
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given the frequency offset. To do so, first we start with the following conditional
pdf:

P (r̃c|A,∆f, θc) = C0e
−(1/2σ2)Z (4 11)

where C0 is a constant, and Z and Y are defined as in Eqs. (4-3) and (4-4).
Since A is now a complex random variable, then Z can be rewritten as

Z =
N−1∑

k=0

∣∣r̃c[k]
∣∣2 − 2Re(Y Ae−jθc) +

N−1∑

k=0

|A|2 (4 12)

The first terms in Eq. (4-12) do not depend on A. Averaging the conditional pdf
in Eq. (4-11) over A, assuming the magnitude of A is Rayleigh distributed and
its phase is uniformly distributed, we obtain

P (r̃c|∆f, θc) = C3 exp
(

C4

2σ2
|Y |2

)
(4 13)

where C3 and C4 are constants, and Eq. (4-13) is independent of θc. Thus,
maximizing the right-hand side of Eq. (4-13) is equivalent to maximizing |Y |2 or
equivalently |Y |. Thus, the ML metric for estimating the frequency offset can
be obtained by maximizing the following metric:

λ(∆f) = |Y | =

∣∣∣∣∣

N−1∑

k=0

r̃c[k]e−j(2π∆fkTs)

∣∣∣∣∣ (4 14)

which is identical to that obtained for the AWGN channel case.

4.1.4 Open-Loop Frequency Estimation

For an open-loop estimation, we have

∆̂f = argmax
∆f

λ(∆f) (4 15)

However, this operation is equivalent to obtaining the fast Fourier transform
(FFT) of the received sequence, taking its magnitude, and then finding the
maximum value, as shown in Fig. 4-1.
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Fig. 4-1. Open-loop frequency estimation, 

residual carrier.
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4.1.5 Closed-Loop Frequency Estimation

The error signal for a closed-loop estimator can be obtained as

e =
∂

∂∆f
λ(∆f) (4 16)

We can approximate the derivative of λ(∆f) for small ε as

∂

∂∆f
λ(∆f) =

λ(∆f + ε) − λ(∆f − ε)
2ε

(4 17)

Then, we can write the error signal as (in the following, any positive constant
multiplier in the error signal representation will be ignored)

e = |Y (∆f + ε)| − |Y (∆f − ε)| (4 18)

where

Y (∆f + ε) =
N−1∑

k=0

r̃c[k]e−j(2π∆fkTs)e−j(2πεkTs) (4 19)

The error-signal detector for a closed-loop frequency correction can be imple-
mented based on the above equations. The block diagram is shown in Fig. 4-2,
where in the figure α = e−j2πεTs .

Now rather than using the approximate derivative of λ(∆f), we can take the
actual derivative of λ2(∆f) = |Y |2, which gives the error signal

e = Im(Y ∗U) (4 20)

where
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Fig. 4-2.  Approximate error signal detector, residual carrier.
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U =
N−1∑

k=0

r̃c[k]ke−j(2π∆fkTs) (4 21)

Note that the error signal in Eq. (4-20) can also be written as

e = Im(Y ∗U) = |Y − jU |2 − |Y + jU |2 (4 22)

or for a simple implementation we can use

e = |Y − jU | − |Y + jU | (4 23)

The block diagram of the error signal detector based on Eq. (4-23) is shown in
Fig. 4-3.

The corresponding closed-loop frequency estimator is shown in Fig. 4-4. The
dashed box in this figure and all other figures represents the fact that the hard
limiter is optional. This means that the closed-loop estimators can be imple-
mented either with or without such a box.

4.1.5.1. Approximation to the Optimum Error Signal Detector. Imple-
mentation of the optimum error signal detector is a little bit complex. To reduce
the complexity, we note that
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Fig. 4-3.  Exact error signal detector, residual carrier.
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Fig. 4-4.  Closed-loop frequency estimator, residual carrier.

j

Close Every 

N Samples
+

−
ek

e−j 2π∆fkTs

x

Loop

Filter

Gain

δ

Numerically

Controlled

Oscillator (NCO)

Σ

+

+

+

−

−1

+1

kx
kΣ

N  − 1

k  = 0

N  − 1
x

kΣ
k  = 0 •

•

r
c

~ [k]

e = Im(Y ∗U) =
N−1∑

i=0

Im(X∗
0,iXi+1,(N−1)) ∼= C5Im(X∗

0,(N/2)−1X(N/2),N−1)

(4 24)
where

Xm,n =
n∑

k=m

r̃c[k]e−j(2π∆fkTs) (4 25)

The closed-loop frequency estimator with the approximate error signal de-
tector given by Eq. (4-24) is shown in Fig. 4-5. The parameters Nw = N/2 (the
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Fig. 4-5.  Low-complexity closed-loop frequency correction, 
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number of samples to be summed, i.e., the window size) and δ (gain) should be
optimized and updated after the initial start to perform both the acquisition and
tracking of the offset frequency.

4.1.5.2. Digital Loop Filter. The gain δ that was shown in the closed-loop
frequency-tracking system is usually part of the digital loop filter. However, here
we separate them. Then the digital loop filter without gain δ can be represented
as

F (z) = 1 +
b

1 − z−1
(4 26)

The corresponding circuit for the digital loop filter is shown in Fig. 4-6. Now in
addition to the gain δ, the parameter b also should be optimized to achieve the
best performance.

4.1.5.3. Simulation Results. Performance of the closed-loop frequency esti-
mator in Fig. 4-5 was obtained through simulations. First, the acquisition of the
closed-loop estimator for a 10-kHz frequency offset is shown in Fig. 4-7. Next
the standard deviation of the frequency error versus the received signal-to-noise
ratio (SNR) for various initial frequency offsets was obtained. The results of the
simulation are shown in Fig. 4-8.
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Fig. 4-6.  Loop filter for frequency-tracking loops.
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4.2 Frequency Correction for Known Data-Modulated
Signals

Consider a data-modulated signal with no residual (suppressed) carrier. In
this section, we assume perfect knowledge of the symbol timing and data (data-
aided system). Using again the ML estimation, we derive the open- and closed-
loop frequency estimators.

4.2.1. Channel Model

We start with the received baseband analog signal and then derive the
discrete-time version of the estimators. Let r̃(t) be the received complex wave-
form, and ai be the complex data representing an M -ary phase-shift keying
(M -PSK) modulation or a quadrature amplitude modulation (QAM). Let p(t)
be the transmit pulse shaping. Then the received signal can be modeled as

r̃(t) =
∞∑

i=−∞
aip(t − iT )ej(2π∆ft+θc) + ñ(t) (4 27)
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where T is the data symbol duration and ñ(t) is the complex AWGN with two-
sided power spectral density N0 W/Hz per dimension. The conditional pdf of
the received observation given the frequency offset ∆f and the unknown carrier
phase shift θc can be written as

p(r̃|∆f, θc) = C6e
−(1/N0)

∫ ∞
−∞

|r̃(t)−
∑∞

i=−∞
aip(t−iT )ej(2π∆ft+θc)|2dt

(4 28)

where C6 is a constant. Note that

∣∣∣∣∣r̃(t) −
∞∑

i=−∞
aip(t − iT )ej(2π∆ft+θc)

∣∣∣∣∣

2

= |r̃(t)|2 +

∣∣∣∣∣

∞∑

i=−∞
aip(t − iT )

∣∣∣∣∣

2

− 2
∞∑

i=−∞
Re

{
a∗

i r̃(t)p(t − iT )e−j(2π∆ft+θc)
}

(4 29)

The first two terms do not depend on ∆f and θc. Then we have

p(r̃|∆f, θc) = C7e
(2/N0)Re

{∑∞
i=−∞

a∗
i zi(∆f)e−jθc

}
(4 30)

where C7 is a constant and

zi(∆f) =
∫ (i+1)T

iT

r̃(t)p(t − iT )e−j(2π∆ft)dt (4 31)

The conditional pdf in Eq. (4-30) also can be written as

p(r̃|∆f, θc) = C7 exp
[

2
N0

|Y |cos(θc − arg Y )
]

(4 32)

where

Y =
∞∑

i=−∞
a∗

i zi(∆f) (4 33)

Averaging Eq. (4-32) over θc produces
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P (r̃|∆f) = C8I0

(
2

N0
|Y |

)
(4 34)

where C8 is a constant. Again, since I0(x) is an even convex cup ∪ function of x,
maximizing the right-hand side of Eq. (4-34) is equivalent to maximizing |Y | or
equivalently |Y |2. Thus, the ML metric for estimating the frequency offset over
the N data symbol interval can be obtained by maximizing the following metric:

λ(∆f) = |Y | =

∣∣∣∣∣

N−1∑

k=0

a∗
kzk(∆f)

∣∣∣∣∣ (4 35)

4.2.2 Open-Loop Frequency Estimation

For an open-loop estimation, we have

∆̂f = argmax
∆f

λ(∆f) (4 36)

but this operation is equivalent to multiplying the received signal by e−j(2π∆ft),
passing it through the matched filter (MF) with impulse response p(−t), and
sampling the result at t = (k + 1)T , which produces the sequence of zk’s. Next,
sum the zk’s, take its magnitude, and then find the maximum value by varying
the frequency ∆f between −∆fmax and ∆fmax, where ∆fmax is the maximum
expected frequency offset. The block diagram to perform these operations is
shown in Fig. 4-9.

4.2.3 Closed-Loop Frequency Estimation

The error signal for closed-loop tracking can be obtained as

e =
∂

∂∆f
λ(∆f) (4 37)

We can approximate the derivative of λ(∆f) for small ε as in Eq. (4-17). Then
we can approximate the error signal as

e = |Y (∆f + ε)| − |Y (∆f − ε)| (4 38)
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Fig. 4-9.  Open-loop frequency estimation for suppressed carrier, known data.
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where

Y (∆f + ε) =
N−1∑

k=0

a∗
kzk(∆f + ε) (4 39)

The error signal detector for the closed-loop frequency correction is implemented
using the above equations and is shown in Fig. 4-10. In the figure, DAC denotes
digital-to-analog converter.

Now again, rather than using the approximate derivative of λ(∆f), we can
take the derivative of λ2(∆f) = |Y |2 to obtain the error signal as

e = Im(Y ∗U) (4 40)

and

U =
N−1∑

k=0

a∗
kuk(∆f) (4 41)

where

ui(∆f) =
∫ (i+1)T

iT

r̃(t)tp(t − iT )e−j(2π∆ft)dt (4 42)

Thus, uk(∆f) is produced by multiplying r̃(t) by e−j2π∆ft and then passing it
through a so-called derivative matched filter (DMF)—also called a frequency-
matched filter (FMF)—with impulse response tp(−t), and finally sampling the
result of this operation at t = (k + 1)T . Note that the error signal in Eq. (4-40)
also can be written as
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Fig. 4-10.  Error signal detector and closed-loop block diagram for suppressed 

carrier, known data.
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e = Im(Y ∗U) = |Y − jU |2 − |Y + jU |2 (4 43)

or, simply, we can use

e = |Y − jU | − |Y + jU | (4 44)

The block diagram of the closed-loop frequency estimator using the error signal
detector given by Eq. (4-40) is shown in Fig. 4-11. Similarly, the block diagram
of the closed-loop frequency estimator using the error signal detector given by
Eq. (4-44) is shown in Fig. 4-12.

The closed-loop frequency estimator block diagrams shown in this section
contain mixed analog and digital circuits. An all-digital version of the closed-
loop frequency estimator in Fig. 4-11 operating on the received samples r̃[k]
is shown in Fig. 4-13. In the figure, pk represents the discrete-time version of
the pulse shaping p(t). We assume that there are n samples per data symbol
duration T . An all-digital version of other closed-loop estimators can be obtained
similarly.
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4.3 Frequency Correction for Modulated Signals with
Unknown Data

Consider again a data-modulated signal with no residual (suppressed) car-
rier. In this section, we assume perfect timing but no knowledge of the data
(non-data-aided system). Again using the ML estimation, we derive the open-
and closed-loop frequency estimators. In Section 4.2, we obtained the conditional
pdf of the received observation given the frequency ∆f and data sequence a. We
repeat the result here for clarity:

P (r̃|∆f,a) = C8I0

(
2

N0
|Y |

)
(4 45)

where

Y =
∞∑

i=−∞
a∗

i zi(∆f) (4 46)

and

zi(∆f) =
∫ (i+1)T

iT

r̃(t)p(t − iT )e−j(2π∆ft)dt (4 47)
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Now we have to average Eq. (4-46) over a. Unfortunately, implementation of
this averaging is too complex. Instead, first we approximate the I0(x) function
as

I0

(
2

N0
|Y |

)
∼= 1 +

1
N2

0

|Y |2 (4 48)

Now we need only to average |Y |2 over the data sequence a as

E
{
|Y |2

}
= E

⎧
⎨

⎩

∣∣∣∣∣

N−1∑

k=0

a∗
kzk(∆f)

∣∣∣∣∣

2
⎫
⎬

⎭

=
N−1∑

k=0

N−1∑

i=0

E{a∗
kai}zk(∆f)z∗i (∆f)

= Ca

N−1∑

k=0

|zk(∆f)|2 (4 49)

where Ca
�= E{|ak|2} and the ak’s are assumed to be zero mean and independent.

Thus, estimating the frequency offset over the N data symbol interval can be
obtained by maximizing the following metric:

λ(∆f) =
N−1∑

k=0

|zk(∆f)|2 (4 50)

4.3.1 Open-Loop Frequency Estimation

For open-loop estimation, we have

∆̂f = argmax
∆f

λ(∆f) (4 51)

However, this operation is equivalent to multiplying the received signal by
e−j(2π∆ft), passing it through a matched filter with impulse response p(−t),
and sampling the result at t = (k + 1)T , which produces the sequence of zk’s.
Next, take the magnitude square of each zk, perform summation, and then find
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the maximum value by varying the frequency ∆f between −∆fmax and ∆fmax,
where ∆fmax is the maximum expected frequency offset. The block diagram to
perform these operations is shown in Fig. 4-14.

4.3.2 Closed-Loop Frequency Estimation

The error signal for closed-loop tracking can be obtained as

e =
∂

∂∆f
λ(∆f) (4 52)

We can approximate the derivative of λ(∆f) for small ε as in Eq. (4-17). Then,
we can approximate the error signal as

e =
N−1∑

k=0

{|zk(∆f + ε)|2 − |zk(∆f − ε)|2} (4 53)

The error signal detector for the closed-loop frequency correction is implemented
using the above equations, and it is shown in Fig. 4-15.

Now again, rather than using the approximate derivative of λ(∆f), we can
take the derivative of λ(∆f) =

∑N−1
k=0 |zk(∆f)|2 and obtain the error signal as

e =
N−1∑

k=0

Im{z∗k(∆f)uk(∆f)} (4 54)

where

ui(∆f) =
∫ (i+1)T

iT

r̃(t)tp(t − iT )e−j(2π∆ft)dt (4 55)

Fig. 4-14.  Open-loop frequency estimation for suppressed carrier, unknown data.
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Fig. 4-15.  Error signal detector and closed-loop block diagram for suppressed carrier, 

unknown data.
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Note that the error signal in Eq. (4-54) also can be written as

e =
N−1∑

k=0

{|zk(∆f) − juk(∆f)|2 − |zk(∆f) + juk(∆f)|2} (4 56)

The block diagram of the closed-loop frequency estimator using the error
signal detector given by Eq. (4-54) is shown in Fig. 4-16. Similarly, the block
diagram of the closed-loop frequency estimator using the error signal detector
given by Eq. (4-56) is shown in Fig. 4-17.

The closed-loop frequency estimator block diagrams shown in this section
contain mixed analog and digital circuits. An all-digital version of the closed-
loop frequency estimator in Fig. 4-16 operating on the received samples r̃[k] is
shown in Fig. 4-18. All-digital versions of other closed-loop estimators can be
obtained similarly.
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Fig. 4-16.  Closed-loop estimator with error signal detector for suppressed carrier, 

unknown data, Eq. (4-54).
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Fig. 4-17.  Closed-loop estimator with error signal detector for suppressed carrier, 

unknown data, Eq. (4-56).
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Fig. 4-18.  All-digital closed-loop frequency estimator for suppressed carrier, 

unknown data.
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Chapter 5
Data Format and Pulse Shape Classification

Marvin K. Simon and Dariush Divsalar

In autonomous radio operation, aside from classifying the modulation type,
e.g., deciding between binary phase-shift keying (BPSK) and quadrature phase-
shift keying (QPSK), it is also desirable to have an algorithm for choosing the
data format, e.g., non-return to zero (NRZ) versus Manchester encoding. We
will see in our discussions of carrier synchronization in Chapter 8 that, in the
absence of subcarriers, when NRZ is employed along with a residual carrier,
the carrier-tracking loop takes a loss due to overlapping carrier and modulation
spectra, whereas Manchester coding may use either suppressed or residual car-
rier without such a loss. With this consideration in mind, we shall consider two
different scenarios. In one case, independent of the data format, the modulations
are assumed to be fully suppressed carrier. In the other case, which is typical of
the current Electra radio design, an NRZ data format is always used on a fully
suppressed carrier modulation whereas a residual carrier modulation always em-
ploys Manchester-coded data. In the latter case, the data format classification
algorithm and its performance clearly will be a function of the modulation in-
dex, i.e., the allocation of the power to the discrete and data-modulated signal
components. Estimation of the modulation index was discussed in Chapter 3.

In this chapter, we derive the maximum-likelihood (ML)-based data format
classification algorithms as well as reduced-complexity versions of them obtained
by applying suitable approximations of the nonlinearities resulting from the ML
formulation. As in previous classification problems of this type, we shall first
assume that all other system parameters are known. Following this, we relax
the assumption of known carrier phase and, as was done for the modulation
classification discussion, we shall consider the noncoherent version of the ML
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classifiers. Numerical performance evaluation will be obtained by computer sim-
ulations and, wherever possible, by theoretical analyses to verify the simulation
results.

5.1 Coherent Classifiers of Data Format for BPSK

5.1.1 Maximum-Likelihood Coherent Classifier of Data Format
for BPSK

We begin by considering suppressed-carrier BPSK modulation and a choice
between NRZ and Manchester encoding. Thus, the received signal is given by
Eqs. (1-3) and (1-6), or in passband by

r(t) =
√

2P

( ∞∑

n=−∞
cnp(t − nT )

)
cos ωct + n(t) (5 1)

where P is the signal power,1 {cn} is the sequence of binary independent, iden-
tically distributed (iid) data taking on values ±1 with equal probability, p(t) is
the pulse shape (the item to be classified), ωc is the radian carrier frequency,
1/T is the data (symbol) rate, and n(t) is a bandpass additive white Gaussian
noise (AWGN) source with single-sided power spectral density N0 W/Hz. Based
on the above AWGN model, then for an observation of K data intervals, the
conditional-likelihood function (CLF) is given by

p
(
r(t)|{cn}, p(t)

)

=
1√
πN0

exp

⎛
⎝− 1

N0

∫ KT

0

[
r(t) −

√
2P

( ∞∑

n=−∞
cnp(t − nT )

)
cos ωct

]2

dt

⎞
⎠

= C exp

(
2
√

2P

N0

K−1∑

k=0

ck

∫ (k+1)T

kT

r(t)p(t − kT ) cos ωctdt

)

= C

K−1∏

k=0

exp

(
2
√

2P

N0
ck

∫ (k+1)T

kT

r(t)p(t − kT ) cos ωctdt

)
(5 2)

1 There is no need to distinguish between total and data power here since in the suppressed-
carrier case all of the signal power is allocated to the data modulation. Thus, for simplicity
of notation, we shall simply use P without a subscript to denote signal power.
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where C is a constant that has no bearing on the classification. Averaging over
the iid data sequence gives

p
(
r (t) |p (t)

)
= C

K−1∏

k=0

cosh

(
2
√

2P

N0

∫ (k+1)T

kT

r (t) p (t − kT ) cos ωctdt

)
(5 3)

Finally, taking the logarithm of Eq. (5-3), we obtain the log-likelihood function
(LLF)

Λ �= ln p
(
r(t)|p(t)

)
=

K−1∑

k=0

ln cosh

(
2
√

2P

N0

∫ (k+1)T

kT

r(t)p(t − kT ) cos ωctdt

)

(5 4)

where we have ignored the additive constant lnC.
For NRZ data, p(t) is a unit rectangular pulse of duration T , i.e.,

p1(t) =
{

1, 0 ≤ t ≤ T
0, otherwise (5 5)

For Manchester-encoded data, p(t) is a unit square-wave pulse of duration T ,
i.e.,

p2(t) =
{

1, 0 ≤ t ≤ T/2
−1, T/2 ≤ t ≤ T

(5 6)

Thus, defining the received observable

rk(l) �=
∫ (k+1)T

kT

r(t)pl(t − kT ) cos ωctdt

=

⎧
⎪⎨

⎪⎩

∫ (k+1)T

kT
r(t) cos ωctdt; l = 1

∫ (k+1/2)T

kT
r(t) cos ωctdt −

∫ (k+1)T

(k+1/2)T
r(t) cos ωctdt; l = 2

(5 7)

then a classification choice between the two pulse shapes based on the LLF would
be to choose Manchester if
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K−1∑

k=0

ln cosh

(
2
√

2P

N0
rk(1)

)
<

K−1∑

k=0

ln cosh

(
2
√

2P

N0
rk(2)

)
(5 8)

Otherwise, choose NRZ.

5.1.2 Reduced-Complexity Data Format BPSK Classifiers

To simplify the form of the classification rule in Eq. (5-8), we replace the
ln cosh(·) function by its small and large argument approximations. In particular,

ln coshx ∼=
{

x2/2; x small
|x| − ln 2; x large

(5 9)

Thus, for low signal-to-noise ratio (SNR), Eq. (5-8) simplifies to

K−1∑

k=0

(∫ (k+1)T

kT

r (t) cos ωctdt

)2

<

K−1∑

k=0

(∫ (k+1/2)T

kT

r (t) cos ωctdt −
∫ (k+1)T

(k+1/2)T

r (t) cos ωctdt

)2

(5 10)

or

K−1∑

k=0

∫ (k+1/2)T

kT

r (t) cos ωctdt

∫ (k+1)T

(k+1/2)T

r (τ) cos ωcτdτ < 0 (5 11)

For high SNR, Eq. (5-8) reduces to

K−1∑

k=0

∣∣∣∣∣

∫ (k+1/2)T

kT

r (t) cos ωctdt +
∫ (k+1)T

(k+1/2)T

r (t) cos ωctdt

∣∣∣∣∣

<

K−1∑

k=0

∣∣∣∣∣

∫ (k+1/2)T

kT

r (t) cos ωctdt −
∫ (k+1)T

(k+1/2)T

r (t) cos ωctdt

∣∣∣∣∣ (5 12)

Note that while the optimum classifier of Eq. (5-8) requires knowledge of SNR,
the reduced-complexity classifiers of Eqs. (5-10) and (5-12) do not. Figure 5-1
is a block diagram of the implementation of the low and high SNR classifiers
defined by Eqs. (5-11) and (5-12).
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Fig. 5-1.  Reduced-complexity coherent data format classifiers for BPSK modulation:
(a) low SNR and (b) high SNR.

5.1.3 Probability of Misclassification for Coherent BPSK

5.1.3.1. Exact Evaluation. To illustrate the behavior of the misclassification
probability, PM , with SNR, we consider the low SNR case and evaluate first the
probability of the event in Eq. (5-11) given that the transmitted data sequence
was in fact NRZ encoded. In particular, we recognize that, given a particular
data sequence of K bits,

Xck =
∫ (k+1/2)T

kT

r(t) cos ωctdt

Yck =
∫ (k+1)T

(k+1/2)T

r(τ) cos ωctdτ
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k = 0, 1, · · · , K − 1, are mutually independent and identically distributed (iid)
Gaussian random variables (RVs). Thus, the LLF

D =
K−1∑

k=0

∫ (k+1/2)T

kT

r (t) cos ωctdt

∫ (k+1)T

(k+1/2)T

r (τ) cos ωcτdτ =
K−1∑

k=0

XckYck

(5 13)

is a special case of a quadratic form of real Gaussian RVs and the probability
of the event in Eq. (5-11), namely, Pr{D < 0} can be evaluated in closed form
by applying the results in [1, Appendix B] and the additional simplification
of these in [2, Appendix 9A]. To see this connection, we define the complex
Gaussian RVs Xk = Xck + jXc,k+1, Yk = Yck + jYc,k+1. Then, XkY ∗

k + X∗
kYk =

2 (XckYck + Xc,k+1Yc,k+1). Assuming arbitrarily that K is even, then we can
rewrite D of Eq. (5-13) as

D =
1
2

K/2−1∑

k=0

(XkY ∗
k + X∗

kYk) (5 14)

Comparing Eq. (5-14) with [2, Eq. (B.1)], we see that the former is a special case
of the latter, corresponding to A = B = 0, C = 1/2. Specifically, making use of
the first and second moments of Xk and Yk given by

X̄k = Ȳk = (ck + jck+1)
√

P/8T

µxx =
1
2
E

{∣∣Xk − X̄k

∣∣2
}

= N0T/8

µyy =
1
2
E

{∣∣Yck − Ȳck

∣∣2
}

= N0T/8

µxy =
1
2
E

{(
Xck − X̄ck

) (
Yck − Ȳck

)∗} = 0

(5 15)

then from [2, Eq. (9A.15)],

PM (1) =
1
2

+
1

2K−1

K/2∑

k=1

(
K − 1

K/2 − k

) [
Qk(a, b) − Qk(b, a)

]
(5 16)
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where Qk(a, b) is the kth-order Marcum Q-function and

a =

√
v (ξ1v − ξ2)

2

b =

√
v (ξ1v + ξ2)

2

(5 17)

with

v =

√
1

µxxµyy
=

8
N0T

ξ1 =
1
2

K/2−1∑

k=0

(∣∣X̄ck

∣∣2 µyy +
∣∣Ȳck

∣∣2 µxx

)
=

KPT 3N0

64

ξ2 =
K/2−1∑

k=0

∣∣X̄ck

∣∣ ∣∣Ȳck

∣∣ =
KPT 2

8

(5 18)

Substituting Eq. (5-18) into Eq. (5-17) gives

a = 0

b =
√

K (Es/N0)
(5 19)

where Es = PT denotes the signal energy. However,

Qk(0, b) =
k−1∑

n=0

exp
(
−b2

2

)
(b2/2)n

n!

Qk(b, 0) = 1

(5 20)

Thus, using Eqs. (5-19) and (5-20) in Eq. (5-16) gives the desired result:

PM (1) =
1
2

+
1

2Kb−1

K/2∑

k=1

(
K − 1

K/2 − k

) [
k−1∑

n=0

exp
(
−KEs

2N0

)
(KEs/2N0)n

n!
− 1

]

(5 21)
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Noting that

K/2∑

k=1

(
K − 1

K/2 − k

)
= 2K−2 (5 22)

then Eq. (5-21) further simplifies to

PM (1) =
1

2K−1

K/2∑

k=1

(
K − 1

K/2 − k

) k−1∑

n=0

exp
(
−KEs

2N0

)
(KEs/2N0)n

n!
(5 23)

To compute the probability of choosing NRZ when in fact Manchester is the
true encoding, we need to evaluate Pr{D ≥ 0} = 1 − Pr{D < 0} when instead
of Eq. (5-15) we have

X̄k = (ck + jck+1)

√
P

8
T

Ȳk = − (ck + jck+1)

√
P

8
T

(5 24)

Since the impact of the negative mean for Ȳk in Eq. (5-24) is to reverse the sign
of ξ2 in Eq. (5-18), then we immediately conclude that for this case the values
of a and b in Eq. (5-19) merely switch roles, i.e.,

a =

√

K

(
Es

N0

)

b = 0

(5 25)

Substituting these values in Eq. (5-16) now gives

PM (2) =

1 −

⎧
⎨
⎩

1
2

+
1

2K−1

K/2∑

k=1

(
K − 1

K/2 − k

) [
1 −

k−1∑

n=0

exp
(
−KEs

2N0

)
(KEs/2N0)n

n!

]⎫
⎬
⎭

(5 26)
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which again simplifies to

PM (2) =
1

2K−1

K/2∑

k=1

(
K − 1

K/2 − k

) k−1∑

n=0

exp
(
−KEs

2N0

)
(KEs/2N0)n

n!
(5 27)

Since Eqs. (5-23) and (5-27) are identical, the average probability of mismatch,
PM , is then either of the two results.

Illustrated in Fig. 5-2 are numerical results for the misclassification probabil-
ity obtained by computer simulation for the optimum and reduced-complexity
data format classifiers as given by Eqs. (5-8), (5-11) and (5-12). Also illustrated
are the numerical results obtained from the closed-form analytical solution given
in Eq. (5-23) for the low-SNR reduced-complexity scheme. As can be seen, the
agreement between theoretical and simulated results is exact. Furthermore, the
difference in performance between the optimum and reduced-complexity classi-
fiers is quite small over a large range of SNRs.
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Fig. 5-2.  A comparison of the performance of coherent data format classifiers
for BPSK modulation.
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5.1.3.2 Asymptotic Behavior. To evaluate the asymptotic (large K) behavior
of the misclassification probability, we apply the central limit theorem to the
quadratic form in Eq. (5-13). Specifically, in the limit of large K, D tends to a
Gaussian RV with mean

D̄ = KX̄ckȲck =
KPT 2

8
(5 28)

and variance

σ2
D = Kvar {XckYck} = K

[
X2

ck Y 2
ck − X

2

ck Y
2

ck

]
(5 29)

After some manipulation, it can be shown that Eq. (5-29) can be expressed as

σ2
D = K

[
var {Xck} var {Yck} + var {Xck}Y 2

ck + var {Yck}X2
ck

]

= K

[(
N0T

8

)2

+ 2
(

N0T

8

) (
PT 2

8

)]
= K

(
N0T

8

)2 (
1 + 2

Es

N0

)
(5 30)

Thus, in view of the Gaussian assumption, PM = Pr {D < 0} is obtained in the
form of a Gaussian Q-function, namely,

PM = Q

(
D̄

σD

)
= Q

⎛

⎝
√

K
(Es/N0)

2

1 + 2Es/N0

⎞

⎠ (5 31)

The asymptotic misclassification probability of Eq. (5-31) is superimposed on
the results in Fig. 5-1.

5.2 Coherent Classifiers of Data Format for QPSK

5.2.1 Maximum-Likelihood Coherent Classifier of Data Format
for QPSK

For QPSK modulation, the received signal is given by
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r(t) =
√

P

( ∞∑

n=−∞
cnp(t − nT )

)
cos ωct

+
√

P

( ∞∑

n=−∞
bnp(t − nT )

)
sinωct + n(t) (5 32)

where now {cn} and {bn} are the in-phase (I) and quadrature (Q) sequences of
binary iid data taking on values ±1 with equal probability. For simplicity, we
have assumed that the I and Q baseband waveforms have the same data format.
For an observation of K symbol intervals, each of duration T , the CLF is given
by2

p
(
r(t)|{cn}, {bn}, p(t)

)

=
1√
πN0

exp

{
− 1

N0

∫ KT

0

[
r (t) −

√
P

( ∞∑

n=−∞
cnp (t − nT )

)
cos ωct

−
√

P

( ∞∑

n=−∞
bnp (t − nT )

)
sinωct

]2

dt

⎫
⎬

⎭

= C exp

(
2
√

P

N0

K−1∑

k=0

ck

∫ (k+1)T

kT

r (t) p (t − kT ) cos ωctdt

)

× exp

(
2
√

P

N0

K−1∑

k=0

bk

∫ (k+1)T

kT

r (t) p (t − kT ) sinωctdt

)

= C

K−1∏

k=0

exp

(
2
√

P

N0
ck

∫ (k+1)T

kT

r (t) p (t − kT ) cos ωctdt

)

× exp

(
2
√

P

N0

K−1∑

k=0

bk

∫ (k+1)T

kT

r (t) p (t − kT ) sinωctdt

)
(5 33)

2 As in other chapters, we again assume a system with a fixed modulation bandwidth or,
equivalently, a fixed symbol rate. Thus, under this assumption, T , which denotes the duration
of a modulation symbol, is equal to two bit times for QPSK and is equal to a single bit time
for BPSK.
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Averaging over the iid data sequences and taking the logarithm gives the LLF

Λ �= ln p
(
r (t) |p (t)

)
=

K−1∑

k=0

[
ln cosh

(
2
√

P

N0

∫ (k+1)T

kT

r (t) p (t − kT ) cos ωctdt

)

+ ln cosh

(
2
√

P

N0

∫ (k+1)T

kT

r (t) p (t − kT ) sinωctdt

)]
(5 34)

Analogous to Eq. (5-7), defining the received I and Q observables

rck (l) �=
∫ (k+1)T

kT

r (t) pl (t − kT ) cos ωctdt

rsk (l) �=
∫ (k+1)T

kT

r (t) pl (t − kT ) sinωctdt

(5 35)

then the classification rule for choosing the data format is as follows: Choose
Manchester encoding if

K−1∑

k=0

[
ln cosh

(
2
√

P

N0
rck (1)

)
+ ln cosh

(
2
√

P

N0
rsk (1)

)]
<

K−1∑

k=0

[
ln cosh

(
2
√

P

N0
rck (2)

)
+ ln cosh

(
2
√

P

N0
rsk (2)

)]
(5 36)

Otherwise, choose NRZ.

5.2.2 Reduced-Complexity Data Format QPSK Classifiers

Here again we may simplify the form of the classification rule in Eq. (5-36)
by using the nonlinearity approximations in Eq. (5-9). For example, for low
SNR, the classification decision would be based on the inequality
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K−1∑

k=0

[∫ (k+1/2)T

kT

r (t) cos ωctdt

∫ (k+1)T

(k+1/2)T

r (τ) cos ωcτdτ

+
∫ (k+1/2)T

kT

r (t) sinωctdt

∫ (k+1)T

(k+1/2)T

r (τ) sinωcτdτ

]
< 0 (5 37)

Figure 5-3 illustrates the implementation of the classifier defined above.

Fig. 5-3.  Reduced-complexity coherent data format classifiers for QPSK modulation,
for  low SNR.
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5.2.3 Probability of Misclassification for Coherent QPSK

Defining Xsk =
∫ (k+1/2)T

kT
r (t) sinωctdt, Ysk =

∫ (k+1)T

(k+1/2)T
r (τ) sinωctdτ ; k =

0, 1, · · · , K − 1, and assigning them to the complex Gaussian RVs Xk+K/2 =
Xsk + jXs,k+1, Yk+K/2 = Ysk + jYs,k+1, then analogous to Eq. (5-14) we can
write

D =
1
2

K−1∑

k=0

(XkY ∗
k + X∗

kYk) (5 38)

where the means of the observables are now given by
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X̄k = Ȳk = (ak + jak+1)
√

P/16T ; k = 0, 1, · · · , K/2 − 1

X̄k = Ȳk = (bk + jbk+1)
√

P/16T ; k = K/2, K/2 + 1, · · · , K − 1

(5 39)

Since all the observables are again mutually iid Gaussian RVs, then the LLF
in Eq. (5-38) is still a quadratic form of Gaussian RVs and the probability
Pr{D < 0} can be evaluated in closed form in the same manner as before. Note
that because of the assumption of a fixed modulation bandwidth the probabilities
of misclassification for BPSK and QPSK are different, whereas had we assumed
an equivalence between the information (bit) rates of the two modulations, these
probabilities would have become equal.

Before moving on to a discussion of noncoherent data format classification
schemes, it is of interest to ask whether there exists a universal classification
rule that for a given symbol rate (modulation bandwidth) is appropriate (but
not necessarily optimum) for M -ary phase-shift keying (M -PSK) independent
of the value of M . This would allow determination of the data format prior to
modulation classification, which for M -PSK constitutes determining the value
of M . Before answering this question, we first point out that the low SNR ML
classification rule of Eq. (5-37), which is explicitly derived for QPSK modula-
tion, also would work for BPSK, albeit with a penalty in performance relative
to the ML rule of Eq. (5-11) due to the presence now of a noise-only term in
the quadrature channel. Having said this, it also can be demonstrated that the
classification rule of Eq. (5-37), which can be viewed as the extension of the clas-
sification rule in Eq. (5-11) to complex observables, is also suitable for M -PSK
(M > 4), and furthermore the misclassification performance of this scheme still
would be given by Eq. (5-23) independent now of the value of M .

5.3 Noncoherent Classification of Data Format for BPSK

5.3.1 Maximum-Likelihood Noncoherent Classifier of Data Format
for BPSK

Here we assume that the carrier has a time-invariant random phase, θc, that
is unknown and uniformly distributed. Thus, the received signal of Eq. (5-1) is
now modeled as

r(t) =
√

2P

( ∞∑

n=−∞
cnp (t − nT )

)
cos (ωct + θc) + n(t) (5 40)

and the corresponding CLF becomes
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p
(
r(t)|{cn}, p(t), θc

)
=

C

K−1∏

k=0

exp

(
2
√

2P

N0
ck

∫ (k+1)T

kT

r (t) p (t − kT ) cos (ωct + θc) dt

)
(5 41)

At this point, we have the option of first averaging over the random carrier
phase and then the data or vice versa. Considering the first option, we start by
rewriting Eq. (5-41) as

p
(
r(t)|{cn}, p(t), θc

)
=

C exp

⎛
⎜⎝

2
√

2P

N0

√√√√
(

K−1∑

k=0

ckrck

)2

+

(
K−1∑

k=0

ckrsk

)2

cos (θc + η)

⎞
⎟⎠ (5 42)

η = tan−1

K−1∑
k=0

ckrsk

K−1∑
k=0

ckrck

Averaging over the carrier phase results in (ignoring constants)

p
(
r(t)|{cn}, p(t)

)
= I0

⎛
⎜⎝

2
√

2P

N0

√√√√
(

K−1∑

k=0

ckrck

)2

+

(
K−1∑

k=0

ckrsk

)2
⎞
⎟⎠ (5 43)

where I0(·) is the zero-order modified Bessel function of the first kind. Unfor-
tunately, the average over the data sequence cannot be obtained in closed form.
Hence, the classification algorithm can be stated only as follows: Given that
NRZ was transmitted, choose the Manchester format if

E
c

⎧
⎪⎨
⎪⎩

I0

⎛
⎜⎝

2
√

2P

N0

√√√√
(

K−1∑

k=0

ckrck (1)

)2

+

(
K−1∑

k=0

ckrsk (1)

)2
⎞
⎟⎠

⎫
⎪⎬
⎪⎭

<

E
c

⎧
⎪⎨
⎪⎩

I0

⎛
⎜⎝

2
√

2P

N0

√√√√
(

K−1∑

k=0

ckrck (2)

)2

+

(
K−1∑

k=0

ckrsk (2)

)2
⎞
⎟⎠

⎫
⎪⎬
⎪⎭

(5 44)
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where E
c
{·} denotes expectation over the data sequence c = (c0, c1, · · · , cK−1).

Otherwise, choose NRZ.
Consider now the second option, where we first average over the data se-

quence. Then,

p
(
r(t)|p(t), θc

)

= C

K−1∏

k=0

E
ck

{
exp

(
2
√

2P

N0
ck

∫ (k+1)T

kT

r (t) p (t − kT ) cos (ωct + θc) dt

)}

= C exp

[
ln

(
K−1∏

k=0

E
ck

{
exp

(
2
√

2P

N0
ck

×
∫ (k+1)T

kT

r(t)p(t − kT ) cos (ωct + θc) dt

)})]

= C exp

[
K−1∑

k=0

ln

(

E
ck

{
exp

(
2
√

2P

N0
ck

×
∫ (k+1)T

kT

r(t)p(t − kT ) cos (ωct + θc) dt

)})]

= C exp

[
K−1∑

k=0

ln cosh

(
2
√

2P

N0

∫ (k+1)T

kT

r(t)p(t − kT ) cos(ωct + θc)dt

)]

(5 45)

Thus, a classification between NRZ and Manchester encoding would be based on
a comparison of

LR =

E
θc

{
exp

[
K−1∑

k=0

ln cosh

(
2
√

2P

N0

∫ (k+1)T

kT

r (t) p1 (t − kT ) cos (ωct + θc) dt

)]}

E
θc

{
exp

[
K−1∑

k=0

ln cosh

(
2
√

2P

N0

∫ (k+1)T

kT

r (t) p2 (t − kT ) cos (ωct + θc) dt

)]}

(5 46)

to unity.
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To simplify matters, before averaging over the carrier phase, one must employ
the approximations to the nonlinearities given in Eq. (5-9). In particular, for low
SNR, we have

p
(
r(t)|p(t)

)

=E
θc

⎧
⎨
⎩exp

⎡
⎣1

2

K−1∑

k=0

(
2
√

2P

N0

∫ (k+1)T

kT

r (t) p (t − kT ) cos (ωct + θc) dt

)2
⎤
⎦

⎫
⎬
⎭

=E
θc

{
exp

[
4P

N2
0

K−1∑

k=0

(rck cos θc − rsk sin θc)
2

]}

=E
θc

{
exp

[
4P

N2
0

K−1∑

k=0

(
r2
ck + r2

sk

)
cos2 (θc + ηk)

]}

= exp

[
2P

N2
0

K−1∑

k=0

(
r2
ck + r2

sk

)
]

× E
θc

{
exp

[(
2P

N2
0

K−1∑

k=0

(
r2
ck + r2

sk

)
cos (2 (θc + ηk))

)]}

= exp

[
2P

N2
0

K−1∑

k=0

(
r2
ck + r2

sk

)
]

× E
θc

{
exp

[(
2P

N2
0

(
cos 2θc

K−1∑

k=0

(
r2
ck + r2

sk

)
cos 2ηk

− sin 2θc

K−1∑

k=0

(
r2
ck + r2

sk

)
sin 2ηk

))]}

= exp

[
2P

N2
0

K−1∑

k=0

(
r2
ck + r2

sk

)
]

× I0

⎛
⎜⎝

2P

N2
0

√√√√
(

K−1∑

k=0

(r2
ck + r2

sk) cos 2ηk

)2

+

(
K−1∑

k=0

(r2
ck + r2

sk) sin 2ηk

)2
⎞
⎟⎠

(5 47)
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where

ηk = tan−1 rsk

rck
(5 48)

Thus, since

cos 2ηk =
r2
ck − r2

sk

r2
ck + r2

sk

sin 2ηk =
2rckrsk

r2
ck + r2

sk

(5 49)

we finally have

p
(
r(t)|p(t)

)
= exp

[
2P

N2
0

K−1∑

k=0

(
r2
ck + r2

sk

)
]

× I0

⎛
⎜⎝

2P

N2
0

√√√√
(

K−1∑

k=0

(r2
ck − r2

sk)

)2

+ 4

(
K−1∑

k=0

rckrsk

)2
⎞
⎟⎠

= exp

[
2P

N2
0

K−1∑

k=0

(
r2
ck + r2

sk

)
]

I0

(
2P

N2
0

∣∣∣∣∣

K−1∑

k=0

r̃2
k

∣∣∣∣∣

)
(5 50)

where

r̃k
�= rck + jrsk =

∫ (k+1)T

kT

r (t) p (t − kT ) ejωctdt (5 51)

Finally then, the classification decision rule analogous to Eq. (5-44) is: Given
that NRZ data were transmitted, decide on Manchester coding if

exp

[
2P

N2
0

K−1∑

k=0

|r̃k (1)|2
]
I0

(
2P

N2
0

∣∣∣∣∣

K−1∑

k=0

r̃2
k (1)

∣∣∣∣∣

)
<

exp

[
2P

N2
0

K−1∑

k=0

|r̃k (2)|2
]

I0

(
2P

N2
0

∣∣∣∣∣

K−1∑

k=0

r̃2
k (2)

∣∣∣∣∣

)
(5 52)
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Equivalently, normalizing the observables to

r̃′k
�=

1
T

∫ (k+1)T

kT

r (t)√
2P

p (t − kT ) ejωctdt (5 53)

then Eq. (5-52) becomes

exp

[(
2Es

N0

)2 K−1∑

k=0

|r̃′k (1)|2
]

I0

((
2Es

N0

)2
∣∣∣∣∣

K−1∑

k=0

r̃
′2
k (1)

∣∣∣∣∣

)
<

exp

[(
2Es

N0

)2 K−1∑

k=0

|r̃′k (2)|2
]

I0

((
2Es

N0

)2
∣∣∣∣∣

K−1∑

k=0

r̃
′2
k (2)

∣∣∣∣∣

)
(5 54)

Since we have already assumed low SNR in arriving at Eq. (5-54), we can fur-
ther approximate the nonlinearities in that equation by their values for small
arguments. Retaining only linear terms, we arrive at the simplification

K−1∑

k=0

|r̃′k (1)|2 <

K−1∑

k=0

|r̃′k (2)|2 (5 55)

or, equivalently,

K−1∑

k=0

|r̃k (1)|2 <

K−1∑

k=0

|r̃k (2)|2 (5 56)

which again does not require knowledge of SNR. On the other hand, if we retain
second-order terms, then Eq. (5-54) simplifies to

K−1∑

k=0

|r̃′k (1)|2 +
1
4

(
2Es

N0

)2
⎡

⎣2

(
K−1∑

k=0

|r̃′k (1)|2
)2

+

∣∣∣∣∣

K−1∑

k=0

r̃
′2
k (1)

∣∣∣∣∣

2
⎤

⎦ <

K−1∑

k=0

|r̃′k (2)|2 +
1
4

(
2Es

N0

)2
⎡
⎣2

(
K−1∑

k=0

|r̃′k (2)|2
)2

+

∣∣∣∣∣

K−1∑

k=0

r̃
′2
k (2)

∣∣∣∣∣

2
⎤
⎦ (5 57)

which is SNR-dependent.
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Expanding Eq. (5-56) in the form of Eq. (5-10), we obtain

K−1∑

k=0

(∫ (k+1)T

kT

r (t) cos ωctdt

)2

+

(∫ (k+1)T

kT

r (t) sinωctdt

)2

<

K−1∑

k=0

(∫ (k+1/2)T

kT

r (t) cos ωctdt −
∫ (k+1)T

(k+1/2)T

r (t) cos ωctdt

)2

+
K−1∑

k=0

(∫ (k+1/2)T

kT

r (t) sinωctdt −
∫ (k+1)T

(k+1/2)T

r (t) sinωctdt

)2

or

K−1∑

k=0

∫ (k+1/2)T

kT

r (t) cos ωctdt

∫ (k+1)T

(k+1/2)T

r (τ) cos ωcτdτ

+
K−1∑

k=0

∫ (k+1/2)T

kT

r (t) sinωctdt

∫ (k+1)T

(k+1/2)T

r (τ) sinωcτdτ < 0

= Re

{
K−1∑

k=0

∫ (k+1/2)T

kT

r (t) ejωctdt

∫ (k+1)T

(k+1/2)T

r (τ) e−jωctdτ

}
< 0 (5 58)

which is the analogous result to Eq. (5-11) for the coherent case.
For high SNR, even after applying the approximations to the nonlinearities

given in Eq. (5-9), it is still difficult to average over the random carrier phase.
Instead, we take note of the resemblance between Eqs. (5-58) and (5-59) for the
low SNR case and propose an ad hoc complex equivalent to Eq. (5-12) for the
noncoherent high SNR case, namely,

K−1∑

k=0

∣∣∣∣∣

∫ (k+1/2)T

kT

r (t) ejωctdt +
∫ (k+1)T

(k+1/2)T

r (t) ejωctdt

∣∣∣∣∣ <

K−1∑

k=0

∣∣∣∣∣

∫ (k+1/2)T

kT

r (t) ejωctdt −
∫ (k+1)T

(k+1/2)T

r (t) ejωctdt

∣∣∣∣∣ (5 59)
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Figure 5-4 is a block diagram of the implementation of the low and high SNR
classifiers defined by Eqs. (5-58) and (5-59).

5.3.2 Probability of Misclassification for Noncoherent BPSK

To compute the probability of misclassification, we note that Eq. (5-58) is
still made up of a sum of products of mutually independent real Gaussian RVs
and thus can still be written in the form of Eq. (5-14) with twice as many terms,
i.e.,

D =
1
2

K−1∑

k=0

(XkY ∗
k + X∗

kYk) (5 60)

where now the complex Gaussian RVs are defined as Xk = Xck + jXsk, Yk =
Yck + jYsk. The means of the terms are given by
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Fig. 5-4.  Reduced-complexity noncoherent data format classifiers for BPSK modulation:
(a) low SNR and (b) high SNR.
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X̄k = Ȳk = ck (cos θc − j sin θc)
√

P/8T (5 61)

whereas the variances and cross-correlations are the same as in Eq. (5-15). Thus,
since the magnitude of the means in Eq. (5-61) is reduced by a factor of

√
2

relative to that of the means in Eq. (5-15), we conclude that the probability of
misclassification is obtained from Eq. (5-23) by replacing Es/N0 with Es/(2N0)
and K with 2K, resulting in

PM =
1

22K−1

K∑

k=1

(
2K − 1
K − k

) k−1∑

n=0

exp
(
−KEs

2N0

)
(KEs/2N0)n

n!
(5 62)

Furthermore, the asymptotic behavior of Eq. (5-62) for large K can be deter-
mined from Eq. (5-31) by making the same replacements as above, resulting
in

PM = Q

⎛
⎝

√
K (Es/N0)

2

2 + 2Es/N0

⎞
⎠ (5 63)

which for sufficiently large Es/N0 approaches Eq. (5-31) for the coherent case.
Figure 5-5 illustrates numerical results for the misclassification probability

obtained by computer simulation for the low SNR and high SNR reduced-
complexity data format classifiers as specified by Eqs. (5-58) and (5-59), respec-
tively, as well as the optimum classifier described by Eq. (5-46). Also illustrated
are the numerical results obtained from the closed-form analytical solution given
in Eq. (5-62) for the low SNR reduced-complexity scheme (which are in exact
agreement with the simulation results) and the asymptotic results obtained from
Eq. (5-63). As in the coherent case, the difference in performance between the
low and high SNR reduced-complexity classifiers is again quite small over a large
range of SNRs. Furthermore, we see here again that the performances of the ap-
proximate but simpler classification algorithms are in close proximity to that
of the optimum one. Finally, comparison between the corresponding coherent
and noncoherent classifiers is illustrated in Fig. 5-6 and reveals a penalty of
approximately 1 dB or less depending on the SNR.
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Fig. 5-5.  A comparison of the performance of noncoherent data
format classifiers for BPSK modulation.
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5.4 Maximum-Likelihood Noncoherent Classifier of
Data Format for QPSK

Following the same approach as in Section 5.2.1, the LLF for the noncoherent
QPSK case is easily shown to be

Λ �= ln p
(
r (t) |p (t)

)
(5 64)

= E
θc

{
exp

(
K−1∑

k=0

[
ln cosh

(
2
√

P

N0

∫ (k+1)T

kT

r (t) p (t − kT ) cos (ωct + θc) dt

)

+ ln cosh

(
2
√

P

N0

∫ (k+1)T

kT

r (t) p (t − kT ) sin (ωct + θc) dt

)])}
(5 65)

Making the same small argument approximations to the nonlinearities, we get

p
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⎨
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(5 66)
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Comparing Eq. (5-66) with Eq. (5-50), we note the absence of the Bessel function
factor. However, in arriving at Eq. (5-56), which was based on retaining only
linear terms, we approximated this factor by unity. Thus, applying the same
small argument approximation of the exponential as before, we again arrive at
a classification based on Eq. (5-56). Finally then, as in the coherent case, we
conclude that the performance of the noncoherent classifier of data format for
QPSK is identical to that for BPSK.

5.5 Maximum-Likelihood Coherent Classifier of Data
Format for BPSK with Residual and Suppressed
Carriers

When NRZ is transmitted, the received signal takes the form of Eq. (5-1)
with p(t) = p1(t) and P = Pt, where Pt now denotes the total transmitted power.
On the other hand, when Manchester-coded data are transmitted, the received
signal has the form

r (t) =
√

2Pc sinωct +
√

2Pd

( ∞∑

n=−∞
cnp2 (t − nT )

)
cos ωct + n (t) (5 67)

where Pc = Pt cos2 β and Pd = Pt sin2 β are, respectively, the powers allocated
to the discrete and data-modulated carriers with β the phase modulation index.
Then, analogous to Eq. (5-2), it is straightforward to show that

p
(
r(t)|{cn}, p2(t)

)
= C

K−1∏

k=0

exp

(
2
√

2Pc

N0

∫ (k+1)T

kT

r (t) sinωctdt

)

× exp

(
2
√

2Pd

N0
ck

∫ (k+1)T

kT

r (t) p2 (t − kT ) cos ωctdt

)

(5 68)

Averaging over the iid data sequence and taking the logarithm gives

ln p
(
r (t) |p (t)

)
=

K−1∑

k=0

2
√

2Pc

N0

∫ (k+1)T

kT

r (t) sinωctdt

+
K−1∑

k=0

ln cosh

(
2
√

2Pd

N0

∫ (k+1)T

kT

r (t) p2 (t − kT ) cos ωctdt

)

(5 69)
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Finally then, we obtain the classification rule:
Choose Manchester coding if

K−1∑

k=0

ln cosh

(
2
√

2Pt

N0

∫ (k+1)T

kT

r (t) p1 (t − kT ) cos ωctdt

)
<

K−1∑

k=0

2
√

2Pc

N0

∫ (k+1)T

kT

r (t) sinωctdt

+
K−1∑

k=0

ln cosh

(
2
√

2Pd

N0

∫ (k+1)T

kT

r (t) p2 (t − kT ) cos ωctdt

)
(5 70)

Otherwise, choose NRZ.
To obtain the reduced-complexity version of Eq. (5-70), we once again use

the nonlinearity approximations in Eq. (5-9). For the low SNR case, we get after
some manipulation

D
�=

K−1∑

k=0

[
2(Pt − Pd)

N2
0

(
X2

ck + Y 2
ck

)
+

4(Pt + Pd)
N2

0

XckYck −
√

2Pc

N0
(Xsk + Ysk)

]

< 0 (5 71)

where for convenience of notation as before we have defined

Xck =
∫ (k+1/2)T

kTb

r (t) cos ωctdt, Yck =
∫ (k+1)T

(k+1/2)T

r (τ) cos ωctdτ

Xsk =
∫ (k+1/2)T

kT

r (t) sinωctdt, Ysk =
∫ (k+1)T

(k+1/2)T

r (τ) sinωctdτ

(5 72)

k = 0, 1, · · · , K − 1. Alternatively, in terms of the modulation index, SNR, and
normalized observables
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X ′
ck

�=
Xck

T
√

2Pt

, Y ′
ck

�=
Yck

T
√

2Pt

X ′
sk

�=
Xsk

T
√

2Pt

, Y ′
sk

�=
Ysk

T
√

2Pt

(5 73)

Eq. (5-71) becomes

D
�=

K−1∑

k=0

[
2

Et

N0
cos2 β

(
X

′2
ck + Y

′2
ck

)
+ 4

Et

N0

(
1 + sin2 β

)
X ′

ckY ′
ck

− (cos β) (X ′
sk + Y ′

sk)
]

< 0 (5 74)

where Et/N0
�= PtT/N0. Although the first two terms in the summation satisfy

the type of quadratic form considered in [1, Appendix B], unfortunately, the last
term, which does not contain second-order Gaussian RVs, prevents analytically
evaluating the misclassification probability in the same manner that was done
previously in Section 5.1.3. Nevertheless it is still possible to analytically evalu-
ate the asymptotic (large K) performance in the same manner as before. Here,
however, because of the lack of symmetry of the two hypotheses, one must indi-
vidually evaluate the two misclassification probabilities (probability of choosing
Manchester when NRZ is transmitted and vice versa) and then average the re-
sulting expressions.

Considering first the case where NRZ data are transmitted, i.e., the received
signal takes the form of Eq. (5-1), then after considerable manipulation, it can
be shown that

D̄ =
K

4

(
cos2 β +

2Et

N0

)

σ2
D =

K

8
N0

Et

[
cos2 β +

Et

N0

(
1 + sin4 β

)
+ 4

(
Et

N0

)2
] (5 75)

Thus, making the same Gaussian assumption on D, the probability of misclas-
sification for this case is given by

PM1 = Pr{D < 0} = Q

(
D̄

σD

)

= Q

⎛
⎜⎜⎜⎜⎜⎝

√√√√√√√√√

K
Et

N0

(
cos2 β +

2Et

N0

)2

2

[
cos2 β +

Et

N0

(
1 + sin4 β

)
+ 4

(
Et

N0

)2
]

⎞
⎟⎟⎟⎟⎟⎠

(5 76)
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For the case where Manchester-coded data are transmitted, i.e., the received
signal takes the form of Eq. (5-67), then again, after considerable manipulation,
it can be shown that

D̄ = − K

4

(
cos2 β +

2Et

N0
sin4 β

)

σ2
D =

K

8
N0

Et

[
cos2 β + 2

Et

N0
sin2 β + 4

(
Et

N0

)2

sin6 β

] (5 77)

whereupon the probability of misclassification becomes

PM2 = Pr {D > 0} = Q

(
− D̄

σD

)

= Q

⎛
⎜⎜⎜⎜⎜⎝

√√√√√√√√√

K
Et

N0

(
cos2 β +

2Et

N0
sin4 β

)2

2

[
cos2 β + 2

Et

N0
sin2 β + 4

(
Et

N0

)2

sin6 β

]

⎞
⎟⎟⎟⎟⎟⎠

(5 78)

Finally, assuming the equiprobable data format hypothesis, the asymptotic av-
erage probability of misclassification is the average of Eq. (5-76) and Eq. (5-78),
namely,

PM =
1
2

(PM1 + PM2) (5 79)

Note that, for β = 90 deg, Et = Es and Eq. (5-79) reduces to Eq. (5-31) as it
should.

For high SNR, using the approximation

ln coshx ∼= |x| − ln 2 (5 80)

we obtain, analogous to Eq. (5-71),

D
�=

K−1∑

k=0

[√
Pt |Xck + Yck| −

√
Pc (Xsk + Ysk) −

√
Pd |Xck − Yck|

]
< 0 (5 81)
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or in terms of the modulation index and the normalized observables,

D
�=

K−1∑

k=0

[
|X ′

ck + Y ′
ck| − (X ′

sk + Y ′
sk) cos β − |X ′

ck − Y ′
ck| sinβ

]
< 0 (5 82)

Figure 5-7 is an illustration of the average (over the two hypotheses) misclas-
sification probability for the various coherent classification algorithms, where the
results are all obtained by computer simulation. We observe that, over a very
wide range of SNRs, the performance of the high SNR approximation classifier
is virtually a perfect match to that of the optimum classifier, but its implemen-
tation is somewhat simpler. On the other hand, while the performance of the
low SNR classifier converges to that of the optimum classifier at low SNR as it
should, at high SNR it results in considerable degradation. The reasoning behind
this relative difference in behavior between the approximate and optimum clas-
sifiers can be explained as follows: Whereas at low SNR the maximum difference
between ln cosh x and its high SNR approximation |x| − ln 2 occurs at x = 0 and
is equal to ln 2, at high SNR the difference between ln coshx and its low SNR
approximation x2/2 grows without bound, i.e., the difference between a linear
and a square law behavior. Thus, using the high SNR approximation of ln coshx

over the entire range of SNR is a much better fit than using the low SNR approx-
imation over the same SNR range. Illustrated in Fig. 5-8 is a comparison of the
performances of the coherent classifiers for the residual- and suppressed-carrier
cases, the latter being obtained from the discussion in Section 5.1.1. We observe
that for the optimum and high SNR approximation classifiers the two are quite
similar in performance although the suppressed-carrier one is a bit inferior. This
implies that a discrete carrier component is slightly influential in improving data
format classification for coherent communications.

5.6 Maximum-Likelihood Noncoherent Classifier of
Data Format for BPSK with Residual and
Suppressed Carriers

As in Section 5.3.1, we again assume that the carrier has a random phase, θc,
that is unknown and uniformly distributed. Then when NRZ is transmitted, the
received signal takes the form of Eq. (5-40) with p (t) = p1 (t) and P = Pt.
On the other hand, when Manchester-coded data are transmitted, the received
signal has the form

r(t) =
√

2Pc sin (ωct + θc) +
√

2Pd

( ∞∑

n=−∞
cnp2 (t − nT )

)
cos (ωct + θc) + n(t)

(5 83)
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Fig. 5-7.  Misclassification probability for residual carrier coherent
classifier: β = 60 deg.
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Without going to great length, following the same procedure as in Section 5.3.1,
it is straightforward to show that, analogous to Eq. (5-46), the likelihood ratio
for choosing between NRZ and residual-carrier Manchester-coded data is given
by

LR =

E
θc

{
exp

[ K−1∑

k=0

ln cosh

(
2
√

2Pt

N0

∫ (k+1)T

kT

r(t)p1(t − kT ) cos(ωct + θc)dt

)]}

E
θc

{
exp

[ K−1∑

k=0

ln cosh

(
2
√

2Pd

N0

∫ (k+1)T

kT

r(t)p2(t − kT ) cos(ωct + θc)dt

)

+
2
√

2Pc

N0

K−1∑

k=0

∫ (k+1)T

kT

r(t) sin (ωct + θc) dt

]}
(5 84)

To obtain a low SNR classifier, we approximate the nonlinearities in
Eq. (5-84) by their small argument values which results after considerable sim-
plification in a test analogous to Eq. (5-55) given by the following: Choose
Manchester if

K−1∑

k=0

|r̃′k (1)|2 <
(
sin2 β

) K−1∑

k=0

|r̃′k (2)|2 +
(
cos2 β

)
∣∣∣∣∣

K−1∑

k=0

r̃′k (1)

∣∣∣∣∣

2

(5 85)

where as before the real and imaginary components of r̃k(l) =
(
Tb

√
2Pt

)
r̃′k(l);

l = 1, 2 are defined in Eq. (5-35). Alternatively, in terms of integrals, Eq. (5-85)
becomes

K−1∑

k=0

∣∣∣∣∣

∫ (k+1/2)T

kT

r (t) ejωctdt +
∫ (k+1)T

(k+1/2)T

r (t) ejωctdt

∣∣∣∣∣

2

<

(
sin2 β

) K−1∑

k=0

∣∣∣∣∣

∫ (k+1/2)T

kT

r (t) ejωctdt −
∫ (k+1)T

(k+1/2)T

r (t) ejωctdt

∣∣∣∣∣

2

+
(
cos2 β

)
∣∣∣∣∣

K−1∑

k=0

∫ (k+1/2)T

kT

r (t) ejωctdt +
∫ (k+1)T

(k+1/2)T

r (t) ejωctdt

∣∣∣∣∣

2

(5 86)
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For the high SNR case, by analogy with Eq. (5-86), we propose the ad hoc
test

K−1∑

k=0

∣∣∣∣∣

∫ (k+1/2)T

kT

r (t) ejωctdt +
∫ (k+1)T

(k+1/2)T

r (t) ejωctdt

∣∣∣∣∣ <

(sinβ)
K−1∑

k=0

∣∣∣∣∣

∫ (k+1/2)T

kT

r (t) ejωctdt −
∫ (k+1)T

(k+1/2)T

r (t) ejωctdt

∣∣∣∣∣

+ (cos β)

∣∣∣∣∣

K−1∑

k=0

∫ (k+1/2)T

kT

r (t) ejωctdt +
∫ (k+1)T

(k+1/2)T

r (t) ejωctdt

∣∣∣∣∣ (5 87)

which is consistent with the ad hoc test in Eq. (5-59) when β = 90 deg.
Analogous to Fig. 5-7, Fig. 5-9 is an illustration of the average misclassifica-

tion probability for the various classification noncoherent algorithms, where the
results are all obtained by computer simulation. We again observe that, over
a very wide range of SNRs, the performance of the high SNR approximation
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Fig. 5-9.  Misclassification probability for residual carrier noncoherent
classifier:  β = 60 deg.
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classifier is virtually a perfect match to that of the optimum classifier, but its
implementation is somewhat simpler. On the other hand, while the performance
of the low SNR classifier converges to that of the optimum classifier at low SNR
as it should, at high SNR it results in considerable degradation. Illustrated
in Fig. 5-10 is a comparison of the performances of the coherent classifiers for
the residual- and suppressed-carrier noncoherent classifier cases, the latter being
obtained from the discussion in Section 5.3.1 of the chapter. We observe that,
as in the coherent comparison illustrated in Fig. 5-8, for the optimum and high
SNR approximation classifiers the two are again quite similar in performance,
although now the suppressed-carrier one is a bit superior. Finally, analogous to
Fig. 5-6, a comparison of the corresponding coherent and noncoherent classifiers
for the residual-carrier case is illustrated in Fig. 5-11, and for the optimum metric
reveals a penalty of approximately 1.25 dB or less depending on the SNR.

5.7 Maximum-Likelihood Pulse Shape Classification
The solution to the problem of making an ML decision on the pulse shape of

a modulation from a variety of different possibilities in principle follows the iden-
tical procedure discussed in the previous sections for data format classification,
except for the fact that we no longer restrict ourselves to a digital pulse waveform.
For example, suppose that we are transmitting a binary modulation, where the
pulse shape is known to be one of L possibilities, namely, pl(t), l = 1, 2, · · · , L.
Then, using the LLF of Eq. (5-4) and defining rk(l) as in Eq. (5-7) (without the
special cases of NRZ and Manchester), then the ML coherent classifier of pulse
shape would be to choose pl∗ (t) corresponding to

l∗ = argmax
l

K−1∑

k=0

ln cosh

(
2
√

2P

N0

∫ (k+1)T

kT

r (t) pl (t − kT ) cos ωctdt

)
(5 88)

where the notation argmax
l

f(l) denotes the value of l that maximizes the func-

tion f(l). Once again by making small and large argument approximations of
the ln cosh (·) nonlinearity, one can obtain reduced-complexity classifiers in the
same manner as was used in Section 5.1.2 for the special case of data format
classification. Other examples involving higher-order modulations follow along
the same lines as those just discussed.
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Fig. 5-10.  Comparison of misclassification probability for suppressed
and residual carrier noncoherent classifiers.
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Fig. 5-11.  A comparison of performance of coherent and noncoherent
data format classifiers for BPSK modulation: residual carrier case.
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Chapter 6
Signal-to-Noise Ratio Estimation

Marvin K. Simon and Samuel Dolinar

Of the many measures that characterize the performance of a communica-
tion receiver, signal-to-noise ratio (SNR) is perhaps the most fundamental in that
many of the other measures directly depend on its knowledge for their evaluation.
In the design of receivers for autonomous operation, it is desirable that the esti-
mation of SNR take place with as little known information as possible regarding
other system parameters such as carrier phase and frequency, order of the mod-
ulation, data symbol stream, data format, etc. While the maximum-likelihood
(ML) approach to the problem will result in the highest quality estimator, as is
typically the case with this approach, it results in a structure that is quite com-
plex unless the receiver is provided with some knowledge of the data symbols
typically obtained from data estimates made at the receiver (which themselves
depend on knowledge of the SNR). SNR estimators of this type have been re-
ferred to in the literature as in-service estimators, and the evaluation of their
performance has been considered in [1]. Since our interest here is in SNR estima-
tion for autonomous operation, the focus of our attention will be on estimators
that perform their function without any data symbol knowledge and, despite
their ad hoc nature, maintain a high level of quality and robustness with respect
to other system parameter variations.

One such ad hoc SNR estimator that has received considerable attention in
the past is the so-called split-symbol moments estimator (SSME) [2–5] that forms
its SNR estimation statistic from the sum and difference of information extracted
from the first and second halves of each received data symbol. Implicit in this
estimation approach, as is also the case for the in-service estimators, is that the
data rate and symbol timing are known or can be estimated. (Later on in the
chapter we shall discuss how the SNR estimation procedure can be modified
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when symbol timing is unknown.) In the initial investigations, the performance
of the SSME was investigated only for binary phase-shift keying (BPSK) modu-
lations with and without carrier frequency uncertainty and as such was based on
real sample values of the channel output. In fact, it was stated in [1, p. 1683], in
reference to the SSME, that “none of these methods is easily extended to higher
orders of modulations.” More recently, it has been shown [6] that such is not the
case. Specifically, the traditional SSME structure, when extended to the complex
symbol domain, is readily applicable to the class of M -phase-shift keying (M -
PSK) (M ≥ 2) modulations, and furthermore its performance is independent of
the value of M ! Even more generally, the complex symbol version of the SSME
structure can also be used to provide SNR estimation for two-dimensional signal
sets such as quadrature amplitude modulation (QAM) although the focus of the
chapter will be on the M -PSK application.

We begin the chapter by defining the signal model and formation of the SSME
estimator. Following this, we develop exact as well as highly accurate approx-
imate expressions for its mean and variance for a variety of different scenarios
related to the degree of knowledge assumed for the carrier frequency uncertainty
and to what extent it is compensated for in obtaining the SNR estimate. With
regard to the observables from which the SNR estimate was formed, two dif-
ferent models will be considered. In one case, we consider the availability of
a plurality of uniformly spaced independent1 samples of the received signal in
each half-symbol, whereas in the second case only one sample of information
from each half-symbol, e.g., the output of half-symbol matched filters, is as-
sumed available—hence, two samples per symbol. Furthermore, we consider the
wideband case wherein the symbol pulse shape is assumed to be rectangular,
and thus the matched filters are in fact integrate-and-dump (I&D) filters. Fi-
nally, we discuss in detail a method for reconfiguring the conventional SSME to
improve its performance for SNRs above a particular critical value. The recon-
figuration, initially disclosed in [7], consists of partitioning the symbol interval
into a larger (but even) number of subdivisions than the two that characterize
the conventional SSME where the optimum number of subdivisions depends on
the SNR region in which the true SNR lies. It will also be shown that these SNR
regions can be significantly widened with very little loss in performance. Most
important is the fact that, with this reconfiguration, the SNR estimator tracks
the Cramer–Rao bound (with a fixed separation from it) on the variance of the
estimator over the entire range of SNR values.

1 Clearly the independence assumption on the samples is dependent on the sampling rate in
relation to the bandwidth of the signal.
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6.1 Signal Model and Formation of the Estimator

6.1.1 Sampled Version

A block diagram of the SSME structure in complex baseband form is il-
lustrated in Fig. 6-1. Corresponding to the kth transmitted M -PSK symbol
dk = ejφk in the interval (k − 1) T ≤ t ≤ kT , the lth complex baseband received
sample is given by2

ylk =
m

Ns
dkej(ωlTs+φ) + nlk, l = 0, 1, · · · , Ns − 1, k = 1, 2, · · · , N (6 1)

where φ and ω are the carrier phase and frequency uncertainties (offsets), Ns is
the number of uniform samples per symbol and is assumed to be an even integer,
1/Ts is the sampling rate, N is the number of symbols in the observation, nlk is
a sample of a zero-mean additive white Gaussian noise (AWGN) process with
variance σ2/Ns in each (real and imaginary) part, and m reflects the signal
amplitude. It is also convenient to denote the duration of a symbol by T = NsTs.
Based on the above, the true symbol SNR is given by

R =
m2

2σ2
(6 2)

The received samples of Eq. (6-1) are first accumulated separately over the first
and second halves of the kth symbol interval, resulting in the sums

Yαk
=

Ns/2−1∑

l=0

ylke−jθlk =
Ns/2−1∑

l=0

(
m

Ns
dkej([l/Ns]δ+φ) + nlk

)
e−jθlk

Yβk
=

Ns−1∑

l=Ns/2

ylke−jθlk =
Ns−1∑

l=Ns/2

(
m

Ns
dkej([l/Ns]δ+φ) + nlk

)
e−jθlk

(6 3)

where e−jθlk is a phase compensation that accounts for the possible adjustment
of the lkth sample for phase variations across a given symbol due to the frequency
offset and δ

�= ωT is the normalized (to the symbol time) frequency offset. Next,
the half-symbol sums in Eq. (6-3) are summed and differenced to produce

2 For convenience, we assume that φ includes the accumulated phase due to the frequency
offset up until the beginning of the kth symbol interval.
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u±
k = Yαk

± Yβk

�= s±k + n±
k , k = 1, 2, · · · , N (6 4)

where s±k and n±
k respectively represent the signal and noise components of these

half-symbol sums and differences and can be written in the form

s±k =
m

Ns
ej(φ+φk)

⎡
⎣

Ns/2−1∑

l=0

ej([l/Ns]δ−θlk) ±
Ns−1∑

l=Ns/2

ej([l/Ns]δ−θlk)

⎤
⎦

n±
k =

Ns/2−1∑

l=0

nlke−jθlk ±
Ns−1∑

l=Ns/2

nlke−jθlk

(6 5)

Finally, we average the squared norms of the half-symbol sums and differences
over the N -symbol duration of the observation, producing

U± =
1
N

N∑

k=1

∣∣u±
k

∣∣2 (6 6)

Note that U+ is a statistical measure of signal-plus-noise power where U−

is a statistical measure of noise power. Also, depending on the amount of infor-
mation available for the frequency uncertainty ω and the method by which it is
compensated for (if at all), the SNR estimator will take on a variety of forms (to
be discussed shortly), all of which, however, will depend on the received complex
samples only via the averages U+ and U−.

Making the key observation that the observables U+ and U− are independent
random variables (RVs) and denoting the normalized squared norm of their sum
and difference signal components by

h± �=

∣∣s±k
∣∣2

m2
(6 7)

then it is straightforward to show that their means and variances are given by

E
{
U±}

= 2σ2 +
∣∣s±k

∣∣2 = 2σ2
(
1 + h±R

)

var
{
U±}

=
4
N

σ2
(∣∣s±k

∣∣2 + σ2
)

=
4
N

σ4
(
1 + 2h±R

)
(6 8)
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Note that while the parameters h± depend on whether or not phase compensa-
tion is used and also on the frequency uncertainty, they are independent of the
random carrier phase φ and the particular data symbol phase φk. As such, the
h± are independent of the order M of the M -PSK modulation and, thus, so are
the first and second moments of U± in Eq. (6-8).

Solving for the true SNR R from the first relation in Eq. (6-8) gives

R =
E {U+} − E {U−}

h+E {U−} − h−E {U+} (6 9)

and the general form of the ad hoc SSME R̂ is obtained by substituting the
sample values U± for their expected values and the estimates ĥ± for their true
values, namely,

R̂ =
U+ − U−

ĥ+U− − ĥ−U+

�= g
(
U+, U−)

(6 10)

For the case of real data symbols, i.e., BPSK, the estimator in Eq. (6-10) is
exactly identical to the SSME considered in [2–5].

Note that in the absence of frequency uncertainty, i.e., δ = 0, and thus of
course no phase compensation, i.e., θlk = 0, we have from Eq. (6-5) that h+ = 1
and h− = 0, in which case Eq. (6-9) simplifies to

R =
E {U+} − E {U−}

E {U−} (6 11)

which appears reasonable in terms of the power interpretations of U+ and U−

given above. Likewise, in this case we would have ĥ+ = 1 and ĥ− = 0, and the
ad hoc SNR estimator would simplify to

R̂ =
U+ − U−

U− (6 12)

6.1.2 I&D Version

A block diagram of the complex baseband SSME for this version is obtained
from Fig. 6-1 by replacing the half-symbol accumulators by half-symbol I&Ds
and is illustrated in Fig. 6-2. Corresponding to the kth transmitted M -PSK
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symbol, the complex baseband received signal that is input to the first and second
half-symbol I&Ds is given by

y (t) = mdkej(ωt+φ) + n (t) , (k − 1) T ≤ t < kT (6 13)

where n (t) is the zero-mean AWGN process. The outputs of these same I&Ds
are given by

Yαk = mdk
1
T

∫ (k−1/2)T

(k−1)T

ej(ωt+φ)dt +
1
T

∫ (k−1/2)T

(k−1)T

n (t) dt

= (mdk/2) ejφejω(k−3/4)T sinc (δ/4) + nαk

Yβk =

(
mdk

1
T

∫ kT

(k−1/2)T

ej(ωt+φ)dt +
1
T

∫ kT

(k−1/2)T

n (t) dt

)
e−jθk

=
(
(mdk/2) ejφejω(k−3/4)T ejωT/2sinc (δ/4) + nβk

)
e−jθk

(6 14)

where sinc x
�= sinx/x, nαk, and nβk are complex Gaussian noise variables with

zero mean and variance σ2/2 for each real and imaginary component and e−jθk

is once again a phase compensation that accounts for the possible adjustment
of the kth second-half sample for phase variations across a given symbol due to
the frequency offset. As before, forming the half-symbol sums and differences
produces

u±
k = Yαk ± Yβk = (mdk/2) ejφejω(k−3/4)T sinc (δ/4)

[
1 ± ej([δ/2]−θk)

]

+ nαk ± nβke−jθk
�= s±k + n±

k (6 15)

If once again, as in Eq. (6-6), we average the squared norms of the half-symbol
sums and differences over the N -symbol duration of the observation, then fol-
lowing the same series of steps as in Eqs. (6-7) through (6-9), we arrive at the
ad hoc SNR estimator in Eq. (6-10).
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6.2 Methods of Phase Compensation
For the sampled version of the SSME, we observe from Eq. (6-6) together

with Eqs. (6-3) and (6-4) that the split-symbol observables U± are defined in
terms of phase compensation factors

{
e−jθlk

}
applied to the received samples

{ylk} to compensate for phase variations across a given symbol due to the fre-
quency offset ω. To perform this compensation, one requires some form of knowl-
edge about this offset. In this regard, we shall assume that an estimate ω̂ of ω is
externally provided. In principle, there are two ways in which this estimate can
be used to provide the necessary compensation. The best-performing but most
complex method adjusts the phases sample by sample, using a sample-by-sample
compensation frequency ωs = ω̂. The alternative and less complex method does
not compensate every sample but rather only once per symbol by adjusting the
relative phase of the two half-symbols using a half-symbol compensation fre-
quency ωsy = ω̂. Of course, the least complex form of phase compensation
would be none at all even though the estimate ω̂ is available. In all three cases,
the phase adjustment θlk can be written in the generic form

θlk =
{

ωslTs, 0 ≤ l ≤ Ns/2 − 1
ωs (l − Ns/2)Ts + ωsyT/2, Ns/2 ≤ l ≤ Ns − 1 (6 16)

where

ωs = ωsy = ω̂ for sample-by-sample phase compensation

ωs = 0, ωsy = ω̂ for half-symbol phase compensation (6-17)

ωs = ωsy = 0 for no phase compensation

For the I&D version of the SSME, we only have the half-symbol phase com-
pensation option available and thus θk = ωsyT/2 = ω̂T/2. Of course, even
though the estimate ω̂ is available, we again might still choose not to use it to
compensate for the phase due to the frequency uncertainty. In this case, we
would simply set θk = 0 in Eqs. (6-14) and (6-15).

Besides being used for phase compensation of the samples or half-symbols
that enter into the expressions for computing U±, the frequency estimate also
enters into play in determining the estimates ĥ± that are computed from h± by
replacing ω with its estimate ω̂. Thus, the performance of the SSME will depend
on the accuracy of the frequency estimate ω̂ with or without phase compensa-
tion. In the most general scenario, we shall consider a taxonomy of cases for
analysis that, for the sampled version of the SSME, are illustrated by the tree
diagram in Fig. 6-3. In this diagram, we start at the square node in the middle
and proceed outward to any of the eight leaf nodes representing interesting com-
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binations of ω, ω̂, ωsy, and ωs. The relative performance and complexity of each
case is given qualitatively in Table 6-1, where the former is rated from worst (*)
to best (****) and the latter from simplest (x) to most complex (xxxx). In the
I&D version, a few of the tree branches of Fig. 6-3, namely, 2c and 3c, do not
apply.

10
ωsy = 0ωs = 0 ω = 0^ ω = 0

3c3b3a

2c2b2a

ω = 0

ωs = 0

ωsy = ω̂ωsy = 0

ωs = 0 ωs = 0

ω = ω^

ω = ω^

ωs = 0^ωsy = 0^

ωs = 0 ωs = 0

ωsy = ω̂

ω = 0^

ωs = ω̂

^ωs = ω

Fig. 6-3.  A taxonomy of interesting cases for analysis.

Table 6-1. Qualitative relative performance and complexity
of the various estimators.

Case Frequency Frequency Phase
Performance Complexity

number offset estimate compensation

0 0 Perfect None **** x

1 �=0 0 None * x

2a �=0 Perfect None ** xx

2b �=0 Perfect Half-symbol *** xxx

2c �=0 Perfect Sample-by-sample **** xxxx

3a �=0 Imperfect None * to ** xx

3b �=0 Imperfect Half-symbol * to *** xxx

3c �=0 Imperfect Sample-by-sample * to **** xxxx
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6.3 Evaluation of h±±±

For the sampled version SSME, we first insert the expression for the phase
compensation in Eq. (6-16) into Eq. (6-5), which after simplification becomes

s±k =
m

Ns
ej(φ+φk)

(
1 − ej(δ−ωsT )/2

1 − ej(δ−ωsT )/Ns

) (
1 ± ej(δ−ωsyT )/2

)
(6 18)

Then taking the squared norm of Eq. (6-18) and normalizing by m2 gives, in
accordance with Eq. (6-7),

h± = WNs
(δs)

1 ± W0 (δsy)
2

(6 19)

where

δs = δ − ωsT

δsy = δ − ωsyT

(6 20)

and

W0 (δ) = cos (δ/2)

WNs (δ) =
sinc2 (δ/4)

sinc2 (δ/2Ns)

(6 21)

are windowing functions. Note that W0 (δ) has zeros at odd multiples of π, and
WNs (δ) has zeros at all multiples of 4π except for multiples of 2Nsπ.

For the I&D version, h± is still given by Eq. (6-19) but with WNs (δs) replaced
by

W (δ) = sinc2 (δ/4) (6 22)

which is tantamount to taking the limit of WNs
(δ) as Ns approaches infinity.
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6.4 Mean and Variance of the SNR Estimator
In this section, we evaluate the mean and variance of R̂ for a variety of special

cases related to (1) the absence or presence of carrier frequency uncertainty ω

and likewise for its estimation, (2) whether or not its estimate ω̂ is used for phase
compensation, and (3) the degree to which ω̂ matches ω. In all cases involving
frequency estimation, we treat ω̂ as a nonrandom parameter that is externally
provided.

6.4.1 Exact Moment Evaluations

Since from Eq. (6-6) U+ and U− are sums of squared norms of complex Gaus-
sian RVs, then they themselves are chi-square distributed, each with 2N degrees
of freedom. Furthermore, since U+ and U− are independent, then the moments
of their ratio can be computed from the product of the positive moments of U+

and the positive moments of 1/U− (or equivalently the negative moments of U−),
i.e.,

E

{(
U+

U−

)k
}

= E
{(

U+
)k

}
E

{(
U−)−k

}
(6 23)

Based on the availability of closed-form expressions for these positive and
negative moments for both central and non-central chi-square RVs [8], we shall
see shortly that it is possible to make use of these expressions to evaluate the
first two moments of the SSME either in closed form or as an infinite series whose
terms are expressible in terms of tabulated functions. In each case considered,
the method for doing so will be indicated but the explicit details for carrying
it out will be omitted for the sake of brevity, and only the final results will be
presented.

•Case 0: No Frequency Uncertainty(
ω = ω̂ = ωsy = 0 ⇒ δ = δ̂ = δsy = δ̂sy = 0

)

Since in this case W (0) = WNs
(0) = W0 (0) = 1, then we have from

Eq. (6-19) that h+ = ĥ+ = 1, h− = ĥ− = 0 and R̂ = (U+ − U−) /U−, which
was previously arrived at in Eq. (6-12). Since R̂ + 1 = U+/U− is the ratio of a
non-central to a central chi-square RV, each with 2N degrees of freedom, then
the mean and variance of R̂ can be readily evaluated as
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E
{

R̂
}

=
N

N − 1
R +

1
N − 1

var
{

R̂
}

=
1

N − 2

(
N

N − 1

)2 [
(1 + 2R)

(
2N − 1

N

)
+ R2

] (6 24)

Since N is known, the bias of the estimator is easily removed in this case by
defining a bias-removed estimator R̂0 = [(N − 1) /N ]R − 1/N whose mean and
variance now become

E
{

R̂0

}
= R

var
{

R̂0

}
=

1
N − 2

[
(1 + 2R)

(
2N − 1

N

)
+ R2

] (6 25)

•Case 1: Frequency Uncertainty, No Frequency Estimation
(and thus No Phase Compensation)(
ω �= 0, ω̂ = ωsy = ωs = 0 ⇒ δ �= 0, δ̂ = 0, δsy = δs = δ, δ̂sy = δ̂s = 0

)

For this case, h± = WNs
(δ) [1 ± W0 (δ)] /2 for the sampled version or h± =

W (δ) [1 ± W0 (δ)] /2 for the I&D version, ĥ+ = 1, ĥ− = 0, and again R̂ =
(U+ − U−) /U−. Since h− is non-zero, then R̂ + 1 = U+/U− is now the ratio
of two non-central chi-square RVs, each with 2N degrees of freedom. Using [8,
Eq. (2.47)] to evaluate the first and second positive moments of U+ and the first
and second negative moments of U−, then using these in Eq. (6-23) allows one,
after some degree of effort and manipulation, to obtain the mean and variance
of R̂ + 1, from which the mean and variance of R̂ can be evaluated as

E
{

R̂
}

=
N

N − 1
(1 + h+R)1F1

(
1;N ;−Nh−R

)
− 1

var
{

R̂
}

=
(

N

N − 1

)2 {(
N − 1
N − 2

) [
(1 + 2h+R)

N
+

(
1 + h+R

)2
]

(6 26)

× 1F1

(
2;N ;−Nh−R

)
−

(
1 + h+R

)2
[
1F1

(
1;N ;−Nh−R

)]2
}
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where 1F1 (a; b; z) is the confluent hypergeometric function [9]. Since ω and
thus h± are now unknown, the bias of the estimator cannot be removed in this
case. Furthermore, since 1F1 (a; b; 0) = 1, then when h+ = 1 and h− = 0,
Eq. (6-26) immediately reduces to Eq. (6-24) as it should.

•Case 2a: Frequency Uncertainty, Perfect Frequency Estimation,
No Phase Compensation(
ω �= 0, ω̂ = ω, ωsy = ωs = 0 ⇒ δ = δ̂ �= 0, δsy = δ̂sy = δs = δ̂s = δ

)

For this case, h± = ĥ± = WNs (δ) [1 ± W0 (δ)] /2 for the sampled version
or h± = ĥ± = W (δ) [1 ± W0 (δ)] /2 for the I&D version, and R̂ is given by the
generic form of Eq. (6-10). Obtaining an exact compact closed-form expression in
this case is much more difficult since h± and ĥ± are now all non-zero. However,
it is nevertheless possible to obtain an expression in the form of an infinite series.
In particular, defining ξ̂

�= ĥ−/ĥ+ = tan2
(
δ̂sy/4

)
(for this case, ξ̂ = tan2 [δ/4])

and Λ = U+/U−, then after considerable effort and manipulation, the mean and
variance of R̂ can be evaluated in terms of the moments of Λ as

E
{

R̂
}

= − 1 +
(
1 − ξ̂

) ∞∑

n=1

ξ̂n−1E {Λn}

var
{

R̂
}

=
(
1 − ξ̂

)2

⎡

⎣
∞∑

n=2

(n − 1) ξ̂n−2E {Λn} −
( ∞∑

n=1

ξ̂n−1E {Λn}
)2

⎤

⎦

(6 27)

where

E {Λn} =
Γ (N + n) Γ (N − n)

Γ2 (N) 1F1

(
−n;N ;−Nh+R

)
1F1

(
n;N ;−Nh−R

)

(6 28)

For small frequency error, i.e., ξ̂ small, Eq. (6-27) can be simply approximated
by

E
{

R̂
}

= − 1 + E {Λ} + ξ̂
[
E

{
Λ2

}
− E {Λ}

]

var
{

R̂
}

=
(
1 − 2ξ̂

)
× var {Λ} + 2ξ̂

[
E

{
Λ3

}
− E {Λ}E

{
Λ2

}]
(6 29)



Signal-to-Noise Ratio Estimation 135

Although not obvious from Eq. (6-27), it can be shown that the mean of the
SNR estimator can be written in the form E

{
R̂

}
= R + O(1/N) and thus, for

this case, the estimator is asymptotically (large N) unbiased.

•Case 2b: Frequency Uncertainty, Perfect Frequency Estimation,
Half-Symbol Phase Compensation(
ω �= 0, ω̂ = ω, ωsy = ω, ωs = 0 ⇒ δ = δ̂ �= 0, δsy = δ̂sy = 0, δs = δ̂s = δ

)

Here we have h+ = ĥ+ = WNs (δ) for the sampled version or h+ = ĥ+ =
W (δ) for the I&D version, h− = ĥ− = 0, and thus R̂ = [(U+ − U−) /U−] /ĥ+.
Recognizing then that ĥ+R̂ + 1 = U+/U−, the moments of ĥ+R̂ can be directly
obtained from the moments of R̂ of Case 0 by replacing R with h+R. Thus,

E
{

R̂
}

=
1

ĥ+

[
N

N − 1
h+R +

1
N − 1

]

(6 30)

var
{

R̂
}

=
1

(
ĥ+

)2

1
N − 2

(
N

N − 1

)2 [(
1 + 2h+R

) (
2N − 1

N

)
+

(
h+R

)2
]

where for this case, as noted above, we can further set h+ = ĥ+. Once this
is done in Eq. (6-30), then since ĥ+ is known, we can once again completely
remove the bias from the estimator by defining the bias-removed estimator
R̂0 =

[
(N − 1) /N

]
R − 1/

(
Nĥ+

)
, whose mean is given by E

{
R̂0

}
= R and

whose variance is obtained from var
{
R̂

}
of Eq. (6-30) by multiplying it by[

(N − 1) /N
]2.

•Case 2c: Frequency Uncertainty, Perfect Frequency Estimation,
Sample-by-Sample Phase Compensation(
ω �= 0, ω̂ = ω, ωsy = ωs = ω ⇒ δ = δ̂ �= 0, δsy = δ̂sy = δs = δ̂s = 0

)

This case applies only to the sample-by-sample version of the SSME. In
particular, we have h+ = ĥ+ = 1, h− = ĥ− = 0, and thus R̂ = (U+ − U−)/U−,
which is identical to the SSME of Case 0. Thus, the moments of R̂ are given by
Eq. (6-24).
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•Case 3a: Frequency Uncertainty, Imperfect Frequency Estimation,
No Phase Compensation(
ω �= 0, ω̂ �= ω, ωsy = ωs = 0 ⇒ δ, δ̂ �= 0, δsy = δs = δ, δ̂sy = δ̂s = δ̂

)

Here, h± = WNs(δ)
[
1 ± W0(δ)

]
/2, ĥ± = WNs

(
δ̂
)[

1 ± W0

(
δ̂
)]

/2 for the sam-
pled version or h± = W (δ)

[
1 ± W0(δ)

]
/2, ĥ± = W

(
δ̂
)[

1 ± W0

(
δ̂
)]

/2 for the I&D
version, and R̂ is given by the generic form of Eq. (6-10). The method used to
obtain the moments of the SNR estimator is analogous to that used for Case 2a.
In particular, noting that for this case ξ̂ = tan2

(
δ̂/4

)
, the results are obtained

from Eq. (6-27) by multiplying E
{
R̂

}
by 1/ĥ+ and var

{
R̂

}
by

(
1/ĥ+

)2.

•Case 3b: Frequency Uncertainty, Imperfect Frequency Estimation,
Half-Symbol Phase Compensation(
ω �= 0, ω̂ �= ω, ωsy = ω̂, ωs= 0 ⇒ δ, δ̂ �= 0, δsy = δ − δ̂, δ̂sy = 0, δs = δ, δ̂s = δ̂

)

Here h± = WNs
(δ)

[
1 ± W0

(
δ − δ̂

)]
/2, ĥ+ = WNs

(
δ̂
)

for the sampled version
or h± = W

(
δ
)[

1 ± W0

(
δ − δ̂

)]
/2, ĥ+ = W

(
δ̂
)

for the I&D version, ĥ− = 0,
and once again R̂ =

[(
U+ − U−)

/U−]
/ĥ+. Hence, by analogy with Case 1, the

mean and variance of the SNR estimator can be obtained from a scaled version
of Eq. (6-26).

•Case 3c: Frequency Uncertainty, Imperfect Frequency Estimation,
Sample-by-Sample Phase Compensation(
ω �= 0, ω̂ �= ω, ωsy = ωs = ω̂ ⇒ δ, δ̂ �= 0, δsy = δs = δ − δ̂, δ̂sy = δ̂s = 0

)

This case applies only to the sample-by-sample version of the SSME. In
particular, we have h± = WNs

(
δ − δ̂

)[
1 ± W0

(
δ − δ̂

)]
/2, ĥ+ = 1, ĥ− = 0, and

thus R̂ =
(
U+ − U−)

/U−, which is the form given in Eq. (6-12) and resembles
Case 1. Thus, the moments of R̂ are given by Eq. (6-26), using now the values
of h+ and h− as are appropriate to this case.

6.4.2 Asymptotic Moment Evaluations

Despite having exact results, in many instances it is advantageous to have
asymptotic results, particularly if their analytical form is less complex and as
such lends insight into the their behavior in terms of the various system pa-
rameters. In this section, we provide approximate expressions for the mean and
variance of the SSME by employing a Taylor series expansion of g

(
U+, U−)

in
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Eq. (6-10), assuming that this function is smooth in the vicinity of the point(
E

{
U+

}
, E

{
U−})

. With this in mind, the mean and variance of the estimate R̂

are approximated by [10, p. 212]

E
{
R̂

}
= g

(
E

{
U+

}
, E

{
U−})

+
1
2

(
var

{
U+

} ∂2g

∂ (U+)2
+ var

{
U−} ∂2g

∂ (U−)2

)
+ O

(
1

N2

)

var
{
R̂

}
=

(
∂g

∂U+

)2

var
{
U+

}
+

(
∂g

∂U−

)2

var
{
U−}

+ O

(
1

N2

)

(6 31)

In Eq. (6-31), all of the partial derivatives are evaluated at
(
E

{
U+

}
, E

{
U−})

.
Ordinarily, there would be another term in these Taylor series expansions involv-
ing ∂2g/∂U+∂U− and cov

{
U+, U−}

. However, in our case, this term is absent
in view of the independence of U+ and U−.

In Appendix 6-A, we derive explicit expressions for E
{
R̂

}
and var

{
R̂

}
based

on the evaluations of the partial derivatives required in Eq. (6-31). The results
of these evaluations are given below:

E
{

R̂
}

=
(h+ − h−) R

ĥ+ − ĥ− +
(
ĥ+h− − ĥ−h+

)
R

+
1
N

(
ĥ+ − ĥ−

) (
ĥ+ + ĥ−

)

[
ĥ+ − ĥ− +

(
ĥ+h− − ĥ−h+

)
R

]3

×
{

1 +

(
h+ + h− +

ĥ+h− + ĥ−h+

ĥ+ + ĥ−

)
R + 2h+h−R2

}
+ O

(
1

N2

)

(6 32)

and
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var
{

R̂
}

=
1
N

(
ĥ+ − ĥ−

)2

[
ĥ+ − ĥ− +

(
ĥ+h− − ĥ−h+

)
R

]4

×
{

2 + 4
(
h+ + h−)

R +
[(

h+ + h−)2 + 6h+h−
]
R2 + 4h+h− (

h+ + h−)
R3

}

+ O

(
1

N2

)
(6 33)

It is now a simple matter to substitute in the various expressions for h± and ĥ±

corresponding to the special cases treated in Section 6.1 to arrive at asymptotic
closed-form expressions for the mean and variance of R̂ for each of these cases.
The results of these substitutions lead to the following simplifications:

•Case 0: No Frequency Uncertainty

E
{
R̂

}
= R +

1
N

(1 + R) + O

(
1

N2

)

var
{

R̂
}

=
1
N

(
2 + 4R + R2

)
+ O

(
1

N2

) (6 34)

•Case 1: Frequency Uncertainty, No Frequency Estimation
(and thus No Phase Compensation)

E
{

R̂
}

=
(h+ − h−) R

1 + h−R

+
1
N

1
(1 + h−R)3

{
1 +

(
h+ + 2h−)

R + 2h+h−R2
}

+ O

(
1

N2

)

(6 35)

var
{

R̂
}

=
1
N

1
(1 + h−R)4

{
2 + 4

(
h+ + h−)

R +
[(

h+ + h−)2 + 6h+h−
]
R2

+4h+h− (
h+ + h−)

R3
}

+ O

(
1

N2

)
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where h± = WNs(δ)
[
1 ± W0(δ)

]
/2 for the sampled version or h± = W (δ)[

1 ± W0(δ)
]
/2 for the I&D version.

•Case 2a: Frequency Uncertainty, Perfect Frequency Estimation,
No Phase Compensation

E
{

R̂
}

=

R +
1
N

(h+ + h−)
(h+ − h−)2

{
1 +

(
h+ + h− +

2h+h−

h+ + h−

)
R + 2h+h−R2

}
+ O

(
1

N2

)

(6 36)

var
{

R̂
}

=
1
N

1
(h+ − h−)2

{
2 + 4

(
h+ + h−)

R +
[(

h+ + h−)2 + 6h+h−
]
R2

+4h+h− (
h+ + h−)

R3
}

+ O

(
1

N2

)

where h± = WNs
(δ)

[
1 ± W0(δ)

]
/2 for the sampled version or h± = W (δ)[

1 ± W0(δ)
]
/2 for the I&D version.

•Case 2b: Frequency Uncertainty, Perfect Frequency Estimation,
Half-Symbol Phase Compensation

E
{

R̂
}

= R +
1
N

1
h+

(
1 + h+R

)
+ O

(
1

N2

)

var
{

R̂
}

=
1
N

1
(h+)2

[
2 + 4h+R +

(
h+

)2
R2

]
+ O

(
1

N2

) (6 37)

where h+ = WNs
(δ) for the sampled version or h+ = W (δ) for the I&D version.
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•Case 2c: Frequency Uncertainty, Perfect Frequency Estimation,
Sample-by-Sample Phase Compensation

As was true for the exact results, the asymptotic mean and variance are again
the same as for Case 0.

•Case 3a: Frequency Uncertainty, Imperfect Frequency Estimation,
No Phase Compensation

No simplification of the results occurs here, and thus one merely applies
Eqs. (6-32) and (6-33), where h± = WNs(δ)

[
1 ± W0(δ)

]
/2, ĥ± = WNs(δ̂)[

1 ± W0

(
δ̂
)]

/2 for the sampled version or h± = W (δ)
[
1 ± W0(δ)

]
/2, ĥ± =

W
(
δ̂
)[

1 ± W0

(
δ̂
)]

/2 for the I&D version.

•Case 3b: Frequency Uncertainty, Imperfect Frequency Estimation,
Half-Symbol Phase Compensation

E
{

R̂
}

=
(h+ − h−)R

ĥ+ (1 + h−R)
+

1
N

1

ĥ+

1
(1 + h−R)3

×
{
1 +

(
h+ + 2h−)

R + 2h+h−R2
}

+ O

(
1

N2

)

(6 38)

var
{

R̂
}

=
1
N

1
(
ĥ+

)2

1
(1 + h−R)4

×
{

2 + 4
(
h+ + h−)

R +
[(

h+ + h−)2 + 6h+h−
]
R2

+4h+h− (
h+ + h−)

R3
}

+ O

(
1

N2

)

where h± = WNs
(δ)

[
1 ± W0

(
δ − δ̂

)]
/2, ĥ+ = WNs

(
δ̂
)

for the sampled version or
h± = W (δ)

[
1 ± W0

(
δ − δ̂

)]
/2, ĥ+ = W

(
δ̂
)

for the I&D version.
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•Case 3c: Frequency Uncertainty, Imperfect Frequency Estimation,
Sample-by-Sample Phase Compensation

E
{
R̂

}
=

(
h+ − h−)

R

1 + h−R
+

1
N

1
(
1 + h−R

)3

×
{
1 +

(
h+ + 2h−)

R + 2h+h−R2
}

+ O
( 1
N2

)

(6 39)

var
{
R̂

}
=

1
N

1
(
1 + h−R

)4

{
2 + 4

(
h+ + h−)

R +
[(

h+ + h−)2 + 6h+h−
]
R2

+4h+h−(
h+ + h−)

R3
}

+ O

(
1

N2

)

where h± = WNs

(
δ − δ̂

)[
1 ± W0

(
δ − δ̂

)]
.

6.4.2.1. Numerical Results and Comparisons. To compare the perfor-
mances of the estimator corresponding to the various cases just discussed, we first
define a parameter N̂ = Nvar

{
R̂

}
/R2 (or in the cases where a bias-removed esti-

mator is possible, N̂0 = Nvar
{
R̂0

}
/R2), which measures the number of symbols

that are needed to achieve a fractional mean-squared estimation error of 100 per-
cent using that estimator. Then, if one wishes to achieve a smaller fractional
mean-squared estimation error, say var

{
R̂

}
/R2 = ε2 (or var

{
R̂0

}
/R2 = ε2),

then the required number of symbols to achieve this level of performance would
simply be Nreq(ε2) = N̂/ε2 (or Nreq(ε2) = N̂0/ε2). As an example, consider the
bias-removed SNR estimator for Case 2b for which N̂0 can be determined from
Eq. (6-30) as

N̂0 =

(
1 − 1

2N

) (
2

(h+R)2
+

4
h+R

)
+ 1

1 − 2
N

(6 40)

Clearly, the above interpretation of the meaning of N̂0 is a bit circular in that
N̂0 of Eq. (6-40) depends on N . However, this dependence is mild for reasonable
values of N . Thus, to a good approximation one can replace N̂0 by its limiting
value N̂∗

0 corresponding to N = ∞, in which case the required number of symbols
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to achieve a fractional mean-squared estimation of ε2 would approximately be
given by

Nreq

(
ε2

) ∼= N̂∗
0

ε2

N̂∗
0 =

2
(h+R)2

+
4

h+R
+ 1

(6 41)

Alternatively, for this case one uses the exact expression for the fractional mean-
squared estimation error to solve directly for Nreq

(
ε2

)
. In particular, dividing

Eq. (6-30) (multiplied by
[
(N − 1)/N

]2) by R2 and equating the result to ε2

results in a quadratic equation in N whose solution can be exactly expressed as

Nreq

(
ε2

)
=

(
1 +

N̂∗
0

2ε2

)
⎡
⎢⎢⎣1 +

√√√√√√1 −

(
N̂∗

0 − 1
)

2ε2

(
N̂∗

0 + 2ε2
)2

⎤
⎥⎥⎦ (6 42)

Since the value of the negative term in the square root is less than 2ε2/N̂∗
0 , an

approximate (for small ε2) upper bound on Eq, (6-42) is given by

Nreq

(
ε2

)
<

(
1 +

N̂∗
0

2ε2

) [
1 +

√
1 − 2ε2

N̂∗
0

]
∼=

(
1 +

N̂∗
0

2ε2

) (
2 − ε2

N̂∗
0

)
∼= N̂∗

0

ε2
+

3
2

(6 43)

Thus, we see that the exact number of requisite symbols is not more than two
extra symbols beyond the number that would be obtained from the approximate
number in Eq. (6-41).

Figure 6-4 is a plot of N̂0 versus R in decibels with N as a parameter for
the biased-removed estimator of Case 0, where the results are determined from
Eq. (6-25). We observe that a value of N = 50 is virtually sufficient to approach
the asymptotic value N̂∗

0 = 1+2(1 + 2R)/R2. For the biased-removed estimator
of Case 2b, a plot of N̂0 versus h+R in decibels would be identical to Fig. 6-4,
in accordance with Eq. (6-30) and the comments below this equation. Thus, the
degradation in performance when frequency uncertainty is present but is per-
fectly estimated and fully compensated for is reflected in a horizontal shift of
the curves in Fig. 6-4 to the right by an amount equal to h+. Equivalently, a
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Fig. 6-4.  Case 0:  No frequency offset, perfect frequency estimate,
no phase compensation.
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larger number of symbols is now required to achieve the same SNR estimation
accuracy as for the case of no frequency uncertainty.

For Case 3b where the frequency uncertainty estimate is imperfect but is
still used for compensation, the asymptotic (N large) behavior is obtained from
Eq. (6-33). In particular, for N → ∞,

E{R̂} =
(h+ − h−)R

ĥ+(1 + h−R)

N̂∗ = lim
N→∞

Nvar(R̂)
R2

=
1

(
ĥ+

)2

(1 + h−R)4

{
2

R2
+

4(h+ + h−)
R

(6 44)

+ (h+ + h−)2 + 6h+h− + 4h+h−(h+ + h−)R

}

Figures 6-5 and 6-6 are plots of E{R̂} versus R in decibels for fixed δ/(2π) = fT

and fractional frequency estimation error (δ − δ̂)/δ as a parameter varying be-
tween −10 percent and 10 percent. We observe that for a relative frequency
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Fig. 6-5.  Mean of estimator versus SNR in decibels; Case 3b; frequency offset,
imperfect frequency estimate, half-symbol phase compensation; relative fre-
quency uncertainty δ/(2π) = fT = 0.5, fractional frequency error η = 0, −10%,10%.
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Fig. 6-6.  Mean of estimator versus SNR in decibels; Case 3b; frequency offset,
imperfect frequency estimate, half-symbol phase compensation; relative fre-
quency uncertainty δ/(2π) = fT = 1.0, fractional frequency error η = 0, −10%,10%.
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uncertainty of half a cycle (δ/(2π) = 0.5), the amount of bias is quite small
over the range of frequency estimation errors considered. When the relative
frequency error increases to a full cycle (δ/(2π) = 1.0), then the sensitivity
of the bias to frequency estimation error becomes more pronounced. Also, it
can be observed that, for a fixed frequency offset, the bias is not a symmetric
function of the frequency estimation error. Figure 6-7 is a plot of N̂∗ versus R

in decibels for a fixed fractional estimation error η = 5 percent and δ/(2π) = fT

as a parameter varying between 0.5 and 0.9. These curves are analogous to
the ones in Fig. 6-4 with the purpose of demonstrating the sensitivity of the
number of symbols required for a given level of mean-squared error performance
to frequency uncertainty and estimation error.

6.5 SNR Estimation in the Presence of Symbol Timing
Error

Until now we have considered the performance of the SSME estimator as-
suming that the symbol timing was either known or could be perfectly estimated.
In this section, we extend the previous results corresponding to the I&D version3
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Fig. 6-7.  Case 3b: frequency offset, imperfect frequency estimate, half-symbol
phase compensation; fractional frequency uncertainty error η = 5%.
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3 Extension of the results to the sampled version is straightforward and is omitted for the sake
of brevity.
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of the SSME to the case where symbol timing is imperfect but the carrier fre-
quency is known4—carrier phase is still assumed unknown. Clearly, although
in any realistic system implementation both frequency uncertainty and symbol
timing error will exist simultaneously, treating them as separate entities gives
us a means of obtaining analytical results for their individual behavior and the
sensitivity of system performance to each. The true degradation in the perfor-
mance of the SNR estimator in their joint presence must be determined from
simulation results.

6.5.1 Signal Model and Formation of the Estimator

Corresponding to the complex baseband received signal in the kth interval
(k − 1) T ≤ t < kT , as described by Eq. (6-13), in the presence of a symbol
timing error εT (for the moment we assume 0 ≤ ε ≤ 1/2), the outputs of the
first and second half-symbol I&Ds are given by

Yαk = mdk
1
T

∫ (k−1/2+ε)T

(k−1+ε)T

ejφdt +
1
T

∫ (k−1/2+ε)T

(k−1+ε)T

n (t) dt =
mdk

2
ejφ + nαk

Yβk = mdk
1
T

∫ kT

(k−1/2+ε)T

ejφdt + mdk+1
1
T

∫ (k+ε)T

kT

ej(ωt+φ)dt

(6 45)

+
1
T

∫ (k+ε)T

(k−1/2+ε)T

n (t) dt

= mejφ

[
dk

(
1
2
− ε

)
+ dk+1ε

]
+ nβk

Independent of the symbol timing offset εT , the complex noise variables nαk

and nβk are still zero-mean Gaussian with variance σ2/2 for each real and imag-
inary component. From the observables in Eq. (6-45), we again form the sum
and difference variables

u±
k = Yαk ± Yβk = mejφ

[
dk

(
1
2
±

(
1
2
− ε

))
± dk+1ε

]
+ nαk ± nβk

�= s±k + n±
k

(6 46)

4 Later on, we shall consider one particular system model that allows for frequency uncertainty
with perfect compensation and that falls in the same mathematical framework.
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It is straightforward to show that the normalized squared norm of the signal
components can be evaluated as

h+
k

�=

∣∣s+
k

∣∣2

m2
= 1 − 4ε (1 − ε) sin2

(
∆φk+1

2

)

h−
k

�=

∣∣s−k
∣∣2

m2
= 4ε2 sin2

(
∆φk+1

2

)
(6 47)

where ∆φk+1 = φk+1 − φk denotes the transition in the data symbol phase in
going from the kth symbol interval to the k+1st. Note that, as in the previous
publication on the subject [6], the parameters h±

k do not depend on the random
carrier phase φ; however, unlike these previous investigations, they do now de-
pend on the data via the transitions in the symbol phase sequence. Furthermore,
it is not obvious at this point (this will become clear shortly) to what extent h±

k

is independent of the order M of the M -PSK modulation. For −1/2 ≤ ε ≤ 0,
the analogous relations to Eq. (6-47) are

h+
k = 1 + 4ε (1 + ε) sin2

(
∆φk

2

)

h−
k = 4ε2 sin2

(
∆φk

2

)
(6 48)

Next, we calculate N -symbol averages of the squared norms of the half-symbol
sums to produce U± as in Eq. (6-6). Once again we make the key observation (as
previously proved) that, now conditioned on the data symbol transition sequence,
the observables U+ and U− are independent RVs. Defining, as before, the true
SNR by R = m2/2σ2, then after averaging over the uniform distribution of
the data symbol transitions around the circle defining the M -PSK constellation,
it is straightforward (although a bit laborious) to show that their means and
variances are, analogous to Eq. (6-8), given by

E
{
U±}

= 2σ2
(
1 + h̄±R

)

var
{
U±}

=
4
N

σ4
(
1 + 2h̄±R + var

{
h±}

R2
)

(6 49)
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where the overbar on h± denotes the above-mentioned statistical averaging over
the data symbol transition sequence and the subscript k has been dropped since
the statistical averages do not depend on k. Making use of the relations

sin2

(
∆φk

2

)
=

1
M

M−1∑

k=0

sin2 kπ

M
=

1
2

sin4

(
∆φk

2

)
=

1
M

M−1∑

k=0

sin4 kπ

M
=

⎧
⎪⎪⎨
⎪⎪⎩

1
2
, M = 2

3
8
, M > 2

(6 50)

we have from Eqs. (6-47) and (6-48) that

h̄+ = 1 − 2 |ε| (1 − |ε|)

h̄− = 2 |ε|2
(6 51)

and

var
{
h+

}
=

{
4 |ε|2 (1 − |ε|)2 , M = 2

2 |ε|2 (1 − |ε|)2 , M > 2

var
{
h−}

=

{
4 |ε|4 , M = 2

2 |ε|4 , M > 2

(6 52)

Finally, since from the first relation in Eq. (6-49) R is expressible as

R =
E {U+} − E {U−}

h̄+E {U−} − h̄−E {U+} (6 53)

then, as in the perfect symbol timing case, the general form of the ad hoc SSME R̂

is obtained by substituting the sample values U± for their expected values and

the estimates ˆ̄h
±

for their true values, namely,

R̂ =
U+ − U−

ˆ̄h
+
U− − ˆ̄h

−
U+

(6 54)
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where ˆ̄h
±

are obtained from h̄±, defined in Eq. (6-51) by substituting the symbol
timing estimate ε̂ for ε. Actually, in view of Eq. (6-51), it is necessary to have
only an estimate of the magnitude of ε. A method for obtaining such an estimate
based on the same statistics used to form the SNR estimator will be discussed
elsewhere in the text.

6.5.2 Mean and Variance of the SNR Estimator

In this section, we evaluate the mean and variance of R̂ using the same

techniques as in previous sections of the chapter. Since, for |ε̂| > 0, ˆ̄h
±

are
both non-zero, obtaining an exact compact closed-form expression is difficult.
Nevertheless, it is possible to obtain a closed-form expression in the form of an

infinite series. In particular, defining ξ̂
�= ˆ̄h

−
/ˆ̄h

+
and Λ �= U+/U−, we can

express R̂ of Eq. (6-54) in the form

R̂ =
1
ˆ̄h
+

Λ − 1

1 − ξ̂Λ
=

1
ˆ̄h
+ (Λ − 1)

∞∑

n=0

(
ξ̂Λ

)n

=
1
ˆ̄h
+

[
−1 +

(
1 − ξ̂

) ∞∑

n=1

ξ̂n−1Λn

]

(6 55)

Thus, the mean of R̂ is expressed in terms of the moments of Λ by

E
{

R̂
}

=
1
ˆ̄h
+

[
−1 +

(
1 − ξ̂

) ∞∑

n=1

ξ̂n−1E {Λn}
]

(6 56)

Similarly, the variance of R̂ can be evaluated in terms of the moments of Λ as

var
{

R̂
}

=

(
1 − ξ̂

)2

(
ˆ̄h
+
)2

⎡
⎣

∞∑

n=2

(n − 1) ξ̂n−2E {Λn} −
( ∞∑

n=1

ξ̂n−1E {Λn}
)2

⎤
⎦ (6 57)

An expression for the moments of Λ in terms of h± can be obtained from
Eq. (6-23) and [8, Eq. (2.47)] as

E {Λn} =
Γ (N + n) Γ (N − n)

Γ2 (N) 1F1

(
−n;N ;−Nh+R

)
1F1

(
n;N ;−Nh−R

)

(6 58)
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Since, in accordance with Eqs. (6-47) and (6-48), h± are now functions of the
data phase symbol transitions ∆φk+1, we must further average Eq. (6-58) over
the uniformly distributed statistics of this RV in the same manner as we did
previously in arriving at h̄±. The difference here is that h± are embedded as
arguments of the hypergeometric function, and thus the average cannot be ob-
tained in closed form. Nevertheless, the appropriate modification of Eq. (6-58)
now becomes

E {Λn} =
Γ (N + n) Γ (N − n)

Γ2 (N) 1F1 (−n;N ;−Nh+R) 1F1 (n;N ;−Nh−R)
∆φ

(6 59)

where, for M -PSK, ∆φ takes on values 2kπ/M, k = 0, 1, 2, · · · , M − 1, each with
probability 1/M .
For small symbol timing offset, i.e., ξ̂ small, Eqs. (6-56) and (6-57) can be

simply approximated by

E
{

R̂
}

=

(
1
ˆ̄h
+

)[
−1 + E {Λ} + ξ̂

(
E

{
Λ2

}
− E {Λ}

)]

(6 60)

var
{

R̂
}

=

(
1
ˆ̄h
+

)2 [(
1 − 2ξ̂

)
× var {Λ} + 2ξ̂

(
E

{
Λ3

}
− E {Λ}E

{
Λ2

})]

and thus only the first few moments of Λ need be evaluated.

6.6 A Generalization of the SSME Offering Improved
Performance

In this section, we consider a modification of the SSME structure that pro-
vides improved performance in the sense of lowering the variance of the SNR
estimator. To simplify matters, we begin the discussion by considering the ideal
case of no frequency uncertainty. Also, for the sake of brevity, we investigate
only the I&D version. Suffice it to say that the generalization is readily applied
to the sampled version in an obvious manner.

To motivate the search for an SSME structure with improved performance,
we define a measure of “quality” of the SNR estimator by its own SNR, namely,
Q =

(
E{R̂}

)2
/var{R̂}. For large N and large R, we have from Eq. (6-24) that

E
{
R̂

}
= R, var

{
R̂

}
= R2/N , and thus Q = N . Thus, we observe that for fixed
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observation time, the quality of the conventional SSME does not continue to
improve as the true SNR, R, increases, but instead saturates to a fixed value.
With this in mind, we seek to modify the SSME such that for a fixed observation
time the quality of the estimator continues to improve with increasing SNR.

Suppose now that instead of subdividing each data symbol interval T into
two halves, we subdivide it into 2L subintervals of equal length T/(2L) and use
the integrations of the complex-valued received signal plus noise in successive
pairs of these intervals to form the SNR estimator. In effect, we are estimating
the symbol SNR of a data sequence at L times the actual data rate. This data
sequence is obtained by repeating each original data symbol L times to form
L consecutive shorter symbols, and thus it is reasonable to refer to L as an over-
sampling factor. For a given total observation time (equivalently, a given total
number of original symbols N), there are LN short symbols corresponding to
the higher data rate, and their symbol SNR is r = R/L. Since the SSME is
completely independent of the data sequence, the new estimator, denoted by r̂L,
is just an SSME of the SNR r = R/L of the short symbols, based on observing
LN short symbols, each split into half. Thus, the mean and variance of r̂L are
computed by simply replacing N by LN and R by R/L in Eq. (6-24), which is
rewritten here for convenience as

E
{

R̂
}

= R +
R + 1
N − 1

var
{

R̂
}

=
1

N − 2

(
N

N − 1

)2 [
(2 + 4R)

(
N − 1/2

N

)
+ R2

] (6 61)

Since, however, we desire an estimate of R, not r = R/L, we define R̂L = Lr̂L

and write the corresponding expressions for the mean and variance of R̂L:

E
{

R̂L

}
= L

[
R

L
+

R/L + 1
LN − 1

]
= R +

R + L

LN − 1

var
{

R̂L

}
=

L2

LN − 2

(
LN

LN − 1

)2
[(

2 +
4R

L

) (
LN − 1/2

LN

)
+

(
R

L

)2
] (6 62)

With this notation, the original SSME is simply R̂ = R̂1, and the performance
expressions in Eq. (6-62) are valid for any positive integer L ∈ {1, 2, 3, · · ·}.
For large N , i.e., N 	 1, the mean and variance in Eq. (6-62) simplify within
O(1/N2) to



152 Chapter 6

E
{

R̂L

}
= R +

R + L

LN

var
{

R̂L

}
=

L

N

(
2 +

4R

L
+

R2

L2

) (6 63)

For the remainder of this section, we base our analytic derivations on the asymp-
totic expressions in Eq. (6-63).

For small enough R, we can ignore the R and R2 terms in the variance ex-
pression, and the smallest estimator variance is achieved for L = 1. In this case,
R̂ = R̂1 outperforms (has smaller variance than) R̂L for L > 1, approaching a
10 log10 L dB advantage as R → 0. However, at large enough R for any fixed L,
the reverse situation takes place. In particular, retaining only the R2 term in
Eq. (6-63) for sufficiently large R/L, we see that R̂L offers a 10 log10 L dB advan-
tage over R̂ in this limit. This implies that for small values of R, a half-symbol
SSME (i.e., L = 1) is the preferred implementation, whereas beyond a certain
critical value of R (to be determined shortly) there is an advantage to using val-
ues of L > 1. In general, for any given R, there is an optimum integer L = L∗(R)
that minimizes the variance in Eq. (6-63). We denote the corresponding opti-
mum estimator by R̂∗. We show below that, unlike the case of the estimator R̂L

defined for a fixed L, the optimized estimator R̂∗ requires proportionally more
subdivisions of the true symbol interval as R gets large. As a result, the R2/L2

term in Eq. (6-63) does not totally dominate the variance for R 	 L, and the
amount of improvement at high SNR differs from the 10 log10 L dB improvement
calculated for an arbitrary fixed choice of L and R 	 L.

For the moment we ignore the fact that L must be an integer, and minimize
the variance expression in Eq. (6-63) over continuously varying real-valued L.
We define an optimum real-valued L = L•(R), obtained by differentiating the
variance expression of Eq. (6-63) with respect to L and equating the result to
zero, as

L•(R) =
R√
2

(6 64)

and a corresponding fictitious SNR estimator R̂• that “achieves” the minimum
variance calculated by substituting Eq. (6-64) into the asymptotic variance ex-
pression of Eq. (6-63),

var
{

R̂•
}

=
R

N

(
4 + 2

√
2
)

(6 65)
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The minimum variance shown in Eq. (6-65) can be achieved only by a re-
alizable estimator for values of R that yield an integer L•(R) as defined by
Eq. (6-64). Nevertheless, it serves as a convenient benchmark for comparisons
with results corresponding to the optimized realistic implementation R̂∗. For
example, from Eqs. (6-63) and (6-65) we see that the ratio of the asymptotic
variance achieved by any given realizable estimator R̂L to that achieved by the
fictitious estimator R̂• is a simple function of the short symbol SNR r, not of R

and L separately. In particular,

var
{

R̂L

}

var
{

R̂•
} =

2/r + 4 + r

4 + 2
√

2
(6 66)

The numerator of Eq. (6-66) is a convex ∪ function of r, possessing a unique
minimum at r =

√
2, at which point the ratio in Eq. (6-66) evaluates to unity.

This result is not surprising since, from Eq. (6-64), r =
√

2 is the optimality
condition defining the fictitious estimator R̂•. For r >

√
2 or r <

√
2, the ratio

in Eq. (6-66) for any fixed value of L grows without bound.
Before going on, let us examine how allowing L to vary with R in an optimum

fashion in accordance with Eq. (6-64) has achieved the improvement in “quality”
we previously set out to obtain. In particular, since for large N and large R

we have E{R•} = R and from Eq. (6-65) var{R̂•} = (R/N)
(
4 + 2

√
2

)
, then

it immediately follows that Q =
(
E{R̂}

)2
/var{R̂} = NR/(4 + 2

√
2 ), which

demonstrates that, for a fixed observation time, the quality of the estimator now
increases linearly with true SNR.

We return now to the realistic situation where L must be an integer, but can
vary with R or r. Since the variance expression in Eq. (6-63) is convex ∪ in L,
we can determine whether R̂L is optimum for a given R by simply comparing its
performance to that of its nearest neighbors, R̂L−1 and R̂L+1. We find that R̂L

is optimum over a continuous range R ∈
[
R−

L , R+
L

]
, where R−

1 = 0, R−
L+1 = R+

L ,
and the upper boundary point is determined by equating the variance expressions
in Eq. (6-63) for R̂L and R̂L+1:

R+
L =

√
2L (L + 1) (6 67)

Thus, the optimum integer L∗(R) is evaluated as

L∗(R) = L, if
√

2L (L − 1) ≤ R ≤
√

2L (L + 1) (6 68)
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In particular, we see that R̂1 is optimum in the region 0 ≤ R ≤ 2, implying
no improvement over the original SSME for these values of R. For values of R

in the region 2 ≤ R < 2
√

3, one should use R̂2 (i.e., an estimator based on
pairs of quarter-symbol integrations), and in general one should use R̂L when√

2L (L − 1) ≤ R ≤
√

2L (L + 1). For R in this interval, the improvement
factor I(R) (reduction in variance) achieved by the new optimized estimator
relative to the conventional half-symbol SSME R̂ = R̂1 is calculated as

I(R) =
var

{
R̂

}

var
{

R̂∗
} =

2 + 4R + R2

L

(
2 +

4R

L
+

R2

L2

) ,
√

2L (L − 1) ≤ R ≤
√

2L (L + 1)

(6 69)

We have already seen that I(R) = 1 for R ranging from 0 to 2, whereupon it
becomes better to use R̂2, allowing I(R) to increase monotonically to a value of(
7 + 4

√
3
)
/
(
5 + 4

√
3
)

= 1.168 (equivalent to 0.674 dB) at R = 2
√

3. Continuing
on, in the region 2

√
3 ≤ R < 2

√
6, one should use R̂3, whereupon I(R) con-

tinues to increase monotonically to a value of
(
13 + 4

√
6

)
/
(
7 + 4

√
6

)
= 1.357

(equivalent to 1.326 dB) at R = 2
√

6. Figure 6-8 is a plot of I(R) versus R,
as determined from Eq. (6-69). Note that while I(R) is a continuous function

R
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Fig. 6-8.  Performance improvement as a function of SNR.
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of R, the derivative of I(R) with respect to R is discontinuous at the critical
values of R, namely, R = R+

L for L ∈ {1, 2, 3, · · ·}, but the discontinuity becomes
monotonically smaller as L increases.

It is also instructive to compare the performance of the optimized realizable
estimator R̂∗ with that of the fictitious estimator R̂•. The corresponding variance
ratio is computed directly from Eq. (6-66), as long as we are careful to delineate
the range of validity from Eq. (6-68), where each integer value of L contributes
to the optimized estimator R̂∗:

var
{

R̂∗
}

var
{

R̂•
} =

2/r + 4 + r

4 + 2
√

2
,

√
1 − 1/L∗(R) ≤ r√

2
≤

√
1 + 1/L∗(R) (6 70)

where for the optimized realizable estimator R̂∗ the short symbol SNR r is eval-
uated explicitly in terms of R as r = R/L∗(R). We see that for any value of R

the corresponding interval of validity in Eq. (6-70) always includes the optimal
point r =

√
2, at which the ratio of variances is unity. Furthermore, since the

width of these intervals (measured in terms of r) shrinks to zero as L∗(R) → ∞,
the ratio of variances makes smaller and smaller excursions from its value of
unity at r =

√
2 as R → ∞, implying L∗(R) → ∞ from Eq. (6-68). Thus, the

asymptotic performance for large R and large N of the optimized realizable es-
timator R̂∗ is the same as that of the fictitious estimator R̂• given in Eq. (6-65).
In particular, we see from Eq. (6-65) that var

{
R̂∗

}
grows only linearly in the

limit of large R, whereas var
{
R̂L

}
for any fixed L eventually grows quadratically

for large enough R/L.
As can be seen from Eq. (6-63), the generalized SSME R̂L is asymptotically

unbiased (in the limit as N → ∞). As shown in [6], it is possible to completely
remove the bias of the conventional SSME R̂ and to define a perfectly unbiased
estimator as R̂o = R̂ − (R̂ + 1)/N . Similarly, we can now define a precisely
unbiased version R̂o

L of our generalized estimator R̂L by

R̂o
L = R̂L − R̂L + L

LN
(6 71)

Again we note that the original unbiased SSME R̂o is just a special case of our
generalized unbiased SSME, R̂o = R̂o

1. Using the definition of Eq. (6-71) together
with the expressions in Eq. (6-62) for the exact mean and variance of R̂L, we
find that the exact mean and variance of the unbiased estimator R̂o

L are given
by
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E
{

R̂o
L

}
= R

var
{

R̂o
L

}
=

L2

LN − 2

[(
1 +

4R

L

) (
LN − 1/2

LN

)
+

(
R

L

)2
] (6 72)

For large N , the asymptotic variance expression obtained from Eq. (6-72) is
identical to that already shown in Eq. (6-63) for the biased estimator. Thus,
all of the preceding conclusions about the optimal choice of L for a given R,
and the resulting optimal estimator performance, apply equally to the unbiased
versions R̂o

L of the estimators R̂L.

6.7 A Method for Improving the Robustness of the
Generalized SSME

For any fixed L, our generalized SSME R̂L is only optimal when the true
SNR R lies in the range

√
2L (L − 1) ≤ R ≤

√
2L (L + 1). Indeed R̂L for

any L > 1 is inferior to the original SSME R̂1 for small enough R (at least for
0 ≤ R ≤ 2). The range of optimality for a given value of L, measured in decibels,
is just 10 log10

[√
2L(L + 1)/

√
2L(L − 1)

]
= 5 log10

[
(L+1)/(L−1)

]
dB, which

diminishes rapidly toward 0 dB with increasing L. In order to achieve the exact
performance of the optimized estimator R̂∗ over an unknown range of values of
the true SNR R, one would need to select, and then implement, the optimal sym-
bol subdivision based on arbitrarily precise knowledge (measured in decibels) of
the very parameter being estimated! Fortunately, there is a more robust version
of the generalized SSME that achieves nearly the same performance as R̂∗, yet
requires only very coarse knowledge about the true SNR R.

To define the robust generalized SSME, we use the same set of estimators{
R̂L

}
as defined before for any fixed integers L, but now we restrict the allow-

able choices of L to the set of integers {b�, � = 0, 1, 2, · · ·}, for some integer base
b ≥ 2. The optimal choice of L restricted to this set is denoted by Lb∗(R), and
the corresponding optimized estimator is denoted by R̂b∗. Because our various
estimators differ only in the amount of freedom allowed for the choice of L, their
performances are obviously related as

var
{

R̂•
}
≤ var

{
R̂∗

}
≤ var

{
R̂b∗

}
≤ var

{
R̂1

}
(6 73)

In this section, we will show analytically that the variance achieved by the robust
estimator R̂b∗ with b = 2 comes very close to that achieved by the fictitious
estimator R̂• for all R ≥ 2, and hence Eq. (6-73) implies that for this range
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of R it must be even closer to the less analytically tractable variance achieved
by the optimized realizable estimator R̂∗. Conversely, for all R ≤ 2, we have
already seen that the optimized realizable estimator R̂∗ is the same as the original
SSME R̂1, and hence so is the optimized robust estimator R̂b∗ for any b, since
L = b0 = 1 is a permissible value for the robust estimator as well.

The convexity of the general asymptotic variance expression in Eq. (6-63)
again allows us to test the optimality of R̂b� by simply comparing its performance
versus that of its nearest permissible neighbors, R̂b�−1 and R̂b�+1 . The lower and
upper endpoints of the region of optimality for any particular R̂b� are determined
by equating var

{
R̂b�

}
with var

{
R̂b�−1

}
and var

{
R̂b�+1

}
, respectively. This leads

to the following definition of the optimal Lb∗(R) for L restricted to the set{
b�, � = 0, 1, 2, · · ·

}
:

Lb∗(R) =

{
b�, if

√
2b2�−1 ≤ R ≤

√
2b2�+1 for integer � ≥ 1

b0 = 1, if 0 ≤ R ≤
√

2b
(6 74)

For all R ≤
√

2b, the optimized estimator R̂b∗ is the same as the original
SSME R̂1. For all R ≥

√
2/b (which includes the upper portion of the in-

terval over which l = 0 is optimum), the variance achieved by R̂b∗, normalized
to that of the fictitious estimator R̂•, is obtained from Eqs. (6-66) and (6-74) in
terms of r = R/Lb∗(R), and upper bounded by

var
{
R̂b∗

}

var
{
R̂•

} =
2/r + 4 + r

4 + 2
√

2
≤

4 +
√

2
(√

b + 1/
√

b
)

4 + 2
√

2
,

1√
b
≤ r√

2
≤

√
b (6 75)

As with the earlier expression of Eq. (6-70) for the variance of R̂∗, the intervals of
validity in Eq. (6-75) for any value of R always include the optimal point r =

√
2

at which the ratio of variances is unity. But unlike Eq. (6-70), the width of the
intervals in Eq. (6-75) stays constant independently of r. The upper limit on the
variance ratio shown in Eq. (6-75) occurs at the end points of these intervals,
i.e., for SNR values expressible as R =

√
2b2�−1 for some integer � ≥ 0. This

upper limit is the maximum excursion from unity of the variance ratio for all
R ≥

√
2/b. For all R ≤ 2 and any b ≥ 2, there is no limit on the suboptimality

of R̂b∗ with respect to the fictitious estimator R̂•, but in this range R̂b∗ suffers
no suboptimality with respect to the optimized realizable estimator R̂∗, since



158 Chapter 6

both are equivalent to the original SSME R̂1 for R ≤ 2. Finally, reiterating our
earlier conclusion based on the simple inequalities in Eq. (6-73), we conclude
that the maximum degradation D(R) of the robust estimator R̂b∗ with respect
to the optimized realizable estimator R̂∗ is upper bounded for all R by

D(R) =
var

{
R̂b∗

}

var
{

R̂∗
} ≤

var
{

R̂b∗
}

var
{

R̂•
} ≤

4 +
√

2
(√

b + 1/
√

b
)

4 + 2
√

2
for all R (6 76)

For example, we consider the case of b = 2, which yields permissible values of L

given by L = 1, 2, 4, 8, 16, · · · and corresponding decision region boundaries at
R = 1, 2, 4, 8, 16, · · ·, i.e., regions separated by 3 dB. From Eq. (6-76), the maxi-
mum degradation Dmax for using the coarsely optimized estimator R̂2∗ instead
of the fully optimized realizable estimator R̂∗ is no more than

Dmax ≤ 7
4 + 2

√
2

= 1.02513 (6 77)

i.e., a penalty of only 2.5 percent. Even if we were to enlarge the regions of
constant Lb∗(R) to a width of 9 dB in R (corresponding to b = 8), the maximum
penalty would increase only to

Dmax ≤ 8.5
4 + 2

√
2

= 1.245 (6 78)

i.e., a penalty just under 25 percent. Thus, even though the optimized gener-
alized SSME R̂∗ requires (in principle) very precise prior knowledge of the true
value of R, its performance can be reasonably well approximated by that of a
robust estimator R̂b∗ requiring only a very coarse prior estimate of R.

6.8 Special Case of the SSME for BPSK-Modulated Data
We can define an analogous sequence of generalized SSMEs {R̃L, L = 1, 2, · · ·}

corresponding to the original SSME R̃ = R̃1 developed for BPSK signals using
real-valued in-phase samples only. In this case, the (exact) mean and variance
of the original SSME R̃ are given by [4]
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E
{

R̃
}

= R +
2R + 1
N − 2

var
{

R̃
}

=
1

N − 4

(
N

N − 2

)2 [
(1 + 4R)

(
N − 1

N

)
+ 2R2

] (6 79)

The mean and variance of the generalized SSME R̃L based on real-valued sam-
ples are obtained from Eq. (6-79) by following the same reasoning that led to
Eq. (6-62):

E
{

R̃L

}
= L

[
R

L
+

2R/L + 1
LN − 2

]
= R +

2R + L

LN − 2

var
{

R̃L

}
=

L2

LN − 4

(
LN

LN − 2

)2
[(

1 +
4R

L

) (
LN − 1

LN

)
+ 2

(
R

L

)2
] (6 80)

and the asymptotic forms for large N , i.e., N 	 1, are within O(1/N2) of

E
{

R̃L

}
= R +

2R + L

LN

var
{

R̃L

}
=

L

N

[
1 + 4

(
R

L

)
+ 2

(
R

L

)2
] (6 81)

We can argue as in [5] that the first- and second-order statistics of the SSME R̂L

based on complex samples are derivable from those of the SSME R̃L based on
real samples. Specifically, since R̂L is obtained from twice as many real ob-
servables as R̃L, with (on average) only half the SNR (since the SNR is zero
in the quadrature component for BPSK signals), we have the following (exact)
equalities:

E

{
R̂L

2

}
∣∣
(R,N) = E

{
R̃L

} ∣∣
([R/2],2N)

var

{
R̂L

2

}
∣∣
(R,N) = var

{
R̃L

} ∣∣
([R/2],2N)

(6 82)
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where now we have explicitly denoted the dependence of R̂L and R̃L on the SNR
and the number of symbols. The equalities in Eq. (6-82) can be verified by direct
comparison of Eq. (6-80) with Eq. (6-62) and Eq. (6-81) with Eq. (6-63).

As in our earlier analysis of the generalized SSME R̂L based on complex-
valued samples, we can also optimize the generalized SSME R̃L based on
real-valued samples with respect to its asymptotic performance expressions in
Eq. (6-81). We define for any fixed value of R an optimum integer L = L̃∗(R)
and an optimum real number L = L̃•(R) to minimize the asymptotic variance
expression in Eq. (6-81), and corresponding optimal realizable and fictitious esti-
mators R̃∗ and R̃•. For the optimum realizable estimate, we find, corresponding
to Eq. (6-68), that the optimum integer L̃∗(R) is evaluated as

L̃∗(R) = L, if
√

L (L − 1) /2 ≤ R ≤
√

L (L + 1) /2 (6 83)

We find, corresponding to Eqs. (6-64) and (6-65), that the optimal real value
of L is L̃•(R) = R

√
2 and the corresponding variance is

var
{

R̃•
}

=
R

N

(
4 + 2

√
2
)

= var
{

R̂•
}

(6 84)

In other words, the fictitious estimator achieves identical variance using either
real samples or complex samples.

Finally, we observe from a comparison of Eqs. (6-62) and (6-80) an interesting
(exact) relationship between the means and variances of the two generalized
SSMEs for different values of the symbol rate oversampling factor L:

E
{

R̂L

}
= E

{
R̃2L

}

var
{

R̂L

}
= var

{
R̃2L

}
(6 85)

Thus, the estimators R̃L based on real samples can be viewed as a more finely
quantized sequence than the estimators R̂L based on complex samples, in that
any mean and variance achievable by an estimator in the latter sequence is also
achievable by taking twice as many subintervals in a corresponding estimator
from the former sequence. This implies, for example, that the maximum devia-
tion of the variances of R̃∗ and R̃• is no greater than that calculated in Eq. (6-70)
for the deviation between the variances of R̂∗ and R̂•.
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6.9 Comparison with the Cramer–Rao Lower Bound
on the Variance of SNR Estimators

A good benchmark for the performance of a given SNR estimator is the
Cramer–Rao (C-R) lower bound on its variance [11]. Here we present for com-
parison the C-R lower bound for any SNR estimator using a given number of
observables (samples) per symbol interval, with or without knowledge of the
data. For simplicity, we consider only estimators based on real observables,
since a number of C-R bounds reported elsewhere [1,12,13] have explicitly con-
sidered that case.

It has been shown in [13] that the C-R lower bound on the variance of an
arbitrary unbiased estimator of SNR, R∗, in the presence of unknown binary
equiprobable data and K independent real observations per symbol (K subin-
terval samples) is given by

var {R∗} ≥ 2R2

N

[
2K + 2R − E2 (2R)

2KR − (4R + K)E2 (2R)

]
(6 86)

where

E2 (2R) = E
{
X2sech2X

}
(6 87)

with X a Gaussian random variable with mean and variance both equal to 2R.
The expectation in Eq. (6-87), which depends only on R, cannot be determined in
closed form but is easily evaluated numerically. Figure 6-9, described at the end
of this section, compares the C-R bounding variance in Eq. (6-86) with the actual
asymptotic variance in Eq. (6-81) achieved by the generalized SSME R̃L based
on real samples. For this comparison, we substitute K = 2L in the C-R bound
expression (because there are K = 2L subinterval integrations contributing to
the SSME R̃L), and we plot the cases L = 1, 2, 4,∞.

We can also perform analytic comparisons in the limits of low and high SNR.
The low- and high-SNR behavior of the C-R bounding variance in Eq. (6-86) is
given by [13]

var {R∗} ≥

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

1
2N

(
K

K − 1

)
, R � 1 < K

2R

N

(
1 +

R

K

)
, R 	 K

(6 88)
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Fig. 6-9.  A comparison of the performance of several SNR estimators with 
the Cramer–Rao bound.

By comparison, the asymptotic expression in Eq. (6-81) for the variance of R̃L

for any fixed L reduces in the low- and high-SNR limits to

var
{

R̃L

}
∼=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

L

N
=

K

2N
, L 	 R

2R2

NL

(
1 +

2L

R

)
=

4R

N

(
1 +

R

K

)
, R 	 L

(6 89)

Compared to the C-R bounding variance in Eq. (6-88), the actual variance in
Eq. (6-89) is higher by a factor of K − 1 in the low-SNR limit and by a factor
of two in the high-SNR limit.

For any fixed K, the C-R bounding variance in Eq. (6-86) becomes quadratic
in R as R approaches infinity, as evidenced by the second expression in
Eq. (6-89). On the other hand, the limiting behavior of the bound for K ap-
proaching infinity with fixed R is given by
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var {R∗} ≥ 1
N

[
4R2

2R − E2 (2R)

]
, K 	 max (R, 1) (6 90)

Since E2(2R) = 2R + 8R2 + O
(
R3

)
for small R and is exponentially small for

large R [13], the C-R bounding variance on the right side of Eq. (6-90) approaches
a constant at low SNR and becomes linear in R at high SNR:

var {R∗} ≥

⎧
⎪⎪⎨
⎪⎪⎩

1
2N

, K 	 1 	 R

2R

N
, K 	 R 	 1

(6 91)

Since the C-R bounding expressions in Eqs. (6-90) and (6-91) for large values
of K = 2L reflect the best possible performance of an estimator with access
to a continuum of samples within each symbol, they are suitably compared to
the performance of the optimized estimator R̃∗, rather than to the performance
of R̃L for any fixed L. As an approximation to R̃∗, we use a stand-in estimator
equal to R̃1 for R ≤ 2 (i.e., where L̃∗(R) = 1) and to the fictitiously optimized
estimator R̃• for R > 2. The corresponding asymptotic variances computed from
Eq. (6-81) for the limits corresponding to those in Eq. (6-91) are

⎧
⎪⎪⎨

⎪⎪⎩

var
{

R̃1

}
=

1
N

, 1 	 R

var
{

R̃•
}

=
R

N

(
4 + 2

√
2
)
, R 	 1

(6 92)

The estimator variances in Eq. (6-92) are higher than the corresponding C-R
bounding variances in Eq. (6-91) by a factor of 2 in the low-SNR limit and by
a factor of 2 +

√
2 ∼= 3.4 in the high-SNR limit. The optimized realizable esti-

mator R̃∗ suffers an additional small suboptimality factor with respect to the
performance of the fictitious estimator R̃• used as its stand-in in Eq. (6-92).

Finally we consider for purposes of comparison the C-R bound on an arbi-
trary unbiased estimator when the data are perfectly known. The C-R bound
under this assumption is well known, e.g., [11]. Here we continue with the nota-
tion of [13] by noting that the derivation there for the case of unknown data is
easily modified to the known data case by skipping the average over the binary
equiprobable data. The result is equivalent to replacing the function E2 (2R) by
zero in the C-R bound expression in Eq. (6-41), i.e.,

var
{

R̂
}
≥ 2R2

N

[
2K + 2R

2KR

]
=

2R

N

(
1 +

R

K

)
, for all K, R (6 93)
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We compare this bound for known data, which is valid for all K and R, with
the high-SNR bound for unknown data given by the second expression in Eq. (6-
88), which is valid for any fixed K as R → ∞. These two variance expressions
are identical because the second expression in Eq. (6-88) was obtained from
Eq. (6-86) using the approximation that E2(2R) is exponentially small for
large R. Thus, we reach the interesting and important conclusion that, based on
the C-R bounds, knowledge of the data is inconsequential in improving the accu-
racy of an optimized SNR estimator at high enough SNR! We also note that the
limiting fractional variance, var

{
R∗}/

(
R∗)2, in either case is simply 2/(NK),

i.e., it falls in proportion to the total number NK of samples collected. In this
limit, therefore, it does not matter to an optimal estimator whether it collects
the same total number of samples in step with the symbol rate or faster. From
the second expression in Eq. (6-89), we see that our generalized SSME R̃L be-
haves similarly to an optimum estimator in this respect, because the ratio of its
fractional variance to the C-R bounding variance is a constant factor of 2 when
R 	 K. Whereas with the original SSME one might need to wait Nreq sym-
bol periods to reach a desired estimator variance, our generalized SSME now
offers the capability at high enough SNR to reach this same variance within
Nreq/L symbol periods. Since any practical system will impose limits on the
integrate-and-dump rate, and hence on L, this waiting time for acceptable es-
timator variance cannot be made arbitrarily small. However, at high SNR our
generalized SSME allows this waiting time to be reduced down to the limits
arising from the system’s sampling rate if so desired.

At low SNR, we have seen from the first expression in Eq. (6-88) that the
C-R bounding variance (not the fractional variance) for the case of unknown data
hits a nonzero floor at (1/2N)K/(K − 1) no matter how closely R approaches
zero, whereas the bounding variance in Eq. (6-93) for the case of known data
goes to zero linearly in R. Thus, knowledge of the data fundamentally changes
the behavior of the C-R bound at low SNR, and it can be quite helpful in this
region for improving the accuracy of the estimator. Inspection of Eqs. (6-93)
and (6-88) in the limit of small R shows that, in contrast to the case for high
SNR, oversampling confers no benefit (with known data) or virtually no benefit
(with unknown data) to the performance of an optimized estimator at low SNR.
Indeed, we see from Eq. (6-89) that the performance of our generalized SSME
in this limit is actually worsened by oversampling. Thus, the waiting time to
achieve acceptable estimator variance at low SNR is dictated by the symbol rate,
even if the system’s sampling rate capabilities are significantly faster.

Figure 6-9 summarizes the comparisons of our generalized SSME with the
relevant C-R bounds (CRB). This figure plots the CRB as a function of true
SNR R, for K = 2, 4,∞ with unknown data, and for K = ∞ with known data.
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Also shown for comparison are the actual asymptotic variances achieved by the
original SSME R̃1, the generalized SSME R̃2 using four subinterval integrations
within each symbol, and the optimized generalized SSME R̃∗. In each case, the
asymptotic variance is plotted in normalized form as Nvar{·}/R2, which can
be interpreted as the number of symbols N that must be observed to achieve a
fractional estimator variance of 100 percent; smaller fractional variances require
inversely proportionately larger numbers of symbols. Also, since asymptotically
for large N , var{·}/R2 is an inverse measure of the “quality” of the estimator
as previously defined, which for large R varied inversely with N , then asymp-
totically for large R, Nvar{·}/R2 is an inverse measure of this quality with the
dependence on observation time normalized out.

6.10 Improvement in the Presence of Frequency
Uncertainty
Earlier in the chapter and in [6] we considered the performance of the con-

ventional (L = 1) SSME in the presence of carrier phase and frequency uncer-
tainties for a variety of cases corresponding to the degree to which the frequency
uncertainty is estimated and compensated for. Here we extend these results to
the generalized SSME, i.e., we examine the improvement in performance when
frequency uncertainty is present, obtained by optimally partitioning the symbol
interval in accordance with the value of the true SNR. In the case where the fre-
quency uncertainty is not estimated, one has no choice other than to use the SNR
boundaries determined in the no-frequency-uncertainty case, i.e., those given in
Eq. (6-68) or Eq. (6-74). For the cases where an estimate of the frequency un-
certainty is available, and therefore can be compensated for, one can use this
information, if desired, to modify the SNR boundaries. However, to a first-order
approximation, we shall assume in what follows that we always determine the
boundaries for the symbol regions of fixed partitioning from their zero-frequency
uncertainty values. This allows one to implement a fixed-SSME configuration
independent of the knowledge of the frequency error and yet still to obtain the
possibility of a performance advantage relative to the conventional half-symbol
split structure. To illustrate the application of the principles involved and re-
sulting performance gains obtained, we shall consider only a few of the cases
previously treated.

•Case 1: Frequency Uncertainty, No Frequency Estimation
(and thus No Phase Compensation)

For this case, it was shown earlier that the variance of the conventional SSME
is given by Eq. (6-26). To modify this expression for the case of 2L partitions
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of the symbol interval, we proceed as before by replacing R by R/L, N by LN ,
δ by δ/L, and then multiplying the result by L2, resulting in5

var
{

R̂L

}
=

L2

(
LN

LN − 1

)2 {(
LN − 1
LN − 2

)
⎡
⎢⎢⎣

(
1 + 2h+

(
δ

L

)
R

L

)

LN
+

(
1 + h+

(
δ

L

)
R

L

)2

⎤
⎥⎥⎦

× 1F1

(
2;LN ;−Nh−

(
δ

L

)
R

)
−

(
1 + h+

(
δ

L

)
R

L

)2

×
[
1F1

(
1;LN ;−Nh−

(
δ

L

)
R

)]2
}
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Then, the improvement in performance is obtained by taking the ratio of
Eq. (6-26) to Eq. (6-94), i.e.,

I (R) =
var

{
R̂

}

var
{

R̂L

} (6 95)

where, for a value of R in the interval R−
L ≤ R < R+

L , the value of L to be used
corresponds to that determined from Eq. (6-68) or alternatively from Eq. (6-74).
We note that since the boundaries of the SNR regions of Eqs. (6-68) and
(6-74) are determined from the asymptotic (large N) expressions for the esti-
mator variance, a plot of I(R) versus R determined from Eq. (6-95) will exhibit
small discontinuities at these boundaries. These discontinuities will become van-
ishingly small as N increases.

Figures 6-10 and 6-11 illustrate such a plot for values of N equal to 20 and 100,
respectively, with δ as a parameter. We make the interesting observation that,
although on an absolute basis the variance of the estimator monotonically im-
proves with increasing N , the improvement factor as evaluated from Eq. (6-95),
which makes use of the exact expression for the estimator variance, shows a larger
improvement for smaller values of N . To see how this comes about analytically,

5 To make matters clear, we now include the dependence of h± on δ in the notation.
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we examine the behavior of the zero-frequency uncertainty improvement factor
for large SNR. For sufficiently large SNR (equivalently, large L), we obtain from
Eq. (6-62) the same asymptotic expression as given in Eq. (6-63) when assuming
N large. Also, since for large SNR L and R are approximately related by L =
R/

√
2, then substituting this in Eq. (6-63) gives the asymptotic result

var
{

R̂L

}
∼= R

N

(
4 + 2

√
2

)
(6 96)

From Eq. (6-61), we have for sufficiently large SNR

var
{

R̂
}

=
1

N − 2

(
N

N − 1

)2

R2 (6 97)

Thus, the improvement factor for large SNR is the ratio of Eq. (6-97) to
Eq. (6-96), namely,

I (R) =

1
N − 2

(
N

N − 1

)2

R2

R

N

(
4 + 2

√
2

) =
R

4 + 2
√

2

(
N

N − 2

) (
N

N − 1

)2
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which, for a given R, is a monotonically decreasing function of N approaching
I(R) = R/

(
4 + 2

√
2

)
in the limit as N → ∞.

•Case 2b: Frequency Uncertainty, Perfect Frequency Estimation,
Fractional-Symbol Phase Compensation

The case where the frequency uncertainty is perfectly estimated and then
used to compensate for the phase shift caused by this uncertainty in the second
half of the symbol interval variance of the estimator was given in Eq. (6-30).
Making the same substitutions as before, for a 2L-partition of the symbol interval
we obtain

var
{

R̂L

}
=

L2 1
(h+ (δ/L))2

1
LN − 2

(
LN

LN − 1

)2
[(

1 + 2h+

(
δ

L

)
R

L

) (
2LN − 1

LN

)

+
(

h+

(
δ

L

)
R

L

)2
]

(6 99)
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Comparing Eq. (6-30) with Eq. (6-61), we observe that, in this case, the variance
of h+ (δ) R̂ for the conventional SSME is identical to the variance of R̂ in the
zero-frequency uncertainty case. From a comparison of Eqs. (6-99) and (6-62),
a similar equivalence can be made between the variance of h+ (δ/L) R̂ and the
variance of R̂ for the 2L-partition estimator.

Analogous to what was done for Case 1, the improvement factor, I(R), here
can be obtained from the ratio of Eq. (6-30) to Eq. (6-99). Figures 6-12 and 6-13
are plots of I(R) versus true SNR, R, for values of N equal to 20 and 100, respec-
tively, with δ as a parameter. Once again we make the observation that a larger
improvement is obtained for smaller values of N . An analytical justification for
this observation can be demonstrated by examining the behavior of I for large
SNR. Specifically, the analogous expression to Eq. (6-98) now becomes

I(R) =

(
1

(h+ (δ))2 R
+

2
h+ (δ)

)(
2N − 1

N

)
+ R

4
h+

(√
2δ/R

) +
√

2

(
1 +

1
(
h+

(√
2δ/R

))2

)
(

N

N − 2

) (
N

N − 1

)2
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which for sufficiently large R relative to δ (i.e., h+
(√

2δ/R
) ∼= 1) becomes

I(R) =

(
1

(h+ (δ))2 R
+

2
h+ (δ)

)(
2N − 1

N

)
+ R

4 + 2
√

2

(
N

N − 2

) (
N

N − 1

)2

(6 101)

Once again we see in Figs. 6-12 and 6-13 the same dependence on N as before
approaching

I(R) =

2

(
1

(h+ (δ))2 R
+

2
h+ (δ)

)
+ R

4 + 2
√

2
(6 102)

in the limit as N → ∞. We also note that, whereas in the previous figures
for a given value of R the improvement factor decreased with increasing fre-
quency uncertainty, here it increases, which is consistent with Eq. (6-102) since
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h+ (δ) = sinc2 (δ/4) is a monotonically decreasing function of δ. The intu-
itive reason for this occurrence is that, for the conventional SSME, the perfor-
mance degrades much more severely in the presence of large frequency uncer-
tainty than for the improved SSME since for the former the degradation factor
h+ (δ) operates out on its tail, whereas for the latter the effective frequency
uncertainty is reduced by a factor of L, and thus for large L the degradation
factor h+(δ/L) ∼= h

(√
2δ/R

)
operates near its peak of unity. Eventually, for

sufficiently large R, the improvement approaches I(R) = R/
(
4 + 2

√
2

)
as in

Case 1. Finally, comparing Figs. 6-12 and 6-13 with Figs. 6-10 and 6-11, we
observe that much larger frequency uncertainties can be tolerated for Case 2b
than for Case 1.

6.11 The Impact of the Oversampling Factor on the
Performance of the Modified SSME in the
Presence of Symbol Timing Error
In Section 6.5 we investigated the performance of the conventional SSME

in the presence of symbol timing error. From the results given there, we see for
example that if the fractional symbol timing error ε were equal to 1/2, then from
Eqs. (6-49) and (6-51) we would have that

E
{
U±}

= 2σ2

(
1 +

R

2

)
(6 103)

in which case the performance of the SSME completely degenerates. Since it is
desirable to perform SNR estimation prior to obtaining symbol synchronization,
it would be advantageous to reduce the sensitivity of the operation of the SSME
to knowledge of the symbol timing offset. As we shall show shortly, interestingly
enough this can be accomplished by employing an oversampling factor L greater
than unity. In fact, the larger the value of L, the less the sensitivity, and in
the limit of sufficiently large L, the SSME performance becomes independent of
knowledge of the symbol timing.

To illustrate the above statements, assume that for a given L the fractional
symbol timing error ε is quantized to ε = Lε/L, where for L even, Lε can take
on any of the integer values 0, 1, 2, · · · , L/2, and for L odd, Lε can take on any
of the integer values 0, 1, 2, · · · , (L − 1) /2. Under these circumstances, in the
absence of frequency error, the first and second half-symbol I&D outputs would
be given by
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Yakl = mdk
L

T

∫ (k−1+(l−1/2+Lε)/L)

(k−1+(l−1+Lε)/L)T

ejφdt +
L

T

∫ (k−1+(l−1/2+Lε)/L)

(k−1+(l−1+Lε)/L)T

n (t) dt

=
mdk

2
ejφ + nakl

(6 104)

Yβl = mdk
L

T

∫ (k−1+(l+Lε)/L)

(k−1+(l−1/2+Lε)/L)T

ejφdt +
L

T

∫ (k−1+(l+Lε)/L)

(k−1+(l−1/2+Lε)/L)T

n (t) dt

=
mdk

2
ejφ + nβkl, l = 1, 2, · · · , L − Le

and

Yakl = mdk+1
L

T

∫ (k−1+(l−1/2+Lε)/L)

(k−1+(l−1+Lε)/L)T

ejφdt +
L

T

∫ (k−1+(l−1/2+Lε)/L)

(k−1+(l−1+Lε)/L)T

n (t) dt

=
mdk+1

2
ejφ + nakl

(6 105)

Yβl = mdk+1
L

T

∫ (k−1+(l+Lε)/L)

(k−1+(l−1/2+Lε)/L)T

ejφdt +
L

T

∫ (k−1+(l+Lε)/L)

(k−1+(l−1/2+Lε)/L)T

n (t) dt

=
mdk+1

2
ejφ + nβkl, l = L − Lε + 1, L − Lε + 2, · · · , L

where nαkl and nβkl are zero-mean Gaussian RVs with variance independent of
the value of ε. Thus, in so far as the modified SSME is concerned, the partition-
ing of each symbol into L pairs of subdivisions occurs as before with, however,
the first L − Lε now containing the data symbol dk and the remaining Lε ones
containing the data symbol dk+1. However, since the statistics of the SSME
are independent of the data symbols themselves, then we conclude that for the
assumed quantization of ε, the performance of the SSME is independent of the
value of symbol timing error.

Next assume that for a given L the fractional symbol timing error ε is quan-
tized to ε = (Lε + 1/2) /L, where again for L even, Lε can take on any of the
integer values 0, 1, 2, · · · , L/2, and for L odd, Lε can take on any of the integer
values 0, 1, 2, · · · , (L − 1) /2. Under these circumstances, in the absence of fre-
quency error, the first and second half-symbol I&D outputs would be given by
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the results in Eqs. (6-104) and (6-105) for all values of l with the exception of
l = L − Lε, in which case these outputs become

Yakl |l=L−Lε
=

mdk

2
ejφ + nakl |l=L−Lε

Yβl |l=L−Lε
=

mdk+1

2
ejφ + nβkl |l=L−Lε

(6 106)

In this case, the sum and difference of the first and second half-symbol I&D
outputs become

u+
kl = mdkejφ + nakl + nβkl

u−
kl = nakl − nβkl, l = 1, 2, · · · , L − Lε − 1

u+
kl |l=L−Lε

= m

(
dk + dk+1

2

)
ejφ + nakl |l=L−Lε

+ nβkl |l=L−Lε

u−
kl |l=L−Lε

= m

(
dk − dk+1

2

)
ejφ + nakl |l=L−Lε

− nβkl |l=L−Lε

u+
kl = mdk+1e

jφ + nakl + nβkl

u−
kl = nakl − nβkl, l = L − Lε + 1, L − Lε + 2, · · · , L

(6 107)

Thus, for the kth symbol, L − 1 sum and difference pairs contribute values
whose statistics are independent of the value of ε (and thus the same as in
the ideal SSME), whereas one sum and difference pair contributes values whose
statistics are different from those of the ideal SSME and thus will result in some
degradation of performance. To quantify this performance degradation, we need
to compute the statistics of the accumulated squared norms of the sum and
difference RVs in Eq. (6-107), namely, U± = (1/NL)

∑N
k=1

∑L
l=1

∣∣u±
kl

∣∣2. After
some effort, the results for the means and variances, assuming for simplicity
BPSK modulation, are as follows:
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E
{
U+

}
= m2

(
L − 1/2

L

)
+ 2σ2L = 2σ2

[
L +

(
L − 1/2

L

)
R

]

E
{
U−}

=
m2

2L
+ 2σ2L = 2σ2

(
L +

R

2L

)
(6 108)

and

var
{
U+

}
=

4
N

[
σ4L +

(
L − 1/2

L

)
m2σ2 +

m4

16L2

]

=
4
N

σ4

[
L + 2

(
L − 1/2

L

)
R +

R2

4L2

]

var
{
U−}

=
4
N

(
σ4L +

m2σ2

2L
+

m4

16L2

)

=
4
N

σ4

(
L +

R

L
+

R2

4L2

)

(6 109)

Note that for L = 1 (the conventional SSME) and thus Lε = 0, i.e., ε = 1/2,
Eq. (6-108) agrees with Eq. (6-103) and Eq. (6-109) agrees with the combination
of Eqs. (6-49) and (6-52). Furthermore, for sufficiently large L, the moments of
U± given in Eqs. (6-108) and (6-109) reduce to

E
{
U+

}
= 2σ2 (L + R) , E

{
U−}

= 2σ2L

var
{
U+

}
=

4
N

σ4 (L + 2R) , var
{
U−}

=
4
N

σ4L

(6 110)

which correspond to those of the ideal (perfect symbol timing) SSME.
Finally, we note that for other values of ε between the best quantized ones,

namely, ε = Lε/L which yield the same performance as the ideal SSME, and the
worst quantized ones, namely, ε = (Lε + 1/2) /L which yield the most degrada-
tion in performance, the modified SSME will have a performance between these
two extremes.
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6.12 Other Modulations
Thus far, we have considered the behavior and performance of the SSME

for the class of M -PSK (M ≥ 2) modulations with and without frequency uncer-
tainty. As we shall show in this section, it is also possible to use the same basic
SSME structure (with perhaps slight modification) to provide SNR estimation
for offset quadrature phase-shift keying (OQPSK) as well as non-constant enve-
lope modulations such as QAM. As before, the performance of the estimator is
still independent of the data symbol sequence as well as the carrier phase and
allows for the same enhancement by increasing the number of pairs of observ-
ables per symbol in accordance with the true value of SNR.

6.12.1 Offset QPSK

For the case of M -PSK, we indicated in Section 6.1 that the kth transmit-
ted complex symbol in the interval (k − 1)T ≤ t ≤ kT can be represented in the
form dk = ejφk , where φk takes on one of M phases uniformly spaced around
the unit circle. A special case of the above, corresponding to M = 4, results
in conventional quadrature phase-shift keying (QPSK). It is well-known that on
nonlinear channels OQPSK provides a performance advantage since it reduces
the maximum fluctuation in the signal amplitude by limiting the maximum phase
change to 135 deg rather than 180 deg. Since for OQPSK the complex represen-
tation of a symbol extends over one and one-half symbols (because of the offset
between the I and Q channels), it cannot conveniently be represented in the
polar form dk = ejφk as above. Rather, one should consider the I and Q channel
modulations separately. Thus, it is of interest to investigate whether the SSME
can be easily modified to accommodate OQPSK and, if so, how its performance
is affected. For convenience, we consider only the I&D implementation of the
SSME since the same conclusions that will be reached also apply to the multiple
samples per symbol version.

Corresponding to the kth QPSK symbol dk = ejφk = (ak + jbk)/
√

2,
where ak and bk are independent binary (±1) symbols, the OQPSK transmit-
ter sends ak/

√
2 during the interval (k − 1)T ≤ t ≤ kT and bk/

√
2 during the

interval (k − 1/2)T ≤ t ≤ (k + 1/2)T . Thus, after complex demodulation by
the receiver carrier with frequency uncertainty ω and unknown phase φ, the
kth complex baseband received signal in the I channel is described by

yI(t) =
1√
2
makej(ωt+φ) + nI(t), (k − 1)T ≤ t ≤ kT (6 111)

where as before nI(t) is a zero-mean AWGN process. The signal in Eq. (6-111)
is, as before, input to first and second I-channel half-symbol I&Ds operating over
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the intervals (k − 1)T ≤ t ≤ (k − 1/2)T and (k − 1/2)T ≤ t ≤ kT , respectively.
Analogous to Eq. (6-14), the outputs of these I&Ds are given by

YIαk
=

1√
2
mak

1
T

∫ (k−1/2)T

(k−1)T

ej(ωt+φ)dt +
1
T

∫ (k−1/2)T

(k−1)T

nQ (t) dt

=
[
mak/

(
2
√

2
)]

ejφejω(k−3/4)T sinc (δ/4) + nIαk

(6 112)

YIβk
=

(
1√
2
mak

1
T

∫ kT

(k−1/2)T

ej(ωt+φ)dt +
1
T

∫ kT

(k−1/2)T

nI (t) dt

)
e−jθk

=
([

mak/
(
2
√

2
)]

ejφejω(k−3/4)T ejωT/2 sinc (δ/4) + nIβk

)
e−jθk

where nαk and nβk are complex Gaussian noise variables with zero mean and
variance σ2, and e−jθk is a phase compensation that accounts for the possible
adjustment of the kth second-half sample for phase variations across a given
symbol due to the frequency offset.

Similarly, the kth complex baseband received signal in the Q channel is de-
scribed by

yQ(t) =
1√
2
mbkej(ωt+φ) + nQ(t), (k − 1/2)T ≤ t ≤ (k + 1/2)T (6 113)

where nQ(t) is also a zero-mean AWGN process independent of nI(t). The signal
in Eq. (6-113) is input to first and second Q-channel half-symbol I&Ds operating
over the intervals (k − 1/2)T ≤ t ≤ kT and kT ≤ t ≤ (k + 3/2)T , respectively.
Analogous to Eq. (6-112), the outputs of these I&Ds are given by

YQαk
=

1√
2
mbk

1
T

∫ kT

(k−1/2)T

ej(ωt+φ)dt +
1
T

∫ kT

(k−1/2)T

nQ (t) dt

=
[
mbk/

(
2
√

2
)]

ejφejω(k−1/4)T sinc (δ/4) + nQαk

(6 114)

YQβk
=

(
1√
2
mbk

1
T

∫ (k+3/2)T

kT

ej(ωt+φ)dt +
1
T

∫ (k+3/2)T

kT

nQ (t) dt

)
e−jθk

=
([

mbk/
(
2
√

2
)]

ejφejω(k−1/4)T ejωT/2 sinc (δ/4) + nQβk

)
e−jθk



Signal-to-Noise Ratio Estimation 177

Separately taking the half-symbol sums and differences of the YI ’s and YQ’s
results in the following:

u±
Ik

= YIαk
± YIβk

e−jθk

=
(

mak

2
√

2

)
ejφejω(k−3/4)T sinc

(
δ

4

) [
1 ± ej([δ/2]−θk)

]
+ nIαk

± nIβk
e−jθk

�= s±Ik
+ n±

Ik
(6 115)

and

u±
Qk

= YQαk
± YQβk

e−jθk

=
(

mbk

2
√

2

)
ejφejω(k−1/4)T sinc

(
δ

4

) [
1 ± ej([δ/2]−θk)

]
+ nQαk

± nQβk
e−jθk

�= s±Qk
+ n±

Qk
(6 116)

Note by comparison of Eq. (6-112) with Eq. (6-114) that an additional phase
shift of an amount ωT/2 exists in the u±

Q’s relative to the u±
I ’s, which would not

be present if one were to generate the comparable I&D outputs for conventional
QPSK. In principle, this phase shift could be perfectly compensated for if one
had knowledge of the frequency uncertainty ω. However, in the absence of this
exact knowledge, the best one could do at this point would be to multiply the
u±

Q’s by e−jω̂T/2, which ultimately would result in a degradation in performance
if one were first to combine the u±

I ’s and u±
Q’s into a complex quantity and then

to proceed with the formation of the SSME in the same manner as for QPSK.
Rather than compensate the phase shift at this point in the implementation, we
proceed instead to separately form the averages of the squared norms of the u±

I ’s
and u±

Q’s over the N -symbol duration of the observation resulting in

U±
I =

1
N

N∑

k=1

∣∣u±
Ik

∣∣2 =
1
N

N∑

k=1

[∣∣s±Ik

∣∣2 +
∣∣n±

Ik

∣∣2 + 2 Re
{

s±Ik

(
n±

Ik

)∗}]

U±
Q =

1
N

N∑

k=1

∣∣u±
Ik

∣∣2 =
1
N

N∑

k=1

[∣∣∣s±Qk

∣∣∣
2

+
∣∣∣n±

Qk

∣∣∣
2

+ 2 Re
{

s±Qk

(
n±

Qk

)∗}] (6 117)
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Since taking the magnitude of the u±
I ’s and the u±

Q’s eliminates the relative phase
shift between these quantities noted above, then it is straightforward to show
that combining U±

I (delayed by T/2) with U±
Q results in a pair of signals U±

that have the identical statistics as those for conventional QPSK. In particular,
setting the half-symbol phase compensation θk = ωsyT/2 (independent of k),
then the signal term corresponding to the kth term in the average would be
given by

∣∣s±k
∣∣2 =

∣∣s±Ik

∣∣2 +
∣∣∣s±Qk

∣∣∣
2

= m2

(
a2

k + b2
k

2

)
sinc2

(
δ

4

) [
1 ± cos (δsy/2)

2

]

= m2 sinc2

(
δ

4

) [
1 ± cos (δsy/2)

2

]
�= m2h± (6 118)

where as before δsy = δ − ωsyT .
To see how one can implement a universal SSME structure that will handle

OQPSK as well as conventional QPSK, we proceed as follows. Consider parti-
tioning the results of inputting the I- and Q-channel baseband signals to half-
symbol I&Ds into even and odd outputs. That is, we define YIαk

and YQβ,k−1 ,
which correspond to half-symbol integrations in the interval (k − 1)T ≤ t ≤
(k − 1/2)T , as odd outputs, and YIβk

and YQαk
, which correspond to half-symbol

integrations in the interval (k − 1/2)T ≤ t ≤ kT , as even outputs. Then, for
conventional QPSK, since u±

Ik
is formed from the sum and difference of YIαk

and
YIβk

and u±
Qk

is formed from the sum and difference of YQαk
and YQβ,k−1 , we can

say that u±
Ik

is formed from the kth even and odd outputs, whereas u±
Qk

is formed
from the kth even and (k-1)st (i.e., the preceding) odd outputs. On the other
hand, since for OQPSK u±

Ik
is still formed from the sum and difference of YIαk

and YIβk
but u±

Qk
is formed from the sum and difference of YQαk

and YQβk
, we

can say that both u±
Ik

and u±
Qk

are formed from the kth even and odd outputs.
Thus, from this viewpoint, the only difference in the SSME implementation be-
tween OQPSK and conventional QPSK is that for the former the Q-channel sum
and difference signals are formed from the corresponding even and succeeding
odd half-symbol I&D outputs, whereas for the latter the Q-channel sum and
difference signals are formed from the same even but the preceding odd half-
symbol I&D outputs. Other than this minor difference in implementation, the
two SSMEs would yield performances identical to that given previously in this
chapter.
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6.12.2 QAM

For the case of QAM with an M -symbol square signal constellation, the
kth transmitted complex symbol in the interval (k − 1)T ≤ t ≤ kT can be
represented in the form dk = dIk + jdQk where dIk and dQk are independent,
identically distributed (iid) RVs that take on the values ±1,±3, · · · ,±

(√
M − 1

)

with equal probability. It is straightforward to show that the mean and variance
of U± are, analogous to Eq. (6-8), given by

E
{
U±}

= 2σ2 + E
{∣∣s±k

∣∣2
}

var
{
U±}

=
4
N

σ2
(
E

{∣∣s±k
∣∣2

}
+ σ2

) (6 119)

where now
∣∣s±k

∣∣2 = m2h
∣∣dk

∣∣2 and thus

E
{∣∣s±k

∣∣2
}

= m2hE
{
|dk|2

}
=

2
3

(M − 1) m2h (6 120)

However, since in the case of QAM the average SNR is given by

R =
m2

2σ2

R =

2
3
(M − 1)m2

2σ2

(6 121)

then combining Eq. (6-121) with Eq. (6-121) and substituting the result in
Eq. (6-119), we obtain

E
{
U±}

= 2σ2
(
1 + h±R

)

var
{
U±}

=
4
N

σ4
(
1 + 2h±R

) (6 122)

which is identical with the second relations in Eq. (6-8). Thus, solving for R

from Eq. (6-122) and following the same logic that led to the ad hoc SSME in
Eq. (6-10), we conclude that no modification of this SSME is required to allow
its use for estimating SNR when QAM is transmitted. Similarly, in view of the
equivalence between Eqs. (6-122) and (6-8), we conclude that the performance
is identical to that previously determined for M -PSK modulations.
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6.13 The Time-Multiplexed SSME
In Section 6.6, we described a means for potentially improving the perfor-

mance of the conventional SSME by increasing the number of subdivisions (ob-
servables) per symbol beyond two (but still an even number). In particular, we
showed that the variance of the so-modified estimator tracks (with a fixed sep-
aration from it) the Cramer–Rao bound on the variance of an SNR estimator
over the entire range of SNR values. Implicit in the derivation of the expression
for the variance of the SNR estimator was the assumption that the even num-
ber of subdivisions was the same for all symbols in the observation from which
the SNR estimator was formed, and as such an optimum value of the number
of subdivisions, denoted by 2L, was determined for a given true SNR region,
the totality of which spans the entire positive real line. Moreover, it was shown
that, if one ignores the requirement of having the number of subdivisions be
an even integer and proceeds to minimize with respect to L the expression for
the variance derived as mentioned above, an optimum value of L can be deter-
mined for every value of true SNR. The resulting estimator was referred to as the
fictitious SSME and resulted in a lower bound on the performance of the prac-
tical realizable SSME corresponding to integer L.

In this section, we show how one can in practice turn the fictitious SNR esti-
mator into a non-fictitious one. In particular, we demonstrate an implementation
of the SSME that allows one to approach the unrestricted optimum value of L

(to the extent that it can be computed as the average of a sum of integers) at
every true SNR value. More specifically, the proposed approach, herein referred
to as the time-multiplexed SSME, allows each symbol to possess its own number
of subdivisions arranged in any way that, on the average (over all symbols in
the observed sequence), achieves the desired optimum value of L. Furthermore,
we propose an algorithm for adaptively achieving this optimum value of L when
in fact one has no a priori information about the true value of SNR. Once again
for simplicity of the discussion, we consider the case wherein the symbol pulse
shape is assumed to be rectangular, and thus the observables from which the
estimator is formed are the outputs of I&Ds.

A block diagram of the complex baseband time-multiplexed SSME is illus-
trated in Fig. 6-14 with the input signal in the kth interval (k − 1)T ≤ t ≤ kT

as described by Eq. (6-13). Consider uniformly subdividing the kth symbol
interval into 2Lk (Lk integer) subdivisions each of length Tk/2 = (T/Lk)/2.
In each of these Lk pairs of split symbol intervals, we apply the signal in
Eq. (6-9) to first and second half-symbol normalized (by the integration inter-
val) I&Ds, the outputs of which are summed and differenced to form the signals{
u±

kl

�= s±kl + n±
kl, l = 1, · · · , Lk

}
. For each k, the u±

kl’s are iid; however, their
statistics vary from symbol to symbol. Denote the relevant symbol-dependent
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parameters of the signal and noise components of u±
kl as m2

k, σ2
k, h±

k , and the SNR
in the kth symbol as Rk = m2

k/
(
2σ2

k

)
. In particular, σ2

k = σ2Lk is the variance
per component (real and imaginary) of n±

kl, and the mean-squared value of s±kl

can be expressed as6

∣∣s±kl

∣∣2 = m2
kh±

k (6 123)

where, because of the normalization of the I&Ds, m2
k = m2 independently of k,

and h±
k is again a parameter that reflects the amount of frequency offset and the

degree to which it is compensated for. Specifically,

h±
k = sinc2

(
δk

4

)
1 ± cos

(
δksy

/2
)

2
(6 124)

where δk
�= ωTk, δksy

�= δk − ωsyTk = (ω − ωsy)Tk, with ωsy the compensation
frequency applied to the second half-symbol I&D outputs.

Based on the above, each
∣∣u±

kl

∣∣2 = σ2
kχ2

2

(
2h±

k Rk

)
, where χ2

n(µ) denotes a
(generally non-central) chi-squared RV with n degrees of freedom, non-centrality
parameter µ, and unit variances for each degree of freedom. In general, we
know that E

{
χ2

n(µ)
}

= n + µ and var
{
χ2

n(µ)
}

= 2n + 4µ for all n and µ.
Furthermore, using [8, Eq. (2.39)] for the inverse moments of central chi-
squared RVs, we have for even n and µ = 0, E

{
[χ2

n(0)]−1
}

= (n − 2)−1 and
E

{
[χ2

n(0)]−2
}

=
[
(n − 2)(n − 4)

]−1. Expressions for higher-order moments of
χ2

n(µ) or its reciprocal can be determined using [8, Eq. (2.47)].
Now for each k define U±

k =
∑Lk

l=1

∣∣u±
kl

∣∣2/Lk. Then, based on the above
chi-squared characterization of

∣∣u±
kl

∣∣2, and recognizing that the true SNR to be
estimated is given by

R = RkLk =
m2

2σ2
(6 125)

we have U±
k =

(
σ2

k/Lk

)
χ2

2Lk

(
2h±

k RkLk

)
= σ2χ2

2Lk

(
2h±

k R
)

with first mean and
variance

E
{
U±

k

}
= 2σ2

(
Lk + h±

k R
)

var
{
U±

k

}
= 4σ4

(
Lk + 2h±

k R
)

(6 126)

6 Note that σ2 is the variance per component of the u±
k

’s in the conventional SSME corre-

sponding to L = 1 in each symbol interval.
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Solving for R in terms of E
{
U±

k

}
from the first equation in Eq. (6-126), we

obtain

R = Lk

[
E

{
U+

k

}
− E

{
U−

k

}

h+
k E

{
U−

k

}
− h−

k E
{
U+

k

}
]

(6 127)

At this point, we could proceed as we did in Section 6.1 by replacing expected
values of U±

k with their sample values to obtain estimates of R from each symbol,
and then averaging over the N estimates obtained from the N symbols, resulting
in the ad hoc estimator

R̂′
L =

1
N

N∑

k=1

Lk

[
U+

k − U−
k

h+
k U−

k − h−
k U+

k

]
(6 128)

where L = (L1, L2, · · · , LN ) denotes the oversampling vector for the N -symbol
observation. Unfortunately, this has the potential of being a very bad estimator,
because from our previous analyses we have observed that both the bias and the
variance of the split-symbol estimate become unbounded if it is based on only
a single symbol, i.e., N = 1. If {Lk} takes on only a few discrete values, we
could avoid this singularity by grouping symbols with the same Lk, obtaining
an estimate from each group, and then averaging the estimates from all the
groups. A better approach is to first average the U±

k ’s prior to forming them
into an ad hoc estimator. Specifically, we form U± = (1/N)

∑N
k=1 U±

k , which
has the chi-squared characterization U± = (σ2/N)χ2

2L̄N
(2h̄±NR), where L̄ =

(1/N)
∑N

k=1 Lk and h̄± = (1/N)
∑N

k=1 h±
k . The mean and variance of U± are

immediately given by

E
{
U±}

= 2σ2
(
L̄ + h̄±R

)

var
{
U±}

=
(
4σ4/N

) (
L̄ + 2h̄±R

)
(6 129)

Solving for R in terms of E
{
U±}

, we obtain

R = L̄

[
E {U+} − E {U−}

h̄+E {U−} − h̄−E {U+}

]
(6 130)

Now we replace expected values with sample values and h̄± with estimates ˆ̄h
±

based on an estimate ω̂ of the frequency offset ω in this single equation to get
our SNR estimate:
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R̂L = L̄

[
U+ − U−

ˆ̄h
+
U− − ˆ̄h

−
U+

]
(6 131)

The equations defining both the estimator R̂L and the underlying observables U±

in terms of standard chi-squared random variables are identical in form to
those obtained for the special case of uniform subsampling of all the symbols,
L = (L, L, · · · , L). The parameters L̄, h̄± for the general case reduce to the con-
stants L, h± for the special case. The special case L = (L, L, · · · , L) produces
the estimator R̂L of Section 6.6, where we assumed constant L for all symbols.
Thus, we can apply our previous performance calculations for var

{
R̂L

}
to ob-

tain the corresponding expressions for var
{
R̂L

}
by simply replacing L and h±

in those expressions with L̄ and h̄±, respectively. In the case of zero frequency
offset, we now can achieve the variance expression for any value of L̄ achievable
by averaging integers, not just integer values of L themselves. For large N , this
means that we can achieve the performance of our fictitious estimator R̂• for
a very dense set of values of R satisfying L•(R) = R/

√
2 ≥ 1. Of course, the

fictitious estimator remains fictitious for L•(R) = R/
√

2 < 1 (i.e., the region
of R where we did not attempt to use it as a benchmark).

6.13.1 An Adaptive SSME

Given that R̂L achieves the performance of R̂L̄, we now have a method for
adaptively selecting the oversampling factor L. We can start with an initial
guess, and then increase or decrease L in response to intermediate SNR esti-
mates R̂L based on the symbols observed up to now. The key point is that the
estimator R̂L at any point in time achieves exactly the same performance as
the estimator R̂L with L = L̄, based on the same cumulative number of sym-
bols. Thus, no symbols are wasted if an adaptive SNR estimation algorithm
starts out with a non-optimum value of L but adapts over time to generate
a vector sequence L for which the average L̄ approaches the optimum value
of L, namely, L = L•(R) = R/

√
2. Figure 6-15 is a flow diagram of such an

adaptive scheme modeled after the robust version of the generalized SSME dis-
cussed in Section 6.7, wherein the integer values of L are restricted to the set
bl, l = 0, 1, 2, 3, · · · for some integer base b. The operation of the scheme is de-
scribed as follows.

Initially, consider an observation of n symbols and set Lk = L = 1, k =
1, 2, · · · , n. Next, evaluate the sum and difference accumulated variables U± for
the n symbol observation. Proceed to evaluate the SNR estimator R̂ = R̂L

(
U±)

in accordance with Eq. (6-131) taking note of the fact that, for this choice of
L, L̄ = 1. Next, we compare the current value of L, namely L = 1, to the
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Fig. 6-15.  A robust adaptive SSME scheme.
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desired optimum value of L, based however on the current estimate of R, i.e.,
L•

(
R̂

)
= R̂/

√
2, to get an indication of how close we are to where we are headed.

If L•
(
R̂

)
exceeds unity, which on the average is likely to be the case if the true

SNR is greater than
√

2, increment L by multiplying it by b and proceed to
process the next n input symbols, as will be described momentarily. On the
other hand, if L•

(
R̂

)
is less than or equal to unity, which on the average is

likely to be the case if the true SNR is less than or equal to
√

2, then leave L

unchanged7 and again proceed to process the next n input symbols. Moving on to
the next set of n symbols, compute new values of U±, denoted by U±

new, using the
updated value of L as determined above for all Lk, k = n+1, n+2, · · · 2n. Let N

denote the running average of the number of symbols. (Assume that initially
N was set equal to n corresponding to the first set of observed symbols.) Update
the current values of U± with the new U±

new values according to the weighted
average

(
NU± + nU±

new

)
/(N + n) and store these as U±. Update the running

average of L in accordance with
(
NL̄ + nL

)
/(N + n) and store this as L̄. Finally,

update the value of N to N +n and store this new value. Using the updated U±,
compute an updated SNR estimate R̂ = R̂L

(
U±)

in accordance with Eq. (6-131).
Next, using this updated SNR estimate, compute the updated estimate of the
optimum L, namely, L•

(
R̂

)
= R̂/

√
2 and use it to update the current value of L

in accordance with the following rule:

7 As we shall see shortly, in all other circumstances of this nature, we would proceed to
decrement L by dividing it by b. However, since the current value of L is already equal to
unity, which is the smallest nonzero integer, we cannot reduce it any further.
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If L•
(
R̂

)
< min

(
L, L̄

)
, then divide L by b

If L•
(
R̂

)
> max

(
L, L̄

)
, then multiply L by b

If min
(
L, L̄

)
≤ L•

(
R̂

)
≤ max

(
L, L̄

)
, do not change L

(6 132)

Finally, using the updated value of L, proceed to process the next n symbols,
whereupon the algorithm repeats as described above.

To illustrate the behavior of the robust adaptive SSME scheme, simulations
were conducted to demonstrate the rate at which L̄ converges to the true op-
timum L and also the manner in which this convergence takes place. The first
simulation, illustrated in Fig. 6-16, demonstrates the ideal performance of the

scheme assuming no frequency error, i.e., ˆ̄h
+

= 1, ˆ̄h
−

= 0, and the following
parameters: R = 10, b = 2, n = 10. By “ideal” is meant that the same adap-
tive feedback rule for updating L as in Eq. (6-132) is used except that a magic
genie is assumed to be available to provide the true SNR, R, to the update
rule rather than using the estimate of R. That is, the update of L in accor-
dance with Eq. (6-132) is carried out using L•(R) rather than L•

(
R̂

)
. The

horizontal axis in Fig. 6-16 is measured in discrete units of time corresponding
to the cumulative number of n-symbol batches processed each with a fixed value
of L. The vertical axis represents two different indicators of the performance
corresponding to the behavior of log2 L and log2 L̄ as they are updated in each
cycle through the feedback loop. For the assumed parameters, the optimum
value of L to which the scheme should adapt is given in logarithmic terms by
log2 L•(10) = log2

(
10/

√
2

)
= 2.822. From the plots in Fig. 6-16, we observe

that log2 L quickly rises (in three steps) from its initial value of log2 1 = 0 to
log2 8 = 3 and then eventually fluctuates between log2 8 = 3 and log2 4 = 2
with a 3:1 or 4:1 duty cycle. At the same time, log2 L̄ smoothly rises toward the
optimum log2 L̄•, converging asymptotically to this limit (with indistinguishable
difference) in fewer than 20 cycles of the feedback loop or, equivalently, 200 sym-
bol intervals.

Figure 6-17 is an illustration of the actual performance of the scheme as
illustrated in Fig. 6-15, i.e., in the absence of a magic genie to provide the true
SNR. The same parameter values as in Fig. 6-16 were assumed, and 10 differ-
ent trials were conducted. Also superimposed on this figure for the purpose of
comparison is the log2 L̄ magic genie performance obtained from Fig. 6-16. For
6 out of the 10 trials, the actual performance was indistinguishable from that
corresponding to the magic genie. For the remaining 4 trials, log2 L̄ overshoots
its target optimum value but still settles toward this value within 20 cycles of the
algorithm. For all 10 trials, there is a small dispersion from the optimum level
even after 40 cycles. This is due to residual error in estimating R after N = 400
symbols since the variance only decreases as 1/N .
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t /n

Fig. 6-16.  Ideal performance of the robust adaptive SSME scheme. (Adaptive SSME 
with magic genie estimate of true SNR, R = 10.)
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Fig. 6-17.  Actual performance of the robust adaptive SSME scheme. (Adaptive 
SSME: 10 trials with N = 400, n = 10, true R = 10.)
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Appendix 6-A

Derivation of Asymptotic Mean and
Variance of SSME

In this appendix, we derive the asymptotic expressions for the mean and
variance of the SSME as given by Eqs. (6-32) and (6-33), respectively. For
convenience, we repeat the expressions for the mean and variance of U±, namely,

E
{
U±}

= 2σ2 +
∣∣s±k

∣∣2 = 2σ2
(
1 + h±R

)

var
{
U±}

=
4
N

σ2
(∣∣s±k

∣∣2 + σ2
)

=
4
N

σ4
(
1 + 2h±R

)
(A-1)

Starting from the definition of g (U+, U−) in Eq. (6-10), we evaluate its first and
second partial derivatives as

∂g

∂U± =
±

(
ĥ+ − ĥ−

)
U∓

(
ĥ+U− − ĥ−U+

)2

1
2

∂2g

∂ (U±)2
=

(
ĥ+ − ĥ−

)
ĥ∓U∓

(
ĥ+U− − ĥ−U+

)3

(A-2)

The quantity ĥ+U−− ĥ−U+ that appears in the denominator of g
(
U+, U−)

and
its partial derivatives is evaluated at the point

(
U+, U−)

=
(
E{U+}, E{U−}

)

as

ĥ+E
{
U−}

− ĥ−E
{
U+

}
= 2σ2

[(
ĥ+ − ĥ−

)
+

(
ĥ+h− − ĥ−h+

)
R

]
(A-3)

The second term in parentheses in Eq. (A-3) evaluates to zero for cases 0, 2a,
2b, and 2c for which the frequency estimate is perfect, i.e., ω̂ = ω, since in this
instance ĥ± = h±. The numerators of g (U+, U−) and its partial derivatives
evaluated at the point (U+, U−) = (E {U+} , E {U−}) are, respectively,
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E
{
U+

}
− E

{
U−}

= 2σ2
(
h+ − h−)

R

±
(
ĥ+ − ĥ−

)
E

{
U∓}

= ±
(
ĥ+ − ĥ−

)
2σ2

(
1 + h∓R

)

(
ĥ+ − ĥ−

)
h∓E

{
U∓}

=
(
ĥ+ − ĥ−

)
h∓2σ2

(
1 + h∓R

)

(A-4)

Substituting the expressions in Eqs. (A-3) and (A-4) into Eqs. (6-10) and (A-2),
we obtain

g
∣∣
(E{U+},E{U−}) =

(h+ − h−) R

ĥ+ − ĥ− +
(
ĥ+h− − ĥ−h+

)
R

∂g

∂U±
∣∣
(E{U+},E{U−}) = ± 1

2σ2

(
ĥ+ − ĥ−

)
(1 + h∓R)

[
ĥ+ − ĥ− +

(
ĥ+h− − ĥ−h+

)
R

]2

1
2

∂2g

∂ (U±)2
∣∣
(E{U+},E{U−}) =

1
4σ4

(
ĥ+ − ĥ−

)
h∓ (1 + h∓R)

[
ĥ+ − ĥ− +

(
ĥ+h− − ĥ−h+

)
R

]3

(A-5)

Finally, substituting the expression for var
{
U±}

in Eq. (A-1) along with the
expressions in Eq. (A-5) into Eq. (6-31) results after some simplification in

E
{

R̂
}

=
(h+ − h−) R

ĥ+ − ĥ− +
(
ĥ+h− − ĥ−h+

)
R

+
1
N

(
ĥ+ − ĥ−

) (
ĥ+ + ĥ−

)

[
ĥ+ − ĥ− +

(
ĥ+h− − ĥ−h+

)
R

]3

×
{

1 +

(
h+ + h− +

ĥ+h− + ĥ−h+

ĥ+ + ĥ−

)
R + 2h+h−R2

}
+ O

(
1

N2

)

(A-6)
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and

var
{

R̂
}

=

1
N

(
ĥ+ − ĥ−

)2

[
ĥ+ − ĥ− +

(
ĥ+h− − ĥ−h+

)
R

]4

×
{

2 + 4
(
h+ + h−)

R +
[(

h+ + h−)2 + 6h+h−
]
R2 + 4h+h− (

h+ + h−)
R3

}

+ O

(
1

N2

)
(A-7)

which are repeated as Eqs. (6-32) and (6-33) in Section 6.4.2.



Chapter 7
Data Rate Estimation

Andre Tkacenko and Marvin K. Simon

In an autonomous radio operation setting, one of the first parameters that
we would like to estimate reliably would be the data rate of the received signal.
Knowledge of this parameter is required to carry out maximum-likelihood (ML)
detection [1] of other parameters, such as the carrier phase or modulation type.
Although ML estimation of the data rate itself is statistically optimal, given that
there is little to no a priori knowledge of the incoming signal, this approach is
often difficult if not impossible to do in practice.

One mitigating factor for the autonomous radio under consideration is the
fact that the data rates are assumed to come from a set of known values, such as
the data rates used in the Electra radio (see [2] and Chapter 2). In particular,
the data rates here are assumed to be related by integer powers of an integer
base B. This assumption, as will soon be shown, allows us to estimate the true
data rate based on estimates of the signal-to-noise ratio (SNR) computed for
various assumed data rates. The method for estimating the SNR here is the
split-symbol moments estimator (SSME) discussed in [3] and Chapter 6. This
estimator is appealing in that the only parameter required for its operation is
the assumed data rate. Hence, estimation of the data rate can be done jointly
with that of the SNR.

Although this approach provides us with a way to estimate both the data
rate and SNR together, it will be shown that it is sensitive to symbol-timing
error or jitter. In fact, the presence of symbol-timing error can severely degrade
the performance of this estimator, as shown in Chapter 6. To overcome this, a
modification is proposed in which the jitter is quantized and estimated alongside
the data rate and SNR. This approach, based on a so-called generalized likeli-
hood ratio test (GLRT) [4], is robust in the presence of symbol-timing error and

193
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can be used to jointly estimate the data rate, SNR, and symbol-timing error all
at once. The estimates of the symbol-timing error obtained can then be used as
coarse initial estimates for the data-transition tracking loop (DTTL), which is
used later in the receiver to obtain a fine estimate of the timing jitter (see [5]
and Chapter 10 for more details).

In Section 7.1, we review the received signal model assumptions and show
how the SSME can be used to obtain an estimate of the data rate in the absence
of symbol-timing error. This leads to an algorithm for estimating the data rate,
which we present in Section 7.1.3. A slight modification to this algorithm that
resembles a GLRT-type approach is presented in Section 7.1.4.

In Section 7.2, we investigate the effects of the presence of symbol-timing er-
ror on the data rate estimation algorithm. There, it is shown that the presence
of a severe jitter can in fact cause the data rate estimator to unequivocally fail.

By quantizing the symbol-timing error, we show in Section 7.3 how to mod-
ify the algorithms in Sections 7.1.3 and 7.1.4 to account for the presence of
symbol-timing error. There, an all-digital implementation of the SSME-based
data rate estimation system is presented in Section 7.3.1. This leads to a joint
data rate/SNR/symbol-timing error estimation technique that we describe in
Section 7.3.2 and a GLRT-type modification to this method described in Sec-
tion 7.3.3.

Simulation results for the joint data rate/SNR/symbol-timing error estima-
tion techniques of Sections 7.3.2 and 7.3.3 are presented in Section 7.4. There,
the strengths and weaknesses of each of the proposed techniques are revealed
in terms of probability of data rate misclassification, SNR estimation error, and
jitter estimation error.

7.1 Data Rate Estimation Based on the Mean of the
SSME SNR Estimator

7.1.1 Signal Model and Assumptions

The baseband signal received at the autonomous radio is assumed to consist
of a constant amplitude digital data stream corrupted only by artifacts due to the
conversion from intermediate frequency (IF) to baseband as well as to additive
noise. Mathematically, the received signal r̃(t) is assumed to have the following
form in the complex baseband representation:

r̃(t) = A

( ∞∑

k=−∞
dkp

(
t − (k + ε)T

)
)

ej(ωrt+θc) + ñ(t) (7 1)

Here, we have the following:
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A = signal amplitude

dk = kth data symbol, typically assumed to be an M -PSK symbol [1]

p(t) = data pulse shape, typically either a non-return to zero (NRZ) or a
Manchester pulse [1]

T = symbol period of the data

ε = symbol-timing error (jitter), assumed to be uniform over the interval
[0, 1)

ωr = residual frequency offset after demodulation and frequency correction

θc = carrier phase, assumed to be uniform over the interval [0, 2π)

ñ(t) = complex additive white Gaussian noise (AWGN) whose real and
imaginary parts are uncorrelated, zero-mean processes with two-sided
power spectral density (psd)1 N0/2

Prior to estimating parameters such as the carrier phase θc or the frequency
offset ωr, we would like to estimate the data rate given by R �= 1/T . As with the
Electra radio (see Chapter 2), we assume that the set of possible data rates {R}
comes from a known finite set of values of the form

R = B�Rb, 0 ≤ � ≤ �max (7 2)

where B, �, and �max are nonnegative integers and Rb
�= 1/Tb is the basic (or

lowest) data rate. In other words, every possible data rate is a base power of the
lowest basic rate. Here B is called the rate base, whereas � is referred to as the
rate power. We denote the maximum rate power by �max, and so the number of
possible data rates is given by (�max +1), as can be seen from Eq. (7-2). For the
Electra radio [2], we have

B = 2

�max = 12

Rb = 1 ksymbol/s

With regard to estimating the data rate of the signal r̃(t) from Eq. (7-1), it
is assumed that we know both the rate base B and the basic data rate Rb.

1 The two-sided psd of the real and imaginary parts is defined to be N0/2 here to set the two-
sided psd of the complex baseband noise process n(t) at N0. This is a standard notational
convention for a complex baseband AWGN process [1]. It should be noted here that the
parameter N0 differs from that used for the passband process n(t) appearing in other chapters
of the book by a factor of two.



196 Chapter 7

Hence, from Eq. (7-2), the only ambiguity of the data rate that exists is the rate
power �. This greatly simplifies the data rate estimation problem, since � only
varies over a finite set of known integers. In what follows, we will assume that
the symbol-timing error ε is zero. The case for which ε �= 0 will be considered
in Section 7.2.

7.1.2 Relation of the SSME SNR Estimator to Data Rate Estimation

A block diagram of the SSME system for estimating the SNR of the sig-
nal r̃(t) from Eq. (7-1) is shown in Fig. 7-1 for the case of a rectangular NRZ
pulse shape. (For different pulse shapes, the only thing that needs to be changed
is that the half-symbol integrate-and-dump (I&D) circuits need to be replaced
with half-symbol matched filters [1].) Here, Ts denotes the assumed symbol
period of the system (i.e., the sample period); Ns denotes the number of obser-
vations; and ωsy, ĥ+, and ĥ− denote frequency and phase compensation factors
as described in Chapter 6.

From Chapter 6, it is known that if the assumed data rate Rs
�= 1/Ts and

Ns satisfy

Rs = LR, Ns = LN

for some positive integers L and N , then the mean of the SNR estimate R̂� is
given as follows:

E
[
R̂�

]
=

RN + 1
LN − 1

=

R

L
+

1
LN

1 − 1
LN

=
R

L
+

1
LN

(
R

L
+ 1

)
+ O

(
1

N2

)

where R is the true SNR given by R = (A2T )/N0. For large N , this simplifies
within O(1/N) to become

E
[
R̂�

]
∼= R

L
(7 3)

In other words, if the assumed data rate Rs is an integer multiple L of the true
data rate R, then the SSME still works as before, but it formulates an estimate
of the reduced SNR R/L when the number of observations is large enough. As
we shall soon see, it is this property that will allow us to use the SSME system
to estimate the data rate.

To see how the SSME can be used to estimate the data rate, suppose first that
the SSME operates at the highest possible rate, which is simply Rs = B�maxRb
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from Eq. (7-2). As R = B�Rb, we have Rs = LR, where L = B�max−�. Then,
from Eq. (7-3), we have,

E
[
R̂0

]
=

R

B�max−�
+ O

(
1
N

)

If the SSME is operated at the next lower rate (i.e., Rs = B�max−1Rb), then
we have L = B�max−�−1, and so from Eq. (7-3) we have

E
[
R̂1

]
=

R

B�max−�−1
+ O

(
1
N

)
= BE

[
R̂0

]
+ O

(
1
N

)

In other words, lowering the rate by one step increases the mean of the SNR
estimate by a factor of B.

If we continue to run the SSME, lowering the assumed data rate Rs by a
factor of B at each run, then on the (�max − �)th run, we will obtain an SNR
estimate based on the true data rate R, in which case we have

E
[
R̂�max−�

]
= R + O

(
1
N

)
= B�max−�E

[
R̂0

]
+ O

(
1
N

)

Note that up to this point we have

E
[
R̂i

]
= BiE

[
R̂0

]
+ O

(
1
N

)
(7 4)

In other words, the mean of the SNR estimate monotonically increases by a fac-
tor of B each time the rate is lowered until the true data rate (and hence the
true SNR) is reached.

If the assumed data rate is lowered one more step so that Rs = B�−1Rb =
(1/B)R, then the SSME will attempt to create an SNR estimate based on B suc-
cessive data symbols. This will severely degrade the performance of the estimator
since the data symbols fluctuate randomly. To see this, consider the case where
B = 2 and the data come from a binary phase-shift keying (BPSK) constel-
lation [1]. In this case, the signal portion of the I&D outputs y0,k and y1,k

can either constructively or destructively interfere depending on whether adja-
cent data symbols are the same or different, respectively. This is illustrated in
Fig. 7-2.

When two adjacent data symbols are the same, as in Fig. 7-2(a), we will get
a valid contribution to the SNR estimate, since |u+

k |2 from Fig. 7-1 will be an
approximate measure of the signal power plus the noise power, whereas |u−

k |2
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Fig. 7-2.  Signal component of the I&D outputs y0,k and y1,k when 

the SSME assumed data rate is half of the true data rate for the 

case of (a) identical and (b) different adjacent data symbols.
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will be a measure of the noise power. However, when two adjacent data sym-
bols are different, as in Fig. 7-2(b), the opposite scenario takes place, i.e., |u+

k |2
becomes a measure of the noise power whereas |u−

k |2 becomes a measure of the
signal-plus-noise power. This will result in a severely degraded estimate of the
SNR since half of the time adjacent data symbols will be the same and half of
the time they will be different. (The reason for this is that the data sequence is
assumed to come from an independent, identically distributed (iid) source [1].)
This degradation may even lead to negative estimates of the SNR which are
clearly absurd.

For the purpose of data rate estimation, this degradation can be used to in-
dicate that the assumed data rate of the SSME system was lowered excessively
by one step. The elegance of this method of estimating the data rate is the
rapid degradation that is expected once the assumed data rate has been lowered
beyond the true data rate. Recall from Eq. (7-4) that up until the true data rate
is reached, the mean of the SNR estimate will increase by a factor of B until the
true SNR is reached. Once the assumed data rate is lowered by one more step,
however, the mean of the SNR estimate will decrease significantly. Hence, the
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SSME provides us with a way to estimate the data rate via a sharp transition
in the estimate of the SNR.

An algorithm to estimate the data rate based on this phenomenon is presented
below.

7.1.3 SSME Data Rate Estimation Algorithm

(1) Assume that the data rate is the maximum rate, i.e., set Rs =
B�maxRb. Run the SSME and compute an estimate of the mean of
the SNR and call it µ̂R̂0

. Set i = 1.

(2) Lower the SSME data rate by a factor of B, i.e., set Rs,new =
(1/B)Rs,old. Compute an estimate of the SNR mean and call it µ̂R̂i

.

(3) If µ̂R̂i
≥ µ̂R̂i−1

, then increment i by 1 and go to Step (2). Otherwise
stop and estimate the SNR to be µ̂R̂ = µ̂R̂i−1

and the data rate to be

R̂ = B�max−(i−1)Rb.

In practice, the estimate of the SNR mean µ̂R̂i
is computed as an ensem-

ble average of observed SNR estimates R̂i calculated over several blocks of the
received signal. If a large enough ensemble of blocks is used, then we will have
µ̂R̂i

≈ E[R̂i] as desired.
It should be noted that this algorithm terminates as soon as µ̂R̂i

< µ̂R̂i−1
.

In other words, the assumed data rate of the SSME is lowered only until the
condition µ̂R̂i

≥ µ̂R̂i−1
is not satisfied. Although this approach works in theory

assuming that the number of observations is large enough, in practice this can
often lead to a premature termination of the algorithm depending on the value
of the variance of the SSME SNR estimate. (See [3] and Chapter 6 for more
details.) For cases where the SNR is low, such as often occurs in the Deep Space
Network (DSN), this can lead to a perturbation in the calculation of the mean
of the SNR such that the condition µ̂R̂i

< µ̂R̂i−1
will occur before it should,

causing the algorithm to halt prematurely.
Since we expect the largest SNR to occur when the assumed data rate is

equal to the true data rate, one alternative to this algorithm is to run the SSME
for all data rates and estimate the data rate as the one yielding the largest SNR
mean. This forms the basis for the GLRT-type data rate estimation algorithm
presented below.
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7.1.4 GLRT-Type SSME Data Rate Estimation Algorithm

(1) Run the SSME for all data rates and (as before) let µ̂R̂i
denote the

estimate of the mean of the SNR for the ith largest data rate.

(2) Define the optimal index iopt to be iopt
�= argmax

0≤i≤�max

µ̂R̂i
. Then, esti-

mate the true SNR and data rate as follows:

µ̂R̂ =µ̂R̂iopt

R̂ =B�max−ioptRb

For a traditional GLRT estimator, the conditional-likelihood function
(CLF) [4] of the observables is maximized over the unknown parameters, as
opposed to being averaged over them as is done in ML estimation. In that sense,
this algorithm is a GLRT-like approach in that the SNR is chosen to be the
maximum value obtained over the unknown parameter of the data rate. The
data rate, in turn, is estimated as the rate that yields the largest SNR mean.

As will be shown in Section 7.4 through simulations, the GLRT-type data
rate estimation algorithm outperforms the algorithm of Section 7.1.3 for low
SNR when the true data rate is the lowest data rate. The reason for this is
that this algorithm calculates an estimate of the SNR for all rates and doesn’t
prematurely terminate as the previous algorithm may do.

Prior to showing simulation results for these algorithms, we first investi-
gate the effects of the presence of symbol-timing error on estimating the data
rate. There, we show that these effects can seriously adversely affect the perfor-
mance of the above proposed data rate estimation algorithms. In Sections 7.3.2
and 7.3.3, we present modifications to the algorithms of Sections 7.1.3 and 7.1.4,
respectively, which account for the presence of symbol-timing error.

7.2 Effects of Symbol-Timing Error on Estimating
the Data Rate

In the previous section, we assumed that the symbol-timing error or jitter ε

was zero. From Chapter 6, it is known that the presence of jitter will have the
effect of degrading the estimate of the SNR of the SSME. Heuristically speaking,
the reason for this is that the half-symbol I&D outputs will contain the contri-
butions of two adjacent data symbols. As the data symbols are iid, the signal
components of the I&D outputs will be degraded similarly to the way in which
they were degraded in Section 7.1.2 when the assumed data rate was lower than
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the true data rate. This effect becomes more pronounced as ε reaches its worst
case value of 1/2.

To mitigate the effects of the presence of a nonzero ε, the approach suggested
in Chapter 6 was to increase the data rate of the SSME system by a factor of L.
By doing so, the vast majority of the half-symbol I&D outputs contain con-
tributions due to only one data symbol, as desired. The effects due to those
containing contributions from two adjacent data symbols become negligible, and
so the oversampled estimator is then robust to the presence of jitter.

This principle of oversampling is used in the data rate estimation algorithms
of Section 7.1. There, the oversampling factor is reduced at each stage until
the largest SNR mean is obtained. The problem with these algorithms in the
presence of symbol-timing error is that the SNR will appear to be degraded once
the assumed data rate is lowered to the true data rate and not just afterward.
In other words, for non-negligible values of the jitter, the largest SNR mean
obtained will not occur when the SSME is operating at the true data rate, and
so the data rate will be estimated erroneously. Furthermore, the SNR estimated
will be far from its true value (approximately off by a factor of a power of B),
since the data rate was incorrectly classified.

As an example to illustrate the adverse effects of symbol-timing error on the
estimation of the data rate, consider the special case where ε = 1/4 and we have
BPSK data as in the example in Section 7.1.2. Suppose that the system data
rate of the SSME is equal to that of the true data rate. Then depending upon
whether adjacent data symbols are the same or different, the signal portions of
the I&D outputs y0,k and y1,k will be unaltered or degraded, respectively, as
shown in Fig. 7-3.

Just as with the example considered in Section 7.1.2, when two adjacent data
symbols are the same as in Fig. 7-3(a), we will obtain a valid contribution to
the SNR estimate, since y0,k and y1,k will contain the same signal component
support and polarity. However, when the adjacent data symbols are different as
in Fig. 7-3(b), then we will have y0,k = 0, which will severely degrade the SNR
estimate. The reason for this is that, in this case, neither |u+

k |2 will be a good
measure of the signal-plus-noise powers nor will |u−

k |2 be a good measure of the
noise power. Instead, |u+

k |2 and |u−
k |2 will be measures of essentially the same

quantity, namely a combination of half of the signal power together with the full
noise power. This will result in a poor estimate of the SNR.

7.2.1 Accounting for the Symbol-Timing Error

To account for the presence of symbol-timing error, typically a data-
transition tracking loop (DTTL) is used (see [5] and Chapter 10 for more de-
tails). However, a typical DTTL requires knowledge of both the carrier phase
and data rate in order to operate properly. Thus, it appears as though there is a



Data Rate Estimation 203

Fig. 7-3.  Signal component of the I&D outputs y0,k and y1,k when 

the symbol timing error is ε = 1/4 for the case of (a) identical and 

(b) different adjacent data symbols.
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dilemma. The data rate estimation algorithms of Sections 7.1.3 and 7.1.4 cannot
reliably estimate the data rate (or the SNR for that matter) in the presence of
symbol-timing error, and the symbol-timing error cannot be estimated without
knowledge of the data rate (as well as the carrier phase).

To overcome this dilemma, we will exploit the fact that on average the pres-
ence of symbol-timing error only has a deleterious effect on the SNR estimate
as shown in Chapter 6. The approach that will be taken here is to quantize the
assumed symbol-timing error to a finite number of levels. Then, for each data
rate, the SSME is run for each quantized jitter value. The SNR then is estimated
to be the largest SNR obtained while the jitter is estimated as the value that
yielded the largest SNR mean. In this way, not only do we obtain an improved
estimate of the SNR for each assumed data rate, but we also obtain a coarse
estimate of the symbol-timing error itself.

Hence, we generalize the data rate estimation algorithms of Sections 7.1.3
and 7.1.4 to jointly estimate the data rate, SNR, and symbol-timing error. Even
with a coarse quantization of the symbol-timing error, this leads to a rather
robust estimation of the data rate in the presence of jitter, as will be shown
through simulations in Section 7.4. Once a reliable estimate of the data rate
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has been made, the DTTL then can be used to obtain a finer estimate of the
symbol-timing error. Furthermore, the coarse estimate of the jitter can be used
as an initial condition for the DTTL which may reduce the computation time
required for convergence.

It should be noted that this approach is different from the one suggested
in Chapter 10, Section 10.8, in which oversampling is used to obtain a coarse
estimate of the symbol-timing error. There, the data rate is assumed to be
known, and the jitter is estimated by exploiting the fact that the presence of
symbol-timing error becomes less noticeable as the oversampling ratio L → ∞.
This approach doesn’t necessitate a modification to the SSME structure shown in
Fig. 7-1, whereas the method suggested here does, as we show in the next section.

7.3 Quantization of the Symbol-Timing Error
As the data rate of the received signal is not known a priori, at the receiver,

we are at liberty to independently quantize only the symbol-timing error corre-
sponding to one specific data rate. The reason for this is that, by quantizing
the jitter corresponding to one data rate, the quantized jitters for the remaining
rates are automatically determined. In order to ensure that we have, say, at
least Nε̂,b quantization levels for all rates, we must quantize the symbol-timing
error corresponding to the highest rate by at least Nε̂,b levels. The reason for this
is that if the highest data rate symbol-timing error is quantized to Nε̂,b steps,
then the number of jitter steps at the next lowest rate will be BNε̂,b. By induc-
tive argument, the number of quantization levels of the symbol-timing error at
the kth lowest data rate will be BkNε̂,b.

Following this logic, at the receiver, the symbol-timing error ε will be as-
sumed to be uniformly quantized to ε̂ = n/Nε̂,s for some 0 ≤ n ≤ Nε̂,s − 1,
where we have

Nε̂,s = B�max−�sNε̂,b (7 5)

Here, Nε̂,b denotes the basic number of jitter quantization steps (i.e., the number
of steps at the highest data rate), whereas Nε̂,s denotes the system number of
jitter quantization steps (i.e., when the assumed data rate power is �s).

Since the number of quantization steps increases as the assumed data rate
decreases, it is tempting to think that we will always obtain a better es-
timate of the data rate, SNR, and symbol-timing error for lower true data
rates than for higher rates. However, this is offset by the fact that, for a
fixed observation time interval, we will obtain a larger number of observa-
tions for higher true data rates than for lower ones. Hence, we have an
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implicit trade-off between the number of signal observations and the number of
jitter quantization levels for each true data rate.

One of the advantages of uniformly quantizing the symbol-timing error to
Nε̂,s steps as in Eq. (7-5) is that it leads to an efficient all-digital implementa-
tion of the SSME system, as we now proceed to show.

7.3.1 All-Digital Implementation of the SSME-Based Data Rate
Estimator

Suppose that, prior to processing the received signal r̃(t) from Eq. (7-1)
through the SSME, it is finely integrated and sampled to obtain the discrete-
time signal ym using the system of Fig. 7-4. Here, Tmin is the time resolution
period given to be

Tmin
�=

Tb

B�maxNε̂,b
=

1
Nε̂,b (B�maxRb)

Note that Tmin is Nε̂,b times smaller than the shortest possible data symbol in-
terval. Equivalently, 1/Tmax is Nε̂,b times larger than the highest possible data
rate, as can be seen from Eq. (7-2).

To generalize the SSME structure of Fig. 7-1 to account for the quantized
symbol-timing error, it is also necessary to generalize it to account for comput-
ing an ensemble average of the observed SNRs. Recall from Section 7.1.3 that
an ensemble average of the observed SNRs is required in order to estimate the
mean of the SNR of the SSME system. To do this, we partition the discrete-time
signal ym into blocks over which the SNR is to be computed. For each block,
the SSME computes an estimate of the SNR, and then an ensemble average of
the SNR is computed over the blocks.

Let Nobs denote the basic number of symbols to observe per block to obtain
an SNR estimate (i.e., the number of symbols to observe per block at the lowest

Fig. 7-4.  System to finely integrate and 

sample the continuous-time signal r (t) to 

obtain the high rate discrete-time signal ym.

~

r (t)~ ym

1
Tmin

(m + 1) Tmin

mTmin
∫ (⋅) dt
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rate) and let Nb denote the number of blocks over which to compute an ensemble
average of the SNR. Then, an all-digital implementation of the SSME system
of Fig. 7-1 that accounts for the quantized symbol-timing error and ensemble
averaging of the observed SNRs is shown in Fig. 7-5.

There are several things to note regarding the structure shown in Fig. 7-5.
First, notice that the I&D half symbol integrators from Fig. 7-1 can be replaced
with discrete summations, which is analogous to the sampled version of the SNR
estimator discussed in Section 6.1.1.2 Furthermore, note that all of the signals
starting from the half-symbol integrator outputs are indexed with a semicolon
followed by n. This notation was chosen here to reflect the fact that these
quantities are parameterized by the quantized symbol-timing error ε̂ = n/Nε̂,s,
where the parameter n is an integer in the range

0 ≤ n ≤ Nε̂,s − 1 ⇐⇒ 0 ≤ n ≤ B�max−�sNε̂,b − 1

Finally, note that to form a single SNR estimate, a total of B�sNobs samples
are squared and accumulated. This was chosen as such here to keep the total
observation time interval or epoch per block fixed.

By tracing the temporal indices m, k, and q from Fig. 7-5 backwards, it can
be seen that, in order to have 0 ≤ q ≤ Nb − 1 as desired, we need

0 ≤ k ≤
(
B�sNobs

)
Nb − 1

From this, it is clear that k must vary over an interval of Nb blocks each of size
B�sNobs, as desired and expected. Finally, from this range of the index k, in
order to be able to accommodate all Nε̂,s values of the parameter n, it can be
shown that the time index m should vary over the interval

0 ≤ m ≤
(
Nε̂,bB

�max
)
(NobsNb + 1) − 2 (7 6)

To incorporate the estimation of the quantized symbol-timing error, the only
required modification to the data rate estimation algorithms of Sections 7.1.3
and 7.1.4 is that the SNR estimate µ̂R̂;n must be calculated for each n. For a

2 If the pulse shape used has some other piecewise constant shape such as the Manchester
pulse, then the half-symbol integrators should be replaced with equivalent half-symbol digital
matched filters [1]. In this way, the pulse shape also can be initially classified using an
appropriate SSME for each possible pulse shape. This coarse pulse shape estimate can be
used to judge the confidence of the estimation process when compared with the statistically
optimal ML estimation approach of [6] and Chapter 5.
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fixed assumed data rate, the SNR is chosen to be the largest value of µ̂R̂;n while
n is chosen to be the maximizing value of µ̂R̂;n. This modification is described
in the following algorithms.

7.3.2 SSME Data Rate/SNR/Symbol-Timing Error Estimation
Algorithm

(1) Calculate the sequence ym from Fig. 7-4 over the range of values
given in Eq. (7-6).

(2) Run the SSME of Fig. 7-5 at the highest data rate Rs = B�maxRb.
Calculate µ̂R̂;n for all n and define n0

�= argmax
n

µ̂R̂;n and µ̂R̂0

�=

µ̂R̂;n0
. Set i = 1.

(3) Lower the assumed data rate by one step, i.e., set Rs,new =
(1/B)Rs,old, and run the SSME. Calculate µ̂R̂;n for all n and de-

fine ni
�= argmax

n
µ̂R̂;n and µ̂R̂i

�= µ̂R̂;ni
.

(4) If µ̂R̂i
≥ µ̂R̂i−1

, increment i by 1 and go to Step (3). Otherwise,
estimate the data rate, SNR, and symbol-timing error as follows:

R̂ = B�max−(i−1)Rb

µ̂R̂ = µ̂R̂i−1

ε̂ =
ni−1

B�max−(i−1)Nε̂,b − 1

As mentioned above, for each assumed data rate, the SSME is run for each
value of the quantized symbol-timing error. The SNR and jitter for that data
rate then are estimated to be the largest SNR and the jitter value leading to this
maximum SNR. Like the algorithm of Section 7.1.3, this data rate estimation
technique halts as soon as the condition µ̂R̂i

≥ µ̂R̂i−1
is not satisfied. This may

lead to a premature termination of the algorithm as described in Section 7.1.3.
To prevent a premature halting of the algorithm, a GLRT-type modification
to the algorithm of Section 7.3.2 is proposed, similar to what was proposed in
Section 7.1.4.
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7.3.3 GLRT-Type SSME Data Rate/SNR/Symbol-Timing Error
Estimation Algorithm

(1) Calculate the sequence ym from Fig. 7-4 over the range of values given
in Eq. (7-6).

(2) Run the SSME for all data rates and all possible quantized symbol-
timing error values. Let µ̂R̂;(i,n) denote the estimate of the mean of
the SNR for the ith largest data rate with quantized jitter value n.
(Here we have 0 ≤ i ≤ �max − 1 and 0 ≤ n ≤ B�max−iNε̂,b − 1.)

(3) Let iopt and nopt denote the indices for which µ̂R̂;(i,n) reaches its
maximum value, i.e., iopt and nopt are such that µ̂R̂;(iopt,nopt)

=
max
i,n

µ̂R̂;(i,n). Then, estimate the data rate, SNR, and symbol-timing

error as follows:

R̂ = B�max−ioptRb

µ̂R̂ = µ̂R̂;(iopt,nopt)

ε̂ =
nopt

B�max−ioptNε̂,b − 1

This GLRT-type estimation algorithm is based on the principle that the true
data rate and symbol-timing error should yield the largest value of the mean of
the SNR. Incorrect values of these quantities, on the other hand, should lead to
a degraded estimate of the SNR mean. As opposed to the previous algorithm,
which lowers the assumed data rate until the SNR decreases, this algorithm com-
putes the SNR for all data rates and all jitter values. The advantage to this is
that it can prevent the algorithm from prematurely terminating, which easily
can happen when the true SNR is low. This is especially the case when the true
data rate is low, as we show through simulations in the next section.

7.4 Simulation Results for the SSME-Based
Estimation Algorithms

In order to properly evaluate the performance of the estimation algorithms
of Sections 7.3.2 and 7.3.3, we must consider different metrics for each of the
parameters that we wish to estimate. Prior to presenting simulation results, we
introduce these metrics and justify their usage here.
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7.4.1 Performance Metrics Used for Evaluating the Estimation
Algorithms

For all of the following measures used, we assume that the estimation algo-
rithms have each been run for a total of Nt trials. Parameters estimated at the
nth trial (where 0 ≤ n ≤ Nt − 1 for simplicity) are denoted with a superscript
surrounded by parentheses. For example, the data rate estimated at the nth trial
is denoted as R̂(n).

7.4.1.1. Probability of Data Rate Misclassification. In order to assess
the performance of the algorithms with respect to estimating the data rate, one
valid measure of performance is the empirical probability of data rate misclassi-
fication, which is defined below:

Pm
�=

1
Nt

Nt−1∑

n=0

I
(
R̂(n) �= R

)
(7 7)

where I(X) is an indicator function that is unity if the event X is true and zero
if X is false. From Eq. (7-7), it is clear that 0 ≤ Pm ≤ 1 and that Pm is a linear
measure of the number of times each algorithm fails to estimate the data rate
correctly.

7.4.1.2. Mean-Squared SNR Decibel Estimation Error. To properly
gauge the performance of the estimation algorithms with respect to estimating
the SNR, we seek a metric that penalizes the error between the estimated and
true SNRs based on the value of the true SNR. In particular, small differences
in SNR should be penalized more so if the true SNR is small than if it is large.
For example, if the true SNR is 1 and the SNR is estimated to be 0.7, then it is
reasonable to penalize this error more so than if the true SNR were 100 and the
estimated SNR were 97.

One metric that penalizes the error in the SNR in such a way is the mean-
squared error between the estimated and true SNRs in decibels (dB). This mea-
sure is the mean-squared SNR dB estimation error and is given below as follows:

ξR
�=

1
Nt

Nt−1∑

n=0

∣∣∣µ̂(n)

R̂
(dB) − R (dB)

∣∣∣
2

=
1
Nt

Nt−1∑

n=0

∣∣∣∣∣10 log10

(
µ̂

(n)

R̂

R

)∣∣∣∣∣

2

(7 8)

From Eq. (7-8), it is clear that for low true SNR a deviation from the true SNR
is penalized more so than for high true SNR. For the example from above, the
mean-squared SNR dB error for the case of a true SNR of 1 and an estimated
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SNR of 0.7 is 2.399, whereas the error for the case of a true SNR of 100 and an
estimated SNR of 97 is 0.017.

7.4.1.3. Mean-Squared Minimum Distance Symbol-Timing Estima-
tion Error. In order to quantify the performance of each of the algorithms with
respect to symbol-timing error, it is tempting to consider a simple mean-squared
error measure between the true and estimated symbol-timing error, which is
given below:

ξε =
1
Nt

Nt−1∑

n=0

∣∣∣ε − ε̂ (n)
∣∣∣
2

(7 9)

The problem with using the metric given in Eq. (7-9) is that both symbol-timing
errors are assumed to be in the interval [0, 1). However, in reality, each symbol-
timing error can be shifted by any integer amount without loss of generality.
For example, if the estimated jitter is ε̂ (n) = 0.75, this is also equivalent to
ε̂ (n) = · · · ,−1.25,−0.25, 0.75, 1.75, 2.75, · · ·. This shifting property can cause
the metric given in Eq. (7-9) to be overly pessimistic in certain cases.

To see this, consider the case where the true symbol-timing error is ε = 0.1
and the estimated value is ε̂ (n) = 0.9. Using Eq. (7-9), we find that ξε = 0.64.
However, this error is overly pessimistic, since there is a shifted version of the
estimated symbol-timing error (namely ε̂ (n) = −0.1) that is closer to the true
value of ε = 0.1. This is illustrated in Fig. 7-6. Using this shifted value of ε̂ (n),
we obtain ξε = 0.04, which is a more appropriate value for the error between ε

and ε̂ (n) in this case.
Thus, a more appropriate measure of the jitter estimation error is to find

the minimum distance between the true and estimated jitters as the jitters vary
over all possible shifted values. Equivalently, we can fix the true jitter to be
in the interval [0, 1) and find the shifted version of the estimated jitter that is
closest to the true jitter. In other words, a more appropriate measure of the
jitter estimation error is to replace each term of the summation in Eq. (7-9) with
a term of the form

0.2 0.8

10 ε = 0.1ε (n) = −0.1

t

Fig. 7-6.  Example of a pessimistic value for the jitter estimation error ξε from Eq. (7.9).

〈

ε (n) = 0.9

〈
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min
�∈ZZ

{∣∣∣ε −
(
� + ε̂ (n)

)∣∣∣
2
}

(7 10)

where we assume ε, ε̂ (n) ∈ [0, 1). Fortunately, under the assumption that
ε, ε̂ (n) ∈ [0, 1), we need not look over all values of � ∈ ZZ in Eq. (7-10). In
particular, we need only look for the minimum value over � = −1, 0, 1. To see
this, note that we have

0 ≤ ε < 1, 0 ≤ ε̂ (n) < 1

from which we conclude

−1 < ε − ε̂ (n) < 1

By adding −� to all sides of the inequality, we have

−� − 1 < ε −
(
� + ε̂ (n)

)
< −� + 1

Now, for |�| ≥ 2, it can be shown that

∣∣∣ε −
(
� + ε̂ (n)

)∣∣∣
2

> 1 >
∣∣∣ε − ε̂ (n)

∣∣∣
2

and so the term corresponding to � = 0 always has a smaller magnitude than
those corresponding to |�| ≥ 2. Hence the terms corresponding to |�| ≥ 2 can be
ignored in the expression of Eq. (7-10), leaving only � = −1, 0, 1.

Thus, to ascertain the performance of the algorithms with respect to symbol-
timing error, we opted to use the following mean-squared minimum distance
symbol-timing estimation error:

ξε
�=

1
Nt

Nt−1∑

n=0

min
�=−1,0,1

{∣∣∣ε −
(
� + ε̂ (n)

)∣∣∣
2
}

(7 11)

The minimization in each term of Eq. (7-11) ensures that we choose the closest
(left, neutral, or right-shifted) estimated jitter to the true one.

We now proceed to present simulation results for the SSME-based data rate
estimation algorithms of Sections 7.3.2 and 7.3.3.
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7.4.2 Behavior of the SSME-Based Data Rate Estimation
Algorithms as a Function of SNR

For all of the simulations considered here, from Eq. (7-1), the data constel-
lation dk used was quadrature phase-shift keying (QPSK) [1], and the residual
frequency offset ωr was set to zero. To test the data rate estimation algorithms
of Sections 7.3.2 and 7.3.3, we opted to choose the following input parameters:

B = 2

�max = 3

Nε̂,b = 2

Nobs = 64

Nb = 16

It should be noted that the choice of Nobs and Nb here implies that we have an
observation time epoch equal to NobsNb = 1,024 lowest rate symbols. This time
epoch was fixed here for all possible data rates in order to reflect the fact that
we are assumed to have no a priori knowledge of the data rate. As such, this
intuitively implies that on average the SSME will be able to estimate the SNR
more accurately for higher data rates. The reason for this is that, for a fixed time
epoch, the SSME will have more observations the higher the data rate becomes.
This will result not only in an increase in the accuracy of the SNR estimate for
higher data rates, but also often in a better probability of misclassification and
jitter estimation error, as will soon be shown.

For a preliminary set of simulations, suppose that the symbol-timing error
is zero (i.e., ε = 0), and the true SNR R is varied from −10 dB to −3 dB.3 In
Fig.7-7, we have plotted the probability of misclassification, Pm from
Eq. (7-7), as a function of SNR using (a) the algorithm of Section 7.3.2 and
(b) the algorithm of Section 7.3.3. As can be seen, the algorithm of Section 7.3.2
outperforms that of Section 7.3.3 for the higher data rates, but fails to do so for
the lower ones. The reason for this is that the algorithm of Section 7.3.2 will
often prematurely terminate, which is beneficial for higher true data rates and
detrimental for lower true ones.

One unusual phenomenon that can be observed from Fig. 7-7 is that the
curves cross for different values of the true data rate. This appears counterintu-
itive, since we should expect the higher data rates to be classified correctly more
often than the lower data rates (as there are a larger number of observations in

3 The reason for varying the true SNR over such low values is to reflect the fact that, in the
DSN, the SNR is typically rather small.
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R = Rb

R = 2Rb

R = 4Rb

R = 8Rb

Fig. 7-7.  Probability of data rate misclassification as a function of

SNR using the algorithms of (a) Section 7.3.2 and (b) Section 7.3.3.
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these cases). However, when the true SNR is low, the factor corresponding to the
number of observations in the expression for the mean of the SSME SNR estimate
becomes non-negligible (see the equation above Eq. (7-3) for more details). This
most likely is the reason that the curves cross at lower true SNR. At higher true
SNR, the mean of the SNR estimate becomes less sensitive to the number of
observations and so we expect the higher rates to be classified correctly more
often than the lower rates. This is indeed the case here, as can be seen in Fig. 7-7
when the true SNR is near −3 dB.

In order to accurately compare the two algorithms, one figure of merit that
can be used is the average probability of misclassification, which we denote here
by Pm. If p� denotes the probability that the true data rate is R = B�Rb and
Pm|� denotes the probability of misclassification given that the true data rate is
B�Rb, then by the theorem of total probability [7], we have

Pm =
�max∑

�=0

p�Pm|� (7 12)

Assuming that the true data rates are equiprobable (i.e., p� = 1/(�max + 1) for
all �), Eq. (7-12) becomes

Pm =
1

�max + 1

�max∑

�=0

Pm|�

A plot of Pm as a function of the true SNR R is shown in Fig. 7-8 for
equiprobable data rates. From this, it can be seen that, for lower SNR, the al-
gorithm of Section 7.3.2 yields a better average probability of misclassification,
whereas for higher SNR (above about −7.3 dB), the algorithm of Section 7.3.3
performs better. Since the desired SNR for a DSN-type application is −6 dB
or greater (in order to achieve good performance for the turbo codes expected
to be used), this implies that the GLRT-type algorithm of Section 7.3.3 is best
suited here.

To further compare the two algorithms, in Fig. 7-9 we have plotted the ob-
served mean-squared SNR dB estimation error, ξR from Eq. (7-8), for the algo-
rithms of (a) Section 7.3.2 and (b) Section 7.3.3. As can be seen, the estimation
error always decreased monotonically with SNR for each data rate. Furthermore,
it can be seen that the error decreased almost geometrically as the data rate in-
creased. These two phenomena are consistent with the fact that the SSME yields
a better estimate of the SNR as both the true SNR and number of observations
increase.
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Section 7.3.2
Section 7.3.3

Fig. 7-8.  Average probability of misclassification as a function

of SNR for the algorithms of Sections 7.3.2 and 7.3.3.
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Analogous to the average probability of misclassification Pm given in
Eq. (7-12), we can quantitatively compare both algorithms in terms of the aver-
age mean-squared SNR dB estimation error ξR given by

ξR =
�max∑

�=0

p�ξR|� (7 13)

where ξR|� is the mean-squared SNR dB error given that the true data rate is
R = B�Rb. Assuming equiprobable data rates in Eq. (7-13), a plot of ξR as a
function of the true SNR R is shown in Fig.7-10 for both algorithms. As can
be seen, the GLRT-type algorithm of Section 7.3.3 always outperformed that of
Section 7.3.2, although for larger SNR (near −3 dB), the two performed nearly
identically. This is consistent with the intuition that the two algorithms should
be performing increasingly similarly as the true SNR increases since the SNR
estimates are more accurate in this case.

As a final measure of comparison between the two algorithms, the ob-
served mean-squared minimum distance symbol-timing estimation error, ξε from
Eq. (7-11), is shown in Fig.7-11. From this, it can be seen that the algorithm of
Section 7.3.2 yielded a good estimate for the higher data rates but suffered for
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Fig. 7-9.  Mean-squared SNR decibel estimation error as a function 

of the true SNR using the algorithms of (a) Section 7.3.2 and     

(b) Section 7.3.3.



218 Chapter 7
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Fig. 7-10.  Average mean-squared SNR decibel estimation error as 

a function of the true SNR for the algorithms of Sections 7.3.2 and 

7.3.3.

the lower ones. This perhaps is due to the inherent premature halting possibil-
ity of the algorithm, as discussed earlier. For the algorithm of Section 7.3.3, it
can be seen that at low SNR the error is large for all rates and that, with the
exception of the lowest data rate, for a fixed SNR the error decreased as the rate
increased.

As before, to quantitatively compare both algorithms, we can do so by com-
puting the average mean-squared minimum distance symbol-timing estimation
error ξε given by

ξε =
�max∑

�=0

p�ξε|� (7 14)

where ξε|� denotes the symbol-timing estimation error given that the true data
rate is R = B�Rb. Assuming equiprobable data rates in Eq. (7-14), a plot
of ξε as a function of the SNR R is shown in Fig. 7-12. From this, it can
be seen that for low SNR the algorithm of Section 7.3.2 notably outperformed
the algorithm of Section 7.3.3. Above about −7.1 dB, however, the opposite
scenario took place. As the desired mode of operation for the autonomous
radio is above −6 dB, this implies that once again the GLRT-type algorithm



Data Rate Estimation 219

R = Rb

R = 2Rb

R = 4Rb

R = 8Rb

(b)

R (dB)

0.045

0.040

0.030

0.035

0.025

0.015

0.020

0.005

0.010

0.000

0.045

0.040

0.030

0.035

0.025

0.015

0.020

0.005

0.010

0.000

−10 −9 −8 −7

R (dB)

−6 −5 −4 −3

ξ ε

Fig. 7-11.  Mean-squared minimum distance symbol timing 

estimation error as a function of SNR using the algorithms of     

(a) Section 7.3.2 and (b) Section 7.3.3.
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Fig. 7-12.  Average mean-squared minimum distance symbol-timing 

estimation error as a function of SNR for the algorithms of 

Sections 7.3.2 and 7.3.3.

of Section 7.3.3 is best suited here. It should be noted, however, that these algo-
rithms can be used to obtain only a coarse estimate of the symbol-timing error
and that once the data rate has been successfully classified, a finer estimate of
the jitter can be obtained through the use of a DTTL [5].

7.4.3 Behavior of the SSME-Based Data Rate Estimation
Algorithms as a Function of Symbol-Timing Error

In the previous section, we considered the performance of the data rate es-
timation algorithms of Sections 7.3.2 and 7.3.3 for a varying SNR and a fixed
symbol-timing error. Here, we investigate the performance of the algorithms as a
function of the jitter for fixed SNR. As the target SNR for the autonomous radio
for the DSN is above −6 dB (in order to achieve good performance from the
turbo codes to be used for error correction), the SNR here was fixed at −6 dB.

To illustrate the effects of quantizing and coarsely estimating the symbol-
timing error on estimating the data rate, suppose that the true data rate is
R = 2Rb. Plots of the observed probability of misclassification are shown
in Fig. 7-13 for (a) the algorithm of Section 7.3.2 and (b) the algorithm of
Section 7.3.3. As can be seen, for both methods the probability appears to
oscillate back and forth as the jitter varies. It can be seen that both plots
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Fig. 7-13.  Probability of data rate misclassification as a function of 

the jitter using the algorithms of (a) Section 7.3.2 and (b) Section 

7.3.3. (The true data rate is R = 2Rb.)
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appear to have eight equispaced local maxima. The reason for this is due to
the quantization of the symbol-timing error. Recall that from Section 7.4.2
the basic number of quantization levels was Nε̂,b = 2. This implies that at
the true data rate R = 2Rb = 21Rb the symbol-timing error is quantized to
Nε̂,s = 2�max−1Nε̂,b = 22Nε̂,b = 8 steps by using Eq. (7-5). These steps are
equispaced about the interval [0, 1) and are of the form n/8 for 0 ≤ n ≤ 7.
Every time each of the data rate estimation algorithms is run, each method
chooses the quantized value of the jitter that is the “best fit” in some sense to
the true jitter. As the true jitter itself is varied, it is evident that there will be
ambiguous values of the symbol-timing error that occur directly in between the
quantized values. This is illustrated in Fig.7-14 for the case of 8 quantization
steps here. From Fig. 7-13, it is clear that the probability of misclassification
becomes locally maximal almost precisely at these ambiguous jitter value loca-
tions.

To further observe the effects of varying the symbol-timing error, a plot of
the observed mean-squared SNR decibel error is shown in Fig. 7-15 for both algo-
rithms. Note that, unlike the probability of misclassification, for both methods
the error in estimating the SNR remains approximately constant as the jitter is
varied. The reason for this robustness most likely comes from the fact that, with
a sufficient number of quantization steps, the “best fit” jitter value to the true
one chosen for the SSME will incur only a small degradation in the mean of the
SNR estimate. See Chapter 6 for more details on the quantitative amount of
this degradation.

As a final measure of the effects of varying symbol-timing error on the data
rate estimation algorithms of Sections 7.3.2 and 7.3.3, a plot of the observed
mean-squared minimum distance jitter estimation error for each algorithm is
shown in Fig. 7-16. Like the probability of misclassification plots of Fig. 7-13,
it can be seen that the error for both algorithms oscillates back and forth as
the jitter varies. Also as before, each plot appears to have eight equispaced
local maxima that occur approximately at the locations corresponding to the
ambiguous values of the symbol-timing error. This observation is consistent with

Fig. 7-14.  Example showing the quantized symbol-timing error values

for N ε,s = 8 along with the ambiguous jitter values.
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Fig. 7-15.  Mean-squared SNR decibel estimation error as a function 

of the jitter using the algorithms of (a) Section 7.3.2 and (b) Section 

7.3.3. (The true data rate is R = 2Rb.)
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(a) Section 7.3.2 and (b) Section 7.3.3. (The true data rate is R = 2Rb.)
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the intuition that the estimation process should suffer the most degradation at
the ambiguous jitter values. One new phenomenon that can be observed from
the plots of Fig.7-16 is that, for both algorithms, the error appears symmetric
about ε = 1/2 and seems to generally increase as ε → 1/2 from either direction.
The reason for this phenomenon is not clear at this point and requires further
investigation.

At this point, a few comments are in order. Had the above simulations been
run for another true data rate, say at R = 4Rb, then there would have been
4 ambiguous jitter values instead of 8, since Nε̂,s = 23−2Nε̂,b = 4 in this case.
The same observations regarding the performance metrics would still hold true,
with the exception that the degradation in performance due to fewer jitter quan-
tization steps would be more pronounced. In general, with a true data rate of
R = B�Rb, the number of symbol-timing error quantization steps at the true
data rate is Nε̂,s = B�max−�Nε̂,b from Eq. (7-5). This suggests that an implicit
trade-off in performance exists between the data rate and the granularity of the
symbol-timing error. For a fixed observation time epoch of the received signal,
the higher the data rate, the more observations we have to help improve the es-
timate of the mean of the SNR of the SSME. However, at the same time, we also
have an increased sensitivity to the symbol-timing error in this case. Conversely,
the lower the data rate, the fewer samples there are to estimate the mean of the
SNR. However, at the same time, we also have more robustness with respect to
the symbol-timing error.

The effect of increasing the basic number of symbol-timing error quantiza-
tion steps Nε̂,b is to increase the number of ambiguous jitter values but at the
same time to decrease the degradation at these values. Thus, the estimation
becomes more robust in this case. However, this comes at the price of increased
computational complexity, as well as an increase in the oversampling rate of the
received signal. For the Electra radio (see [2] and Chapter 2), the sampling rate
is 4 times the highest data rate, and so the maximum value of Nε̂,b that can be
used for this system is Nε̂,b = 4. Although this value may appear to be small,
for most applications this should be sufficient for estimating the data rate and
SNR reasonably well. As mentioned above, once the data rate has been classified
correctly, the symbol-timing error can be finely estimated through the use of a
DTTL (see [5] and Chapter 10).
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Chapter 8
Carrier Synchronization

Marvin K. Simon and Jon Hamkins

Traditionally, carrier synchronization (sync) techniques have been developed
assuming that the modulation format and signal constellation characteristics are
known a priori. By modulation format we mean that the modulation index is
chosen so that either the carrier is fully suppressed or a residual carrier com-
ponent remains. By constellation characteristics we refer to the shape of the
constellation, e.g., a circle for M -ary phase-shift keying (M -PSK) or a square
for quadrature amplitude modulation (QAM), and its size in terms of the num-
ber of signal points it contains. Aside from knowing the modulation index and
signal constellation structure, it is also customary to have knowledge of the data
rate and type (e.g., non-return to zero (NRZ) versus Manchester code) since the
true optimum design of the loop depends on this information.

In autonomous radio operation, the most optimistic situation would be that
the receiver contain a carrier synchronization structure that is capable of track-
ing the carrier phase independently of the above-mentioned considerations. Un-
fortunately, this is not completely possible since, for example, a squaring loop
(or equivalently a binary phase-shift keying (BPSK) Costas loop) cannot track
a quadrature phase-shift keying (QPSK) modulation and likewise a 4th power
loop (or equivalently a QPSK Costas loop, sometimes referred to as an in-phase–
quadrature (I-Q) loop) cannot properly track a BPSK signal.1 Nevertheless,
while in principle each carrier synchronization loop developed for a given modula-
tion format, constellation, and data rate/type has certain unique characteristics,
they do share a number of similarities, e.g., a common front-end demodulator

1 The inability of a QPSK Costas loop to properly track a BPSK signal will be treated later
on in the chapter since this is an issue that has not been widely discussed in the literature.
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structure, that allows one to consider designs that could be operational in the ab-
sence of complete a priori knowledge of all of these characteristics. For example,
if the modulation is restricted to the M -PSK class, then it is possible to con-
struct a universal structure that performs the carrier synchronization function
for all values of M . This structure is derived by first determining the maximum
a posteriori (MAP) estimate of carrier phase based on an observation of the re-
ceived signal, namely, M -PSK plus additive white Gaussian noise (AWGN), and
then using this to motivate a closed-loop carrier synchronization loop. Such a
structure, referred to as the MAP estimation loop, has been previously proposed
in the literature for cases where the modulation is known beforehand [1]. In
fact, it can be shown (see Appendix 8-A for a derivation for BPSK modulation)
that, by making an analogy between the closed-loop bandwidth and the noise
bandwidth of an integrate-and-dump (I&D) filter of duration equal to the ob-
servation time for the open-loop MAP estimate, the closed loop approaches the
Cramer–Rao lower bound on the variance of an unbiased estimate of the phase
of a modulated carrier.

Still further, if the modulation is known to be other than suppressed carrier,
i.e., a modulation index less than π/2 rad, then it is still possible to exploit the
power in both the data and residual carrier components for carrier-tracking pur-
poses provided one has knowledge of the modulation index itself. Such knowledge
could be derived noncoherently, i.e., in the absence of carrier synchronization,
from a suitable modulation index estimator (to be discussed elsewhere in the
monograph). Loops of this type have been referred to in the literature as hybrid
carrier tracking loops and like their suppressed-carrier counterparts are moti-
vated by the same MAP considerations.

In what follows, we shall primarily restrict ourselves to the class of M -PSK
modulations with known data format (pulse shape) that once again could be
determined by a separate data format classifier operating noncoherently (to be
discussed in another chapter of the monograph). It is also possible with mi-
nor modification, e.g., by replacing the matched filters in the I and Q arms of
the loop with simple low-pass filters, to make the carrier synchronizer operation
somewhat independent of the exact pulse shape but not without some atten-
dant loss in performance. In deriving a generic carrier synchronization structure
for this class of modulations, we shall consider a system with fixed modulation
bandwidth which implicitly implies a fixed data symbol rate for all values of M .
This is consistent with the same assumption made for various other classifiers in
other chapters of the monograph.

Although the MAP estimation loops mentioned above are optimum in the
sense of yielding the best tracking performance as measured by the variance of
the loop phase error, their implementation typically involves nonlinearities that
depend on other system parameters, such as signal-to-noise ratio (SNR). To cir-
cumvent this dependence, the most convenient form for use in the autonomous
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radio application is the simplification based on low SNR approximations ap-
plied to the nonlinearities inherent in the MAP phase estimate. When this is
done, the error signal in the loop for M -PSK is of the form sinMφ, where
φ is the loop phase error, which from simple trigonometry can be written as
sin Mφ = 2 sin [(M/2)φ] cos [(M/2) φ]. Thus, it is seen that the error signal in
the loop for M -PSK is formed from the product of the error signal sin [(M/2)φ]
and the lock detector signal cos [(M/2)φ] in the loop for M/2-PSK modulation.
This simple relationship forms the basis for implementing the universal structure
and will be discussed and demonstrated later on in the chapter. For a further
treatment of this subject, the reader is referred to [2].

8.1 Suppressed versus Residual Carrier Synchronization
In the past, carrier synchronization loops typically have fallen into two cat-

egories: those that track a discrete carrier, e.g., the phase-locked loop (PLL),
and those that track a fully suppressed carrier, e.g., the Costas loop. A fully
suppressed carrier comes about when a digital modulation is impressed on a
carrier with a modulation index equal to π/2 rad, whereas a discrete (residual)
carrier component appears in the spectrum when the modulation index is less
than π/2 rad. For example, consider a binary modulation phase modulated onto
a carrier with modulation index β, which in mathematical form is described by

s (t) =
√

2Pt sin
(
ωct + βm (t) + θc

)
(8 1)

where Pt is the total available transmitter power, ωc is the radian carrier fre-
quency, θc is the unknown carrier phase to be tracked, and m(t) =

∑∞
n=−∞ cn

× p(t − nT ) is the data modulation with p(t) the pulse shape, {cn} the random
binary data taking on values ±1 with equal probability, and T the data (baud)
interval (R = 1/T is the data rate). Since for NRZ data p(t) is a unit rectangle
and for Manchester code p(t) is a unit square wave, then because of the purely
digital (±1) nature of m(t), by applying simple trigonometry to Eq. (8-1) we get

s (t, θc) =
√

2Pt cos β sin (ωct + θc) +
√

2Pt sinβm (t) cos (ωct + θc)

=
√

2Pc sin (ωct + θc) +
√

2Pdm (t) cos (ωct + θc) (8 2)

where Pc = Pt cos2 β denotes the power in the carrier (unmodulated) component
and Pd = Pt sin2 β denotes the power in the data (modulated) component. Since
the power spectral density (PSD) of an NRZ-formatted signal is of the form
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(sinπfT/πfT )2, then direct modulation of the carrier with such a waveform
would, for any modulation index β < π/2, result in a discrete carrier occurring
at the point of maximum energy (i.e., f = 0) in the data modulation spectrum.
This in turn makes it difficult to extract carrier synchronization from the discrete
component with the loop most commonly used for such purposes, namely, a PLL.
The loss due to the overlapping spectrum is 1/(1+2Es), where Es is the symbol
energy [3]. Because of this, the National Aeronautics and Space Administration
(NASA) proximity-link standard [4] stipulates that direct modulation of a carrier
with BPSK having NRZ formatting is always used in a suppressed-carrier mode,
i.e., with β = π/2. On the other hand, since a Manchester-coded signal has
a PSD of the form

[
sin2(πfT/2)/(πfT/2)

]2 that has a null at zero frequency,
then it is quite natural to allow for insertion of a discrete carrier there, and
thus a modulation index β < π/2 is certainly reasonable from a carrier-tracking
standpoint.

Since a Manchester-coded waveform is equivalent to the product of an NRZ
waveform and a unit square wave at the data rate, one can view the form of the
signal in Eq. (8-1) for this case as direct modulation of a carrier with an NRZ
data waveform that has first been modulated onto a square-wave subcarrier at
the data rate. With that in mind, one could, as is often done (at the expense of
an increase in bandwidth of the signal), achieve a non-suppressed-carrier mode
of operation with an NRZ signal by first modulating it onto a square-wave2

subcarrier (not necessarily at the data rate) prior to direct modulation of the
carrier. When this is done, the signal takes the form

s(t, θc) =
√

2Pt sin
(
ωct + βm(t)Sq(ωsct) + θc

)
(8 3)

where ωsc denotes the radian subcarrier frequency. Most of the discussion of
this chapter will deal with the absence of subcarriers and, thus, unless otherwise
specified, when considering a residual carrier mode of operation, we shall implic-
itly assume the presence of Manchester coding, whereas for suppressed-carrier
operation we shall allow for either NRZ or Manchester formats.

8.2 Hybrid Carrier Synchronization
Despite the fact that a data-modulated suppressed-carrier signal component

also exists in Eq. (8-2), it is often neglected in deriving carrier synchronization.
In other words, for the case where the total transmitted power is divided between
a discrete (unmodulated) carrier and a data-modulated suppressed carrier, the

2 Often, a sine-wave subcarrier is used with the same purpose of shifting the PSD of the
baseband modulation away from the origin to allow insertion of a discrete carrier.



Carrier Synchronization 231

carrier synchronization function is most often accomplished based on the discrete
carrier component alone, i.e., with a PLL. Thus, since the power split between
discrete and data-modulated carriers results in a carrier power, Pc, that is less
than the total transmitted power, Pt, the loop is operating with an SNR less than
that which is potentially available if one were to emply both signal components
in the carrier synchronization process.

Since a PLL is a closed-loop synchronization scheme motivated by MAP
estimation of the phase of a discrete carrier and a Costas loop is a closed-loop
synchronization scheme motivated by MAP estimation of the phase of a fully
suppressed carrier, one might anticipate that for a signal of the form in Eq. (8-2)
the optimum (in the MAP sense) closed-loop scheme would be a combination
(hybrid) of the two loops [5]. Indeed such is the case, as is illustrated by the
following mathematical development.

Let the signal of Eq. (8-2) received in AWGN be denoted by

r (t) = s (t, θc) + n (t) (8 4)

Then the likelihood function (conditioned on the unknown phase and data) for
the kth interval is given by

p(rk|θc, ck) = C exp

{
− 1

N0

[ ∫ (k+1)T

kT

(
r(t) −

√
2Pdckp(t − kT ) sin(ωct + θc)

−
√

2Pc cos (ωct + θc)
)2

]
dt

}
(8 5)

where N0 is the single-sided noise power spectral density in W/Hz and C is a
constant of proportionality. Averaging over the data and ignoring terms that
are not decision-dependent gives

p (rk |θc ) ∼= exp

{
2
√

2Pc

N0

∫ (k+1)T

kT

r(t) cos(ωct + θc)dt

}

× cosh

{
2
√

2Pd

N0

∫ (k+1)T

kT

r(t)p(t − kT ) sin(ωct + θc)dt

}
(8 6)

The log-likelihood function for a sequence of K bits is then
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Λ (θc) ∼= ln
K−1∏

k=0

p (rk |θc ) =
K−1∑

k=0

2
√

2Pc

N0

∫ (k+1)T

kT

r (t) cos (ωct + θc)dt

+
K−1∑

k=0

ln cosh

{
2
√

2Pd

N0

∫ (k+1)T

kT

r (t) p (t − kT ) sin (ωct + θc)dt

}
(8 7)

Thus, the MAP open-loop estimate of θc, namely, θ̂c, based on the K-bit obser-
vation of r(t) is that value of θc that maximizes Λ (θc).

To obtain a closed-loop synchronizer motivated by the MAP estimation ap-
proach, one differentiates the log-likelihood function with respect to θc and uses
this to form the error signal (to be nulled when θc = θ̂c) in the closed-loop
configuration. Thus, differentiating Λ(θc) of Eq. (8-7) with respect to θc gives

dΛ(θc)
dθc

∼= −
K−1∑

k=0

2
√

2Pc

N0

∫ (k+1)T

kT

r (t) sin (ωct + θc)dt

+
K−1∑

k=0

(
2
√

2Pd

N0

∫ (k+1)T

kT

r (t) p (t − kT ) cos (ωct + θc)dt

)

× tanh

{
2
√

2Pd

N0

∫ (k+1)T

kT

r (t) p (t − kT ) sin (ωct + θc)dt

}
(8 8)

The expression in Eq. (8-8) suggests the hybrid closed loop illustrated in Fig. 8-1.
As is typical in actual implementations, the hyperbolic tangent nonlinearity is
approximated by either its large argument variant, namely, a signum function
(bipolar hard-limiter), or its small argument variant, a linear function. In the
former case, we obtain the so-called polarity-type Costas loop, whereas in the
latter case we obtain the conventional Costas loop. Also, implicit in Fig. 8-1
is knowledge of the data rate and symbol synchronization, both of which are
necessary to implement the matched arm filters, which are of the I&D type.
In the next section, we discuss alternative implementations of these arm filters
using low-pass filters (LPFs) that are suboptimum but that provide additional
robustness to the implementation in terms of the absence of perfect knowledge
of the data rate and actual pulse shape and as such do not require symbol syn-
chronization information. In this regard, Fig. 8-2 is the equivalent structure to
Fig. 8-1, now using passive arm filters.
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Fig. 8-1.  Hybrid closed loop motivated by MAP estimation.
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In theory, the gains Kc and Kd would be chosen proportional to
√

Pc

and
√

Pd, which in turn implies knowledge of the modulation index β. In the
absence of such perfect knowledge, one would set the gains based on an estimate
of β. Even in the absence of such information, one could possibly still use
just the Costas-loop component of the hybrid loop alone since, under certain
circumstances, it is capable of tracking a residual carrier signal whereas a data-
modulated suppressed carrier cannot be tracked by a PLL. Rather than develop
the conditions under which this is possible now, we delay this discussion until
after we first compare the behavior of Costas loops using active (matched-filter)
arm filters to those using passive low-pass filters. At that point, the behavior of
the Costas loop with matched arm filters when tracking a residual carrier signal
will simply become a special case of that discussion.

8.3 Active versus Passive Arm Filters
The most common measure of performance for a carrier synchronization loop

is the variance of the phase error φ = θc − θ̂c. For suppressed-carrier tracking
loops such as the Costas loop (or the Costas-loop component of the hybrid loop),
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Fig. 8-2.  MAP estimation loop for single channel, discrete carrier

passive arm filter realization.
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in the linear tracking region, the mean-squared phase error can be related to the
loop SNR by

σ2
φ =

1
ρSL

(8 9)

where

ρ =
Pd

N0BL
(8 10)

with BL denoting the single-sided loop bandwidth and SL the so-called “squar-
ing loss,” which reflects the additional penalty relative to the PLL loop SNR due
to the squaring operation and is caused by the combination of signal × signal
(S × S), signal × noise (S × N), and noise × noise (N × N) distortions. The ex-
act nature of the squaring loss depends heavily on the nonlinearity implemented
in the in-phase arm (i.e., hyperbolic tangent function or its small and large argu-
ment approximations) and the type (active versus passive) of arm filters in both
the I and Q arms.
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From the standpoint of performance, the optimum behavior is obtained using
a hyperbolic tangent nonlinearity and matched (to the pulse shape) arm filters.
For this case, the squaring loss is given by [6]

SL =

(
tanh

[
2Rd −

√
2RdX

]X
)2

tanh2
[
2Rd −

√
2RdX

]X

= exp (−Rd) tanh
(√

2RdX
)

sinh
(√

2RdX
)X

(8 11)

where X is a (0,1) Gaussian random variable (RV), the overbar indicates statis-
tical averaging with respect to the Gaussian probability distribution of X, and
Rd

�= PdT/N0 is the data SNR. For the polarity-type Costas loop (tanh x ∼=
sgn x), Eq. (8-11) simplifies to

SL = erf2
(√

Rd

)
(8 12)

where erf x = (2/
√

π )
∫ x

0
exp

(
−y2

)
dy is the error function, whereas for the

conventional Costas loop (tanhx ∼= x), we obtain

SL =
2Rd

1 + 2Rd
(8 13)

As a compromise between Eqs. (8-12) and (8-13), the hyperbolic tangent non-
linearity is often approximated by a saturated amplifier, i.e.,

tanhx ∼=
{

x, |x| ≤ 1
sgn x, |x| > 1 (8 14)

whose squaring loss can also be obtained in closed form as

SL=

{√
Rd

π

[
exp(−A2

1)−exp(−A2
2)

]
+

(
Rd+

1
2

)
erfA1+

(
Rd− 1

2

)
erfA2

}2

1−
√

Rd

π

{
(1−2Rd) exp(−A2

1)+(1+2Rd) exp(−A2
2)

}
+

[
Rd(1+2Rd)− 1

2

][
erf A1+erf A2

]
;

A1
�
=

1+2Rd

2
√

Rd
, A2

�
=

1−2Rd

2
√

Rd
(8 15)



236 Chapter 8

Figure 8-3 is a plot of the squaring losses in Eqs. (8-11), (8-12), (8-13), and (8-15)
versus Rd in dB. We observe that, depending on the value of Rd, the polarity-type
and conventional Costas loops trade performance in terms of which is superior,
whereas for all values of Rd, the loop implemented with the hyperbolic tangent
nonlinearity provides the best performance (minimum squaring loss) with the
performance of the saturated amplifier nonlinearity virtually identical to it. Once
again we remind the reader that the performances predicted by Eqs. (8-11), (8-
12), (8-13), and (8-15) require the implementation of matched arm filters, which
in turn require knowledge of the data rate/type and also symbol synchronization.

Before leaving the discussion of Costas loops with active arm filters, it is of
interest to compare the performance (phase error variance) of the loop with the
Cramer–Rao bound [7] on the variance of an unbiased estimator of the phase of a
modulated BPSK carrier. The derivation of such a bound is given in Appendix 8-
A, where it is shown that

σ2
φ ≥

⎧
⎪⎪⎨
⎪⎪⎩

1
K (2Rd)

2 , Rd small

1
K (2Rd)

, Rd large
(8 16)

with, consistent with the notation used earlier in the chapter, K the number of
bits in the observation. For the I-Q Costas loop at low SNR, we can rewrite
Eq. (8-9) combined with Eqs. (8-10) and (8-13) as

Fig. 8-3.  A comparison of the squaring-loss performance of the MAP

estimation loop with several practical implementations; BPSK.
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σ2
φ =

N0BL (1 + 2Rd)
Pd (2Rd)

=
2BLT (1 + 2Rd)

(2Rd)
2

∼= BL (2KT )
K (2Rd)

2 (8 17)

Similarly, for high SNR we can rewrite Eq. (8-9) combined with Eqs. (8-10)
and (8-12) as

σ2
φ =

N0BL

Pd erf2(
√

Rd )
=

2BLT

2Rd erf2(
√

Rd )
∼= BL (2KT )

K (2Rd)
(8 18)

Comparing Eqs. (8-17) and (8-18) with the Cramer–Rao bounds in Eq. (8-16),
we observe that the performance of the I-Q Costas loop approaches these bounds
at low and high SNR if we make the equivalence between the loop bandwidth
and the noise bandwidth of an I&D of duration equal to the observation time,
i.e., set BL = 1/2KT . Thus, in conclusion, while for a fixed bandwidth and data
rate the I&D Costas loop asymptotically behaves inverse linearly with SNR at
high SNR, it has an asymptotic inverse square-law behavior with SNR at low
SNR. In both cases, however, the behavior is inverse linear with the duration of
the observation.

As intimated previously, it is possible to implement the arm filters of the
Costas loop in passive form, thereby eliminating the need for symbol synchro-
nization prior to obtaining carrier synchronization. Furthermore, as we shall see
momentarily, in the absence of exact data rate information, the passive arm filter
implementation is robust in that its performance is quite insensitive to a large
variation of the data rate in one direction relative to the optimum choice of arm
filter bandwidth. It is also possible to design the arm filters with different noise
bandwidths ([8] suggests removing the quadrature arm filter completely), which
has the advantage of improving the acquisition capability of the loop and also
reducing its tendency to false lock but is accompanied by a penalty in tracking
performance (as measured by squaring loss). For high-detection SNR, the addi-
tional squaring-loss penalty is quite small, and thus this technique could result
in a significant overall performance advantage. For the current discussion, we
shall assume that the two arm filters have identical designs.

Consider the Costas loop with LPFs having transfer function G(s) (s is the
Laplace transform operator) illustrated in Fig. 8-4. When operating in the linear
tracking region, the mean-squared error is given by Eq. (8-9), where the squaring
loss is now given by [9]

SL =
K2

2

K4 + KL
Bi/R
2Rd

(8 19)
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Fig. 8-4.  The Costas loop with passive arm filters.
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where

KL =

∫ ∞
−∞ |G (2πf)|4 df

∫ ∞
−∞ |G (2πf)|2 df

(8 20)

is a constant that depends only on the arm filter type,

Kl =
∫ ∞

−∞
Sm (f) |G (2πf)|l df, l = 2, 4 (8 21)

with

Sm (f) =
1
T

|P (j2πf)|2 (8 22)

the power spectral density of the modulation [P (j2πf) is the Fourier transform
of the pulse shape p (t)] and

Bi =
∫ ∞

−∞
|G (j2πf)|2 df (8 23)
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the two-sided noise bandwidth of the arm filters.3 Typical values of the quantities
in Eqs. (8-20) through (8-23) for the class of N -pole Butterworth filters and
several data formats are given below:

Filter Transfer Function:

|G (2πf)|2 =
1

1 +
(

f

f3 dB

)2N

Bi =
(

N

π
sin

π

2N

)−1

f3 dB

(8 24)

Data Modulation Power Spectral Density:

NRZ : Sm (f) = T
sin2 πfT

(πfT )2
(8 25)

Manchester : Sm (f) = T
sin4 πfT/2
(πfT/2)2

(8 26)

Square Wave : Sm (f) =
1
4

(
4
π

)2 ∞∑

k=−∞

1
(2k − 1)2

δ

(
f − 2k − 1

2T

)
(8 27)

The square wave in Eq. (8-27) has period 2T .

Evaluation of KL:

KL =
2N − 1

2N
(8 28)

Evaluation of K2, K4:

(a) Single-Pole Butterworth Filter (N = 1), NRZ Data:

3 We assume that the arm filter transfer function is normalized such that G (0) = 1.
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K2 = 1 − 1
2Bi/R

[
1 − exp (−2Bi/R)

]

K4 = 1 − 3 − (3 + 2Bi/R) exp (−2Bi/R)
4Bi/R

(8 29)

(b) Two-Pole Butterworth Filter (N = 2), NRZ Data:

K2 =1 − 1
4Bi/R

{
1 − exp

(−2Bi

R

) [
cos

(
2Bi

R

)
− sin

(
2Bi

R

)]}

K4 =1 −
5 −

{
4
(

Bi

R

)
cos

(
2Bi

R

)
+ 5

[
cos

(
2Bi

R

)
−sin

(
2Bi

R

)]}
exp

(−2Bi

R

)

16Bi/R

(c) Single-Pole Butterworth Filter (N = 1), Manchester Data:

K2 = 1 − 1
2Bi/R

[
3 − 4 exp (−Bi/R) + exp (−2Bi/R)

]

K4 = 1 − 9 − 4 (3 + Bi/R) exp (−Bi/R) + (3 + 2Bi/R) exp (−2Bi/R)
4Bi/R

(8 30)

(d) Two-Pole Butterworth Filter (N = 2), Manchester Data:

K2 =1 − 1
4Bi/R

{
3 − 4 exp

(−Bi

R

) [
cos

(
Bi

R

)
− sin

(
Bi

R

)]

+ exp
(−2Bi

R

) [
cos

(
2Bi

R

)
− sin

(
2Bi

R

)]}

(8 31)

K4 =1 −
15 −

{
8

(
Bi

R

)
cos

(
Bi

R

)
+ 20

[
cos

(
Bi

R

)
− sin

(
Bi

R

)]}
exp

(−Bi

R

)

16Bi/R

−

{
4

(
Bi

R

)
cos

(
2Bi

R

)
+ 5

[
cos

(
2Bi

R

)
− sin

(
2Bi

R

)]}
exp

(−2Bi

R

)

16Bi/R
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(e) Single-Pole Butterworth Filter (N = 1), Square Wave:

K2 = 1 − 1
Bi/R

tanh
(

Bi

R

)

K4 = 1 +
1
2

sech2

(
Bi

R

)
− 3

2Bi/R
tanh

(
Bi

R

)

Finally, using a partial fraction expansion technique, closed-form expressions for
the squaring loss, specifically, the parameters KL, K2, K4, were derived [10] for
a general class of passive arm filters whose transfer function is characterized by
simple, but in general complex, poles.

The numerator of Eq. (8-19) reflects the S × S distortion whereas the two
terms of the denominator reflect the S ×N and N ×N distortions, respectively.
As the arm filter bandwidth narrows, the decrease in the S ×S term dominates,
whereas when the arm filter widens, the increase in the S × N term dominates.
Thus, for a fixed filter type and data modulation format, KL, K2, and K4 are
only a function of the ratio of arm filter bandwidth to data rate Bi/R, and thus
a plot of SL in dB versus Bi/R will reveal an optimum value in the sense of
maximum SL.4 As an example, Figs. 8-5 and 8-6 illustrate such plots for one-
and two-pole Butterworth arm filters and Manchester-coded data. We observe
that, over a large range of detection SNRs, the squaring loss is extremely sensitive
to values of Bi/R less than the optimum value, whereas it is rather insensitive
to values of Bi/R greater than the optimum value. Thus, in the absence of
exact information about the data rate, one can design the loop arm filters so
that the optimum Bi/R ratio corresponds to the maximum expected data rate
whereupon operation at data rates considerably less than the maximum would
result in only a small squaring-loss penalty. We remind the reader that, with
active arm filters of the I&D type, one does not have this design flexibility since
the arm filter bandwidth of such a filter is fixed at Bi = 1/T = R, and thus
the squaring loss is also fixed at its value given by Eq. (8-13). Figure 8-7 is
a comparison of the squaring-loss behavior for one- and two-pole Butterworth
filters at two different detection SNRs. While the two-pole filter has a slightly
better optimum squaring-loss performance, it is also more sensitive to data rate
variation above the optimum value than is the one-pole filter. Thus, we see that
the design of the arm filter is a trade-off between the optimum performance and
sensitivity to data rate variation.

The next question is: How much do we sacrifice in performance by using
a passive arm filter rather than the active one (matched filter)? Figure 8-8
illustrates a comparison between the optimum squaring-loss performances of the

4 Note that since SL ≤ 1, maximizing SL is equivalent to minimizing the squaring loss in dB.
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Fig. 8-5.  Squaring-loss performance of Costas loop with single-pole

Butterworth arm filters; Manchester-coded data.
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Fig. 8-6.  Squaring-loss performance of Costas loop with two-pole

Butterworth arm filters; Manchester-coded data.
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Fig. 8-7.  A comparison of the squaring-loss performance of Costas

loops with single- and two-pole arm filters at two different SNRs.
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matched filter with perfect symbol synchronization, one- and two-pole Butter-
worth filters, and an ideal (brick wall) filter which corresponds to a Butterworth
filter with N → ∞. The curves are plotted for a Manchester data format. At
high SNR, the optimum squaring-loss performance of the passive filters becomes
independent of the number of filter poles, and at a detection SNR of 10 dB it is
about 1 dB worse than that of the perfectly symbol-synchronized matched filter.
We also note in passing that the performance of the matched-filter implementa-
tion is independent of the data format and is given by Eq. (8-13).

We now return to a point made earlier, namely, the ability of a Costas loop to
successfully track a residual carrier BPSK signal, including the extreme case of a
totally unmodulated carrier. When both a data-modulated and an unmodulated
carrier component are simultaneously present at the input to a Costas loop, the
two components tend to oppose each other at the error signal point in the loop.
In fact, based on an analysis of a similar situation [11], it can be shown that
there exists a critical modulation index at which the signal component of the
loop error signal (loop S-curve) degenerates to zero, in which case the loop will
not track at all. This critical modulation index is given by

β∗ = cot−1
√

K2 (8 32)

where K2 is defined for a particular modulation format and arm filter type in
Eq. (8-21). For a modulation index greater than β∗, the loop S-curve has the
usual sin 2φ characteristic and has stable lock points at φ = ±nπ, n = 0, 1, 2, · · ·,
which corresponds to the desired operation of the loop (assuming that one takes
measures to resolve the normal 180-deg phase ambiguity, such as differential
encoding of the input data). On the other hand, for a modulation index less than
β∗ (which of course includes the limiting case of β = 0, a totally unmodulated
carrier), the loop S-curve has a − sin 2φ characteristic and has stable lock points
at φ = ±(2n + 1)π/2, n = 0, 1, 2, · · · that, from a data detection standpoint, is
an undesirable operating condition. Of course, if one knew the modulation index
was in the region β < β∗, one could always insert a −1 gain in either the I or
Q arm of the loop just prior to the I-Q multiplier, which would thereby invert
the loop S-curve and reestablish the lock points at their desired location.

To quantify the degradation in performance in the presence of a residual
carrier, it is straightforward to modify the results in [10] to show that under
such conditions the squaring loss is given by

SL =

(
K2 sin2 β − cos2 β

)2

cos2 β + K4 sin2 β +
1
2
Rt

(
sin2 2β

) (
Sm(0)

T

)
+ KL

Bi/R

2Rt

(8 33)
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where Rt
�= PtT/N0 is the total SNR. Since for Manchester coding Sm(0) = 0,

Eq. (8-33) simplifies to

SL =

(
K2 sin2 β − cos2 β

)2

cos2 β + K4 sin2 β + KL
Bi/R

2Rt

(8 34)

Next, for the discrete (unmodulated) carrier case wherein β = 0 (Pt = Pc),
Eq. (8-33) becomes

SL =
1

1 + KL
N0Bi

2Pc

(8 35)

Note that, unlike the data-modulated case, there is no optimum arm filter
bandwidth-to-data rate ratio since SL is independent of the data rate. Fur-
thermore, the squaring loss is smallest (SL is maximum) for an unmodulated
carrier. However, since, for any finite arm filter bandwidth, SL < 1, then from
Eq. (8-9), the phase error variance will always exceed that which arises from a
PLL as alluded to previously.

When the data modulation is an NRZ-modulated square-wave subcarrier and
as such the transmitted signal is characterized by Eq. (8-3), then the behavior of
the Costas loop in the presence of a residual carrier is somewhat different from
that described above. To illustrate this difference in the simplest way, we assume
perfect subcarrier demodulation and once again active (I&D) arm filters. Under
these circumstances, the I and Q I&D outputs would be given by

zck =
∫ (k+1)T

kT

r (t)
[√

2 cos
(
ωct + θ̂c

)
Sq (ωsct)

]
dt

=
√

Pc sinφ

∫ (k+1)T

kT

Sq (ωsct) dt +
√

Pdck cos φ

∫ (k+1)T

kT

Sq2 (ωsct) dt + Nc

=
√

PdT ck cos φ + Nc

(8 36)

zsk =
∫ (k+1)T

kT

r (t)
[
−
√

2 sin
(
ωct + θ̂c

)
Sq (ωsct)

]
dt

=−
√

Pc cos φ

∫ (k+1)T

kT

Sq (ωsct) dt +
√

Pdck sinφ

∫ (k+1)T

kT

Sq2 (ωsct) dt + Ns

=
√

PdT ck sinφ + Ns
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where Nc, Ns are again independent zero-mean Gaussian RVs with variance
N0T/2 and we have assumed a unit square-wave subcarrier with either an in-
teger number of subcarrier cycles per bit or instead a large ratio of subcarrier
frequency to bit rate. We observe that aside from the reduction of the power
in the data signal from the total power Pt to Pd = Pt sin2 β, the I&D outputs
in Eq. (8-36) are identical to what would be obtained for the same Costas loop
operating in the conventional suppressed-carrier mode. Thus, we conclude (at
least under the ideal assumptions made) that, in the case of an NRZ-modulated
square-wave subcarrier, the presence of a discrete carrier component does not
degrade the performance of the loop other than to reduce the effective power in
the data component by sin2 β. Before leaving this subject, we also mention that
since, as previously mentioned in Section 8-1, a Manchester-coded BPSK can be
viewed as an NRZ data waveform modulated onto a square-wave subcarrier at
the data rate prior to modulation onto the carrier, then, since the above argu-
ments are independent of the subcarrier frequency, the same conclusion would
also be true for this case when active (matched) filters are used in the I and
Q arms of the Costas loop.

Finally, it is natural to ask whether there is an optimum passive arm filter
type in the sense of minimizing the mean-squared phase error. In particular, one
seeks a solution for |G (2πf)|2 that minimizes

S−1
L =

Pd

∫ ∞
−∞ Sm (f) |G (2πf)|4 df +

N0

2
∫ ∞
−∞ |G (2πf)|2 df

{∫ ∞
−∞ Sm (f) |G (2πf)|2 df

}2 (8 37)

Using the method of Lagrange multipliers, it can be shown that the optimum arm
filter magnitude-squared transfer function (which may or may not be physically
realizable) is given by

|Gopt (2πf)|2 = λ
Sm (f)

Sm (f) +
N0

Pd

(8 38)

where λ is a Lagrange multiplier. Note that for low SNR (Pd/N0 � 1), we obtain

Gopt (2πf) =
√

λ
Pd

N0

[
Sm (f)

]+ (8 39)

where the “+” superscript refers to the part of Sm (f) with poles in the left
half-plane and as such represents the matched-filter solution.
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8.4 Carrier Synchronization of Arbitrary Modulations

8.4.1 MPSK

In this section, we begin by continuing to consider the class of M -PSK
modulations, where the value of M = 2m is now arbitrary. In an earlier section,
we considered a carrier synchronization closed loop for BPSK that was motivated
by the MAP estimation technique. Such an “optimum” loop was in the form of
an I-Q structure with a hyperbolic tangent nonlinearity in its in-phase arm that
resulted from using the gradient of the likelihood function as an error-control
signal. Applying the MAP estimation technique for values of M > 2 [1,2], it can
be shown that the derivative of the log-likelihood ratio has the form

dΛ (θc)
dθc

∼=
K−1∑

k=0

m−2∑

l=0

ClV tanh (ClU) − SlU tanh (SlV )

1 +
m−2∑
n=0
n�=l

cosh (CnU) cosh (SnV )
cosh (ClU) cosh (SlV )

(8 40)

where

Cl
�= cos

(2l + 1)π

M

Sl
�= sin

(2l + 1)π

M

(8 41)

and

U =
2
√

2Pd

N0

∫ (k+1)T

kT

r (t) p (t − kT ) sin (ωct + θc)dt

V =
2
√

2Pd

N0

∫ (k+1)T

kT

r (t) p (t − kT ) cos (ωct + θc)dt

(8 42)

Once again using the derivative of the log-likelihood function to motivate an er-
ror signal in a closed-loop implementation, the carrier synchronization loop that
results is again an I-Q structure; however, the nonlinearity no longer resides only
in the in-phase arm and, furthermore, as can be seen from Eq. (8-40), is consider-
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ably more complicated than a simple hyperbolic tangent function.5 An example
of such a closed loop is illustrated in Fig. 8-9 for 8-PSK. We also have seen pre-
viously that, by approximating the nonlinearity for small and large arguments,
one arrives at structures that are synonymous with well-known synchronization
schemes for BPSK and approach the performance of the true MAP-motivated
loop at low and high SNRs. Indeed, for M > 2, one can take the same approach
and arrive at universal structures that lend themselves to simple implementa-
tion.

For large arguments we again use the approximation tanhx ∼= sgn x and in
addition

cosh x ∼= 1
2

exp (|x|) (8 43)

Although not immediately obvious, these approximations lead to a closed-
loop synchronizer that incorporates the optimum M -PSK symbol detector
(MAP phase estimator) in its structure. An example of this is illustrated in
Fig. 8-10 for 8-PSK and thus corresponds to the high SNR approximation of
Fig. 8-9. For QPSK, the structure is somewhat simpler, involving hard-limiters
(signum functions) in each of the I and Q arms as well as a crossover processing
between the inputs and outputs of these nonlinearities to form the error signal [5]
(see Fig. 8-11 for the passive arm filter implementation).

For small arguments, if one tries to use only the first term in the power series
expansion of tanhx, it can be shown [5,6] that for M > 2 the derivative of the
log-likelihood function in Eq. (8-40) becomes equal to zero for all values of θc and
thus cannot be used to motivate an error signal in a closed-loop configuration.
In order to get a nonzero log-likelihood function, it can be shown that one must
retain the first M/2 terms in the power series expansion. Thus, for example, for
M = 4 and M = 8, we should use the approximations

tanhx ∼=

⎧
⎪⎪⎨
⎪⎪⎩

x − x3

3
, M = 4

x − x3

3
+

2x5

15
− 17x7

315
, M = 8

(8 44)

and in addition

5 For M = 4, i.e., QPSK, the nonlinearity is still a hyperbolic tangent function that now resides
in both the I and Q arms.
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Fig. 8-9.  A closed loop motivated by the MAP estimation of carrier phase for 8-PSK.
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Applying these approximations and once again using passive arm filters, we
obtain the single closed-loop structure illustrated in Fig. 8-12 capable of carrier
synchronizing BPSK, QPSK, and 8-PSK. Several things are interesting about
this structure. First of all, it is strictly of the I-Q type in that the loop error
signal for all three modulations is derived from the I and Q arm filter outputs
(i.e., U and V ). The second and more interesting feature is that the error signal
for the two higher-order modulations (M = 4 and M = 8) is derived from the
multiplication of a product of two signals and a difference of squares of these
same two signals. To see why this comes about, all one has to do is consider the
following simple trigonometry.

For BPSK, the error signal is proportional to sin 2φ, which can be expressed
as

sin 2φ = 2 sinφ cos φ (8 46)
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Fig. 8-11.  High SNR approximation of the MAP estimation loop for BPSK and QPSK.
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Thus, since U is proportional to sinφ and V is proportional to cosφ, we see that
the error signal is simply proportional to the product of U and V . For QPSK,
the error signal is proportional to sin 4φ, which can be expressed as

sin 4φ = 2 sin 2φ cos 2φ = 2 sin 2φ︸ ︷︷ ︸
error signal
for BPSK

(cos2 φ − sin2 φ)︸ ︷︷ ︸
lock detector signal

for BPSK

(8 47)

Similarly, for 8-PSK, the error signal is proportional to sin 4φ which can be
expressed as

sin 8φ = 2 sin 4φ cos 4φ = 2 sin 4φ︸ ︷︷ ︸
error signal
for QPSK

(cos2 2φ − sin2 2φ)︸ ︷︷ ︸
lock detector signal

for QPSK

(8 48)
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Fig. 8-12.  A Costas-type loop capable of carrier tracking BPSK, QPSK,

and 8-PSK; low SNR approximation of MAP estimation loop.
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Examination of Fig. 8-12 clearly reveals that the error signals for the three modu-
lations are formed in accordance with the relations in Eqs. (8-46) through (8-48).
Thus, we conclude in general that the canonical structure for M -PSK has a front
end (generation of the signals U and V ) as in Fig. 8-12 and forms its error signal
from the product of the error signal for M/2-PSK and the lock detector signal
for M/2-PSK.

To use such a canonical configuration in an environment where the value
of M is not known for certainty, one would proceed as follows. Since a BPSK
loop cannot track QPSK, a QPSK cannot track 8-PSK, etc., one could start with
the switch corresponding to the position of the lowest order modulation (BPSK)
and sequentially move the switch to the positions of QPSK, 8-PSK, etc., until
the loop locks. Another possibility would be to fix the switch in the position
corresponding to the highest order loop and, provided that it would be capable of
tracking all lower order modulations, accept the additional performance penalty
incurred by using a higher order nonlinearity than necessary. To this end, as an
example, we now examine the ability of a QPSK loop to track a BPSK signal.
Since this issue appears not to be readily discussed in the literature, we shall
be a bit more detailed here than we have been thus far in other parts of this
chapter.

Consider the MAP estimation loop for QPSK illustrated in Fig. 8-13. The
input to the loop is the BPSK signal r (t) = s (t, θc) + n (t), where
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Fig. 8-13.  The MAP estimation loop for carrier tracking QPSK with NRZ coding.
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s (t, θc) =
√

2Pdm (t) sin (ωct + θc) (8 49)

and the additive noise has the narrowband expansion

n (t) =
√

2
[
nc (t) cos (ωct + θc) − ns (t) sin (ωct + θc)

]
(8 50)

where nc (t) , ns (t) are independent, low-pass Gaussian processes, each with
single-sided PSD N0 W/Hz and bandwidth BH < ωc/2π. Assuming unit in-
put I and Q phase detector (multiplier) gains and demodulation reference sig-
nals rc (t) =

√
2 cos

(
ωct + θ̂c

)
and rs (t) =

√
2 sin

(
ωct + θ̂c

)
, then, after passing

through the I and Q I&D filters of duration6 T and amplification by
√

2Pd/N0,
the sample-and-hold outputs zc (t) and zs (t) are given by

6 We remind the reader again that we are considering the case where the modulation band-
width is held fixed and thus the I&D filters in all the configurations have a duration equal
to the symbol time. Thus, while for the same information (bit) rate one would associate two
BPSK bits with a QPSK symbol, for the same symbol rate, the I&D filters would correspond
to a single bit interval for BPSK.
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zs(t)
�=

√
2Pd

N0

∫ (k+1)T

kT

r(t)rs(t)dt

=
√

2Rdck cos φ −
√

RdX1 cos φ −
√

RdX2 sinφ

zc(t)
�=

√
2Pd

N0

∫ (k+1)T

kT

r(t)rc(t)dt

=
√

2Rdck sinφ −
√

RdX1 sinφ +
√

RdX2 cos φ

(8 51)

where (k + 1)T ≤ t ≤ (k + 2)T and where X1, X2 are zero-mean, unit variance
independent Gaussian RVs. Multiplying zc (t) by the nonlinearly processed zs (t)
and vice versa gives the dynamic error signal

zo(t) = −zs(t) tanh zc(t) + zc(t) tanh zs(t) (8 52)

As in all analyses of this type, the tracking performance of a loop can, in its
linear region of operation (small phase error), be determined by examining the
equivalent signal and noise components of the zo(t) process, more specifically,
the slope of the equivalent S-curve at φ = 0 and the variance of the equivalent
additive noise. This makes the usual assumption that the loop bandwidth is
much less than the data bandwidth.

Since X1 and X2 are zero-mean random variables, then, from Eq. (8-52)
together with Eq. (8-51), the signal component of zo(t) has a mean, i.e., the
S-curve of the loop, given by

η (φ) = − 4
√

2Rd(ck cos φ) tanh
[√

2Rdck sinφ

−
√

RdX1 sinφ +
√

RdX2 cos φ
]X1,X2,ck

+ 4
√

2Rd(ck sinφ) tanh
[√

2Rdck cos φ

−
√

RdX1 cos φ −
√

RdX2 sinφ
]X1,X2,ck

= − 4
√

2Rd cos φ tanh
(√

2Rd sinφ −
√

RdX1 sinφ +
√

RdX2 cos φ
)X1,X2

+ 4
√

2Rd sin φ tanh
(√

2Rd cos φ −
√

RdX1 cos φ −
√

RdX2 sinφ
)X1,X2

(8 53)
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This S-curve is an odd function of φ and is periodic with period π/2, which
implies a phase ambiguity for the loop of 90 deg. This ambiguity, which must
be resolved for successful data detection, is the same as would be the case for
the loop tracking a QPSK signal. Aside from the ambiguity itself, it can also be
observed from Eq. (8-53) that the S-curve passes through zero midway between
these potential lock points, namely, at φ = π/4. Thus, in order to determine
whether the loop will correctly lock at φ = 0 (assuming resolution of the ambi-
guity) or incorrectly at φ = π/4, one needs to show that the slope of the S-curve
at the former phase error value is positive (which would imply that the slope at
the latter value is negative).

The slope of the S-curve at φ = 0 is obtained by differentiating Eq. (8-53)
with respect to 4φ and evaluating the result at this same phase error value.

Recognizing that X sech2√RdX
X

= 0, it is straightforward to show that

Kη =
dη (φ)
d (4φ)

|φ=0 =
√

2Rd tanh
(√

2Rd −
√

RdX
)X

− 2R2
d sech2

(√
RdX

)X

(8 54)

If we now make the low SNR approximation of the nonlinearities in Eq. (8-54)
using only the first terms of their Taylor series expansions, i.e.,

tanhx ∼= x, sech2 ∼= 1 (8 55)

then since the X’s are zero mean, we immediately get

Kη = 0 (8 56)

which implies that the loop would be unable to lock at all. Thus, as was the case
in deriving the QPSK MAP estimation loop from maximum-likelihood consid-
erations, we must include the next terms in the Taylor series expansions of the
nonlinearities. That is, we apply

tanhx ∼= x − x3

3
, sech2x =

d

dx
tanhx ∼= 1 − x2 (8 57)

which results in the QPSK portion of the implementation in Fig. 8-12 but with
I&D arm filters. When this is done, making use of the moments of a Gaussian
RV, we obtain
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tanh (a − bX)
X ∼= a

(
1 − a2

3
− b2

)

sech2bX
X ∼= 1 − b2

(8 58)

and thus

tanh (a − bX)
X − a sech2bX

X ∼= −a3

3
(8 59)

Using Eq. (8-59) in Eq. (8-54) gives

Kη =
√

2Rd

(
−1

3

(√
2Rd

)3
)

= −4
3
R4

d (8 60)

which is negative and thereby would require that the signs on the summer at the
input to the accumulator in Fig. 8-13 be reversed, i.e., the polarity of the error
signal flipped, in order for the loop to correctly lock at φ = 0 (and equally well
at the ambiguity phase error values φ = π/2, π, 3π/2).

Proceeding now to an evaluation of the equivalent noise PSD, ignoring the
self-noise of the signal component, the noise component of zo (t) (evaluated at
φ = 0) is

Ne (t) =
√

RdX1 tanh
(√

RdX2

)
+

√
RdX2 tanh

[√
2Rdck −

√
RdX1

]
(8 61)

which has zero mean and variance

σ2
Ne

= Rd

{
tanh2

(√
RdX

)X

+ tanh2
(√

2Rd −
√

RdX
)X

+ 2X tanh
(√

RdX
)X [

X tanh
(√

2Rd −
√

RdX
)X]}

(8 62)

Once again we apply the approximations of the nonlinearities in Eq. (8-57) to
evaluate the variance in Eq. (8-62). In particular, the following results for each
statistical average are obtained:
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tanh2
(√

2Rd −
√

RdX
)X

=
8
9
R6

d +
20
3

R5
d +

22
3

R4
d − 19

3
R3

d + Rd

tanh2
(√

RdX
)X

= Rd − 2R2
d +

5
3
R3

d

X tanh
(√

RdX
)X

=
√

Rd (1 − Rd)

X tanh
(√

2Rd −
√

RdX
)X

= −
√

Rd

(
1 − Rd − 2R2

d

)

(8 63)

Substituting the results of Eq. (8-63) into Eq. (8-62) results after some simplifi-
cation in

σ2
Ne

= Rd

(
8
9
R6

d +
20
3

R5
d +

10
3

R4
d − 8

3
R3

d + 2R2
d

)
(8 64)

Because of the I&D arm filters in Fig. 8-13, the noise process of Eq. (8-61)
is piecewise constant over intervals of T -seconds duration. Thus, as long as
the loop bandwidth is much less than the data bandwidth, this process can be
approximated, as has been done in the past, by a delta-correlated process with
correlation function given by

RNe(τ) �= Ne(t)Ne(t + τ) =

⎧
⎨
⎩

σ2
Ne

[
1 − |τ |

T

]
, |τ | ≤ T

0; |τ | > T

(8 65)

with equivalent single-sided noise spectral density

N ′
0

�= 2
∫ ∞

−∞
RNe (τ) dτ = 2σ2

Ne
T (8 66)

As such, the linearized phase error variance is given by

σ2
φ = N ′

0BL/K2
η = (ρSL)−1 (8 67)

where ρ is the linear loop (PLL) SNR as defined in Eq. (8-10) and SL is the
“quadrupling loss” which reflects the penalty paid due to the signal and noise
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cross-products present in zo(t). Substituting Eq. (8-66) in Eq. (8-67), the qua-
drupling loss can be identified as

SL =
(

1
2Rd

)
K2

η

σ2
Ne

=
K2

η/
(
2R2

d

)

σ2
Ne

/Rd
(8 68)

Finally, substituting Eqs. (8-60) and (8-64) in Eq. (8-68) gives the desired result:

SL =

8
9
R6

d

8
9
R6

d +
20
3

R5
d +

10
3

R4
d − 8

3
R3

d + 2R2
d

=
1

1 +
15

2Rd
+

15
4R2

d

− 3
R3

d

+
9

4R4
d

(8 69)

It is interesting to compare this loss to that which would result from the
same loop tracking a QPSK signal. In particular, for the MAP estimation loop
with a QPSK input, the squaring loss is given by [4]

SL =

[
tanh

(
Rd −

√
RdX

)X
− Rd sech2

(√
RdX

)X
]2

(1 + Rd) tanh2
(
Rd −

√
RdX

)X

−
[
Xtanh

(
Rd −

√
RdX

)X
−
√

Rdtanh
(
Rd −

√
RdX

)]

(8 70)

which for the low SNR approximation loop (the QPSK portion of Fig. 8-12 with
I&D arm filters) reduces, after considerable manipulation, to [6]

SL =
1

1 +
9

2Rd
+

6
R2

d

+
3

2R3
d

(8 71)

Thus, from a comparison of Eqs. (8-69) and (8-71), we conclude that while the
QPSK carrier tracking loop is capable of tracking a BPSK signal it does so with
a different mean-squared tracking error performance than for a QPSK input
signal. Furthermore, the quadrupling loss of Eq. (8-69) exceeds the squaring loss
of Eq. (8-13) for all SNRs. The more important issue, however, is the means
by which the 90-deg phase ambiguity must be resolved. Whereas for a BPSK
loop tracking a BPSK signal one can easily resolve the associated 180-deg phase
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ambiguity by differentially encoding the binary data, resolving the 90-deg phase
ambiguity associated with the QPSK loop cannot be resolved solely by the same
means. In the case of the latter, one must in addition detect the data from the
outputs of both the I and Q channels and choose the one that has the higher
reliability.

In view of the issues brought forth in the above example, it appears that the
preferred solution for autonomous operation is not to use a single loop for all
modulation orders but rather to first classify the modulation, i.e., determine its
order and then place the switch in Fig. 8-12 in its appropriate position.

8.4.2 QAM and Unbalanced QPSK

It is straightforward to extend the notions described above to other modu-
lations with a quadrature structure such as QAM and unbalanced quadrature
phase-shift keying (UQPSK) [6]. For example, for square QAM with M = K2

symbols described by

s (t, θc) =
√

2AmI (t) cos (ωct + θc) +
√

2AmQ (t) sin (ωct + θc)

A =

√
3

2 (M − 1)
Pd

(8 72)

where mI (t) , mQ (t) are the quadrature data modulations of rate 1/T taking
on values ±1,±3, · · · ,±

√
M − 1, the derivative of the log-likelihood function

becomes

dΛ (θc)
dθc

∼=
K−1∑

k=0

∑√
M/2

l=1 exp
(
−c2

l Rd

)
clV

′ sinh (clU
′)

∑√
M/2

l=1 exp (−c2
l Rd) cosh (clU ′)

−
K−1∑

k=0

∑√
M/2

l=1 exp
(
−c2

l Rd

)
clU

′ sinh (clV
′)

∑√
M/2

l=1 exp (−c2
l Rd) cosh (clV ′)

(8 73)

where cl = 2l − 1, U ′ =
√

3/ (M − 1)U, V ′ =
√

3/ (M − 1)V , and, as before,
Rd = PdT/N0 is the data SNR. A closed-loop carrier synchronizer motivated
by this MAP estimation approach is illustrated in Fig. 8-14. Here again we
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Fig. 8-14.  The MAP estimation loop for square QAM.
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notice the I-Q front end and crossover (between the I and Q arms) processing
with the appropriate nonlinearity to establish the error signal. The passive arm
filter implementation based on the large argument (high SNR) approximation
of the nonlinearity is illustrated in Fig. 8-15 for M = 16. At low SNR, use
of the approximations sinh ∼= x, cosh x ∼= 1 + 0.5x2, and expx ∼= 1 − x in
Eq. (8-73) results in the carrier synchronization loop of Fig. 8-16, which is iden-
tical to the QPSK portion of the canonical structure of Fig. 8-12. Thus, at low
SNR, the multilevel nature of the QAM has no bearing on the closed-loop struc-
ture motivated by the MAP estimation approach, i.e., it is sufficient to use a
QPSK loop.

For unbalanced QPSK, the transmitted signal is of the form

s (t, θc) =
√

2P1m1 (t) cos (ωct + θc) +
√

2P2m2 (t) sin (ωct + θc) (8 74)

where P1, P2 are the average signal powers in the I and Q arms, respectively,
and mI (t) , mQ (t) are the quadrature data modulations of rates 1/T1 and 1/T2

and, in general, different pulse shapes p1 (t) and p2 (t). For this modulation, the
derivative of the log-likelihood function becomes
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Fig. 8-15.  High SNR approximation of the MAP estimation loop for
amplitude modulation (AM) and QAM.
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dΛ(θc)
dθc

∼=
K2∑

k=0

(
2
√

2P2

N0

∫ δk+1

δk

r(t)p2(t − δk) cos(ωct + θc)dt

)

× tanh

{
2
√

2P2

N0

∫ δk+1

δk

r(t)p2(t − δk) sin(ωct + θc)dt

}

−
K1∑

k=0

(
2
√

2P1

N0

∫ τk+1

τk

r(t)p1(t − τk) cos(ωct + θc)dt

)

× tanh
{

2
√

2P1

N0

∫ τk+1

τk

r(t)p1(t − τk) sin(ωct + θc)dt

}
(8 75)

In Eq. (8-75), τk(k = 0, 1, · · · , K1) is the ordered set of time instants at which the
modulation m1(t) may potentially have a symbol transition in the observation
interval (0 ≤ t ≤ To). Similarly, δk(k = 0, 1, · · · , K2) is the ordered set of time
instants at which the modulation m2(t) may potentially have a symbol transi-
tion in the same observation interval. Note that, since we have not restricted T1

or T2 to be integer related, it is possible that the observation may not contain
an integer number of symbol intervals of one of the two modulations. For this
reason, we allow the summations in Eq. (8-75) to extend over K + 1 symbols.
Furthermore, no restriction is placed on the relative synchronization between the
taus and the deltas.

Figure 8-17 illustrates the MAP estimation closed loop that results from using
Eq. (8-75) as an error signal. As before, one can use the approximations of the
hyperbolic tangent nonlinearity as given in Eq. (8-14) to produce low and high
SNR configurations. The difficulty with using the small argument approxima-
tion is that, as the ratio of rates and powers both approach unity, i.e., balanced
QPSK, the two pairs of matched filters (or equivalently the two pairs of arm
filters in the passive implementation) become identical, and thus the error signal
at the input to the loop filter goes to zero for all phase errors. Thus, as was done
previously in deriving the MAP estimation loop for balanced QPSK, one must
consider the first two terms of the power series expansion of the hyperbolic tan-
gent nonlinearity as in Eq. (8-44), which results in the configuration illustrated
in Fig. 8-18 (assuming the passive arm filter implementation). Note that this
two-channel Costas loop reduces (except for the 1/3 gain factor) to Fig. 8-16
when the transmitted signal becomes balanced QPSK. Thus, this configuration
is capable of tracking unbalanced as well as balanced QPSK.
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Fig. 8-17.  A closed loop motivated by the MAP estimation of carrier phase

for unbalanced QPSK.
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We conclude by noting that, depending on the ratio of powers in the two
channel of the UQPSK signal, it is possible to employ just the simple biphase or
quadriphase Costas loops previously discussed, bearing in mind, however, that
the performance of such would then be inferior to that of the loop in Fig. 8-18.

8.4.3 π/4 Differentially Encoded QPSK

As a final modulation form, we consider the case of π/4 differentially en-
coded QPSK in which the information phase symbols are chosen from the set
(±π/4,±3π/4) and are differentially encoded prior to transmission. Denoting
the information symbol in the nth symbol interval by ∆φn, then the actual
transmitted symbol in the same interval is given by φn = φn−1 +∆φn, which, in
view of the set used to define ∆φn as given above, alternates between the allow-
able sets (0, π/2, π, 3π/2) and (±π/4,±3π/4) in successive transmission inter-
vals. Because of this π/4 rad rotation of the transmitted signaling constellation
from symbol to symbol, the maximum instantaneous phase change between two
successive symbols is 3π/4 rad. This is to be compared to a maximum instanta-
neous phase change of π rad for the case where the signaling constellation does
not rotate from symbol to symbol or, equivalently, the information symbols to
be differentially encoded are chosen from the set (0, π/2, π, 3π/2). Reducing the
maximum phase jump from π to 3π/4 reduces the envelope fluctuation in the
signal, which is desirable on nonlinear channels to prevent spectral side lobes
from being regenerated after having been filtered.

Applying the same MAP phase estimation approach as previously used to
motivate a closed-loop structure, it can be shown that the appropriate carrier
synchronizer for this so-called π/4 differentially encoded QPSK modulation is as
illustrated in Fig. 8-19. Once again, if desired, one can apply the appropriate
approximations to the hyperbolic tangent function to arrive at low and high SNR
implementations of this generic structure.
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Fig. 8-19.  MAP estimation loop for carrier synchronization 
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Appendix 8-A

Cramer–Rao Bound on the Variance of the
Error in Estimating the Carrier Phase

of a BPSK Signal

As we have seen earlier in the chapter, MAP estimation of the carrier phase
of a BPSK-modulated carrier can be formulated as the solution to a problem in
which a suitably defined likelihood function is maximized with respect to the car-
rier phase parameter. As a check on the efficiency of the estimator so obtained,
one often derives the Cramer–Rao lower bound [7] on the performance measure
being considered. Here we derive the Cramer–Rao bound on the variance of the
error in the MAP estimation of the phase of a BPSK signal. More often than
not, what is typically done in the literature in such applications is to use the
result obtained for an unmodulated carrier, which as we shall see is a proper
thing to do only at high SNR.

Consider an observation over an interval To = KT seconds of a BPSK-
modulated carrier in AWGN, where K denotes the number of bits in the ob-
servation and T is the bit time (the reciprocal of the bit rate). The received
signal in the kth bit time interval kT ≤ t ≤ (k + 1)T takes the form
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r(t) = s(t, θc) + n(t) =
√

2Pdck cos (ωct + θc) + n(t) (A-1)

where Pd is the received data power, ωc is the radian carrier frequency, ck is the
kth bit taking on equiprobable ±1 values, and n(t) is the AWGN with single-sided
power spectral density N0 W/Hz. The likelihood function for the observation r(t)
conditioned on the data sequence c = (c1, c2, · · · , cK) and the carrier phase θc is
well-known to be

p
(
r(t) |θc, c

)
= C exp

{
− 1

N0

∫ To

0

[
r(t) − s(t, θc)

]2
dt

}

= C
K−1∏

k=0

exp

{
− 1

N0

∫ (k+1)T

kT

[
r(t) − s(t, θc)

]2
dt

}
(A-2)

To determine the Cramer–Rao bound, it is necessary to evaluate the parameter

γ
�= E

⎧
⎨
⎩

(
∂ ln p

(
r (t) |θc

)

∂θc

)2
⎫
⎬
⎭ (A-3)

Thus, we must first average Eq. (A-2) over the bit sequence in order to arrive
at p

(
r(t)|θc

)
. Denoting s1(t, θc) as the transmitted signal in the kth bit interval

when ck = 1 and likewise s−1 (t, θc) as the transmitted signal in the kth bit
interval when ck = −1, then

p
(
r(t) |θc

)
= C

K−1∏

k=0

[
1
2

exp

{
− 1

N0

∫ kT

(k−1)T

[
r(t) − s1 (t, θc)

]2
dt

}

+
1
2

exp

{
− 1

N0

∫ (k+1)T

kT

[
r(t) − s−1 (t, θc)

]2
dt

}]

= C

K−1∏

k=0

exp

{
− 1

N0

∫ (k+1)T

kT

r2(t)dt

}
exp (−Rd)

× cosh

{
2

N0

∫ (k+1)T

kT

r(t)s1 (t, θc) dt

}
(A-4)
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where Rd = PdT/N0 is, as before, the data SNR. Taking the natural logarithm
of Eq. (A-4) and differentiating with respect to θc gives

∂ ln p
(
r(t) |θc

)

∂θc
=

K−1∑

k=0

∂

∂θc
ln cosh

{
2

N0

∫ (k+1)T

kT

r(t)s1 (t, θc) dt

}

=
K−1∑

k=0

tanh

{
2

N0

∫ (k+1)T

kT

r(t)s1 (t, θc) dt

}

×
[{

2
N0

∫ (k+1)T

kT

r(t)
∂s1 (t, θc)

∂θc
dt

}]

= −
K−1∑

k=0

tanh

{
2
√

2Pd

N0

∫ (k+1)T

kT

r(t) cos (ωct + θc) dt

}

×
[

2
√

2Pd

N0

∫ (k+1)T

kT

r(t) sin (ωct + θc) dt

]
(A-5)

Consider first the evaluation of Eq. (A-3) together with Eq. (A-5) for the
case of high SNR, where the tanh nonlinearity is approximated by the signum
function. Letting

Ik =
2
√

2Pd

N0

∫ (k+1)T

kT

r(t) cos (ωct + θc) dt

Qk =
2
√

2Pd

N0

∫ (k+1)T

kT

r(t) sin (ωct + θc) dt

(A-6)

then for high SNR we have

∂ ln p
(
y(t) |θc

)

∂θc
= −

K−1∑

k=0

Qk sgn Ik (A-7)

and because the Ik’s and Qk’s are iid and independent of each other,
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E

{(
∂ ln p (r(t) |θc )

∂θc

)2
}

=
K−1∑

k=0

E

⎧
⎪⎨
⎪⎩

Q2
k

=1︷ ︸︸ ︷
sgn2Ik

⎫
⎪⎬
⎪⎭

+ 2
K−1∑

k=0

k �=l

K−1∑

l=0

E {Qk sgn Ik}E {Ql sgn Il} (A-8)

Assuming that indeed s1 (t, θc) was transmitted in the kth interval, i.e., r(t) =
s1 (t, θc) + n(t), then substituting Eq. (A-6) into Eq. (A-8) and carrying out the
expectation over the noise gives, after simplification,

E
{
Q2

k

}
= 2Rd

E {Qk sgn Ik} = 0
(A-9)

If instead one assumes that the transmitted signal was s−1 (t, θc) rather than
s1 (t, θc), then one arrives at the identical result as Eq. (A-9). Thus, independent
of the actual transmitted data sequence, we have

E

{(
∂ ln p (r(t) |θc )

∂θc

)2
}

= K (2Rd) (A-10)

Finally, the Cramer–Rao bound on the variance of the unbiased estimation error
φ

�= θc − θ̂c is given by

σ2
φ ≥

⎡
⎣E

⎧
⎨
⎩

(
∂ ln p

(
r(t) |θc

)

∂θc

)2
⎫
⎬
⎭

⎤
⎦
−1

=
1

K (2Rd)
(A-11)

For an unmodulated carrier of energy E = PdTo over the observation, the
Cramer–Rao bound on the variance of the estimation error is given by

σ2
φ ≥ 1

2E/N0
(A-12)

which in view of the relation To = KT is identical to Eq. (A-8). Thus, as
previously mentioned, we see that the Cramer–Rao bound for the modulated
carrier is equivalent to that for the unmodulated carrier at high SNR.
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For low SNR, one approximates the tanh nonlinearity by a linear function,
i.e., tanhx = x. Thus, the analogous relation to Eq. (A-7) is now

∂ ln p (r(t) |θc )
∂θc

= −
K∑

k=1

QkIk (A-13)

Again because of the independence of the Ik’s and Qk’s we get

E

{(
∂ ln p (r(t) |θc )

∂θc

)2
}

=
K∑

k=1

E
{
Q2

kI2
k

}
+ 2

K∑

k=1

k �=l

K∑

l=1

E {QkIk}E {QlIl}

(A-14)
with (after much simplification)

E
{
Q2

kI2
k

}
= (2Rd)

2 (1 + 2Rd)

E {QkIk} = 0

(A-15)

Finally, substituting Eq. (A-15) into Eq. (A-14) gives the desired result, namely,

σ2
φ ≥ 1

K (2Rd)
2 (1 + 2Rd)

(A-16)

Note that at low SNR the bound approximately has an inverse square-law be-
havior with bit SNR as compared with the inverse linear behavior at high SNR.

It is important to emphasize that Eq. (A-16) is valid only when the denom-
inator on the right-hand side of the equation is large. Thus, it is possible to
apply the bound in Eq. (A-16) for small Rd provided that the number of bits in
the observation, K, is sufficiently large.



Chapter 9
Modulation Classification

Jon Hamkins and Marvin K. Simon

Modulation classification is the process of deciding, based on observations
of the received signal, what modulation is being used at the transmitter. It has
long been an important component of noncooperative communications in which
a listener desires to intercept an unknown signal from an adversary. It is also be-
coming increasingly important in cooperative communications, with the advent
of the software-defined autonomous radio. Such a radio must configure itself,
including what demodulator to use, based on the incoming signal.

In this chapter, we analyze the performance of optimum and sub-optimum
modulation classifiers to discriminate M -ary phase-shift keying (M -PSK) from
M ′-ary phase-shift keying (M ′-PSK). The measure of performance to be used is
the probability of misclassification, i.e., the probability of deciding that M -PSK
was transmitted when in fact M ′-PSK was transmitted, or vice versa.

After dispensing with preliminaries in Section 9.1, we continue in Section 9.2
with a presentation of approximations to the maximum-likelihood (ML) classi-
fier to discriminate between M -ary and M ′-ary PSK transmitted on an additive
white Gaussian noise (AWGN) channel and received noncoherently, partially co-
herently, or coherently, and when symbol timing is either known or unknown.
A suboptimum classifier is shown to be ten times less complex than the ML
classifier and has less than 0.1 dB of performance loss for symbol signal-to-noise
ratios (SNRs) in the range (−10,10) dB and any number of observed symbols.
Other methods are shown to reduce complexity by a factor of 100 with less than
0.2 dB of performance loss. We also present a classifier that does not require
an estimate of the symbol SNR, and in Section 9.3 we present a threshold op-
timization technique that improves the high-SNR performance of a previously
published classifier. Complexity of the classifiers is discussed in Section 9.4. In
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Section 9.5, we derive a classification error floor that exists for any classifier on
any memoryless channel, even a noiseless one, by deriving a lower bound on the
misclassification probability as a function of the number of observed samples.
In Section 9.6, we present numerical results of each of the classifiers along with
a summary comparison. In Section 9.7, we examine how symbol timing and
modulation type may be jointly estimated. In Section 9.8, we show that, for the
specific case of quadrature phase-shift keying (QPSK)/binary phase-shift keying
(BPSK) classification, the error floor does not occur if π/4-QPSK modulation is
used instead of QPSK. In Section 9.9, we follow the same ML approach as men-
tioned above for M -PSK (a special case of which is conventional QPSK) to derive
the optimum and approximate classifiers for offset quadrature phase-shift keying
(OQPSK) when received noncoherently over the AWGN. Examples are given for
the special cases of OQPSK/BPSK and minimum-shift keying (MSK)/QPSK
classifications. Finally, in Section 9.10, we discuss modulation classification in
the presence of a carrier frequency offset.

9.1 Preliminaries

9.1.1 Signal Model

For ease of exposition, this chapter is limited to binary hypothesis testing
in which each hypothesis occurs with equal a priori probability, although the
extension to multiple hypotheses and unequal a priori probabilities can be done
in the usual way [1]. Throughout, we assume M < M ′ and each is a power of two,
that the modulation type remains the same for N observed received symbols,
and that each point of the constellation is transmitted with equal probability.
The carrier phase, modulated data, and symbol timing are assumed unknown,
while M , M ′, the symbol duration, signal power, noise variance, and carrier
frequency1 are assumed known.

As in Eq. (1-7), the complex baseband representation of the received M -PSK
signal is

r̃(t) =
√

2Pt

∞∑

n=−∞
ej(θn+θc)p(t − nT − εT ) + ñ(t) (9 1)

where 2Pt is the known signal power of the complex baseband signal (the pass-
band power is Pt); θn = [2qn + (1 + (−1)M/2)/2]π/M is the data modula-
tion for the nth M -PSK symbol, with independent and uniformly distributed

1 Later on in the chapter, we shall consider modulation classification in the presence of a
residual carrier frequency error that may exist after frequency correction.
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qn ∈ {0, 1, · · · , M − 1); θc is the unknown carrier phase, uniform on [0, 2π);
p(t) is a pulse shape satisfying T−1

∫ T

0
p2(t)dt = 1; T is the known symbol dura-

tion; ε is the unknown fractional symbol timing, uniform on [0,1); and ñ(t) is a
complex AWGN process with two-sided power-spectral density N0 W/Hz per di-
mension (the passband process n(t) has two-sided power spectral density (PSD)
N0/2 W/Hz).

The complex observables corresponding to the matched filter outputs at time
instants (n + 1 + ε̂)T, n = 0, 1, 2, · · · , N − 1 are given by

r̃n (ε̂) =
1
T

∫ (n+1+ε̂)T

(n+ε̂)T

r̃ (t) p (t − nT − ε̂T ) dt (9 2)

A sequence of N observables corresponding to N received symbols is denoted
by r̃rr(ε̂) =

(
r̃1(ε̂), · · · , r̃N (ε)

)
. When the timing is known, the matched filter sets

ε̂ = ε, which results in the observable

r̃n = r̃n(ε) =
√

2Pte
j(θn+θc) + ñn, n = 0, · · · , N − 1 (9 3)

where we have dropped the symbol-timing argument. We will use the known-
timing assumption throughout the remainder of the chapter, except in Sec-
tion 9.7. In Eq. (9-3), ñn = ñn,R + jñn,I is a complex Gaussian random variable
with mean zero, variance σ2 = N0/T per dimension,2 and independent compo-
nents. Initially, we assume that Pt and σ2 are known at the receiver, although
we will drop that assumption later. For convenience, we denote the symbol SNR
as

γs =
Es

N0
=

Pt

σ2
=

PtT

N0
(9 4)

9.1.2 Conditional-Likelihood Function

The multivariate Gaussian probability density function of a complex vector x
with mean mx has the form [2, Eq. 2.99]

p(x) =
1

πN |C| exp
[
−(x − mx)∗T C−1(x − mx)

]
(9 5)

2 See Section 11.1 for a more detailed description of the noise variance in the discrete-time
model.
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where C is the covariance matrix. The covariance matrix for r̃rr, given M , θθθ =
(θ0, · · · , θN−1), and θc, is C = 2σ2I, where I is the N ×N identity matrix. Thus,
the conditional probability density function of the complex baseband received
signal r̃rr, given Pt, N0, M , θθθ, and θc, is

p(r̃rr|M,θθθ, θc) =
1

(2πσ2)N
exp

(
− 1

2σ2

N−1∑

n=0

∣∣∣r̃n −
√

2Pte
j(θn+θc)

∣∣∣
2
)

(9 6)

This may be rewritten as

p(r̃rr|M,θθθ, θc) = C exp

(
−Nγs + Re

{√
2Pt

σ2
e−jθc

N−1∑

n=0

r̃ne−jθn

})
(9 7)

where C does not depend on M and, therefore, drops out of the ratios we are
about to form. When Eq. (9-7) is averaged over θθθ, we obtain what we refer
to as the conditional-likelihood function (CLF), i.e., the conditional probability
density function of the received vector signal r̃rr, given M and θc. This is given
by [3, Eq. B.3b]

CLFM (θc) = C exp

⎡
⎣−Nγs +

N−1∑

n=0

ln

⎛
⎝ 2

M

M
2 −1∑

q=0

cosh
[
xn(q; θc)

]
⎞
⎠

⎤
⎦ (9 8)

where xn(q; θc) = (
√

2Pt/σ2)Re
[
r̃ne−j(θc+[2q+(1+(−1)M/2)/2]π/M)

]
. We may

rewrite Eq. (9-8) as

CLFM (θc) = Ce−Nγs

(
2
M

)N N−1∏

n=0

M
2 −1∑

q=0

cosh
[
xn(q; θc)

]
(9 9)

9.2 Modulation Classifiers

9.2.1 ML Classifiers

The ML modulation classifier results in the minimum probability of classi-
fication error if the modulation types occur with equal a priori probability. It
can be implemented by comparing the likelihood ratio (LR) of the N observed
samples to a unity threshold.
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9.2.1.1 ML Noncoherent Classifier Averaging over Data, then Carrier
Phase. The CLF in Eq. (9-9) has already been averaged over the unknown data.
The LR for the M and M ′ hypotheses is given by averaging over θc, which is
uniform over [0, 2π), and forming the ratio

LR =
LFM

LFM ′
=

Eθc

{
CLFM (θc)

}

Eθc

{
CLFM ′(θc)

} (9 10)

To compute the expectations in Eq. (9-10), typically hundreds of function eval-
uations are needed. In doing this,

√
2Pt/σ2 must be known to compute xn(·; ·).

Note that γs = Pt/σ2 alone is not sufficient to determine
√

2Pt/σ2.

9.2.1.2 ML Noncoherent Classifier Averaging over Carrier Phase, then
Data. Alternatively, we may average Eq. (9-7) over the carrier phase first. To
do this we rewrite Eq. (9-7) in the form

p
(
r̃rr |M,θθθ, θc

)

= C exp

⎛
⎜⎝−Nγs + Re

⎧
⎪⎨
⎪⎩

√
2Pt

σ2

∣∣∣∣∣

N−1∑

n=0

r̃ne−jθn

∣∣∣∣∣ e
−j

[
θc−arg

(
N−1∑
n=0

r̃ne−jθn

)]⎫
⎪⎬
⎪⎭

⎞
⎟⎠(9 11)

= C exp

{
−Nγs +

√
2Pt

σ2

∣∣∣∣∣

N−1∑

n=0

r̃ne−jθn

∣∣∣∣∣ cos

[
θc − arg

(
N−1∑

n=0

r̃ne−jθn

)]}
(9 12)

Averaging over the uniform distribution of θc gives

p (r̃rr |M,θθθ ) = exp (−Nγs) I0

(√
2Pt

σ2

∣∣∣∣∣

N−1∑

n=0

r̃ne−jθn

∣∣∣∣∣

)
(9 13)

where I0 (x) is the zero-order modified Bessel function of the first kind with
argument x. Next we average over the data phase sequence to obtain

LFM = p (r̃rr |M ) = E
θθθ

{
Ce−NγsI0

(√
2Pt

σ2

∣∣∣∣∣

N−1∑

n=0

r̃ne−jθn

∣∣∣∣∣

)}
(9 14)

This is feasible for small values of N , i.e., when the MN values of θθθ are relatively
manageable.
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9.2.1.3 ML Coherent/Partially Coherent Classification. In coherent re-
ception, the carrier phase θc is known, and the expectation in Eq. (9-10) degen-
erates to an evaluation of the CLF at a single point:

LR =
CLFM (θc)
CLFM ′(θc)

This is the optimum statistic for ML classification with coherent reception.
In partially coherent reception, only partial knowledge is available about the

carrier phase and thus the randomness is not completely removed. We may
account for this in the classifier by using a distribution on θc that is different
from the uniform distribution assumed in noncoherent reception. For example,
a phase-locked loop that tracks a residual carrier may produce an error in its
carrier phase estimate that is Tikhonov distributed [4,5]. Other randomness,
due to oscillator phase noise, intersymbol interference, or phase ambiguities, for
example, may also introduce nonuniform randomness to θc.

9.2.2 Suboptimum Classifiers

9.2.2.1 Coarse Integral Approximation in the LR. One way to compute
Eq. (9-10) is to accurately numerically evaluate the integrals in each of the
numerator and denominator. One can see from Eq. (9-9) that the period of
CLFM (θ) is 2π/M . Thus, we can write the likelihood function (LF) for hypoth-
esis H ∈ {M, M ′} as3

LFH =
H

2π

∫ 2π/H

0

CLFH(θ)dθ ∼= 1
I

I∑

i=1

CLFH

(
2iπ

IH

)
(9 15)

where the last approximation becomes an equality as I → ∞ by the rectangular
rule for integration. Standard integration algorithms [6] reduce computation by
using a nonuniform partition of the interval, but even then, typically more than a
hundred CLF evaluations are needed for an accurate integral evaluation. For the
problem at hand, however, we needn’t necessarily evaluate the integrals accu-
rately. For example, for random realizations of r̃rr, CLF2(θc) and CLF4(θc) often
differ by more than an order of magnitude. If one of the CLFs is higher than the
other for the entire range θc ∈ [0, 2π), then a single test (i.e., I = 1) comparing
CLFM (θ) to CLFM ′(θ) at any θ would produce the correct classification. While

3 Note that Eq. (9-15) could have been written as 1/I
∑I

i=1
CLFH(2iπ/(IM)]), since M < M ′,

in which case the sample points of CLFM′ corresponding to the uniform quantization of θc

would be the same as those of CLFM .
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this property does not hold with high enough probability to produce near-ML
performance, we may set the tunable parameter I in Eq. (9-15) to values sub-
stantially smaller than required to obtain accurate integral evaluations, without
significantly affecting classifier performance. This technique has also been used
for MFSK classification [7].

9.2.2.2 The Generalized Likelihood Ratio Test. When I = 1 in the method
above, the complexity is low, but the performance is poor. However, we can use
I = 1 and still get near-ML performance by suitably choosing the single value
of θc at which to evaluate CLFM . In particular, one can use r̃rr to estimate θc in the
M -PSK hypothesis, specifically using its Mth power to remove the modulation,
averaging over the data symbols, and then normalizing the resulting angle:

θ̂(M)
c =

1
M

arg
N−1∑

n=0

r̃M
n (9 16)

where arg(z) denotes the angle of the complex quantity z. Equation (9-16) is
the ML estimate of θc for low SNR, in the sense that it results from low-SNR
approximations of the true ML estimate θcML for M -PSK [8]. A decision based
on the likelihood ratio CLFM (θ̂(M)

cML )/CLFM ′(θ̂(M ′)
cML ) results from what is referred

to as a generalized likelihood ratio test (GLRT). A different GLRT arises when
r̃rr is used to estimate θθθ before classification [9]. We appropriately define the test
based on LR = CLFM (θ̂(M)

c )/CLFM ′(θ̂(M ′)
c ) as a quasi-generalized-likelihood ra-

tio test (qGLRT), and it is a good approximation to Eq. (9-10) in the sense
of being an approximation to coherent-reception classification. The carrier es-
timates in the two hypotheses are used with the same basic reasoning as in
per-survivor processing, the method used to perform joint channel estimation
and decoding. The phase ambiguities present in these estimates of θc, namely,
a 2π/M (2π/M ′) rad ambiguity for the M -PSK (M ′-PSK) hypothesis, do not
cause a problem because, as previously mentioned, the CLFs are also periodic
with period 2π/M(2π/M ′).

9.2.2.3 Normalized Quasi-Log-Likelihood Ratio (nqLLR). All other
things being equal, we would prefer a classifier that requires the least knowl-
edge of channel parameters. If a classifier required only γs, for example, it would
be preferred over one requiring Pt and σ2 separately. Unfortunately, all of the
classifiers discussed so far (ML, coarse integral approximate ML, qGLRT) re-
quire knowledge of both

√
2Pt and σ2 individually, and not simply their ratio.
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We now discuss a classifier requiring knowledge of fewer parameters. We be-
gin with the quasi-log-likelihood ratio (qLLR) approximation to the LLR [3,10]:4

qLLR =

∣∣∣∣∣

N−1∑

n=0

r̃M
n

∣∣∣∣∣ (9 17)

This arises from Eq. (9-10) using the low SNR approximations cosh(x) ∼= 1+x2/2
and ln(1 + x) ∼= x, along with the approximation ln I0(x) ∼= x for large post-
detection SNR. Although from its definition the qLLR itself does not require
knowledge of Pt and σ2, its use in making a classification decision requires such
knowledge to compute the proper threshold (see Section 9.3). This requirement
is avoided by using a normalized qLLR (nqLLR) metric:

nqLLR =

∣∣∣
∑N−1

n=0 r̃M
n

∣∣∣
∑N−1

n=0 |r̃n|M
(9 18)

Like the qLLR, this metric does not itself require knowledge of Pt, σ2, or the
ratio γs = Pt/σ2; however, unlike the qLLR, the optimum threshold for it is also
invariant to scale changes in r̃rr—doubling r̃rr does not affect the nqLLR metric,
for example—and it is fairly insensitive to variations of Pt or σ2 as well [11,12].

9.3 Threshold Optimization

9.3.1 Suboptimality of Previously Derived Thresholds

A critical limitation of the qLLR metric is that it does not approximate the
LLR metric precisely enough for the optimum LLR threshold (zero) to be used
with success. Indeed, the qLLR metric is always nonnegative, meaning that with
a zero threshold (optimum for LLR), it would produce the same decision regard-
less of the transmitted modulation!

One can optimize the threshold for the qLLR metric itself, instead of using
the optimum threshold (zero) for the LLR metric. An approximate analytic
solution was given in [10], using the assumptions that the real and imaginary
parts of the sum in Eq. (9-17) are jointly Gaussian and have equal variance under

4 Note that the qLLR does not depend on M ′ since, as shown in [10], for M ′ > M , the
denominator of this approximate LLR is independent of M ′.
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the two hypotheses. These assumptions lead to the optimized threshold of [10,
Eq. 37]:5

T = (2Pt)M/2VMI−1
0

[
exp

(
N

2VM

)]
(9 19)

where VM =
∑M

l=0[(M !)2γ−l
s /(2l![(M − l)!]2]), and I−1

0 (x) denotes the inverse of
the function I0(x). However, the equal-variance approximation breaks down at
high SNR. For example, in BPSK/QPSK classification, the variance of the real
part of the sum in Eq. (9-17) is 2PtV2 when BPSK is sent and 2Pt(V2 + 1) when
QPSK is sent [10, Eq. (A.12)]. At high SNR, V2

∼= 1/2, and thus the variance
is nearly three times higher when QPSK is sent. A similar comparison shows
the variance of the imaginary part is nearly twice as high when QPSK is sent.
Therefore, although the threshold in Eq. (9-19) may be near-optimum at low
SNR, at high SNR it will be too low.

The further approximation I0(x) ∼= ex, valid for large x (high post-detection
SNR), leads to the approximate threshold [10, Eq. 38]

T =
N(2Pt)M/2

2
(9 20)

This approximate threshold actually outperforms the “optimum” threshold in
Eq. (9-19) for γs > 4 dB.

9.3.2 Empirical Threshold Optimization

The analytical derivation of appropriate thresholds for the qLLR in
Eqs. (9-19) and (9-20) depended on the particular form of the metric, and in-
volved some approximation. As an alternative, we present an empirical method
to optimize the threshold that can be used for any classifier metric, including the
qLLR and nqLLR metrics. Empirical threshold optimization has been briefly
mentioned in M -PSK classification work [13] and in QAM classification [14].
However, the degree to which the analytic, approximate thresholds Eqs. (9-
19) and (9-20) degrade performance has not been noted. Indeed, the fact that
the “approximate” threshold Eq. (9-20) outperforms the “optimum” threshold
Eq. (9-19) at high SNR is an indication that the assumptions in the derivation
break down at high SNR.

5 The original presentation in [10] used r̃rr/σ in place of r̃rr in the qLLR metric in Eq. (9-17), so
that for each n, the noise variance of r̃n was unity in each dimension, not σ2. To account for
the difference, the thresholds we give in Eqs (9-19) and (9-20) are a factor σM = (N0/T )M/2

times what was in the original presentation in [10].
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Empirical threshold determination consists of the following process:

(1) Generate a large number of received noisy M -PSK and M ′-PSK
samples according to Eq. (9-3).

(2) Group the samples into blocks of length N , and compute a set of
sample classifier metrics (e.g., by Eq. (9-17) for the qLLR classifier).

(3) Sort the metrics for M -PSK and M ′-PSK received symbols sepa-
rately, in order of increasing value.

(4) For each observed metric of value α, in increasing order:

(a) Count the number of observed M -PSK metrics having value less
than α.

(b) Count the number of observed M ′-PSK metrics having value
greater than α.

(c) Compute the probability of misclassification when using thresh-
old α, using the sum of the above counts.

(5) Report the threshold that minimizes the probability of misclassifi-
cation.

This procedure may be implemented efficiently enough that a desktop machine
can generate about 100 million samples and determine an empirically optimum
threshold in less than an hour. The following additional points should be noted:

(1) Threshold optimization need be performed only once, offline. In a
practical implementation, given N and γs, a table look-up may be
used to determine the threshold.

(2) The optimum threshold for the LR metric and its approximation in
Eq. (9-15) is zero and requires no empirical optimization.

(3) The optimum threshold for the qLLR metric for BPSK/QPSK clas-
sification is relatively flat over a broad region of γs, being near 0.6
for γs > −5 dB. This is a desirable characteristic, because γs may
not be known exactly.

(4) The optimum threshold for the nqLLR metric is also quite flat, and
ranges only from about 0.15 to 0.6 for −10 dB < γs < 10 dB. At
high SNR, it is approximately equal to the optimum qLLR/(2NPt)
threshold, because the qLLR/(2NPt) metric and the nqLLR metric
are nearly identical in that region. Thus, the nqLLR and qLLR clas-
sifiers have similar performance, and the nqLLR has the advantage
that neither Pt nor σ2 need be known.
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To see how the nqLLR classifier may be used without any knowledge of Pt

or σ2, consider the problem of BPSK/QPSK modulation classification. As per
Eq. (9-20), for BPSK/QPSK classification, the qLLR metric can be compared
to a threshold of NPt. Since

∑N−1
n=0 |r̃n|2 is a good estimate of NPt, the nqLLR

classifier may be compared to 0.5, and gives performance about the same as the
qLLR classifier. In fact, optimum thresholds for the nqLLR classifier were found
to range only between 0.15 and 0.6 for Pt ∈ (0,∞). This compares to optimum
thresholds between 0 and ∞ for the qLLR classifier.

9.4 Complexity

9.4.1 ML Classifier

It is suggested in [3,10] that the ML classifier is not practical. However, if
computation of Eθc

{CLF(θc)} requires only a constant number of evaluations of
CLF(θc), then Eq. (9-10) can be computed in O(N) time. This is because, under
either hypothesis (M -PSK or M ′-PSK), CLF(θc) is a product of N items, each of
which can be computed in O(1) time. In simulations with N = 100, M = 2, and
M ′ = 4, it was found that 100 to 150 CLF evaluations were needed to compute
the expectation, or about 100,000 hyperbolic cosine function evaluations overall.

Unfortunately, it is not true that a simple computation of Eθc{CLF(θc)} can
be computed in O(N) time, because the CLF(θc) has first derivatives that are
exponential in N , and thus the numerical computation of the integral requires
finer partitions for higher values of N . This exponential relationship can be seen
as follows. By elementary calculus, the first derivative of CLF2(θc) is

CLF′
2(θc) = Ce−Nγs

N−1∑

l=0

{
sinh

[√
2Pt

σ2
Re

(
r̃le

−jθc
)] √

2Pt

σ2
Im

(
r̃le

−jθc
)

×
N−1∏

n=0,n �=l

cosh
[√

2Pt

σ2
Re

(
r̃ne−jθc

)]
⎫
⎬
⎭ (9 21)

If θc is small, the SNR is large, and r̃rr =
√

2Pt · (1, · · · , 1), then keeping terms of
first order in θc in Eq. (9-21) yields

CLF′
2(θc) ∼= −2CNγsθc

(
eγs

2

)N

(9 22)
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Since CLF′(θc) can be exponential in N , no numerical integration that partitions
the domain of the integral into a number of intervals independent of N will
produce a correct calculation as N increases. That is, for higher values of N ,
a finer partition of the domain is required and thus an increasing number of
evaluations of the CLF. Therefore, computing the LR in this way requires more
than O(N) time.

9.4.2 Coarse Integral Approximate ML classifier

The approximate ML metric of Eq. (9-15) may be computed in O(IN) time
because it is the sum of I terms, each of which is a product of N terms, each of
which takes O(1) time to compute. If the integration range is partitioned in the
same way under each hypothesis, each hyperbolic cosine evaluation used in the
numerator of Eq. (9-10) is also used in the denominator, and thus, only M ′/2
hyperbolic cosine evaluations are needed for each (i, n) pair. Also, we may write

xn

(
q;

2iπ

IM

)
=

√
2Pt

σ2

[
Re[r̃n] cos

(
α(q, i)

)
+ Im[rn] sin

(
α(q, i)

)]

where α(q, i) = 2π(i/I + q)/M . The trigonometric terms for all α(·, ·) may be
precomputed and stored in a table, since they do not depend on r̃rr. Thus, only
addition, multiplication, and M ′/2 hyperbolic cosine evaluations are required for
each (i, n) pair.

9.4.3 qGLRT Classifier

The qGLRT estimator/classifier uses I = 1, which offers a speed advantage
by a factor of 12 over the I = 12 case discussed above. It also requires the two
phase estimates, however. These take O(N) to compute and were observed to
roughly cut the speed gain in half, i.e., 6 times faster than the I = 12 case.

9.4.4 qLLR and nqLLR

The qLLR and nqLLR classifiers also have O(N) complexity, the lowest com-
plexity of those considered in this chapter. They do not require any exponential,
logarithmic, and trigonometric function evaluations—only multiplication, divi-
sion, and magnitude operations. As a result, they were observed to offer speed
increases of two orders of magnitude over ML classification.

The qLLR metric with threshold given by Eq. (9-19) or Eq. (9-20) requires
knowledge of both Pt and σ2. The approximate threshold of Eq. (9-20) performs
worse but does not require knowledge of σ2. The nqLLR classifier benefits from
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knowledge of γs, but not from knowing Pt and σ2 individually. Furthermore,
among all classifiers considered, it is unique in providing acceptable performance
without knowledge of either Pt or σ2. If we set a fixed threshold of 0.4, perfor-
mance is within approximately 1 dB of the ML classifier at γs = 1 and within
3.5 dB at very low γs.

9.5 Classification Error Floor
As we will see in Section 9.6, the ML classifier for N = 10 appears to exhibit

a classification error floor at about 0.001. In this section, we analytically verify
the validity of this observation by proving that an error floor of 2−N occurs for
BPSK/QPSK classification, which for N = 10 is about 9.8 × 10−4. We also
provide a more general error floor derivation for M -PSK/M ′-PSK classification.
The error floor can be explained by the probability that a randomly generated
M ′-PSK signal N -vector is consistent with an M -PSK transmission. The prob-
ability of this event can be obtained using the method of types [15]. This error
floor exists for any M -PSK/M ′-PSK classifier and gives an immediate lower
bound on the number of observations N that must be made in order to achieve
a given classification error rate, even when no channel impairments are present.

Theorem 9-1. If N independent complex baseband symbols from an a priori
equiprobable M -PSK or M ′-PSK signal, M < M ′, are observed at the output
of a noncoherent noiseless channel, the minimum probability of modulation mis-
classification is (M/M ′)N−1/2.

Proof. Let r̃n be as in Eq. (9-3), with M -PSK and M ′-PSK equiprobable and
ñn = 0 for all 0 ≤ n ≤ N − 1. Since θc is uniformly distributed, r̃n is uniformly
distributed on the circle of radius

√
2Pt, regardless of θn. Thus, when N = 1

the observed signals for M -PSK and M ′-PSK are identically distributed and the
minimum misclassification probability is 1/2.

Now suppose N > 1. Let bbb = (b0, · · · , bN−1), where bn = θn + θc. From
(r̃0, · · · , r̃N−1), we may ascertain Pt and bbb, and vice versa. Since Pt does not
depend on the modulation order, bbb is a sufficient statistic for the optimum
(minimum probability of misclassification) classifier. If there exists some n,
0 < n ≤ N −1, such that bn �= b0 mod 2π/M , then the signal cannot be M -PSK,
and the optimum classifier decides that M ′-PSK was sent, with no probability of
error. Otherwise, for all n = 0, · · · , N−1, bn = b0 mod 2π/M . Under the M -PSK
hypothesis, P (bn = b0 mod 2π/M |M -PSK) = 1. Under the M ′-PSK hypothesis,
for n > 1, P (bn = b0 mod 2π/M |M ′-PSK) = M/M ′, since bn − b0 mod 2π/M

takes on the M ′/M values in {0, 2π/M ′, 2 · 2π/M ′, · · · , ((M ′/M) − 1) · 2π/M ′)}
with equal probability. By the independence of the modulation symbols,
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P (b0 = · · · = bN−1 mod 2π/M |M ′-PSK) =
(

M

M ′

)N−1

Thus, for all N > 1, the M -PSK-consistent event more probably arises from
M -PSK than from M ′-PSK, and the optimum classifier decides M -PSK. In sum-
mary, the optimum classifier is incorrect with probability

Pe = P (M ′-PSK)Pe|M ′-PSK + P (M -PSK)Pe|M-PSK

=
1
2
·
(

M

M ′

)N−1

+
1
2
· 0 =

1
2

(
M

M ′

)N−1

❐

Corollary 9-1. If N independent complex baseband symbols from an a priori
equiprobable BPSK or QPSK signal are observed at the output of a noncoherent
noiseless channel, the minimum probability of modulation misclassification is
2−N , which constitutes an error floor.

Corollary 9-2. Achieving probability of BPSK/QPSK misclassification be-
low 10−6 requires N ≥ 20 observed samples.

Proof. 2−20 ∼= 9.54 × 10−7. ❐

9.6 Numerical Results
To illustrate the numerical performance of the proposed noncoherent clas-

sifiers, we consider the example of M = 2 and M ′ = 4, i.e., BPSK/QPSK
classification, when the timing is known. The classifiers were each implemented
in the C programming language.

The simulated performance of the ML BPSK/QPSK classifier is shown in
Fig. 9-1, for various numbers of observed symbols N . The classification error
floor of Theorem 9-1 is evident, and the high-SNR asymptote can be seen to be
2−N .

The classifier based on coarse integral approximation with I = 12 is shown
in Fig. 9-2 for various values of N . The coarse integral method has performance
indistinguishable from that of ML classification, and reduces the complexity
(number of CLF function-evaluations) by an order of magnitude. A C imple-
mentation on a Linux desktop computer required approximately 11 milliseconds
to compute the ML classification metric, and 1 millisecond to compute the coarse
integral approximation metric with I = 12.
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Fig. 9-1.  ML BPSK/QPSK classification performance for various N.
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Fig. 9-2.  The performance of the ML and coarse integral classifier with I  = 12.
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For smaller values of I, performance begins to degrade. When I = 5, speed
increased approximately by a factor of 12/5 compared to I = 12, and perfor-
mance was similar except at high SNR, where it degraded by about 0.4 dB, as
can be seen in Fig. 9-3. When I = 1, the classifier fails, but by choosing the
single CLF evaluation point using the qGLRT, the performance improves. At
high SNR, it is virtually in agreement with the ML performance, because the
estimates of θc are quite good. At low SNR, the performance degrades slightly.
The qGLRT classifier was found to be 61 times faster than the ML classifier.

For comparison, the ML coherent classifier is also illustrated in Fig. 9-3. The
performance is within 0.5 of the ML noncoherent classifier over a wide range of
SNR.

The effect of threshold optimization is shown in Fig. 9-4. The qLLR metric
used with either of the proposed thresholds in [10] results in a classifier whose
gap from ML increases with increasing Es/N0. In fact, the analytically de-
rived threshold is outperformed by its approximation when Es/N0 > 4 dB! The
empirical optimization of the threshold reduces the gap from about 2.5 dB, at
Es/N0 = 4 dB, to 1 dB.

The performance of the nqLLR classifier is also shown in Fig. 9-4. Although
the normalization in the nqLLR was motivated by reducing the number of pa-
rameters that need to be estimated—the nqLLR doesn’t require knowledge of
the noise variance—serendipitously, the normalization also has a beneficial ef-
fect in the classification performance itself. It can be seen from Fig. 9-4 that at
γs = 1 dB, the performance of nqLLR is 0.5 dB better than qLLR, and about
0.5 from the ML limit.

Fig. 9-3.  Noncoherent classifier performance as a function of I.
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Fig. 9-4.  Comparison of ML, coarse integral classifier with I = 12, 

nqLLR, and qLLR classifiers for various thresholds T.

10−5

 0.0001

 0.001

 0.01

 0.1

1

−8 −6 −4 −2−10 0 2 4 6

M
is

c
la

s
s
if
ic

a
ti
o
n
 P

ro
b
a
b
ili

ty

Es /N0 (dB)

nqLLR

ML

Coarse Integral, I = 12

N = 100

T = [10, Eq. 37]

T = [10, Eq. 38]
qLLR

T = Optimized

The values of the empirically optimized thresholds for the qLLR and
nqLLR are shown in Fig. 9-5. For low SNR, the empirically optimized threshold
for the qLLR metric closely matches the analytic threshold Eq. (9-19), as ex-
pected, since the analytic threshold was derived with a low-SNR approximation.
At higher SNRs, the optimum threshold is near 0.6, while both Eqs. (9-19) and
(9-20) converge to 0.5. The optimum nqLLR threshold also converges to
about 0.6, which is also expected because the nqLLR metric converges to the
qLLR metric at high SNR.

To evaluate classifier performance with imperfect symbol timing, we con-
sider the case of a fixed fractional symbol timing offset τ = (ε̂ − ε), where
τ ∈ (−1/2, 1/2). When two adjacent symbols are the same, the matched filter
output does not depend on the value of τ . On the other hand, when adjacent
signals are antipodal, the effective SNR at the matched filter output is degraded
by a factor 1 − 2|τ |. Thus, in the worst case, a classifier could be degraded by
10 log10(1 − 2|τ |) dB in SNR. Figure 9-6 shows this upper bound for the ML
BPSK/QPSK classifier when N = 100, as a function of τ .

Table 9-1 summarizes various attributes of the classifiers. The bold entries
highlight favorable performance-complexity trade-offs. If performance within
0.1 dB of the ML classifier is desired, the coarse integral method can achieve it
with a speed an order of magnitude higher than the ML classifier. For operation
within 0.2 dB, the qGLRT estimator/classifier or nqLLR classifier may be used,
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Fig. 9-5.  Dependence of empirically optimized thresholds on SNR.
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Fig. 9-6.  Upper bound on ML BPSK/QPSK classifier performance

for various fixed fractional symbol timing offsets τ.
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Table 9-1. A summary comparison of BPSK/QPSK noncoherent
classifiers, N = 100.

Needed dB gap to ML
Complexitya

parameters at γs =Classifier Equation Threshold
Ops Speed-up

γs Pt −5 −2 1

ML (9-10) 1
√ √

0 0 0 100,000 1

Coarse (9-15), I = 12 1
√ √

0.0 0.0 0.1 7,200 11

integral (9-15), I = 5 1
√ √

0.0 0.1 0.4 3,000 26

approx. (9-5), I = 1 1
√ √

4.0 5.5 8.5 600 132

to ML (9-15), I = 1, 1
√ √

0.8 0.4 0.2 600 61
qGLRT

qLLR (9-17) (9-19)
√ √

0.4 0.5 1.1 0 165

(9-20) —
√

1.7 1.3 1.7 0 165

Empirical
√ √

0.0 0.5 1.0 0 165

nqLLR (9-18) Empirical —
√

0.0 0.2 0.5 0 99

0.4 — — 3.5 2.0 1.0 0 99

a Ops is the number of exponential, logarithmic, trigonometric, or Bessel function evalu-
ations required. Speed-up is the observed relative speed compared to the ML classifier.

depending on the SNR, for a speed-up factor of 61 to 99 over the ML classifier.
If an SNR estimate is not available, the nqLLR metric can be used to operate
within 0.5 dB of the ML classifier, at a speed-up factor of 99 over ML. The qLLR
classifier is 165 times faster than ML, and can be used if losses larger than 1 dB
can be tolerated.

All classifiers are subject to an error floor that is a function of the number
of observed symbols, even on channels without impairments.

9.7 Unknown Symbol Timing
Thus far we have discussed exact and approximate likelihood-based nonco-

herent classifiers of M -PSK signals under the assumption of unknown (uniformly
distributed) carrier phase, but perfectly known fractional symbol timing. In this
section, we extend these classifiers to the case where the symbol timing is un-
known and also uniformly distributed.
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Following the same likelihood function approach as above, where we first av-
erage over the data symbol distribution, we eventually arrive at a CLF analogous
to Eq. (9-8), namely,

CLFM (θc, ε)
�= p (r̃rr |M, θc, ε )

= C exp

⎡

⎣−Nγs +
N−1∑

n=0

ln

⎛

⎝ 2
M

M/2−1∑

q=0

cosh
[
xn (q; θc, ε)

]
⎞

⎠

⎤

⎦ (9 23)

where ε denotes the unknown fractional symbol timing and

xn (q; θc, ε)
�=

√
2Pt

σ2
Re

{
r̃n (ε) e−j(2πq/M+θc)

}
(9 24)

Thus, a comparison between BPSK and QPSK would be based on the LR

LR =
E

θc,ε
{CLF2 (θc, ε)}

E
θc,ε

{CLF4 (θc, ε)}

=
E

θc,ε

{
exp

[
N−1∑
n=0

ln cosh
[
xn (0; θc, ε)

]]}

E
θc,ε

{
exp

[
N−1∑
n=0

ln
(

1
2

[
cosh

[
xn (0; θc, ε)

]
+ cosh

[
xn (1; θc, ε)

]])]} (9 25)

where from Eq. (9-24)6

xn (0; θc, ε)
�=

√
2Pt

σ2
Re

{
r̃n (ε) e−jθc

}

xn (1; θc, ε)
�=

√
2Pt

σ2
Im

{
r̃n (ε) e−jθc

}
(9 26)

It has previously been shown that an efficient way of evaluating the averages
over the unknown parameters, in this case θc and ε, is to apply a rectangular

6 We slightly abuse the notation xn(q; θc, ε) by not explicitly listing its dependence on M . In
this case, xn(0; θc, ε) for BPSK is the same as it is for QPSK, and xn(1; θc, ε) does not exist
for BPSK. For higher orders, one needs to be more careful.
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numerical integration rule. Since the CLF of Eq. (9-23) is periodic in θc with
period 2π/M , the LR of Eq. (9-25) can be expressed as

LR =
lim

I,J→∞

1
I

1
J

I∑
i=1

J∑
j=1

CLF2

(
iπ

I
,
j

J

)

lim
I,J→∞

1
I

1
J

I∑
i=1

J∑
j=1

CLF4

(
iπ

2I
,
j

J

) (9 27)

To reduce the complexity of Eq. (9-27) still further, it has also been suggested
one use I = 1 (and now also J = 1), i.e., evaluate the CLFs at a single value
of θc and ε, where these values are obtained as functions of the same set of
observables used to form the CLFs themselves. Perhaps the best set of values to
use are the ML estimates of these parameters. In principle, these ML estimates
should be obtained jointly by simultaneously maximizing the LF (or equivalently
its logarithm) with respect to both θc and ε. Specifically, for the numerator of
the LF we would use

θ̂c2, ε̂2 = argmax
θc,ε

N−1∑

n=0

ln cosh
[
xn (0; θc, ε)

]

= argmax
θc,ε

N−1∑

n=0

ln cosh
[√

2Pt

σ2
Re

{
r̃n (ε) e−jθc

}]
(9 28)

while for the denominator of the LF we would use

θ̂c4 , ε̂4 = argmax
θc,ε

N−1∑

n=0

ln
{

1
2

cosh
[√

2Pt

σ2
Re

{
r̃n (ε) e−jθc

}]

+
1
2

cosh
[√

2Pt

σ2
Im

{
r̃n (ε) e−jθc

}]}
(9 29)

Then, the low complexity LR to be used for classification would be given by

LR =
CLF2

(
θ̂c2 , ε̂2

)

CLF4

(
θ̂c4 , ε̂4

) (9 30)

which when compared to a threshold again results in a GLRT. A derivation of
the estimates θ̂c2 , ε̂2 and θ̂c4 , ε̂4 is contained in Appendix 9-A.
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9.8 BPSK/π/4-QPSK Classification
As previously discussed in Section 9-5, for noncoherent BPSK/QPSK clas-

sification, the misclassification probability exhibits an error floor in the limit of
large SNR. This occurs because, in the absence of noise, there is a finite prob-
ability that a sequence of N QPSK symbols could be identical (aside from a
possible fixed phase rotation over the entire sequence) to a given sequence of
N BPSK symbols, and thus the two modulations would be indistinguishable at
the receiver, where the classification decision takes place. If instead of trans-
mitting QPSK, one were to instead transmit π/4-QPSK [16] wherein the signal
constellation is rotated back and forth by π/4 rad every other symbol, then it
is no longer possible that a sequence of N QPSK symbols could be “identical”
to a given sequence of N BPSK symbols. As such, there would no longer be an
error floor in the misclassification probability performance.

In this section we investigate the ML and approximate ML algorithms ap-
propriate to a classification decision between BPSK and π/4-QPSK.

9.8.1 ML Noncoherent Classifier Averaging over Data,
then Carrier Phase

Analogous to the CLF for M -PSK in Eq. (9-9), one can derive the CLF of
π/4-QPSK as

CLFπ/4−4 (θc) = Ce−Nγs

(
1
2

)N N−1∏

n=1,3,5,···

1∑

q=0

cosh
[
xn (q; θc)

]

×
N−2∏

n=0,2,4,···

1∑

q=0

cosh
[
yn (q; θc)

]
(9 31)

where

xn (q; θc) =
√

2Pt

σ2
Re

{
r̃ne−j(θc+(2q+1)π/4)

}

yn (q; θc) =
√

2Pt

σ2
Re

{
r̃ne−j(θc+(2q+1)π/4+π/4)

}

=
√

2Pt

σ2
Re

{
r̃ne−jπ/4e−j(θc+(2q+1)π/4)

}

(9 32)
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Since from Eq. (9-9) the CLF for BPSK would be

CLF2 (θc) = Ce−Nγs

N−1∏

n=0

cosh
[
xn (0; θc)

]
(9 33)

with xn (0; θc) =
(√

2Pt/σ2
)
Re

{
r̃ne−jθc

}
, then averaging over the uniformly

distributed carrier phase, the LR becomes

LR =
E
θc

{CLF2 (θc)}

E
θc

{
CLFπ/4−4 (θc)

} (9 34)

which can be evaluated numerically by the same approaches previously discussed
in Section 9.2.1.

9.8.2 ML Noncoherent Classifier Averaging over Carrier Phase,
then Data

Averaging first over the uniformly distributed carrier phase and then over
the data, the unconditional LFs become [also see Eq. (9-14)]

LF2 = E
q

{
Ce−NγsI0

(√
2Pt

σ2

∣∣∣∣∣

N−1∑

n=0

r̃ne−jθn

∣∣∣∣∣

)}
,

θ1, θ2, · · · , θN ∈ (0, π)

LFπ/4−4 = E
q

{
Ce−NγsI0

(√
2Pt

σ2

∣∣∣∣∣

N−1∑

n=0

r̃ne−jθn

∣∣∣∣∣

)}
,

θ1, θ3, · · · , θN−1 ∈
(

π

4
,
3π

4
,
5π

4
,
7π

4

)
,

θ2, θ4, · · · , θN ∈
(

0,
π

2
, π,

3π

2

)

(9 35)

and the corresponding LR becomes
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LR =
LF2

LFπ/4−4
(9 36)

9.8.3 Suboptimum Classifiers

9.8.3.1 The GLRT. As was the case in Section 9.2.2, finding the GLRT for the
π/4-QPSK/BPSK classifier relies on finding the ML estimates of carrier phase
for the two modulations under consideration. Following the approach taken
in Appendix 9-A, the solution for this estimate corresponding to π/4-QPSK
modulation is derived in Appendix 9-B with the result

θ̂c,π/4−4 =
1
4

arg

(
N∑

n=1

(
r̃ne−j π

4 In
)4

)
(9 37)

where In is the indicator variable defined by

In =
{

0, n odd
1, n even (9 38)

The form of θ̂c,π/4−4 is intuitively satisfying in that in the odd symbol inter-
vals the contribution of the observable r̃n to the sum is the same as that for the
QPSK ML phase estimate (i.e., r̃4

n) whereas in the even symbol intervals (where
the transmitted phase is shifted by π/4 rad), the observable r̃n is phase dero-
tated by π/4 (multiplication by e−jπ/4) before making the same contribution to
the sum.

In reality, the ML carrier phase estimate given above could be deduced im-
mediately from the result for conventional QPSK by recognizing that π/4-QPSK
can be modeled in complex baseband form as a QPSK modulator followed by
multiplication by ej(π/4)In . Thus, the corresponding ML receiver for such a
modulation would be one that first undoes this alternate phase rotation, i.e.,
first multiplies the received signal plus noise samples by e−j(π/4)In , and then fol-
lows that with a conventional QPSK ML receiver. (Note that multiplication by
e−j(π/4)In does not change the statistical nature of the received noise samples.)
Equivalently then, the “observables” inputs to the conventional QPSK portion
of the receiver are given by r̃ne−j(π/4)In and thus ML parameter estimates for
π/4-QPSK are obtained from those for conventional QPSK by replacing r̃n by
r̃ne−j(π/4)In .

For the binary case, the ML estimate remains as before, namely [see Eq. (9-
16)],
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θ̂c2 =
1
2

arg

(
N−1∑

n=0

r̃2
n

)
(9 39)

9.8.3.2 The qLLR and nqLLR Metrics. Analogous to the derivation of the
qLLR metric for the BPSK/QPSK classification, one can show that the identical
metric is appropriate for the BPSK/π/4-QPSK classification, namely,

qLLR =

∣∣∣∣∣

N−1∑

n=0

r̃2
n

∣∣∣∣∣ (9 40)

and likewise for the nqLLR. Of course, the misclassification probability perfor-
mance for the BPSK/π/4-QPSK classification will be different than that previ-
ously found for the BPSK/QPSK classification.

9.9 Noncoherent Classification of Offset Quadrature
Modulations

Offset quadrature modulations are a class of modulations in which the in-
phase (I) and quadrature (Q) modulations are misaligned in time with respect
to one another by one-half of a symbol. Examples of such modulations are offset
quadrature phase-shift keying (OQPSK) [alternatively called staggered QPSK
(SQPSK)] for which the I and Q pulse streams have identical rectangular pulse
shapes and minimum-shift keying (MSK) for which the I and Q pulse streams
have identical half-sinusoidal pulse shapes.7 The customary reason for using an
offset form of quadrature modulation is that it reduces the maximum fluctua-
tion of the instantaneous amplitude of the modulation from 180 deg to 90 deg
since the I and Q modulations cannot change polarity at the same time instant.
This has an advantage on nonlinear transmission channels where the instan-
taneous fluctuation of the modulation amplitude is related to the regeneration
of spectral side lobes of the modulation after bandpass filtering and nonlinear
amplification—the smaller the instantaneous amplitude fluctuation, the smaller
the side-lobe regeneration and vice versa. On an ideal linear AWGN channel,
there is no theoretical advantage of using an offset modulation relative to a con-
ventional one; in fact, the two have identical error probability performance.

In this section, LFs for offset quadrature modulations are derived for use in
the same noncoherent modulation classification applications as treated in the

7 MSK is inherently a continuous phase frequency-shift keyed (CPFSK) modulation but can be
represented as a precoded offset quadrature modulation where the precoder takes the form
of a differential decoder [17, Chapter 10].
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previous sections. Again, both optimum and suboptimum versions of the LFs
are considered, and classification examples are presented based on discriminating
OQPSK from BPSK and MSK from QPSK.

9.9.1 Channel Model and Conditional-Likelihood Function

For transmission of an offset quadrature modulation over an AWGN channel,
the received signal can be written as

r (t) =
√

Pt

( ∞∑

n=−∞
anp (t − nT )

)
cos (ωct + θ)

−
√

Pt

( ∞∑

n=−∞
bnp (t − (n + 1/2) T )

)
sin (ωct + θ) + n (t) (9 41)

where {an} , {bn} are independent, identically distributed (iid) binary (±1) se-
quences, and as before, T is the symbol time, p (t) is a unit power pulse shape
of duration T seconds, Pt is the passband signal power, and n (t) is an AWGN
process with single-sided power spectral density N0 W/Hz. Based on the above
AWGN model, then for an observation of N data (symbol) intervals the CLF is
given by

p
(
r(t)|{an}, {bn}, p(t), θc

)

=
1√
πN0

exp

{
− 1

N0

∫ NT

0

[
r (t) −

√
Pt

( ∞∑

n=−∞
anp (t − nT )

)

× cos (ωct + θc) +
√

Pt

( ∞∑

n=−∞
bnp (t − (n + 1/2)T )

)
sin (ωct + θc)

]2

dt

⎫
⎬
⎭

= C exp (−Nγ) exp

{
2
√

Pt

N0

N−1∑

n=0

an

∫ (n+1)T

nT

r (t) p (t − nT ) cos ωctdt

}

× exp

{
−2

√
Pt

N0

N−1∑

n=0

bn

∫ (n+3/2)T

(n+1/2)T

r (t) p (t − (n + 1/2) T ) sinωctdt

}

(9 42)
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where as before γs
�= PtT/N0 = Es/N0 is the symbol energy-to-noise ratio

and C is a constant that will be independent of the classification to be made.
Transforming the received signal of Eq. (9-41) to complex baseband via r (t) =
Re

{
r̃ (t) ejωct

}
and defining the I and Q complex baseband observables (matched

filter outputs) by

r̃In =
1
T

∫ (n+1)T

nT

r̃ (t) p (t − nT ) dt

r̃Qn =
1
T

∫ (n+3/2)T

(n+1/2)T

r̃ (t) p
(
t − (n + 1/2) T

)
dt

(9 43)

then, letting σ2 = N0/T denote the variance of these outputs, the CLF can be
written in the equivalent form

p (r̃ |{an} , {bn} , θc ) = C exp (−Nγ) exp

{√
Pt

σ2

N−1∑

n=0

anRe
{
r̃Ine−jθc

}
}

× exp

{√
Pt

σ2

N−1∑

n=0

bnIm
{
r̃Qne−jθc

}
}

= C exp

(
−Nγs + Re

{√
Pt

σ2
e−jθc

N−1∑

n=0

anr̃In

}

+ Im

{√
Pt

σ2
e−jθc

N−1∑

n=0

bnr̃Qn

})
(9 44)

Note that for conventional (non-offset) QPSK we would have r̃In = r̃Qn =
r̃n, and thus letting ejθn = (an + jbn) /

√
2, the CLF of Eq. (9-44) would become

p (r̃ |{an} , {bn} , θc ) = C exp

(
−Nγs + Re

{√
2Pt

σ2
e−jθc

N−1∑

n=0

r̃ne−jθn

})
(9 45)

which is consistent with Eq. (9-7).
Next we average over the I and Q data streams. Before doing so, however,

we first manipulate the form of Eq. (9-44) as follows:
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p (r̃ |{an} , {bn} , θc ) = C exp (−Nγs)
N−1∏

n=0

exp
[
Re

{√
Pt

σ2
e−jθcanr̃In

}]

×
N−1∏

n=0

exp
[
Im

{√
Pt

σ2
e−jθcbnr̃Qn

}]

= C exp (−Nγs) exp
N−1∑

n=0

ln
(

exp
[
Re

{√
Pt

σ2
e−jθcanr̃In

}])

× exp
N−1∑

n=0

ln
(

exp
[
Im

{√
Pt

σ2
e−jθcbnr̃Qn

}])
(9 46)

Now averaging over {an} and {bn} gives

p (r̃ |θc ) = C exp (−Nγs) exp
N−1∑

n=0

ln cosh
(√

Pt

σ2
Re

{
r̃Ine−jθc

})

× exp
N−1∑

n=0

ln cosh
(√

Pt

σ2
Im

{
r̃Qne−jθc

})

= C exp

{
−Nγs +

N−1∑

n=0

[
ln coshxIn (θc) + ln coshxQn (θc)

]
}

(9 47)

where

xIn (θc)
�=

√
Pt

σ2
Re

{
r̃Ine−jθc

}

xQn (θc)
�=

√
Pt

σ2
Im

{
r̃Qne−jθc

}
(9 48)

Alternatively, defining
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xn (0; θc)
�= xIn (θc) − xQn (θc)

xn (1; θc)
�= xIn (θc) + xQn (θc)

(9 49)

and using the trigonometric identity

ln
{

1
2
[
cosh (X + Y ) + cosh (X − Y )

]}
= ln coshX + ln coshY (9 50)

the CLF of Eq. (9-47) can be manipulated into the compact form

p (r̃ |θc ) = C exp

{
−Nγs +

N−1∑

n=0

ln

(
1
2

1∑

q=0

cosh xn (q; θc)

)}

= C exp (−Nγs)
(

1
2

)N N−1∏

n=0

1∑

q=0

cosh xn (q; θc)
�= CLF′

4 (θc) (9 51)

9.9.2 Classification of OQPSK versus BPSK

As an example of noncoherent classification involving an offset quadrature
modulation, we consider the case of classifying OQPSK versus BPSK. As noted
in previous sections, the LFs that form the LR on which the classification is
based can be arrived at in two ways as follows.

9.9.2.1 Averaging the LFs over the Data Sequences, then over the
Carrier Phase. For OQPSK, the CLF obtained by averaging the LF over
the I and Q data sequences has already been determined in Eq. (9-32). The
corresponding result for BPSK was previously determined as [see Eq. (9-8)]

p (r̃ |θc ) = C exp (−Nγs)
N−1∏

n=0

cosh
(√

2xn (0, θc)
)

�= CLF2 (θc) (9 52)

where for BPSK, xQn (θc) = 0 and, hence, xn (0; θc) = xIn (θc). Thus, averaging
Eqs. (9-51) and (9-52) over θc, assumed to be uniformly distributed over the
interval (0, 2π), then the LR is computed as
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LR =
LF′

4

LF2
=

Eθc

{
CLF′

4 (θc)
}

Eθc

{
CLF2 (θc)

} (9 53)

Computing the LR from Eq. (9-53) must be performed numerically and is
computationally intensive. Furthermore, in order to compute the LFs them-
selves, the parameters Pt and σ2 must be evaluated (to allow computation of the
xn (q; θc)’s).

9.9.2.2 Averaging the LFs over the Carrier Phase, then over the Data
Sequences. Suppose instead we first average the CLF of Eq. (9-44) over the
carrier phase. To see how to accomplish this, we rewrite Eq. (9-44) as follows:

p
(
r̃|{an},{bn}, θc

)

= C exp

⎛
⎜⎝−Nγs + Re

⎧
⎪⎨
⎪⎩

√
Pt

σ2

∣∣∣∣∣

N−1∑

n=0

anr̃In

∣∣∣∣∣ e
−j

[
θc−arg

(
N−1∑
n=0

anr̃In

)]⎫
⎪⎬
⎪⎭

+Im

⎧
⎪⎨
⎪⎩

√
Pt

σ2

∣∣∣∣∣

N−1∑

n=0

bnr̃Qn

∣∣∣∣∣ e
−j

[
θc−arg

(
N−1∑
n=0

bnr̃Qn

)]⎫
⎪⎬
⎪⎭

⎞
⎟⎠

= C exp

(
−Nγs +

√
Pt

σ2

∣∣∣∣∣

N−1∑

n=0

anr̃In

∣∣∣∣∣ cos

[
θc − arg

(
N−1∑

n=0

anr̃In

)]

−
√

Pt

σ2

∣∣∣∣∣

N−1∑

n=0

bnr̃Qn

∣∣∣∣∣ sin

[
θc − arg

(
N−1∑

n=0

bnr̃Qn

)])
(9 54)

Applying the trigonometric identity

|X1| cos(θc − φ1) − |X2| sin(θc − φ2)

=
√
|X1|2 + |X2|2 + 2 |X1| |X2| sin (φ2 − φ1) × cos (θc − η)

= |X1 − jX2| cos (θc − η) ;

η = tan−1 |X1| sinφ1 − |X2| cos φ2

|X1| cos φ1 + |X2| sinφ2

(9 55)
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to Eq. (9-54), we get

p
(
r̃|{an},{bn}, θc

)

= C exp

{
−Nγs +

√
Pt

σ2

∣∣∣∣∣

N−1∑

n=0

(anr̃In − jbnr̃Qn)

∣∣∣∣∣ cos (θc − η)

}
(9 56)

which when averaged over the uniform distribution of θc gives the desired result:

p
(
r̃ |{an} , {bn}

)
= C exp (−Nγs) I0

(√
Pt

σ2

∣∣∣∣∣

N−1∑

n=0

(anr̃In − jbnr̃Qn)

∣∣∣∣∣

)
(9 57)

To check the consistency of this result with that for conventional QPSK, we
proceed as follows. The previously derived result for the CLF of M -PSK is
given by Eq. (9-8). For QPSK, we would have e−jθn = (an − jbn) /

√
2, where

an and bn are as defined in Section 9.9.1. Thus,

∣∣∣∣∣

N−1∑

n=0

r̃ne−jθn

∣∣∣∣∣ =
1√
2

∣∣∣∣∣

N−1∑

n=0

r̃n (an − jbn)

∣∣∣∣∣ (9 58)

which when substituted in Eq. (9-8) agrees with Eq. (9-57) when r̃In = r̃Qn = r̃n,
as would be the case for conventional QPSK. Finally, the LF is obtained by
averaging Eq. (9-57) over the data sequences {an} and {bn}, i.e.,

LF′
4 = E{an},{bn}

{
C exp (−Nγs) I0

(√
Pt

σ2

∣∣∣∣∣

N−1∑

n=0

(anr̃In − jbnr̃Qn)

∣∣∣∣∣

)}
(9 59)

which again must be done numerically and is feasible for small values of N .

9.9.3 Suboptimum (Simpler to Implement) Classifiers

In order to simplify the implementation of the ML classifiers, one must resort
to approximations of the nonlinearities involved in their definitions in much the
same way as was done for the conventional (non-offset) modulations. We start
with the CLF averaged first over the data and then the carrier phase. Ignoring
the factor C exp (−Nγs) since in an LR test between two hypotheses it will cancel
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out, then taking the natural logarithm of Eq. (9-51) gives the log-likelihood
function (LLF)

LLF′
4 = lnEθc

{
exp

[
N−1∑

n=0

ln

(
1
2

1∑

q=0

cosh xn (q; θc)

)]}
(9 60)

Applying the approximations

cosh x ∼= 1 +
x2

2

ln (1 + x) ∼= x

(9 61)

gives

LLF′
4 = lnEθc

{
exp

[
N−1∑

n=0

1
2

1∑

q=0

x2
n (q; θc)

2

]}
(9 62)

From Eq. (9-49), we find that

1∑

q=0

x2
n (q; θc)

2
=

1
2

[(
xIn (θc) + xQn (θc)

)2 +
(
xIn (θc) − xQn (θc)

)2
]

= x2
In (θc) + x2

Qn (θc)

=
Pt

σ4

[(
Re

{
r̃Ine−jθc

})2 +
(
Im

{
r̃Qne−jθc

})2
]

(9 63)

Further, using the relations

(
Re {z̃}

)2 =
1
2
|z̃|2 +

1
2
Re

{
z̃2

}

(
Im {z̃}

)2 =
1
2
|z̃|2 − 1

2
Re

{
z̃2

}
(9 64)

we obtain after some simplification
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1∑

q=0

x2
n (q; θc)

2
=

Pt

2σ4

[
|r̃In|2 + |r̃Qn|2 +

(
Re

{
r̃2
Ine−j2θc

})2 −
(
Re

{
r̃2
Qne−j2θc

})2
]

(9 65)

which when substituted in Eq. (9-62) gives

LLF′
4 = lnEθc

{
exp

[
N−1∑

n=0

Pt

4σ4

[
|r̃In|2 + |r̃Qn|2 +

(
Re

{
r̃2
Ine−j2θc

})2
]

−
(
Re

{
r̃2
Qne−j2θc

})2

]}
(9 66)

Noting that the first two terms of the summation in Eq. (9-66) do not depend
on θc, then the LLF can be simplified to

LLF′
4 =

Pt

4σ4

N−1∑

n=0

[
|r̃In|2 + |r̃Qn|2

]

+ lnEθc

⎧
⎪⎨
⎪⎩

exp

⎡
⎢⎣

Pt

4σ4
Re

⎧
⎪⎨
⎪⎩

∣∣∣∣∣

N−1∑

n=0

r̃2
In

∣∣∣∣∣ e
−j

(
2θc−arg

{
N−1∑
n=0

r̃2
In

})

−
∣∣∣∣∣

N−1∑

n=0

r̃2
Qn

∣∣∣∣∣ e
−j

(
2θc−arg

{
N−1∑
n=0

r̃2
Qn

})⎫
⎪⎬
⎪⎭

⎤
⎥⎦

⎫
⎪⎬
⎪⎭

(9 67)

Using a relation analogous to Eq. (9-55), namely,

|X1| cos(2θc − φ1) − |X2| cos(2θc − φ2)

=
√
|X1|2 + |X2|2 − 2 |X1| |X2| cos (φ2 − φ1) × cos (2θc − η)

= |X1 − X2| cos (2θc − η) ;

η = tan−1 |X1| sinφ1 − |X2| sinφ2

|X1| cos φ1 − |X2| cos φ2

(9 68)
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the approximate LLF of Eq. (9-67) finally becomes

LLF′
4 =

Pt

4σ4

N−1∑

n=0

[
|r̃In|2 + |r̃Qn|2

]
+ ln I0

(
Pt

4σ4

∣∣∣∣∣

N−1∑

n=0

(
r̃2
In − r̃2

Qn

)
∣∣∣∣∣

)
(9 69)

For BPSK (ignoring the same C exp (−Nγs) factor), we obtain from Eq.
(9-52) the LLF

LLF2 = lnEθc

{
N−1∑

n=0

ln cosh
(√

2xn (0, θc)
)}

(9 70)

where again xn (0; θc) = xIn (θc) since in this case xQn (θc) = 0. Making the
same nonlinearity approximations as in Eq. (9-61), we obtain the approximate
LLF

LLF2 = lnEθc

{
exp

[
N−1∑

n=0

x2
n (0; θc)

]}

= lnEθc

{
exp

[
Pt

σ4

N−1∑

n=0

(
Re

{
r̃2
Ine−j2θc

})2

]}
(9 71)

Using Eq. (9-64), we again obtain after some simplification

LLF2 =
Pt

2σ4

N−1∑

n=0

|r̃In|2 + ln I0

(
Pt

2σ4

∣∣∣∣∣

N−1∑

n=0

r̃2
In

∣∣∣∣∣

)
(9 72)

Finally, then qLLR′ is obtained as the difference of Eqs. (9-69) and (9-72),
namely,

qLLR′ �= LLF2 − LLF′
4 =

Pt

4σ4

N−1∑

n=0

[
|r̃In|2 − |r̃Qn|2

]
+ ln I0

(
Pt

2σ4

∣∣∣∣∣

N−1∑

n=0

r̃2
In

∣∣∣∣∣

)

− ln I0

(
Pt

4σ4

∣∣∣∣∣

N−1∑

n=0

(
r̃2
In − r̃2

Qn

)
∣∣∣∣∣

)
(9 73)
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Note once again that for a classification between BPSK and conventional
QPSK where r̃In = r̃Qn = r̃n, Eq. (9-73) would simplify to

qLLR′ �= LLF2 − LLF′
4 = ln I0

(
Pt

2σ4

∣∣∣∣∣

N−1∑

n=0

r̃2
n

∣∣∣∣∣

)
= ln I0

(
γ

2

∣∣∣∣∣

N−1∑

n=0

(
r̃n

σ

)2
∣∣∣∣∣

)

(9 74)

which is in agreement with Eq. (21) of [10].
To get to the final simplification, we now apply the approximation8 ln I0 (x) ∼=

x (x 	 1), resulting in

qLLR′ =
Pt

4σ4

[
N−1∑

n=0

[
|r̃In|2 − |r̃Qn|2

]
+ 2

∣∣∣∣∣

N−1∑

n=0

r̃2
In

∣∣∣∣∣ −
∣∣∣∣∣

N−1∑

n=0

(
r̃2
In − r̃2

Qn

)
∣∣∣∣∣

]
(9 75)

Since the true LR should be compared to unity threshold, the true LLR
should be compared to a zero threshold. However, as was previously discussed
in Section 9.3, it is not necessarily true that, due to the nature of the approxima-
tions, the qLLR should also be compared to a zero threshold. Rather, as in the
conventional QPSK/BPSK classification case, the best threshold (to minimize
the probability of misclassification) should be determined by numerical means.
As such, one could equivalently use

qLLR′ =
N−1∑

n=0

[
|r̃In|2 − |r̃Qn|2

]
+ 2

∣∣∣∣∣

N−1∑

n=0

r̃2
In

∣∣∣∣∣ −
∣∣∣∣∣

N−1∑

n=0

(
r̃2
In − r̃2

Qn

)
∣∣∣∣∣ (9 76)

which by itself would be independent of Pt and σ2 and adjust the threshold
accordingly based on knowledge of these parameters for optimum misclassifi-
cation probability performance. Alternatively, as was noted for the non-offset
modulation classification case in Section 9.2.2, one could avoid this threshold
dependence on the signal and noise parameters by using a normalized qLLR,
namely,

8 Note that the argument of the Bessel function in Eq. (9-72) is large, corresponding to the
post-detection SNR, i.e., after the N symbols have been accumulated. This differs from the
predetection SNR, γs, which can be assumed to be small in noisy environments.
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nqLLR′ =

N−1∑
n=0

[
|r̃In|2 − |r̃Qn|2

]
+ 2

∣∣∣∣
N−1∑
n=0

r̃2
In

∣∣∣∣ −
∣∣∣∣
N−1∑
n=0

(
r̃2
In − r̃2

Qn

)∣∣∣∣
N−1∑
n=0

[
|r̃In|2 + |r̃Qn|2

] (9 77)

that like the qLLR of Eq. (9-76) is itself independent of Pt and σ2, but unlike
the qLLR is invariant to scale changes in r̃ and is fairly insensitive to variations
of Pt or σ2 as well.

Finally, we conclude this section by noting that the previously discussed
coarse integral approximation method applied to the individual CLFs in the LR
(see Section 9.2.2) and likewise the GLRT method that replaces the integration
of the CLF over θc by its evaluation at the ML value of θc can also be applied
here in the offset modulation classification case.

9.9.4 Classification of MSK versus QPSK

Another example of classification of an offset quadrature modulation and
a conventional modulation might be MSK versus QPSK. As previously noted,
MSK has an offset quadrature representation in the form of a precoded OQPSK
with identical half-sinusoidal pulse shapes on the I and Q channels. In order to
maintain the power of the transmitted signal as Pt for both modulations, the
mathematical description of the received signal corresponding to transmission of
MSK is in the form of Eq. (9-41), now with

p (t) =
√

2 sin
πt

T
, 0 ≤ t ≤ T (9 78)

Thus, the observables for MSK are

r̃In =
√

2
1
T

∫ (n+1)T

nT

r̃ (t) sin
π(t − nT )

T
dt

r̃Qn =
√

2
1
T

∫ (n+3/2)T

(n+1/2)T

r̃ (t) sin
π (t − (n + 1/2)T )

T
dt

= −
√

2
1
T

∫ (n+3/2)T

(n+1/2)T

r̃ (t) cos
π (t − nT )

T
dt

(9 79)

whereas the observables for QPSK are
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r̃In = r̃Qn =
1
T

∫ (n+1)T

nT

r̃ (t) dt (9 80)

Furthermore, from Eq. (9-48), the conditional variables needed for the CLF of
MSK are

xIn (θc)
�=
√

Pt

σ2
Re

{
r̃Ine−jθc

}

=
√

Pt

σ2
Re

{
e−jθc

√
2

1
T

∫ (n+1)T

nT

r̃ (t) sin
π (t − nT )

T
dt

}

xQn (θc)
�=
√

Pt

σ2
Im

{
r̃Qne−jθc

}

= −
√

Pt

σ2
Im

{
e−jθc

√
2

1
T

∫ (n+3/2)T

(n+1/2)T

r̃ (t) cos
π (t − nT )

T
dt

}

(9 81)

whereas those needed for the CLF of QPSK are

xIn (θc)
�=

√
Pt

σ2
Re

{
r̃Ine−jθc

}
=

√
Pt

σ2
Re

{
e−jθc

1
T

∫ (n+1)T

nT

r̃ (t) dt

}

xQn (θc)
�=

√
Pt

σ2
Im

{
r̃Ine−jθc

}
=

√
Pt

σ2
Im

{
e−jθc

1
T

∫ (n+1)T

nT

r̃ (t) dt

}
(9 82)

Since for QPSK the CLF, namely, CLF4 (θc), also has the form of Eq. (9-51),
then a classification of MSK versus QPSK would be based on the LR

LR =
LF′

4

LF4
=

Eθc

{
CLF′

4 (θc)
}

Eθc {CLF4 (θc)}
(9 83)

where the xn (0; θc) and xn (1; θc) terms in Eq. (9-49) that define the CLFs in the
numerator and denominator are appropriately expressed in terms of Eqs. (9-81)
and (9-82), respectively.
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9.10 Modulation Classification in the Presence of
Residual Carrier Frequency Offset

Thus far in our discussions of modulation classification, the word “nonco-
herent” was used to mean that the carrier phase was completely unknown, i.e.,
uniformly distributed in the interval [0, 2π), but at the same time the carrier
frequency was assumed to be known exactly. Here we discuss the impact on
modulation classification of imperfect knowledge of the carrier frequency, i.e.,
the presence of a fixed residual carrier frequency offset that may exist after fre-
quency correction. In particular, we shall point out the degrading effect of this
frequency error on the behavior of the previously derived modulation classifiers
and then propose an ad hoc modification of the nqLLR to cope with the problem.

When a residual radian frequency error ∆ω is present, the received signal of
Eq. (9-1) is modified to

r̃ (t) =
√

2Pt

∞∑

n=−∞
ej(θn+θc+∆ωt)p (t − nT − εT ) + ñ (t) (9 84)

or, equivalently, under the assumption of perfect symbol timing, the observables
of Eq. (9-3) become

r̃n =
√

2Pt

⎛
⎜⎝

sin
∆ωT

2
∆ωT

2

⎞
⎟⎠ ej(θn+θc+n∆ωT ) + ñn, n = 0, · · · , N − 1 (9 85)

Based on Eq. (9-85), we see that, aside from a sin x/x amplitude factor, in effect
the constellations on which the likelihood function is based are discretely rotating
by ∆ωT rad during each symbol interval of the N -symbol observation time. So
for example, if one attempts to use the nqLLR modulation classifier of Eq. (9-18)
on the received signal in Eq. (9-84), the term r̃M

n in the numerator of Eq. (9-18)
still removes the M -PSK modulation; however, its signal component now con-
tains the phase factor ejMn∆ωT , whose argument changes linearly throughout
the summation on n. Thus, even in the absence of noise, one is no longer sum-
ming a set of complex observables that are aligned in phase but rather summing
a set of complex observables whose phase is uniformly rotating (by increments
of M∆ωT rad) around the circle. In fact, if the residual frequency error-symbol
time product is such that M∆ωT = 2π/N , then in so far as the numerator of
Eq. (9-18) is concerned, the constellation will have moved through a complete
revolution during the observation, thereby confusing the classification of M -PSK
versus M ′-PSK.
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To resolve this dilemma, we need to modify the classifier in such a way as to
cancel out the effect of the frequency error in the terms being summed in the
numerator of the LLR so that once again they are aligned in phase. An ad hoc
solution can be obtained by replacing r̃M

n with r̃M
n

(
r̃∗n−1

)M . Since the frequency
error has no effect on the terms in the denominator summation of Eq. (9-18), to
maintain the needed normalization for independence of the metric on Pt and σ2,
we propose replacing |r̃M

n | by |r̃M
n

(
r̃∗n−1

)M |. Thus, in the presence of residual
frequency error, the modification of Eq. (9-18) would become

nqLLR =

∣∣∣∣
N−1∑
n=1

r̃M
n

(
r̃∗n−1

)M
∣∣∣∣

N−1∑
n=1

∣∣∣r̃M
n

(
r̃∗n−1

)M
∣∣∣

(9 86)

Since, compared with Eq. (9-18), this metric applied to BPSK/QPSK classifica-
tion now involves fourth-order (as opposed to second-order) signal × noise and
noise × noise products, one anticipates a degradation in performance even in the
case of zero residual frequency error. To compensate for this additional degra-
dation, one would need to increase the length of the observable, i.e., increase N .
It should also be pointed out that the optimized decision thresholds computed
as in Section 9.3 will be different for the nqLLR of Eq. (9-86) than those for the
nqLLR of Eq. (9-18). However, the procedure needed to perform the empirical
threshold optimization would still follow the same steps as those discussed in
Section 9.3.2.
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Appendix 9-A

Parameter Estimation for the GLRT

To obtain the analytical form of the ML estimates of the unknown param-
eters in terms of the observables, one must make certain approximations to the
nonlinear functions involved in Eqs. (9-28) and (9-29). In particular, for small
arguments (e.g., low SNR), applying the approximations ln(1 + x) ∼= x and
cosh(x) ∼= 1 + x2/2 to Eq. (9-28) and letting r̃n (ε) = rI,n (ε) + jrQ,n (ε) gives

θ̂c2, ε̂2 = argmax
θc,ε

N−1∑

n=0

1
2

(√
2Pt

σ2
Re

{
r̃n (ε) e−jθc

})2

= argmax
θc,ε

N−1∑

n=0

1
2

(√
2Pt

σ2

)2

(rIn (ε) cos θc + rQn (ε) sin θc)
2

= argmax
θc,ε

N−1∑

n=0

[
1
2

(
r2
In (ε) + r2

Qn (ε)
)

+
1
2

(
r2
In (ε) − r2

Qn (ε)
)
cos 2θc

+ rIn (ε) rQn (ε) sin 2θc

]

= argmax
θc,ε

N−1∑

n=0

[
1
2

(
r2
In (ε) − r2

Qn (ε)
)
cos 2θc + rIn (ε) rQn (ε) sin 2θc

]

= argmax
θc,ε

1
2

N−1∑

n=0

Re
{
r̃2
n (ε) e−j2θc

}
(A-1)
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Equivalently, for a given ε, θ̂c2 is the solution of

d

dθc

N−1∑

n=0

[
1
2
(
r2
In (ε) − r2

Qn (ε)
)
cos 2θc + rIn (ε) rQn (ε) sin 2θc

]

= −1
2

sin 2θc

N−1∑

n=0

(
r2
In (ε) − r2

Qn (ε)
)

+ cos 2θc

N−1∑

n=0

rIn (ε) rQn (ε)

=
1
2

N−1∑

n=0

Im
{
r̃2
n (ε) e−j2θc

}
= 0 (A-2)

or

θ̂c2 = tan−1

N−1∑
n=0

rIn (ε) rQn (ε)

1
2

N−1∑
n=0

(
r2
In (ε) − r2

Qn (ε)
) (A-3)

which can be written in the simpler form

θ̂c2 =
1
2

arg

(
N−1∑

n=0

r̃2
n (ε)

)
(A-4)

This estimate of θc is a generalization of the ML estimate when ε = 0 as given
in Eq. (9-16), for the special case of H = 2.

Similarly, applying the same approximations of the nonlinearities to
Eq. (9-29) gives

θ̂c4,ε̂4

= argmax
θc,ε

N−1∑

n=0

1
2

[(√
2Pt

σ2
Re

{
r̃n (ε) e−jθc

})2

+
(√

2Pt

σ2
Im

{
r̃n (ε) e−jθc

})2
]

= argmax
θc,ε

N−1∑

n=0

1
2

(√
2Pt

σ2

)2

|r̃n (ε)|2 (A-5)

which unfortunately is independent of θc. Thus, we see that for QPSK we must
take the next term in the approximation of the hyperbolic cosine function, i.e.,
we should use
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ln (1 + x) ∼= x

cosh x ∼= 1 +
x2

2
+

x4

24

(A-6)

When this is applied to Eq. (9-29), we obtain

θ̂c4, ε4

= argmax
θc,ε

N−1∑

n=0

1
48

[(√
2Pt

σ2
Re

{
r̃n (ε) e−jθc

})4

+
(√

2Pt

σ2
Im

{
r̃n (ε) e−jθc

})4
]

= argmax
θc,ε

N−1∑

n=0

1
48

(√
2Pt

σ2

)4 {[(
Re

{
r̃n (ε) e−jθc

})2
+

(
Im

{
r̃n (ε) e−jθc

})2
]2

−2
(
Re

{
r̃n (ε) e−jθc

})2 (
Im

{
r̃n (ε) e−jθc

})2
}

= argmin
θc,ε

N−1∑

n=0

(
Re

{
r̃n (ε) e−jθc

})2 (
Im

{
r̃n (ε) e−jθc

})2
(A-7)

After some manipulation it can be shown that, analogous to Eq. (A-4), the ML
estimate of θc for a given ε is given by

θ̂c4 =
1
4

arg

(
N−1∑

n=0

r̃4
n (ε)

)
(A-8)

that again is a generalization of Eq. (9-16) to nonzero ε̂, for the special case
of H = 4.

For the ML estimates of symbol timing, we return to the exact forms in
Eqs. (9-28) and (9-29). For example, for BPSK and a given value of θc, differ-
entiating Eq. (9-28) (with ε replaced by ε̂) with respect to ε̂ and equating the
result to zero gives the following:

d

dε̂

N−1∑

n=0

ln cosh
[√

2Pt

σ2
Re

{
r̃n (ε̂) e−jθc

}]

=
N−1∑

n=0

(
tanh

[√
2Pt

σ2
Re

{
r̃n (ε̂) e−jθc

}]) (
d

dε̂

[√
2Pt

σ2
Re

{
r̃n (ε̂) e−jθc

}])

=
N−1∑

n=0

Re
{
r̃′n (ε̂) e−jθc

} (
tanh

[√
2Pt

σ2
Re

{
r̃n (ε̂) e−jθc

}])
= 0 (A-9)
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where

r̃′n (ε̂) =
2
T

∫ (n+1−ε̂)T

(n−ε̂)T

r̃ (t)
d

dε̂
p (t − nT − ε̂T ) dt (A-10)

= − 2
T

∫ (n+1−ε̂)T

(n−ε̂)T

r̃ (t)
d

dt
p (t − nT − ε̂T ) dt (A-11)

Unfortunately Eq. (A-10) does not yield a closed-form solution for ε̂. A similar
situation takes place for QPSK, namely,

d
dε̂

N−1∑
n=0

ln

[
1
2 cosh

[√
2Pt

σ2 Re{r̃n(ε̂)e−jθc}
]
+

1
2 cosh

[√
2Pt

σ2 Im{r̃n(ε̂)e−jθc}
]]

=

N−1∑
n=0

sinh

(√
2Pt

σ2 Re{r̃n(ε̂)e−jθc}
)

Re{r̃′n(ε̂)e−jθc}+ sinh

(√
2Pt

σ2 Im{r̃n(ε̂)e−jθc}
)

Im{r̃′n(ε̂)e−jθc}
cosh

[√
2Pt

σ2 Re{r̃n(ε̂)e−jθc}
]

+ cosh

[√
2Pt

σ2 Im{r̃n(ε̂)e−jθc}
]

= 0 (A-12)

If one now applies the approximations

tanhx ∼= x

sinhx ∼= x

cosh x ∼= 1

(A-13)

then Eqs. (A-9) and (A-12) simplify respectively to

N−1∑

n=0

Re
{
r̃′n (ε̂) e−jθc

}
Re

{
r̃n (ε̂) e−jθc

}

=
N−1∑

n=0

[
Re

{
r̃′n (ε̂)

(
r̃n (ε̂)

)∗} + Re
{
r̃′n (ε̂) r̃n (ε̂) e−2jθc

}]
= 0 (A-14)

and
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N−1∑

n=0

[
Re

{
r̃n (ε̂) e−jθc

}
Re

{
r̃′n (ε̂) e−jθc

}
+ Im

{
r̃n (ε̂) e−jθc

}
Im

{
r̃′n (ε̂) e−jθc

}]

=
N−1∑

n=0

Re
{
r̃n (ε̂) (r̃′n (ε̂))∗

}
= 0 (A-15)

both of which require numerical solution for their respective ML estimates ε̂2

and ε̂4. Note from Eq. (A-15) that the ML estimate of symbol timing for the
QPSK hypothesis is independent of the carrier phase estimate.

Appendix 9-B

ML Estimation of Carrier Phase for
π/4-QPSK Modulation

To obtain the estimator of carrier phase needed for the GLRT involving
π/4-QPSK modulation, we need to find the solution of

θ̂c,π/4−4 = arg max
θc

[
N−1∑

n=1,3,5,···
ln

(
1
2

[
cosh

[
xn (0; θc)

]
+ cosh

[
xn (1; θc)

]])

+
N−2∑

n=0,2,4,···
ln

(
1
2

[
cosh

[
yn (0; θc)

]
+ cosh

[
yn (1; θc)

]])
]

(B-1)

with xn (q; θc) and yn (q; θc) as defined in Eq. (9-32). Applying the small argu-
ment approximations ln (1 + x) ∼= x, cosh x ∼= 1 + x2/2 + x4/24 and ignoring
second-order terms (since they contribute terms that do not depend on θc) gives
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θ̂c,π/4−4

= arg max
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or equivalently

θ̂c,π/4−4 = arg min
θc

[
N−1∑

n=1,3,5,···

(
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{
r̃ne−jθc

})2 (
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r̃ne−jθc

})2

+
N−2∑
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(B-3)

Letting r̃n = |r̃n| ejφn , the above becomes
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θ̂c,π/4−4 = arg min
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This can also be written in the form

θ̂c,π/4−4

= arg max
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However, using the trigonometric identity

A cos (a − x) − B cos (b − x)=(A cos a − B cos b) cos x + (A sin a − B sin b) sinx

=
√

(A cos a − B cos b)2 + (A sin a − B sin b)2 cos (x − η) (B-6)

η = tan−1 A sin a − B sin b

A cos a − B cos b

in Eq. (B-5) gives

θ̂c,π/4−4 = arg max
θc

[
cos (4θc − η)

]
(B-7)

where

η = tan−1
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Finally then,
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where In is the indicator variable defined by

In =
{

0, n odd
1, n even (B-11)



Chapter 10
Symbol Synchronization

Marvin K. Simon

As we have seen in other chapters, the operation and performance of var-
ious receiver functions can be quite sensitive to knowledge of the timing (data
transition epochs) of the received data symbols. Thus, the ability to accurately
estimate this parameter and continuously update the estimate, i.e., perform sym-
bol synchronization (sync), with little knowledge of other parameters is critical
to successful operation of an autonomous receiver. Traditionally, symbol syn-
chronization techniques have been developed assuming that the data symbols
are binary, the modulation format, e.g., non-return to zero (NRZ) or Manch-
ester data, is known a priori, and carrier synchronization is perfect. Thus, the
symbol synchronization problem has been solved entirely at baseband, assuming
perfect knowledge of the carrier phase and frequency.

Among the various symbol sync schemes that have been proposed in the
literature, by far the most popular in terms of its application in binary commu-
nication systems is the data-transition tracking loop (DTTL) [1,2]. The scheme
as originally proposed in the late 1960s is an in-phase–quadrature (I-Q) structure
where the I arm produces a signal representing the polarity of a data transition
(i.e., a comparison of hard (±1) decisions on two successive symbols) and the
Q arm output is a signal whose absolute value is proportional to the timing
error between the received signal epoch and the receiver’s estimate of it. The
result of the product of the I and Q signals is an error signal that is proportional
to this timing error, independent of the direction of the transition. Although
originally introduced as an efficient symbol synchronization means for track-
ing an NRZ data signal received in additive white Gaussian noise (AWGN), it
was later demonstrated (although not formally published) that the closed-loop
DTTL structure can be obtained from a suitable interpretation of the maximum
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a posteriori (MAP) open-loop estimate of symbol timing based on an observation
of, say, N symbols at high symbol signal-to-noise ratio (SNR).

At the time of the DTTL’s introduction, the binary communication systems
in which the DTTL was employed were for the most part uncoded, and thus
high symbol SNR was the region of primary interest. As time marched on, the
design of communication systems became more and more power efficient through
the application of error-correction coding, and as such a greater and greater de-
mand was placed on the symbol synchronizer, which now had to operate in a low
symbol1 SNR region, with values based on today’s coding technology perhaps as
low as −8 dB. Since in this very low symbol SNR region, the DTTL scheme as
originally proposed would no longer be the one motivated by MAP estimation
theory, it is also likely that its tracking capability would be degraded in this
region of operation. Despite this fact, the conventional DTTL appears to have
continued to be used in coded communication applications.

Since autonomous receiver operation requires, in general, functioning over
a wide range of SNRs, it is prudent to employ symbol-timing estimation and
tracking schemes whose implementations can adapt themselves to this changing
environment using the knowledge obtained from the SNR estimator. Further-
more, since as we have seen in a previous chapter, the SNR estimator itself
requires knowledge of symbol timing, a means for obtaining a coarse estimate of
this timing is essential.

In this chapter, we start out by considering the problem of obtaining symbol
synchronization under the admittedly ideal assumption of perfect carrier syn-
chronization. We refer to the class of schemes that results from solution of this
problem as phase-coherent symbol synchronizers. In this context, we first review
the MAP estimate of symbol timing based on an observation of a block of N sym-
bols and then describe the means by which the conventional DTTL is motivated
by this open-loop estimate. Next, we consider the appropriate modification of
the DTTL so that it is motivated by the MAP estimate of symbol timing at low
SNR; in particular, the I arm hard decisions are replaced by soft decisions where-
upon, in the limiting case, the hard limiter is replaced by a linear device. As
we shall show, such a loop will outperform the conventional DTTL at low SNR.
We then consider the extension of the MAP-motivated closed-loop ideas to non-
binary modulations such as M -ary phase-shift keying (M -PSK) and quadrature
amplitude modulation (QAM). Following this, we return to the open-loop MAP
estimation of symbol sync and describe a sliding-window realization that pro-
vides sequential updates at the symbol (as opposed to the N -symbol block) rate
and as such resembles the closed-loop techniques. Next, we investigate means of

1 It is important to note here that, in a coded communication system, the symbol synchronizer
precedes the decoder and thus performs its function on the coded symbols whose SNR is equal
to the bit SNR times the code rate.
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performing the symbol synchronization function in the absence of carrier phase
information, i.e., so-called phase-noncoherent symbol synchronization. We show
that a class of ad hoc symbol synchronizers previously proposed for solution of
the phase-coherent symbol synchronization problem can be easily adapted to the
noncoherent case. Finally, we propose a coarse symbol-timing estimator for use
in the SNR estimation that is derived from the same statistics that are used to
form the SNR estimate itself.

10.1 MAP-Motivated Closed-Loop Symbol
Synchronization

Analogous to the maximum-likelihood (ML) approach taken in Chapter 9
on modulation classification, we first form the likelihood function (LF) of the
received signal vector conditioned on the unknown parameters to be estimated.
Specifically, for the case of M -PSK modulation with carrier phase and symbol
timing as the unknown parameters, it was shown there that, after averaging over
the data in a sequence of length-N symbols, the conditional-likelihood function
(CLF) is given by

CLFM (θc, ε) = C exp

⎡
⎣

N−1∑

n=0

ln

⎛
⎝ 2

M

M/2−1∑

q=0

cosh
[
xn (q; θc, ε)

]
⎞
⎠

⎤
⎦ (10 1)

where θc denotes the carrier phase, ε denotes the unknown fractional symbol
timing, C is a constant independent of θc and ε, and

xn (q; θc, ε)
�=

A

σ2
Re

{
r̃n(ε)e−j([2q+(1+(−1)M/2)/2]π/M+θc)

}
(10 2)

with A =
√

2P the signal amplitude (P is the transmitted power in the data)2

and σ the standard deviation of the noise component (per dimension) of r̃n (ε).
Also, in Eq. (10-2), the complex observables corresponding to the matched filter
outputs at time instants (n + ε)T, n = 0, 2, · · · , N − 1 are given by

r̃n (ε) =
1
T

∫ (n+1+ε)T

(n+ε)T

r̃ (t) p (t − nT − εT ) dt (10 3)

2 For simplicity of notation, we denote the data power by P rather than Pd since here we are
not dealing with the power in the discrete carrier (if it exists) at all.
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where r̃ (t) is the complex baseband received signal in the time interval (n + ε)T

≤ t ≤ (n + 1 + ε)T and p (t) is the pulse shape. Finally, the SNR at the complex
output of the matched filter is given by γs = A2/(2σ2) = Es/N0, where Es = PT

is the symbol energy and N0 is the single-sided power spectral density of the
additive noise.

For the purpose of finding the MAP estimate of symbol sync alone, we may
assume perfect knowledge of the carrier phase, in which case, without any loss
in generality, we can set θc = 0. Under this assumption, the MAP estimate of
symbol timing ε̂MAP is given by

ε̂MAP = argmax
ε̂

exp

⎡
⎣

N−1∑

n=0

ln

⎛
⎝ 2

M

M/2−1∑

q=0

cosh
[
xn (q; ε̂)

]
⎞
⎠

⎤
⎦ (10 4)

where now

xn (q; ε)

=
A

σ2
Re

{
r̃n (ε) e−j([2q+(1+(−1)M/2)/2]π/M)

}

=
2
√

P

N0
Re

{
e−j([2q+(1+(−1)M/2)/2]π/M)

∫ (n+1+ε)T

(n+ε)T

r̃ (t) p (t − nT − εT ) dt

}

(10 5)

Note that the actual fractional symbol-timing offset ε is embedded in the received
complex baseband signal r̃ (t), and thus the difference between ε̂MAP and ε rep-
resents the normalized symbol-timing error.

As an alternative to Eq. (10-4), recognizing that the natural logarithm is a
monotonic function of its argument, one can first take the natural logarithm of
the CLF in Eq. (10-1), in which case the MAP estimate of symbol timing has
the simpler form

ε̂MAP = argmax
ε̂

⎡
⎣

N−1∑

n=0

ln

⎛
⎝ 2

M

M/2−1∑

q=0

cosh
[
xn (q; ε̂)

]
⎞
⎠

⎤
⎦ (10 6)

As is well-known in MAP-motivated closed-loop schemes, the argument can be
made that, since the value of ε̂ that maximizes the CLF is also the value at which
the derivative of the CLF with respect to ε̂ equates to zero, then one can use the
CLF derivative itself as an error signal in a closed-loop symbol synchronization
(tracking) configuration. As such, the MAP-motivated symbol synchronization
loop would form
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e =
d

dε̂
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⎣
N−1∑

n=0

ln

⎛

⎝ 2
M

M/2−1∑

q=0

cosh
[
xn (q; ε̂)

]
⎞

⎠

⎤

⎦

=
N−1∑

n=0

M/2−1∑
q=0

sinh
[
xn (q; ε̂)

] d

dε̂
xn (q; ε̂)

M/2−1∑
q=0

cosh
[
xn (q; ε̂)

]
(10 7)

as its error signal. Furthermore,

x′
n (q; ε̂)
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σ2
Re
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d

dε̂
r̃n (ε̂) e−j([2q+(1+(−1)M/2)/2]π/M)
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}

(10 8)

where the second equation follows from the Leibnitz rule, assuming
p(0) = p(T ) = 0. A closed-loop configuration that implements the expression in
Eq. (10-7) as an error signal is referred to as a MAP estimation loop.

10.2 The DTTL as an Implementation of the MAP
Estimation Loop for Binary NRZ Signals at
High SNR

For binary signals (M = 2), the error signal of Eq. (10-7) simplifies to

e =
N−1∑

n=0

tanh
[
xn (0; ε̂)

] d

dε̂
xn (0; ε̂) (10 9)

where

xn (0; ε̂) =
2
√

P

N0

∫ (n+1+ε̂)T

(n+ε̂)T

r (t) p (t − nT − ε̂T ) dt

x′
n (0; ε̂) =

−2T
√

P

N0

∫ (n+1+ε̂)T

(n+ε̂)T

r (t) p′ (t − nT − ε̂T ) dt

(10 10)
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and r (t) is now a real signal. A block diagram of a MAP estimation loop
that uses e of Eq. (10-9) as an error signal to control a timing-pulse generator is
illustrated in Fig. 10-1, where the shorthand notation Tn (ε̂) has been introduced
to represent the time interval (n + ε̂) T ≤ t ≤ (n + 1 + ε̂)T . In this figure, the
accumulator represents the summation over N in Eq. (10-9). Thus, based on the
above model, the loop would update itself in blocks of N symbols. In practice,
however, one would replace this block-by-block accumulator by a digital filter
that updates the loop every T seconds and whose impulse response is chosen to
provide a desired dynamic response for the loop. The design of this filter and
its associated closed-loop response characteristic are not dictated by the MAP
estimation theory, which explains the use of the term “MAP-motivated” when
describing the MAP estimation loop.

To go from the MAP estimation loop to the conventional DTTL, one needs
to (1) approximate the hyperbolic tangent nonlinearity for large values of its
argument, equivalently, at high SNR and (2) characterize, i.e., approximate, the
derivative of the pulse shape required in Eq. (10-10). Specifically, for large values
of its argument, one has the approximation

tanhx ∼= sgn x (10 11)

In theory, if p (t) were a unit amplitude rectangular pulse shape, as would be the
case for NRZ signals, then the derivative of p (t) would be a positive delta func-
tion at the leading edge and a negative delta function at the trailing edge of the
symbol interval. In practice, these unrealizable delta functions are replaced by a
pair of narrow rectangular pulses whose width is treated as a design parameter.
Denoting this pulse width by ξT , the above representation for two successive
symbol intervals is shown in Fig. 10-2, where for simplicity of illustration we
have assumed ε = ε̂ = 0. If we now group these pulses in pairs corresponding to

Fig. 10-1.  A closed-loop symbol synchronizer motivated by the MAP estimation approach.
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Assume ε = ε = 0 for Simplicity of Explanation. Also, tanh x → sgn x
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Fig. 10-2.  Formation of the error signal from narrow-pulse 

approximation of the derivative of the pulse shape.

the trailing edge of one symbol and the leading edge of the next, then taking into
account the approximation of the nonlinearity in Eq. (10-11), the contribution
of the nth pair to the error signal in Eq. (10-9) would be expressed as

en = tanh
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The first factor in the final result of Eq. (10-12) represents an integration of
width ξT across the data transition instant (often referred to as the window
width of the synchronizer), whereas the second factor represents the difference
of hard decisions on integrations within two successive symbol intervals. In the
presence of a symbol-timing offset, when a data transition occurs, the first factor
would provide a measure of the error between the actual symbol timing and the
estimate of it produced by the loop. Thus, this factor is referred to as a sync
error detector. The second factor is a measure of the occurrence of a transition
in the data and thus is referred to as a data transition detector. Since the output
of the sync error detector integrate-and-dump (I&D) occurs at time (n + ξ/2)T ,
where the data transition decision occurs at time (n + 1)T , one must delay the
output of the former by an amount (1− ξ/2)T before the two can be multiplied.
Based on the above assumptions and discussion, it is now clear that the MAP
estimation loop migrates to the DTTL as illustrated in Fig. 10-3.

10.3 Conventional versus Linear Data Transition
Tracking Loop

In the previous section, we observed that under high SNR conditions, where
the nonlinearity is approximated as in Eq. (10-11), the I arm of the resulting
symbol synchronizer becomes a detector of a transition in hard decisions made
on successive symbols. In this section, we consider the synchronizer that re-
sults from approximating the nonlinearity for small values of its arguments, as
would be appropriate at low SNR. It will be shown that, depending on the
Q arm window width, there always exists a value of symbol SNR at which the

Fig. 10-3.  Conventional DTTL derived from MAP estimation loop at high SNR.
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linear data-transition tracking loop (LDTTL) outperforms the conventional
DTTL with a hard decision I arm transition detector.

For sufficiently small values of its argument, the hyperbolic tangent nonlin-
earity can be approximated by

tanhx ∼= x (10 13)

i.e., a linear function. Under this assumption, the appropriate MAP-motivated
closed-loop synchronizer is illustrated in Fig. 10-4, and its performance is ana-
lyzed as follows. After perfect (known carrier phase) demodulation by the carrier
reference

√
2 cos (ωct + θc), the baseband signal input to the LDTTL is given by

r (t) = s(t, ε) + n (t)

s(t, ε) =
√

P

∞∑

n=−∞
dnp (t − nT − εT )

(10 14)

where, consistent with the assumption of NRZ data, p (t) is a unit amplitude
rectangular pulse of duration T seconds and {dn} is an independent, identically
distributed (iid) ±1 sequence with dn representing the polarity of the nth data
symbol. The additive noise is a white Gaussian process with single-sided power
spectral density N0 W/Hz. The local clock produces a timing reference for the
I and Q I&D filters that depends on its estimate ε̂ of ε. Thus, the outputs of
these filters corresponding to the nth symbol interval are respectively given by

yIn =K1

∫ (n+1+ε̂)T

(n+ε̂)T

r(t)dt =

cn︷ ︸︸ ︷

K1

∫ (n+1+ε̂)T

(n+ε̂)T

s(t, ε)dt

+

νn︷ ︸︸ ︷

K1

∫ (n+1+ε̂)T

(n+ε̂)T

n(t)dt

yQn =K2

∫ (
n+1+

ξ
2 + ε̂

)
T

(
n+1− ξ

2 + ε̂
)
T

r(t)dt =

bn︷ ︸︸ ︷

K2

∫ (
n+1+

ξ
2 + ε̂

)
T

(
n+1− ξ

2 + ε̂
)
T

s(t, ε)dt

+

µn︷ ︸︸ ︷

K2

∫ (
n+1+

ξ
2 + ε̂

)
T

(
n+1− ξ

2 + ε̂
)
T

n(t)dt

(10 15)
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Fig. 10-4.  The linear data transition tracking loop (LDTTL).
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Since µn and νn are not independent, it is convenient, as was done in [1,2], to
express them in terms of a new set of variables:

νn = Nn + Mn

µn = N ′
n+1 + M ′

n

(10 16)

where

Nn = K1

∫ (
n+

1
2 + ε̂

)
T

(n+ε̂)T

n(t)dt, Mn = K1

∫ (n+1+ε̂)T

(
n+

1
2 + ε̂

)
T

n(t)dt

N ′
n = K2

∫ (
n+

ξ
2 + ε̂

)
T

(n+ε̂)T

n(t)dt, M ′
n = K2

∫ (n+1+ε̂)T

(
n+1− ξ

2 + ε̂
)
T

n(t)dt

(10 17)

with the properties

Nk, Mn are mutually independent for all k, n

N ′
k, M ′

n are mutually independent for all k, n

N ′
k, Mn and M ′

k, Nn are mutually independent for all k, n

N ′
k, N ′

n and Mk, Mn are mutually independent for all k �= n

Furthermore, all Mn, M ′
n, Nn, N ′

n, and their sums are Gaussian random vari-
ables with zero mean and variances
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σ2
Mn

= σ2
Nn

= K2
1N0T/4

σ2
M ′

n
= σ2

N ′
n

= K2
2ξN0T/4

(10 18)

Taking the difference of two successive soft decisions yIn and yI,n−1 and mul-
tiplying the average of the result by the quadrature I&D output (delayed by
(1 − ξ/2) T ) gives the loop-error signal (prior to digital filtering),

e(t) = en =
(
bn + M ′

n + N ′
n+1

) [
(cn + Mn + Nn) − (cn+1 + Mn+1 + Nn+1

2

]
,

(n + 2)T + ε̂ ≤ t ≤ (n + 3) + T + ε̂ (10 19)

which is a piecewise constant (over intervals of T seconds) random process. In
Eq. (10-19),

bn =

⎧
⎪⎪⎨
⎪⎪⎩

K2

√
PT

[
dn

(
ξ

2
+ λ

)
+ dn+1

(
ξ

2
− λ

)]
, 0 ≤ λ ≤ ξ

2

K2

√
PTdnξ,

ξ

2
≤ λ ≤ 1

2

(10 20)

cn = K1

√
PT [dn−1λ + dn (1 − λ)] , 0 ≤ λ ≤ 1

2

where λ
�= ε − ε̂, −1/2 ≤ λ ≤ 1/2 denotes the normalized timing error.

10.3.1 The Loop S-Curve

The S-curve of the loop is by definition the statistical average of the error
signal of Eq. (10-19) over the signal and noise probability distributions, i.e.,

g (λ) �= E

{(
bn + M ′

n + N ′
n+1

) [
(cn + Mn + Nn) − (cn+1 + Mn+1 + Nn+1)

2

]}

(10 21)

Substituting Eq. (10-20) into Eq. (10-21) and performing the necessary averaging
over the noise and the data symbols dn−2, dn−1, and dn gives the desired result,
namely,



332 Chapter 10

gn (λ) �=
g (λ)

K1K2PT 2
=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

λ

(
1 − ξ

4

)
− 3

2
λ2, 0 ≤ λ ≤ ξ

2

ξ

2
(1 − 2λ) ,

ξ

2
≤ λ ≤ 1

2

(10 22)

where the n subscript here stands for normalization. By comparison, the result
corresponding to Eq. (10-22) for the DTTL is [1,2]

gn (λ) �=
g (λ)

K2

√
PT

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

λ erf
(√

Rs (1 − 2λ)
)
− 1

8
(ξ − 2λ)

×
[
erf

(√
Rs

)
− erf

(√
Rs (1 − 2λ)

)]
, 0 ≤ λ ≤ ξ

2

ξ

2
erf

(√
Rs (1 − 2λ)

)
,

ξ

2
≤ λ ≤ 1

2

(10 23)

where Rs
�= PT/N0 denotes the symbol SNR. Without belaboring the analysis,

it is also straightforward to show that for −(1/2) ≤ λ ≤ 0, g (λ) = −g (−λ), i.e.,
the S-curve is an odd function of the normalized timing error. Also note from
Eq. (10-22) that the normalized S-curve for the LDTTL is independent of SNR,
whereas that for the conventional DTTL [see Eq. (10-23)] is highly dependent
on SNR. Figure 10-5 is an illustration of the S-curve in Eq. (10-22) for various
values of window width ξ.

The slope of the normalized S-curve at the origin (λ = 0) will be of interest in
computing the mean-squared timing-jitter performance. Taking the derivative
of Eq. (10-22) with respect to λ and evaluating the result at λ = 0 gives for the
LDTTL

Kg
�=

dg(λ)
dλ

|λ=0 = K1K2PT 2

(
1 − ξ

4

)
(10 24)

whereas the corresponding result for the DTTL, based on the derivative of
Eq. (10-23), is

Kg
�=

dg (λ)
dλ

|λ=0 = K2

√
PT

[
erf

(√
Rs

)
− ξ

2

√
Rs

π
exp (−Rs)

]
(10 25)

which clearly degrades with decreasing Rs.
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Fig. 10-5.  Normalized S-curves for linear DTTL.
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10.3.2 Noise Performance

The stochastic differential equation that characterizes the operation of the
DTTL or the LDTTL is [1,2]

λ̇ = −KF (p)
[
g (λ) + nλ(t)

]
(10 26)

where K is the total loop gain, F (p) is the transfer function of the loop filter
with p denoting the Heaviside operator, and nλ(t) is the equivalent additive
noise that characterizes the variation of the loop-error signal around its mean
(the S-curve). Because of the I&D and sample-and-hold operations in the I and
Q arms of the loops, nλ(t) is a piecewise (over intervals of T seconds) constant
random process. In particular,

nλ(t) = en − E {en} = en − g (λ) , (n + 2 + ε̂) T ≤ t ≤ (n + 3 + ε̂)T (10 27)

with a covariance function that is piecewise linear between the sample values
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Rn (τ) |τ=mT = E {nλ (t)nλ (t + τ)} |τ=mT

= E {(en − E {en}) (en+m − E {en+m})}

= E {enen+m} − g2 (λ) �= R (m, λ) , m = 0,±1,±2, · · · (10 28)

As is customary in the analysis of loops of this type, for loop bandwidths that
are small compared to the reciprocal of the symbol time interval, nλ(t) can be
approximated by a delta-correlated process with equivalent flat (with respect to
frequency) power spectral density

N ′
0

�= 2
∫ ∞

−∞
Rn(τ)dτ =2T

[
R (0, λ) + 2

∞∑

m=1

R (m, λ)

]
(10 29)

Furthermore, for large loop SNR,3 it is customary to consider only the value of
the equivalent power spectral density at λ = 0, namely,

N ′
0 = 2T

[
R (0, 0) + 2

∞∑

m=1

R (m, 0)

]

= 2T

[
E

{
e2
n |λ=0

}
+ 2

∞∑

m=1

E {enen+m |λ=0 }
]

(10 30)

With a good deal of effort, the following results can be obtained from Eq. (10-19):

E
{
e2
n|λ=0

}
=

1
4

[
E

{
b2
n (cn+1 − cn)2 |λ=0

}
+ E

{
b2
n

}

× E
{

(Nn+1 + Mn+1)
2 + (Nn + Mn)2

}
+ E

{
(cn+1 − cn)2 |λ=0

}

×E
{(

N ′
n+1 + M ′

n

)2
}

+ E
{(

N ′
n+1 + M ′

n

)2 (Nn + Mn − Nn+1 − Mn+1)
2
}]

(10 31)

3 Note that this assumption does not require that the symbol SNR be large. Large loop SNR
simply implies that the loop operates in the so-called linear region, i.e., where the mean-
squared value of the timing error is small and the probability density function of the timing
error is Gaussian distributed.
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E {enen+1 |λ=0 } =
1
4

[
E {bnbn+1 (cn+1 − cn) (cn+2 − cn+1) |λ=0 }

−E {bnbn+1 |λ=0 }E
{

(Nn+1 + Mn+1)
2
}]

(10 32)

E {enen+m |λ=0 } = 0, m �= 0, 1 (10 33)

Averaging Eqs. (10-31) through (10-33) over the signal (data sequence) and then
using Eq. (10-18), we obtain the desired results, namely,

R (0, 0) �= E
{
e2
n |λ=0

}
=

(
K1K2PT 2

)2
[

ξ

4Rs

(
1 +

ξ

2
+

1
2Rs

)]
(10 34)

R (1, 0) �= E {enen+1 |λ=0 } = −
(
K1K2PT 2

)2 ξ2

32Rs
(10 35)

R (m, 0) �= E {enen+m |λ=0 } = 0, m �= 0, 1 (10 36)

Combining Eqs. (10-34) through (10-36), the equivalent power spectral density
is then

N ′
0 = T

(
K1K2PT 2

)2
[

ξ

2Rs

(
1 +

ξ

4
+

1
2Rs

)]
(10 37)

The equivalent quantity for the conventional DTTL can be obtained from the
results in [1,2] to be

N ′
0 = T

(
K2

√
PT

)2
[

ξ

2Rs

[
1 +

ξRs

2
− ξ

2

[
1√
π

exp (−Rs) +
√

Rs erf
√

Rs

]2
]]

(10 38)

10.3.3 Mean-Squared Timing-Error Performance

The mean-squared timing jitter σ2
λ of either the LDTTL or the DTTL is

readily computed for a first-order loop filter (F (p) = 1) and large loop SNR
conditions. In particular, linearizing the S-curve to g (λ) = Kgλ and denoting
the single-sided loop bandwidth by BL, we obtain
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σ2
λ =

N ′
0BL

K2
g

(10 39)

where Kg is obtained from either Eq. (10-24) or Eq. (10-25) and N ′
0 from either

Eq. (10-37) or Eq. (10-38). Making the appropriate substitutions in Eq. (10-39)
gives the results

σ2
λ =

ξ

[
1 +

ξ

4
+

1
2Rs

]

2ρ

(
1 − ξ

4

)2 (LDTTL)

σ2
λ =

ξ

[
1 +

ξRs

2
− ξ

2

[
1√
π

exp (−Rs) +
√

Rs erf
√

Rs

]2
]

2ρ

[
erf

(√
Rs

)
− ξ

2

√
Rs

π
exp (−Rs)

]2 (DTTL)

(10 40)

where ρ
�= P/N0BL is the so-called phase-locked loop SNR. Figure 10-6 is a

plot of the ratio of σ2
λ

∣∣LDTTL to σ2
λ

∣∣DTTL in dB as a function of Rs in dB
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Fig. 10-6.  Mean-squared jitter comparison of the nonlinear
and linear DTTLs.
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with quadrature arm normalized window width ξ as a parameter. The numerical
results clearly illustrate the performance advantage of the LDTTL at low symbol
SNRs. In fact, in the limit of sufficiently small SNR, the ratio of the variances
approaches the limit

lim
Rs→0

σ2
λ

∣∣ LDTTL
σ2

λ

∣∣ DTTL
=

(
2 − ξ

2

)2

2π
(
1 − ξ

4

)2
(

1 − ξ

2π

) (10 41)

which for ξ = 0 (the theoretical value suggested by the MAP estimation of
symbol sync approach) becomes

lim
Rs→0
ξ→0

σ2
λ

∣∣ LDTTL
σ2

λ

∣∣ DTTL
=

2
π

(10 42)

The fact that this ratio approaches a finite limit is not surprising in view of a sim-
ilar behavior for other synchronization loops motivated by the MAP estimation
approach. For example, when comparing the conventional Costas loop (moti-
vated by the low SNR approximation to the MAP estimation of carrier phase)
to the polarity-type Costas loop (motivated by the high SNR approximation to
the MAP estimation of carrier phase), the ratio of variances of the phase error
is given by (see Chapter 8)

σ2
φ

∣∣Conventional
σ2

φ

∣∣∣Polarity-Type
=

erf2
(√

Rs

)

2Rs/ (1 + 2Rs)
(10 43)

which for sufficiently small SNR becomes

lim
Rs→0

σ2
φ

∣∣Conventional
σ2

φ

∣∣∣Polarity-Type
=

2
π

(10 44)

For large symbol SNR, the ratio of the variances in Eq. (10-40) approaches

lim
Rs→∞

σ2
λ

∣∣ LDTTL
σ2

λ

∣∣ DTTL
=

1 +
ξ

4(
1 − ξ

4

)2 (10 45)
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which for small window widths results in a small penalty for removing the I arm
hard limiter.

10.4 Simplified MAP-Motivated Closed-Loop Symbol
Synchronizers for M-PSK

In Section 10.1, we derived the form of the error signal [see Eq. (10-7)] for a
MAP-motivated closed-loop symbol synchronizer of M -PSK, which is somewhat
complicated at best. Applying a large argument (high SNR) approximation
to the nonlinearities in the numerator and denominator of the expression in
Eq. (10-7), namely, sinhx ∼= (ex/2) sgnx, cosh x ∼= ex/2, unfortunately does
not simplify matters because of the summation over the index (q) resulting from
averaging over the signal constellation. In problems of this nature, it is common
to approximate the summation by its largest term. In this particular case, it is
most convenient to make this approximation in the CLF of Eq. (10-1) prior to
taking its derivative to form the error signal in the MAP estimation loop. When
this is done, we obtain for the MAP estimate (again setting θc = 0)

ε̂MAP
∼= argmax

ε̂

[
N−1∑

n=0

ln
(

2
M

max
q

{
cosh

[
xn (q; ε̂)

]})]
(10 46)

or, equivalently, because of the monotonicity of the hyperbolic cosine function,

ε̂MAP
∼= argmax

ε̂

[
N−1∑

n=0

ln
(

2
M

cosh xn (qmax; ε̂)
)]

(10 47)

where

qmax
�= max

q

{∣∣xn (q; ε̂)
∣∣} (10 48)

Now differentiating Eq. (10-47) with respect to ε̂, we obtain an expression for
the error signal in a MAP-motivated symbol synchronizer for M -PSK at high
SNR, namely,

e =
d

dε̂

[
N−1∑

n=0

ln
(

2
M

cosh xn (qmax; ε̂)
)]

=
N−1∑

n=0

tanh [xn (qmax; ε̂)]
d

dε̂
xn (qmax; ε̂)

(10 49)
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Note the similarity of Eq. (10-49) to Eq. (10-9). In fact, for binary phase-shift
keying (BPSK), the only value of q in the sum is q = 0, and thus for this case
qmax = 0, which establishes the equivalence between Eq. (10-49) and Eq. (10-9).
Because of this similarity, one can immediately apply the same small and large
argument approximations to the hyperbolic tangent nonlinearity and, analogous
to Figs. 10-3 and 10-4, arrive at DTTL-like implementations that are illustrated
in Figs. 10-7 and 10-8.

10.5 MAP Sliding-Window Estimation of Symbol Timing

As discussed in Section 10.1, open-loop MAP estimation of the symbol epoch
involves finding the conditional (on the symbol timing) likelihood function of the
received signal based on a single observation of the received signal over a block
of symbols. Furthermore, since the unknown symbol epoch is assumed to be
uniformly distributed over the symbol interval, the MAP estimate is equivalent
to the ML estimate. We have also seen that the traditional closed-loop estima-
tion scheme motivated by the MAP estimation approach employs an error signal
derived from the derivative of the CLF that can be updated at intervals corre-
sponding to the symbol time. Since for rectangular pulses, e.g., an NRZ data
stream, the derivative of the CLF, which is related to the derivative of the pulse
shape, is undefined, closed-loop structures motivated by the MAP estimation ap-
proach strictly speaking do not exist. Nevertheless, with suitable approximations
of the derivative of the pulse shape, such a closed loop, e.g., the DTTL, will in
fact provide symbol sync for an NRZ data stream with rectangular pulses; how-
ever, it does so with a degradation in performance relative to that which can be
provided by the MAP or minimum mean-squared (MMS) open-loop estimators.
On the other hand, the closed-loop approach provides a continuous updating
(tracking) of the symbol timing (once per bit interval) that is desirable in the
presence of channel dynamics, whereas the open approach usually is regarded
as either a one-shot estimator, i.e., compute the MAP or MMS estimate based
on a single observed long block of data, or a block-by-block estimator where the
single shot is sequentially repeated over and over.

What is important to observe is that the open-loop estimation techniques
can be modified to provide sequential updates at the symbol rate to the symbol-
timing epoch estimates and as such resemble the closed-loop techniques with,
however, improved performance. It is this issue that we wish to discuss here,
namely, a simple sequential digital implementation of the MAP estimation of
symbol epoch that can track the dynamics in this parameter yet provide a per-
formance approaching that of the true optimum MAP estimation technique.
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Fig. 10-8.  A weighted running accumulator.
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10.5.1 A Brief Discussion of Performance and Its Bounds for
Open- and Closed-Loop Symbol-Timing Techniques

As we have noted in other chapters, an appropriate measure of the perfor-
mance of an unbiased estimator of a parameter is its variance, which is equal
to the mean-squared value of the error between the estimator and the parame-
ter. Although it is usually difficult to arrive at an analytical expression for the
variance of the MAP or MMS estimator, there exist many lower bounds on this
quantity that can be evaluated analytically. The most popular of these bounds
is the Cramer–Rao (C-R) bound [3–5] since it can be obtained directly from the
conditional probability density function (pdf) of the received signal given the
unknown epoch, which as shown earlier has the analytically desirable Gaussian
form. In particular, the C-R bound on the variance of any unbiased estimator ε̂

of ε is given by

σ2
ε ≥

⎡
⎣E

⎧
⎨
⎩

(
∂ ln p

(
r(t) |ε

)

∂ε

)2
⎫
⎬
⎭

⎤
⎦
−1

= −
[
E

{
∂2 ln p

(
r(t) |ε

)

∂ε2

}]−1
∆=σ2

C−R

(10 50)

In order to evaluate the derivative required in Eq. (10-50), it is necessary that the
pulse shape be differentiable—the same condition as needed to form the MAP
estimation loop. If the pulse shape is in fact differentiable and the other condi-
tions for the C-R bound to exist [3–5] are satisfied, then for large SNR γ, the C-R
bound varies inversely as the SNR, i.e., σ2

C−R = Cγ−1, where the constant of
proportionality, C, depends on the particular pulse shape and its second deriva-
tive [5]. It is also true that, if the C-R bound is achievable, then clearly the MMS
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estimator will be the one that achieves it, but so does the MAP estimator. That
is, in this situation the MAP estimator is asymptotically (large SNR) efficient.
On the other hand, if the C-R bound is not achievable, then by definition the
more complex MMS estimator still will achieve the smallest estimator variance,
and the MAP estimator may in fact result in a larger variance. That is, in this
situation one cannot guarantee how close the MAP estimator comes to the C-R
bound.

It can similarly be shown that closed loops motivated by the MAP approach,
i.e., those that employ an error signal derived from the derivative of the LF,
have a mean-squared timing error that varies inversely linearly with SNR. In the
closed-loop case, one must make an appropriate adjustment to the term “SNR”
to reflect the relation between the reciprocal of the loop bandwidth and the ob-
servation time of the open-loop estimate, analogously to what was done for the
carrier synchronization case in Chapter 8. In particular, if the two-sided loop
bandwidth is defined as equal to the reciprocal of the observation time (which
is appropriate for a noise bandwidth definition), then the mean-squared timing
error of the closed loop satisfies the C-R bound, i.e., σ2

ε = γ−1.
When the pulse is not differentiable, such as the rectangular pulse that is char-

acteristic of NRZ modulation, then as previously mentioned the C-R bound does
not exist. One might consider trying to use the C-R bound in such situations by
approximating the square pulse with a trapezoidal shape (which leads to deriva-
tives at the edges that are rectangular pulses, as discussed in Section 10.2 for the
DTTL), and then taking the limit as the slope of the edges approaches infinity.
Unfortunately, when this is done the C-R bound becomes directly proportional
to the inverse of the slope, and thus in the limit as the slope approaches infinity
for any finite SNR, the bound degenerates to being useless, i.e., σ2

C−R → 0.
To get around this enigma, researchers have investigated other bounds on the

estimator variance that exist even when the pulse is non-differentiable. A vari-
ety of these bounds [6–9] are reviewed and compared in [10]. All of the results
obtained in these references are for the case of a transmitted signal correspond-
ing to either a single pulse, a periodic repetition of a single pulse, or a known
sequence of pulses, such as a pseudo-noise (PN) code, and as such correspond to
navigation, radar, and direct sequence spread spectrum system applications. For
the case of data communication, where the transmitted waveform is a sequence
of pulses with random (unknown) polarity, in order to make the results given in
the above references applicable in this situation, one must draw an appropriate
equivalence between the two scenarios. It is relatively straightforward to show
that the C-R bound (which again does not apply in the square-pulse case) on
the variance of the delay estimator for a random pulse stream of N symbols is
equivalent to the C-R bound on the variance of a single pulse of N times the
energy. Although establishing this equivalence is more formidable for the other
bounds that do apply to the square-pulse case, we anticipate that a similar be-
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havior will occur. Proceeding with this intuitive assumption, we now discuss the
behavior of the various bounds considered in [10] as they would apply to the
NRZ communication problem.

What is interesting about all the bounds in [6–9] is that, for rectangular
pulses, they all predict (for large SNR) an inverse square-law behavior with
SNR, i.e., σ2 ≥ Cγ−2, as opposed to the inverse linear behavior one might ex-
pect (at least from C-R bound considerations which granted do not apply here).
The difference between the various bounds is the constant of proportionality, C.
Monte Carlo simulations performed in [10] show that, in this situation, the MAP
and MMS estimators have a similar inverse square-law behavior with SNR and
come quite close to the tightest of the lower bounds. Thus, since the closed-
loop schemes derived from the above-mentioned approximations to the MAP
approach can achieve only inverse linear behavior with SNR, it behooves one to
reexamine the possibility of using open-loop epoch estimation with the hope of
obtaining a simple sequential structure that will allow for an improvement in
performance as well as the ability to track variations in the parameter.

10.5.2 Formulation of the Sliding-Window Estimator

To arrive at the sliding-window version of the MAP estimator, we slightly
modify the approach taken in Section 10.2 by assuming now that the observation
of the received signal extends over the entire past up to the present time t = NT ,
and furthermore that the unknown parameter, ε, is constant over this observa-
tion, i.e., in the interval −∞ ≤ t ≤ NT .4 In this case, the estimate at time NT

becomes

ε̂N = argmax
ε̂

Λ (ε̂;NT ) (10 51)

where

Λ (ε;NT )
∆=

N−1∑

l=−∞
ln cosh

(
2
√

P

N0

∫ NT

−∞
r(t)p (t − lT − εT ) dt

)
(10 52)

Ignoring the partial (less than a full symbol interval) contribution of the
N−1st pulse p (t − (N − 1)T − εT ) [since the full contribution will be picked
up in the LF for the next interval, namely, Λ (ε; (N + 1)T )], we can rewrite
Eq. (10-52) as

4 Shortly we shall say more about how to tailor the results to the more practical case where
the parameter is dynamic but slowly (with respect to the symbol duration) varying.
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Λ (ε;NT ) �=
N−2∑

l=−∞
ln cosh

(
2
√

P

N0

∫ (l+1)T+ε

lT+ε

r(t)dt

)
(10 53)

The LF as defined in Eq. (10-53) is a function of a parameter ε that takes
on a continuum of values in the interval 0 ≤ t ≤ T . In order to construct a prac-
tical implementation of Eq. (10-53), it is customary to quantize the uncertainty
interval, i.e., approximate the continuous variable εT by a discrete variable that
takes on values εiT = iT/Nε

�= i∆, i = 0, 1, 2, · · · , Nε−1. Since the quantization
increment ∆ determines the resolution to which the parameter can be estimated,
the value of Nε is chosen to satisfy this requirement. The time-quantized LF can
now be written as

Λ (εi;NT ) �=
N−2∑

l=−∞
ln cosh

(
2
√

P

N0

∫ ((l+1)Nε+i)∆

(lNε+i)∆

r(t)dt

)
,

i = 0, 1, 2, · · · , Nε − 1 (10 54)

The integral in Eq. (10-54), which represents the integration of the received signal
over the lth symbol interval (shifted by the epoch εiT = i∆), can be expressed
as a sum of Nε integrals over each quantization interval. In particular,

Λ (εi;NT ) �=
N−2∑

l=−∞
ln cosh

(
2
√

P

N0

Nε−1∑

k=0

∫ (lNε+i+k+1)∆

(lNε+i+k)∆

r(t)dt

)
,

i = 0, 1, 2, · · · , Nε − 1 (10 55)

Thus, the quantized MAP estimator of εT at time t = NT is given by

ε̂NT = îN∆ =
[
argmax

i
Λ (ε̂i;NT )

]
∆ (10 56)

The MAP estimate of symbol epoch at time t = (N + 1)T (i.e., one symbol time
later) is given by

ε̂N+1T =
[
argmax

i
Λ

(
ε̂i; (N + 1)T

)]
∆ (10 57)
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where

Λ (εi; (N + 1)T ) =
N−1∑

l=−∞
ln cosh

(
2
√

P

N0

Nε−1∑

k=0

∫ (lNε+i+k+1)∆

(lNε+i+k)∆

r(t)dt

)

= Λ (εi;NT ) + ln cosh

(
2
√

P

N0

Nε−1∑

k=0

∫ [(N−1)Nε+i+k+1]∆

[(N−1)Nε+i+k]∆

r(t)dt

)

(10 58)

Thus, every T seconds (as in a closed-loop symbol synchronizer that up-
dates its error signal every symbol time, e.g., the DTTL), we obtain an epoch
estimate. An implementation of Eq. (10-56) that does not require a parallel bank
of Nε correlators as is traditional for an Nε-quantized MAP parameter estimator
is illustrated in Fig. 10-7. First,

∫ (lNε+i+k+1)∆

(lNε+i+k)∆
r(t)dt is computed, which repre-

sents the integral of the received signal in the kth quantization (sample) interval
of the lth symbol corresponding to the ith epoch position. Next, Nε successive
integrals, each scaled by 2

√
P/N0, are summed for each epoch position that, be-

cause of the recursive nature of the index i in Eq. (10-55), can be implemented
by a sliding accumulator. That is, Nε successive outputs of the sliding accu-
mulator represent the argument of the “ln cosh” function in Eq. (10-55) for the
Nε epoch positions corresponding to the lth symbol. Next, we take the hyper-
bolic cosine of these outputs and pass them to a running accumulator (with delay
equal to a symbol time or equivalently Nε sample times.) Thus, in accordance
with Eq. (10-58) each output of the running accumulator (which occurs every
∆ seconds) is an accumulation of inputs spaced Nε samples (N∆ = T seconds)
apart. The output of this running accumulator in Nε successive sampling in-
tervals then is the quantized LF of Eq. (10-58) for the current symbol interval,
namely, the Nth. The “comparator” and “store maximum” blocks then proceed
to find the maximum of these Nε likelihood values for the Nth symbol interval,
after which the estimate is output. The “store maximum” block then is reset,
and the procedure is repeated for the next (i.e., the N+1st) symbol interval. It
is important that the “store maximum” block be reset in each symbol interval
so that an erroneous symbol epoch in one symbol interval does not propagate to
succeeding intervals, that is, the symbol epoch estimate for each symbol interval
should be made from the maximum of the set of Nε LF samples for that interval
and not by comparison with the maximum of samples from any previous interval.

Because of the assumption that the unknown parameter being estimated, i.e.,
symbol epoch, is constant over the observation, the implementation in Fig. 10-7
includes a running accumulator with uniform weighting. In the more practical
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case, where the parameter is dynamic but slowly varying, one can only assume
that the unknown parameter is constant over a finite number of symbol intervals.
As such, the uniform running accumulator should be replaced with a weighted
running accumulator that reflects a fading memory and is analogous to what is
done in a closed-loop architecture by using a digital filter following the error sig-
nal. The simplest method for accomplishing this is illustrated in Fig. 10-8, where
the feedback term is multiplied by a constant α < 1. This achieves a running
accumulator with a geometric weighting that has the input–output characteristic

yi =
∞∑

m=0

αmxi−m (10 59)

Finally, since the running accumulator also accomplishes the data detection
(matched-filter) function, then the epoch estimate index, îN , of Eq. (10-56) can
be used to determine in each symbol interval which running accumulator output
to use for making a hard decision on that symbol.

10.5.3 Extension to Other Pulse Shapes

When the pulse shape is other than rectangular, then, strictly speaking, the
simplification that allows the bank of Nε correlators to be replaced by a sliding
accumulator as in Fig. 10-7 is not possible. However, if Nε is large and the pulse
shape is approximated by a piecewise constant staircase function with Nε steps,
then the correlation of the received signal and the pulse shape in a quantization
interval can be written as

∫ (i+1)∆

i∆

r(t)p(t)dt = pi

∫ (i+1)∆

i∆

r(t)dt (10 60)

where pi is the assumed constant value of p (t) in the interval i∆ ≤ t ≤ (i + 1) ∆.
In view of Eq. (10-60), the only modification of Fig. 10-7 that is necessary to
allow for the inclusion of an arbitrary pulse shape is to replace the uniform
sliding accumulator with a weighted sliding accumulator (see Fig. 10-9), where
the weights are equal to the piecewise constant values of p(t). Furthermore, for
sufficiently large Nε, one can approximately replace the integral of r(t) over the
quantization interval by the value of r(t) at the midpoint of this interval times
the duration of this interval, ∆. As such, the integrator at the input of Fig. 10-7
can be replaced simply by a uniform sampler at rate 1/∆.
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Fig. 10-9.  A weighted sliding-window accumulator.
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10.6 Symbol Synchronization in the Absence of
Carrier Phase Information

10.6.1 Suboptimum Schemes

In addition to “optimum” symbol synchronizers, such as the ones discussed
thus far that are motivated by the MAP estimation approach, several other sub-
optimum schemes have been proposed in the literature that offer the advantage
of a simpler implementation and at the same time perform nearly as well as the
more complex optimum ones. One of the more popular of these ad hoc schemes
that draws its roots from the squaring loop used for carrier synchronization is
called the “filter and square symbol synchronizer,” whose tracking performance
was analyzed in [11] for the case of an NRZ input and a single-pole Butterworth
low-pass filter for H(s). A block diagram of this synchronizer is provided in
Fig. 10-10. The operation of this scheme is briefly summarized as follows.

For a binary NRZ input described by s (t, ε)=
√

P
∑∞

n=−∞ dnp (t − nT − εT ),
the output of the filter is given as ŝ (t, ε) =

√
P

∑∞
n=−∞ dnp̂ (t − nT − εT ),

where5

5 Here, the hat on s (t, ε) and p (t) is simply used to denote the result of low-pass filtering by
H (s).
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Fig. 10-10.  Filter and square symbol synchronizer.
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s(t, ε) + n(t)

(  •  ) 
2

s(t, ε) + n(t)ˆ ˆ 

p̂ (t) =
1
2π

∫ ∞

−∞
P (ω)H (ω) dω (10 61)

with P (ω) the Fourier transform of the NRZ rectangular pulse p (t). Squaring
s̄ (t, ε) results in

ŝ2 (t, ε) = P

∞∑

n=−∞
p̂2 (t − nT − εT )

+ P

∞∑

m=−∞

∞∑

n=−∞
dmdnp̂ (t − mT − εT ) p̂ (t − nT − εT ) (10 62)

which after ensemble averaging over the random data becomes

ŝ2 (t, ε) = P

∞∑

n=−∞
p̂2 (t − nT − εT ) (10 63)



Symbol Synchronization 349

The term
∑∞

n=−∞ p̂2 (t − nT − εT ) is periodic with fundamental period equal
to T and thus possesses a line spectrum with harmonics that are multiples of
the data rate, each of which carries along the symbol-timing information. Thus,
following this signal with a zonal filter (to extract, say, the nth harmonic), a
sinusoidal tone is generated at f = n/T that can be tracked by a phase-locked
loop (PLL) whose voltage-controlled oscillator (VCO) output after frequency di-
vision by n and an appropriate phase shift6 represents a symbol-timing clock
that is synchronous with the input data stream.

Shortly thereafter [12], a generalization of the filter and square symbol syn-
chronizer was proposed in which the square-law device was replaced by a delay-
and-multiply operation (see Fig. 10-11). The resulting configuration, referred to
as a “cross-spectrum symbol synchronizer (CSSS),” allowed in general for a delay
element equal to a fraction α of the symbol time, where the value of α would
be chosen to optimize the tracking performance in the sense of minimizing the
mean-squared timing error. It is clear from a comparison of Figs. 10-10 and 10-11
that the filter and square-law symbol synchronizer is a special case of the cross-
spectrum symbol synchronizer corresponding to α = 0. Once again assuming a

Fig. 10-11.  Cross-spectrum symbol synchronizer.
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6 The phase shifter is required to cancel the known phase shift inherent in the nth harmonic
of the Fourier series representation of the signal component in the output of the squaring
device.
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single-pole Butterworth low-pass filter for H (s), the line spectrum at the out-
put of the delay-and-multiply operation was analyzed in [12] as a function of the
fractional delay α for both low and high SNRs. In particular, for a given value of
SNR and α, it was shown that there exists an optimum filter bandwidth-to-data
rate ratio7 in the sense of minimizing the mean-squared timing error and that
the optimum value of α in each case was equal to 1/2. Furthermore, in addition
to α = 1/2 optimizing the performance for the best choice of filter bandwidth-to-
data rate ratio, it also resulted in a significant improvement in robustness with
regard to variations in this ratio.

Although the filter and square symbol synchronizer and its generalization,
the cross-spectrum symbol synchronizer, were initially proposed as real baseband
schemes that implicitly assumed perfect carrier synchronization, it is straight-
forward to modify them so as to be useful in a noncoherent carrier phase en-
vironment. Specifically, if we now model the signal component of the input in
complex form as

s̃ (t, ε) =
√

2Pejθc

∞∑

n=−∞
dnp (t − nT − εT ) (10 64)

where θc denotes the unknown carrier phase, then performing the delay-and-
multiply function in complex conjugate form again will result in a zonal filter
output that is a tone at the nth harmonic of the data rate that can be tracked by
a PLL. Furthermore, the performance of this scheme will be independent of the
value of θc. A block diagram of the real noncoherent version of the cross-spectrum
synchronizer is illustrated in Fig. 10-12, where the input is now the bandpass
received signal whose signal component is given by s (t, ε) = Re

{
s̃ (t, ε) ejωct

}

with ωc denoting the carrier frequency. In what follows, we present the tracking
performance of the symbol synchronizer in Fig. 10-12, drawing heavily on the
detailed results already contained in [11] and [12].

In accordance with the above, the received bandpass signal is given by

r (t) = s (t, ε) + n(t)

=
√

2Pm (t) cos ( ωct + θc) +
√

2
[
nc (t) cos ωct − nc (t) sinωct

]
(10 65)

where nc(t), ns(t) are independent low-pass Gaussian noise processes with single-
sided power spectral density N0 W/Hz. After demodulation with quadrature
reference signals

7 This phenomenon is entirely synergistic with the tracking performance of the Costas or
squaring loop as exemplified by its squaring-loss behavior as a function of the ratio of arm
filter bandwidth to data rate (see Chapter 8).
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Fig. 10-12.  Noncoherent cross-spectrum symbol synchronizer.
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rc (t) =
√

2 cos ωct

rs (t) = −
√

2 sinωct

(10 66)

and then filtering and delay-and-multiplying, we obtain the I and Q low-pass
signals

x̂c (t) = Pm̂ (t) m̂ (t − αT ) cos2 θc + n̂c(t) n̂c(t − αT )

+
√

P cos θc

[
m̂ (t) n̂c(t − αT ) + m̂ (t − αT ) n̂c(t)

]

x̂s (t) = Pm̂ (t) m̂ (t − αT ) sin2 θc + n̂s(t) n̂s(t − αT )

+
√

P sin θc

[
m̂ (t) n̂s(t − αT ) + m̂ (t − αT ) n̂s(t)

]

(10 67)

Summing these I and Q signals produces
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x(t) = Pm̂(t)m̂(t − αT ) + n̂c(t)n̂c(t − αT ) + n̂s(t)n̂s(t − αT )

+
√

Pm̂(t)
[
n̂c(t − αT ) cos θc + n̂s(t − αT ) sin θc

]

+
√

Pm̂ (t − αT )
[
n̂c(t) cos θc + n̂s(t) sin θc

]
(10 68)

whose signal × signal (S × S) component [the first term on the right-hand side
of Eq. (10-68)] is identical to that of the phase coherent cross-spectral symbol
synchronizer and as such is independent of the carrier phase. It now remains to
investigate to what extent the noise × noise (N × N) component [the second and
third terms on the right-hand side of Eq. (10-68)] and the signal × noise (S × N)
component [the fourth and fifth terms on the right-hand side of Eq. (10-68)] have
changed and what impact these changes have on the tracking performance of the
loop.

As is typical of all synchronization loops of this type, the tracking perfor-
mance as measured by the mean-squared timing error can be characterized by
the “squaring loss,” which represents the degradation8 in this measure due to the
nonlinear nature (S×S, S×N , and N ×N operations) of the loop. Specifically,
the squaring loss is formed from a scaled version of the ratio of the power in the
S × S component to the equivalent noise power spectral density of the sum of
the S×N and N ×N components, all evaluated at the nth harmonic of the data
rate. As we shall see shortly, it will not be necessary to redo the evaluations of
these component contributions to the squaring loss from what was done in [11]
and [12] for the phase-coherent symbol synchronizer. Rather, we shall simply
be able to make direct use of the evaluations found there with simple or no
modification at all. As such the evaluation of the squaring loss itself will follow
immediately almost by inspection.

To evaluate the equivalent noise power spectral densities of the S × N and
N ×N components, namely, N ′

0S×N
and N ′

0N×N
, respectively, we must first com-

8 As we shall see shortly, the squaring loss can at times exceed 0 dB and thus, in reality,
can represent a gain rather than a loss. The reason for using such a nomenclature here
nonetheless is by analogy with its usage in the carrier sync application, where it represents
the additional degradation of the mean-squared phase error relative to that of a linear carrier
tracking loop such as a PLL, and hence its value there can never exceed 0 dB. The difference
between the two usages is centered around the fact that in the carrier sync application the
phase error can vary over a range of 2π rad, whereas in the symbol sync application the
normalized (to the T -second symbol duration) timing error can vary over a range of unity.
Thus, there is a scale factor of (2π)2 that comes into play when relating the mean-squared
phase error of the sinusoidal clock supplied by the PLL portion of the cross-spectrum symbol
synchronizer to the mean-squared normalized timing error of this same reference when used
as a symbol sync clock. The important point to keep in mind is that the squaring loss is just
a relative measure of performance and thus is useful in comparing different sync schemes.
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pute their autocorrelation function. The autocorrelation of the S×N component
is by definition

Rsn (τ) =P E
{[

m̂ (t)
[
n̂c(t − αT ) cos θc + n̂s(t − αT ) sin θc

]

+m̂ (t − αT )
[
n̂c(t) cos θc + n̂s(t) sin θc

]]

×
[
m̂ (t + τ)

[
n̂c(t − αT + τ) cos θc + n̂s(t − αT + τ) sin θc

]

+m̂ (t − αT + τ)
[
n̂c(t + τ) cos θc + n̂s(t + τ) sin θc

]]}

=2PRm̂ (τ)
[
Rn̂c

(τ) cos2 θc + Rn̂s
(τ) sin2 θc

]

+ PRm̂ (τ + αT )
[
Rn̂c

(τ − αT ) cos2 θc + Rn̂s
(τ − αT ) sin2 θc

]

+ PRm̂ (τ − αT )
[
Rn̂c

(τ + αT ) cos2 θc + Rn̂s
(τ + αT ) sin2 θc

]
(10 69)

which after recognizing that Rn̂c
(τ) = Rn̂s

(τ) = Rn̂ (τ) simplifies to

Rsn (τ) = P
[
2Rm̂ (τ)Rn̂ (τ) + Rm̂ (τ + αT ) Rn̂ (τ − αT )

+Rm̂ (τ − αT ) Rn̂ (τ + αT )
]

(10 70)

Again it can be observed that the autocorrelation in Eq. (10-8) is independent of
the carrier phase θc and furthermore is identical to the analogous result for the
phase-coherent cross-spectrum symbol synchronizer as given in Eq. (10) of [12].9

Next, the autocorrelation of the N × N component is obtained as

Rnn (τ) = E
{[

n̂c(t)n̂c(t − αT ) + n̂s(t)n̂s(t − αT )
]

×
[
n̂c(t + τ)n̂c(t − αT + τ) + n̂s(t + τ)n̂s(t − αT + τ)

]}

= 2
[
R2

n̂ (αT ) + R2
n̂ (τ) + Rn̂ (τ − αT )Rn̂ (τ + αT )

]
(10 71)

9 Note that the multiplicative factor P has been included here in the definition of Rsn (τ)
whereas in [12], where P is denoted by S, it has been erroneously omitted in defining the
total noise power spectral density.
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which is exactly twice the analogous result for the phase-coherent cross-spectrum
symbol synchronizer as given in [12]. Thus, since the equivalent noise power
spectral densities are computed from the Fourier transforms of the autocor-
relations evaluated at the nth harmonic of the data rate, i.e., N ′

0S×N
=

2
∫ ∞
−∞ Rsn (τ) ej2πnτ/T dτ and N ′

0N×N
= 2

∫ ∞
−∞ Rnn (τ) ej2πnτ/T dτ , then ignor-

ing the zero frequency term R2
n (αT ) as was done in [12] (since it leads to a

power spectral line component at the zeroth harmonic of the data rate which is
eliminated by the zonal filter), we conclude that

N ′
0S×N

|noncoh. = N ′
0S×N

|coh.

N ′
0N×N

|noncoh. = 2N ′
0N×N

|coh.

(10 72)

Finally, since, as previously stated, the S × S component of the noncoherent
cross-spectral symbol synchronizer is identical to that of the phase coherent
one, then letting |Cn|2 denote the normalized power in this component at the
nth harmonic of the data rate, the squaring loss of the former is obtained as (see
Eq. (48) of [12] with minor corrections applied)

SL |noncoh. = (2πn)2 PN0

⎡
⎣

2 |Cn|2
∣∣∣
noncoh.

N ′
0S×N

∣∣∣
noncoh.

+ N ′
0N×N

∣∣∣
noncoh.

⎤
⎦

= (2πn)2 PN0

⎡
⎣

2 |Cn|2
∣∣∣
coh.

N ′
0S×N

∣∣∣
coh.

+ 2N ′
0N×N

∣∣∣
coh.

⎤
⎦ (10 73)

At this point, it is straightforward to evaluate Eq. (10-73) by making use of the
expressions in [12] for |Cn|2

∣∣
coh.

, N ′
0S×N

∣∣
coh.

, and N ′
0N×N

∣∣
coh.

. A summary of
these results for the special case of a single-pole Butterworth low-pass filter for
H(s) (with 3-dB cutoff frequency fc), random (transition density equal to 0.5)
NRZ data, n = 1 (tracking of the first harmonic), and either α = 0 (the fil-
ter and square-law implementation) or α = 0.5 (a half-symbol delay that was
shown in [12] to be optimum in the sense of minimizing the squaring loss at the
best ratio of low-pass filter bandwidth to symbol time) is given in the following.10

10 These results were not explicitly given in [12] but have been independently derived here after
considerable manipulation and integral evaluation.
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For α = 0:

|C1|2 =

[
1 − exp (−2πR)

]2

(2πR)2
1

[1 + 1/R2] [1 + 1/4R2]

N ′
0S×N

∣∣∣
coh.

=
4PN0

1 + 1/R2

{
1 − 1 − exp (−2πR)

8πR

[
6 + 1/R2 + 1/R4

[1 + 1/R2] [1 + 1/4R2]

]}
(10 74)

N ′
0N×N

∣∣∣
coh.

=
PN0

1 + 1/4R2

(
πR

2Es/N0

)

For α = 0.5:

|C1|2 =
1

(2π)2 [1 + 1/R2] [1 + 1/4R2]

×
{[

exp (−πR)
[
3 − exp (−2πR)

]
− 2

]2

4R2
+ 4

}

N ′
0S×N

∣∣∣
coh.

=
2PN0

1 + 1/R2

{
1 − 1

4πR

[
1 − 1/R2

1 + 1/R2

+
1
2

(
1 + 1/R2

1 + 1/4R2

)] [
3 − 4 exp (−2πR) + exp (−4πR)

]}

N ′
0N×N

∣∣∣
coh.

=
PN0

1 + 1/4R2

(
πR

4Es/N0

) [
1 − exp (−2πR)

]

(10 75)

where R
�= fcT and Es = PT is the symbol energy.

Figure 10-13 is an illustration of SL

∣∣
noncoh. as computed from Eq. (10-73)

together with Eq. (10-74) or Eq. (10-75) versus R with Es/N0 as a parame-
ter. Also shown in dashed lines are the corresponding plots of the squaring-
loss performance for the coherent cross-spectrum symbol synchronizer, namely
SL

∣∣
coh., as previously obtained in [12] or equivalently from Eq. (10-73) by ignor-

ing the factor of two in front of N ′
0N×N

∣∣
coh.

. We observe that the noncoherent
symbol synchronizer performs almost as well as the coherent one at high SNR
(where the S × N noise dominates over the N × N noise), whereas at low SNR
(where the N ×N noise dominates over the S ×N noise) there is a more signif-
icant degradation of the former relative to the latter. Next, as was the case for
the coherent symbol synchronizers, the noncoherent cross-spectrum scheme with
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Fig. 10-13.  Squaring-loss performance of noncoherent and coherent
cross-spectrum symbol synchronizers.

R = fcT

S
L
 (

d
B

)

α = 0.5

Coherent

Noncoherent

Es

N0

=  −5 dB

5 dB

5 dB

−5 dB

α = 0

half-symbol delay provides an improvement in performance over the filter and
square-law scheme when implemented with the optimum value of bandwidth–
time product R. Furthermore, although the cross-spectrum schemes exhibit a
dependence on the bandwidth–time product for all values of α, this dependence
is considerably reduced by the use of a half-symbol delay, particularly when com-
pared with that for α = 0.

To explain the much slower roll-off of the squaring loss performance with R

for the half-symbol delay case, we reason as follows. In the limit of large low-pass
filter bandwidth (theoretically no filtering at all), when α = 0 the signal com-
ponent of the output of the delay-and-multiply circuit (equivalent to a squaring
operation in this case) is a squared NRZ waveform which simply is a constant
equal to unity and as such does not contain a harmonic at 1/T . This is born out
by the fact that the normalized signal power of the harmonic at 1/T as given by
|C1|2 in Eq. (10-74) is equal to zero in the limit of R → ∞. On the other hand,
in the same limit with α = 0.5, the output of the delay-and-multiply circuit
randomly alternates between a ±1 square wave at the data rate and a +1 con-
stant. The average of these two waveforms is a unipolar (0, 1) square wave at
the data rate whose Fourier series expansion clearly contains a nonzero harmonic
at 1/T . Once again this is born out by the fact that, using Eq. (10-75), in the
limit of R → ∞ and Es/N0 → ∞ we have |C1|2 = 1/π2. Since, for large R,
the N ′

0N×N

∣∣
coh.

term dominates over the N ′
0S×N

∣∣
coh.

and since for α = 0 and
α = 0.5 they both have the same behavior (except for a factor of two smaller
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for the latter), then when taking the ratio of |C1|2 to the sum of N ′
0S×N

∣∣
coh.

and
N ′

0N×N

∣∣
coh.

, the squaring loss for the half-symbol delay case will decay with R

much less rapidly than for the zero-delay (squaring) case.
It is now of interest to compare the performance of the noncoherent cross-

spectrum symbol synchronizers to that of the coherent DTTL whose squaring
loss is obtained from Eq. (10-40) using the relation σ2

λ = 1/ρSL, i.e.,

SL =

2

[
erf

(√
Es

N0

)
− ξ

2

√
Es/N0

π
exp

(
−Es

N0

)]2

ξ

⎧
⎨
⎩1 +

ξ

2

(
Es

N0

)
− ξ

2

[
1√
π

exp
(
−Es

N0

)
+

√
Es

N0
erf

(√
Es

N0

)]2
⎫
⎬
⎭

(10 76)

Figures 10-14(a) and 10-14(b) are plots of the squaring loss given by
Eq. (10-76) versus Es/N0 in dB and, for comparison, the optimum (with respect
to choice of R) squaring loss for the coherent and noncoherent cross-spectrum
schemes corresponding to α = 0 and α = 0.5, respectively. In the case of
Fig. 10-14(a), we observe that, regardless of its window width, the DTTL out-
performs the noncoherent cross-spectrum (filter and square) scheme over the
entire range of SNR illustrated. On the other hand, when compared to the co-
herent cross-spectrum scheme, for sufficiently large window width, the DTTL
performance will suffer a degradation at low values of SNR. This should not
be surprising since, as mentioned earlier in the chapter, the DTTL is derived
from a high SNR approximation to the MAP symbol synchronizer which itself is
motivated by the MAP estimation approach only in the limit of infinitesimally
small window width.11 With reference to Fig. 10-14(b), we observe that the
performance of the coherent cross-spectrum scheme is quite competitive with
that of the DTTL having a window width ξ = 0.5, and even the noncoherent
cross-spectrum scheme can slightly outperform this DTTL at high SNR. As the
window width is increased beyond a value of one-half, the cross-spectrum symbol
sync schemes will clearly outperform the DTTL over the entire range of SNRs.

11 The window width, ξ, of the DTTL corresponds to the approximation of the derivative
of an NRZ pulse at a transition point in the data stream, namely, a delta function, with
a finite-width rectangular pulse. Thus, the validity of the approximation, as well as the
tracking performance of the closed-loop DTTL, monotonically improves as the window width
becomes smaller and smaller. However, while in principle the MAP approach suggests an
infinitesimally small window width, in practice there is a lower limit on its value since the
width of the tracking region is directly proportional to ξ. Thus, if the window width is made
too small, the ability of the loop to remain in lock will severely diminish. The choice of
window width is determined by the condition σλ � ξ.
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While it is difficult analytically to obtain the limiting behavior of the cross-
spectrum schemes when Es/N0 approaches infinity, it can be shown numerically
that, for both the noncoherent and coherent versions, the optimum value of R

is approximately equal to 1.1, and the accompanying value of squaring loss is
6.84 dB.
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Fig. 10-14.  A comparison of the squaring-loss performance of noncoherent 
and coherent cross-spectrum symbol synchronizers with that of the DTTL: 
(a) α = 0 and (b) α = 0.5.
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10.6.2 The Noncoherent DTTL

In this section, we return to the ML approach for obtaining a symbol syn-
chronizer in the absence of carrier phase information with particular emphasis
on the necessary modifications of the conventional (coherent) DTTL structures
as treated earlier in this chapter. We shall see that, in the low SNR region, the
modification resembles that found for the suboptimum schemes discussed in the
previous subsection, i.e., the independent addition of the symbol sync component
derived from the quadrature carrier arm, whereas for the high SNR region, the
structure involves a nonlinear cross-coupling of symbol sync components from
both the in-phase and quadrature carrier arms. Wherever possible, results will
be obtained from a combination of theory and simulation. Before proceeding,
it should be mentioned that the MAP approach to symbol sync was consid-
ered in [13] in the context of arriving at a non-data-aided recursive algorithm
for symbol timing. Although at first glance it might appear that the approach
taken there corresponds to noncoherent symbol sync since the carrier phase was
assumed to be unknown but independent from symbol to symbol,12 in reality
the derivation of the MAP estimate of symbol sync was preceded by a recursive
estimate of the carrier phase which justifies such an assumption. Our empha-
sis here, as mentioned above, is on interpreting the likelihood function derived
from such an approach in such a way as to arrive at noncoherent versions of the
DTTL. For the sake of brevity and consistent with the original derivation of the
coherent DTTL, we shall focus only on the BPSK (M = 2), NRZ case.

10.6.2.1 MAP Symbol Sync Estimation in the Absence of Carrier
Phase Information. The input to the receiver is a bandpass signal modeled
by the combination of Eq. (10-65) together with Eq. (10-64). The first step is to
demodulate the received signal with the quadrature carrier reference signals

rc (t) =
√

2 cos ωct

rs (t) = −
√

2 sinωct

(10 77)

resulting in the pair of baseband observables in the nth symbol interval (n + ε)T

≤ t ≤ (n + 1 + ε)T

12 As we shall see shortly, the appropriate assumption for truly noncoherent symbol sync is an
unknown carrier phase that is constant over the duration of the observation, i.e., a sequence
of symbols.
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xcn (t) =
√

Pdnp
(
t − (n + ε)T

)
cos θc + nc (t) cos θc − ns (t) sin θc

= s (t, ε, dn) cos θc + ncn (t, θc)

xsn (t) =
√

Pdnp
(
t − (n + ε)T

)
sin θc + nc (t) sin θc + ns (t) cos θc

= s (t, ε, dn) sin θc + nsn (t, θc)

(10 78)

or, equivalently, in complex form,

x̃n (t) = xcn (t) + jxsn (t) = s (t, ε, dn) ejθc + ñn (t, θc) (10 79)

where

ñn (t, θ) = ncn(t) + jnsn(t) = ñn(t)ejθc

ñn (t) = nc (t) + jns(t)

(10 80)

Then, for an observation of duration T0 = NT seconds, i.e., N iid symbols, the
CLF (conditioning is now on both the unknown carrier phase θc and fractional
symbol timing offset ε) is given by

L (d, ε, θc) =
1

πN0
exp

(
− 1

N0

∫

T0

∣∣x̃ (t) − s (t, ε,d) ejθc
∣∣2 dt

)

= C exp
(

2
N0

Re
{∫

T0

x̃ (t) s (t, ε,d) e−jθcdt

})
(10 81)

where x̃ (t) =
(
x̃1 (t) , x̃2 (t) , · · · , x̃N (t)

)
is the collection of complex observables

and C is a constant that is independent of the unknown parameters and also
reflects the constant energy nature of the BPSK modulation. As before, because
of the iid property of the data symbols, the CLF can be expressed as the product
of per-symbol CLFs, namely,

L (d, ε, θc) =
N−1∏

n=0

exp

(
2

N0
Re

{∫

Tn(ε)

x̃n (t) s (t, ε, dn) e−jθcdt

})
(10 82)
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where Tn (ε) denotes the time interval (n + ε)T ≤ t ≤ (n + 1 + ε)T and for
simplicity we have ignored all multiplicative constants since they do not affect
the parameter estimation.

The issue that arises now is the order in which to perform the averaging over
the unknown data sequence and the unknown carrier phase. Suppose that one
attempts to first average over the carrier phase. In order to do this, we rewrite
Eq. (10-82) in the form

L (d, ε, θc) = exp

(
2

N0
Re

{
N∑

n=1

∫

Tn(ε)

x̃n (t) s (t, ε, dn) e−jθcdt

})

= exp
{

2
N0

R (d, ε) cos
[
θc − α (d, ε)

]}
(10 83)

where

R(d, ε) =

∣∣∣∣∣

N−1∑

n=0

∫

Tn(ε)

x̃n(t)s(t, ε, dn)dt

∣∣∣∣∣

=

∣∣∣∣∣

N−1∑

n=0

dn

√
P

∫

Tn(ε)

x̃n(t)p
(
t − (n + ε)T

)
dt

∣∣∣∣∣

α(d, ε) = arg

{
N−1∑

n=0

∫

Tn(ε)

x̃n(t)s(t, ε, dn)dt

}

(10 84)

Averaging over the uniformly distributed carrier phase, we get13

L (d, ε) = I0

(
2

N0
R (d, ε)

)

= I0

(
2
√

P

N0

∣∣∣∣∣

N−1∑

n=0

dn

∫

Tn(ε)

x̃n (t) p
(
t − (n + ε)T

)
dt

∣∣∣∣∣

)
(10 85)

13 At this point, it should be re-emphasized that our approach differs from that in [13] in that
in the latter the per symbol likelihood function is averaged over the carrier phase and then,
because of the iid nature of the data, an LF is formed from the product of these phase-
averaged LFs. Forming the LF in such a way implicitly assumes that the carrier phase varies
independently from symbol to symbol, which is in opposition to our assumption that the
carrier phase is constant over the observation.
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The difficulty now lies in analytically averaging over the data sequence in
Eq. (10-85) when N is large. Thus, in order to obtain simple metrics, before
averaging over the data, we must first simplify matters by approximating the
nonlinear (Bessel) function in Eq. (10-85). For small arguments (e.g., low SNR),
the following approximation is appropriate:

I0(x) ∼= 1 +
x2

4
(10 86)

Applying Eq. (10-86) to Eq. (10-85) and defining the real observables

Xcn (ε) �=
∫

Tn(ε)

x̃cn (t) p
(
t − (n + ε) T

)
dt

Xsn (ε) �=
∫

Tn(ε)

x̃sn (t) p
(
t − (n + ε) T

)
dt

(10 87)

we obtain

L (d, ε) = I0

(
2
√

P

N0

∣∣∣∣∣

N−1∑

n=0

dn

(
Xcn (ε) + jXsn (ε)

)
∣∣∣∣∣

)

∼= 1 +
P

N2
0

(
N−1∑

n=0

dnXcn (ε)

)2

+
P

N2
0

(
N−1∑

n=0

dnXsn (ε)

)2

(10 88)

Finally, averaging over the iid data sequences gives the simplified LF

L(ε) = 1 +
P

N2
0

N−1∑

n=0

X2
cn (ε) +

P

N2
0

N−1∑

n=0

X2
sn (ε) (10 89)

To arrive at a closed-loop symbol sync structure motivated by this LF, we
proceed in the usual way by differentiating the LF with respect to ε and using
the result to form the error signal in the loop. Taking the partial derivative of
Eq. (10-89) with respect to ε and again ignoring multiplicative constants gives

∂L (ε)
∂ε

=
N−1∑

n=0

Xcn (ε)
dXcn (ε)

dε
+ Xsn (ε)

dXsn (ε)
dε

(10 90)
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each of whose terms is analogous to that which forms the error signal in the low
SNR version of the coherent DTTL, i.e., the LDTTL. Thus, the low SNR version
of the noncoherent DTTL, herein given the acronym NC-LDTTL, is nothing
more than the parallel combination of two independent coherent LDTTLs acting
on the I and Q baseband signals. A block diagram of this structure is given in
Fig. 10-15, and the analysis of its performance will follow in the next subsection.

For large SNR, we need to approximate I0 (x) in Eq. (10-85) by its large
argument form, which behaves as exp (|x|). Thus, in this case the CLF would
be approximated as

L (d, ε) ∼= exp

(
2
√

P

N0

∣∣∣∣∣

N−1∑

n=0

dn

∫

Tn(ε)

x̃n (t) p
(
t − (n + ε) T

)
dt

∣∣∣∣∣

)
(10 91)

which unfortunately does not ease the burden of averaging over the data se-
quence.

Suppose now instead we first average the CLF over the data. Then from
Eq. (10-82) we have

L (ε, θc) = E
d

⎧
⎪⎨
⎪⎩

N−1∏

n=0

exp

⎛
⎜⎝

2
N0

Re

⎧
⎪⎨
⎪⎩

∫

Tn(ε)

x̃n (t) s (t, ε, dn) e−jθcdt

⎫
⎪⎬
⎪⎭

⎞
⎟⎠

⎫
⎪⎬
⎪⎭

=
N−1∏

n=0

E
dn

⎧
⎪⎨
⎪⎩

exp

⎛
⎜⎝dn

2
√

P

N0
Re

⎧
⎪⎨
⎪⎩

∫

Tn(ε)

x̃n (t) p
(
t − (n + ε) T

)
e−jθcdt

⎫
⎪⎬
⎪⎭

⎞
⎟⎠

⎫
⎪⎬
⎪⎭

=
N−1∏

n=0

cosh

(
2
√

P

N0

[
Xcn ( ε) cos θc + Xsn ( ε) sin θc

]
)

=
N−1∏

n=0

cosh

(
2
√

P

N0

√(
Xcn ( ε)

)2 +
(
Xsn ( ε)

)2 cos (θc − βn)

)
(10 92)

where
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βn = tan−1 Xsn (ε)
Xcn (ε)

(10 93)

If we now apply the large argument (e.g., high SNR) approximation to the hy-
perbolic cosine function, namely,

cosh x ∼= exp (|x|)
2

(10 94)

then Eq. (10-92) becomes (ignoring multiplicative constants)

L (ε, θc) = exp

{
N−1∑

n=0

∣∣∣∣∣
2
√

P

N0

√(
Xcn ( ε)

)2 +
(
Xsn ( ε)

)2 cos (θc − βn)

∣∣∣∣∣

}
(10 95)

which still presents difficulty in analytically averaging over the unknown param-
eter, in this case θc. Thus, having failed on both attempts at averaging the CLF
over both the carrier phase and the data sequence at high SNR, we are forced
to deviate from the true ML approach in favor of one that will provide a simple
metric.

Another approach, albeit suboptimum, that can achieve near-ML perfor-
mance is to choose (rather than average over) the value of the unknown param-
eter that maximizes the CLF. With reference to Eq. (10-85), in the limit of no
noise (infinite SNR), the CLF L(d, ε), or equivalently the argument of the Bessel
function, would be maximized when

dn = sgn

[∫

Tn(ε)

s(t, ε, dn)p
(
t − (n + ε)T

)
dt

]
(10 96)

i.e., all the signal vectors are aligned in the same direction, in which case the
argument of the Bessel function (ignoring the constant multiplicative factor)
would become
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∣∣∣∣∣

N∑

n=1

dn

∫

Tn(ε)

s(t, ε, dn)ejθcp
(
t − (n + ε)T

)
dt

∣∣∣∣∣ =

N∑

n=1

∣∣∣∣∣

∫

Tn(ε)

s(t, ε, dn)ejθcp
(
t − (n + ε)T

)
dt

∣∣∣∣∣

Thus, as a high SNR approximation of this limiting case, we propose the ad hoc
unconditional LF

LF(ε) = I0

(
2
√

P

N0

N−1∑

n=0

∣∣∣∣∣

∫

Tn(ε)

x̃n (t) p
(
t − (n + ε) T

)
dt

∣∣∣∣∣

)
(10 97)

or, equivalently, taking the natural logarithm of Eq. (10-97), the log-likelihood
function (LLF)

LLF(ε) = ln LF(ε) = ln I0

(
2
√

P

N0

N−1∑

n=0

∣∣∣∣∣

∫

Tn(ε)

x̃n(t)p
(
t − (n + ε)T

)
dt

∣∣∣∣∣

)

= ln I0

(
2
√

P

N0

N−1∑

n=0

|Xcn(ε) + jXsn(ε)|
)

= ln I0

(
2
√

P

N0

N−1∑

n=0

√
X2

cn(ε) + X2
sn(ε)

)
(10 98)

For large arguments, the nonlinearity in Eq. (10-98) can be approximated
(to within a scaling constant) as

ln I0 (x) ∼= |x| (10 99)

which after substitution in Eq. (10-98) yields

LLF(ε) =
2
√

P

N0

N−1∑

n=0

√
X2

cn (ε) + X2
sn(ε) (10 100)
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Thus, analogous to Eq. (10-90), differentiating LLF(ε) with respect to ε, the
error signal in a closed-loop configuration should be formed from

e =
N−1∑

n=0

[
Xcn (ε)√

X2
cn (ε) + X2

sn (ε)
dXcn (ε)

dε
+

Xsn (ε)√
X2

cn (ε) + X2
sn (ε)

dXsn (ε)
dε

]

(10 101)

A noncoherent DTTL-type symbol synchronizer that is motivated by using
Eq. (10-101) as its error signal is illustrated in Fig. 10-16. The analysis of its
performance will be discussed later on. In the meantime it is interesting to note
that if one were to consider the coherent case wherein Xsn (ε) would be absent,
then setting Xsn (ε) equal to zero in Eq. (10-101) gives

e =
N−1∑

n=0

Xcn (ε)√
X2

cn (ε)
dXcn (ε)

dε
=

N−1∑

n=0

dXcn (ε)
dε

sgn Xcn (ε) (10 102)

which is exactly the error signal that would be derived from the MAP approach
under the assumption of perfectly known carrier phase and thus motivates the
construction of the conventional nonlinear DTTL.

Before proceeding, it is interesting at this point to note that the LLF in
Eq. (10-98) is the same14 as that given in [13, Eq. 6.279], which is obtained
by averaging over the carrier phase under the assumption that it varies inde-
pendently from symbol to symbol as discussed in Footnote 13. The LLF in
Eq. (10-98) can also be obtained from Eq. (10-95) by again assuming that the
carrier phase varies independently from symbol to symbol, which is tantamount
to replacing θc with θcn in this equation, and then maximizing over the sequence
of carrier phases. It is clear from Eq. (10-95) that this maximization would occur
for θcn = βn, in which case we obtain the LF

L(ε) = exp

{
N−1∑

n=0

∣∣∣∣∣
2
√

P

N0

√(
Xcn ( ε)

)2 +
(
Xsn ( ε)

)2

∣∣∣∣∣

}
(10 103)

14 The only difference is a factor of
√

T in the argument of the Bessel function, i.e., 2
√

P/N0

in our result versus 2
√

E/N0 = 2
√

PT/N0 in that of [13], which comes about because of the
difference in the normalization of the carrier reference signals between the two approaches.
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Finally, taking the natural logarithm of Eq. (10-103) produces a result identical
to Eq. (10-100) for the LLF.

10.6.2.2 Tracking Performance of the Noncoherent Linear DTTL.
With reference to Fig. 10-15, the upper and lower channel (herein referred to as
“cosine” and “sine” channels) inputs to the I&D filters in the nth symbol interval
are described by Eq. (10-78). The local clock produces a timing reference for the
I and Q I&D filters of each of these channels that depends on the estimate ε̂ of ε.
As such, the outputs of these same filters are respectively given by (assuming
for simplicity that all gains are set equal to unity)

Xck =
∫ (k+1)T+ε̂

kT+ε̂

xck(t)dt

= cos θc

ck︷ ︸︸ ︷∫ (k+1)T+ε̂

kT+ε̂

s(t, ε, dk)dt + cos θc

νck︷ ︸︸ ︷∫ (k+1)T+ε̂

kT+ε̂

nc (t) dt

− sin θc

νsk︷ ︸︸ ︷∫ (k+1)T+ε̂

kT+ε̂

ns (t) dt

(10 104)

Yck =
∫ (k + 1 + ξ

2 )T + ε̂

(k + 1 − ξ
2 )T + ε̂

xck(t)dt

= cos θc

bk︷ ︸︸ ︷
∫ (k + 1 + ξ

2 )T + ε̂

(k + 1 − ξ
2 )T + ε̂

s(t, ε, dk)dt + cos θc

µck︷ ︸︸ ︷
∫ (k + 1 + ξ

2 )T + ε̂

(k + 1 − ξ
2 )T + ε̂

nc (t) dt

− sin θc

µsk︷ ︸︸ ︷
∫ (k + 1 + ξ

2 )T + ε̂

(k + 1 − ξ
2 )T + ε̂

ns (t) dt

and
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Xsk =
∫ (k+1)T+ε̂

kT+ε̂

xsk(t)dt

= sin θc

ck︷ ︸︸ ︷∫ (k+1)T+ε̂

kT+ε̂

s(t, ε, dk)dt + sin θc

νck︷ ︸︸ ︷∫ (k+1)T+ε̂

kT+ε̂

nc (t) dt

+ cos θc

νsk︷ ︸︸ ︷∫ (k+1)T+ε̂

kT+ε̂

ns (t) dt

(10 105)

Ysk =
∫ (k + 1 + ξ

2 )T + ε̂

(k + 1 − ξ
2 )T + ε̂

xsk(t)dt

= sin θc

bk︷ ︸︸ ︷
∫ (k + 1 + ξ

2 )T + ε̂

(k + 1 − ξ
2 )T + ε̂

s(t, ε, dk)dt + sin θc

µck︷ ︸︸ ︷
∫ (k + 1 + ξ

2 )T + ε̂

(k + 1 − ξ
2 )T + ε̂

nc (t) dt

+ cos θc

µsk︷ ︸︸ ︷
∫ (k + 1 + ξ

2 )T + ε̂

(k + 1 − ξ
2 )T + ε̂

ns (t) dt

Since µck and νck are not independent, and likewise for µsk and νsk, it is conve-
nient as before to express them in terms of a new set of variables:

νck = Nck + Mck, µck = M ′
ck + N ′

c,k+1

νsk = Nsk + Msk, µsk = M ′
sk + N ′

s,k+1

(10 106)

where
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Nck =
∫ (k + 1

2 )T + ε̂

kT+ε̂

nc(t)dt, Mck =
∫ (k + 1)T + ε̂

(k + 1
2 )T + ε̂

nc(t)dt

N ′
ck =

∫ (k + ξ
2 )T + ε̂

kT+ε̂

nc(t)dt, M ′
ck =

∫ (k+1)T+ε̂

(k + 1 − ξ
2 )T + ε̂

nc (t) dt

(10 107)

with the properties

Nck, Mcn are mutually independent for all k, n

N ′
ck, M ′

cn are mutually independent for all k, n

N ′
ck, Mcn and M ′

ck, Ncn are mutually independent for all k, n

N ′
ck, N ′

cn and Mck, Mcn are mutually independent for all k �= n

Furthermore, all Mck, M ′
ck, Nck, N ′

ck, and their sums are Gaussian random vari-
ables with zero mean and variances

σ2
Mck

= σ2
Nck

= N0T/4

σ2
M ′

ck
= σ2

N ′
ck

= ξN0T/4
(10 108)

Analogous definitions and properties apply to the sine channel noise variables.
Taking the difference of two successive soft decisions, Xck and Xc,k+1 (or Xsk

and Xs,k+1), and multiplying the average of the result by the quadrature I&D
output, Yck (or Ysk), delayed by (1 − ξ/2) T gives the sine and cosine channel
error signal components in the kth symbol interval:

eck =
(
bk cos θc +

(
M ′

ck + N ′
c,k+1

)
cos θc −

(
M ′

sk + N ′
s,k+1

)
sin θc

)

× 1
2

{[
ck cos θc + (Nck + Mck) cos θc − (Nsk + Msk) sin θc

]

−
[
ck+1 cos θc + (Nc,k+1 + Mc,k+1) cos θc − (Ns,k+1 + Ms,k+1) sin θc

]}

(10 109)

and
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esk =
(
bk sin θc +

(
M ′

ck + N ′
c,k+1

)
sin θc +

(
M ′

sk + N ′
s,k+1

)
cos θc

)

× 1
2

{[
ck sin θc + (Nck + Mck) sin θc + (Nsk + Msk) cos θc

]

−
[
ck+1 sin θc + (Nc,k+1 + Mc,k+1) sin θc + (Ns,k+1 + Ms,k+1) cos θc

]}

(10 110)

The total error signal, ek, is the sum of the two components in Eqs. (10-110)
and (10-109).

10.6.2.3 S-Curve Performance. The S-curve is by definition the statistical
average of the error signal over the signal and noise probability distributions.
Letting λ

�= ε − ε̂ denote the normalized timing error (−1/2 ≤ λ ≤ 1/2), the
S-curve g (λ) becomes

g (λ) = En,s {eck + esk}

= Es

{
bk

(
ck − ck+1

2

)
cos2 θc + bk

(
ck − ck+1

2

)
sin2 θc

}

= Es

{
bk

(
ck − ck+1

2

)}
(10 111)

which is independent of the carrier phase error as expected and also identical
to the result for the coherent LDTTL. Thus, using the results from Section 4.1
with a slight simplification in the notation, i.e., ignoring the gain constants K1

and K2, we have

gn (λ) �=
g (λ)
PT 2

=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

λ

(
1 − ξ

4

)
− 3

2
λ2, 0 ≤ λ ≤ ξ

2

ξ

2
(1 − 2λ) ,

ξ

2
≤ λ ≤ 1

2

(10 112)

As noted there, the normalized S-curve for the LDTTL is independent of SNR,
whereas that for the conventional (nonlinear) DTTL is highly dependent on SNR.
Taking the derivative of Eq. (10-112) with respect to λ and evaluating the result
at λ = 0 gives the slope of the normalized S-curve at the origin, namely,
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Kg
�=

dg (λ)
dλ

|λ=0 = PT 2

(
1 − ξ

4

)
(10 113)

10.6.2.4 Noise Performance. The equivalent noise nλ (t) perturbing the
loop is characterized by the variation of the loop error signal around its mean
(the S-curve) as in Eq. (10-27). Following the same approach as that taken in
Section 10.3.2, then after some laborious analysis, we arrive at the equivalent
noise power spectral density given by Eq. (10-30), where now

En,s

{
e2
n |λ=0

}
= P 2T 4

[
ξ

4Rs

(
1 +

ξ

2
+

1
Rs

)]

En,s {enen+m |λ=0 } =

⎧
⎪⎨
⎪⎩

−P 2T 4 ξ2

32Rs
, m = 1

0, m > 1

(10 114)

Substituting Eq. (10-114) into Eq. (10-30) gives the desired equivalent power
spectral density as

N ′
0 = P 2T 5 ξ

2Rs

(
1 +

ξ

4
+

1
Rs

)
(10 115)

Interestingly enough, the result for the coherent LDTTL is given by [see
Eq. (10-37)]

N ′
0 = P 2T 5 ξ

2Rs

(
1 +

ξ

4
+

1
2Rs

)
(10 116)

although by comparison the mathematics employed to arrive at Eq. (10-116) is
considerably simpler than that needed to arrive at Eq. (10-115).

10.6.2.5 Mean-Squared Timing-Error Performance. The mean-
squared timing error σ2

λ of the noncoherent LDTTL is readily computed for
a first-order loop filter and large loop SNR conditions using the relation in
Eq. (10-39), where now Kg is obtained from Eq. (10-113) and N ′

0 from
Eq. (10-115). Making the appropriate substitutions in Eq. (10-39) gives the
result
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σ2
λ |NC-LDTTL =

ξ

(
1 +

ξ

4
+

1
Rs

)

2ρ

(
1 − ξ

4

)2 (10 117)

which is to be compared with a similar result in Eq. (10-40) for the coherent
LDTTL.

10.6.2.6 Tracking Performance of the Noncoherent Nonlinear
DTTL. For the nonlinear noncoherent DTTL illustrated in Fig. 10-16, analo-
gous to Eqs. (10-109) and (10-110), the error signal components are now given
by

eck = Yck × 1
2

⎡

⎣ Xck√
X2

ck + X2
sk

− Xc,k+1√
X2

c,k+1 + X2
s,k+1

⎤

⎦

=
(
bk cos θc +

(
M ′

ck + N ′
c,k+1

)
cos θc −

(
M ′

sk + N ′
s,k+1

)
sin θc

)

× 1
2

⎡
⎣ (ck + Nck + Mck) cos θc − (Nsk + Msk) sin θc√

(ck + Nck + Mck)2 + (Nsk + Msk)2

− (ck+1 + Nc,k+1 + Mc,k+1) cos θc − (Ns,k+1 + Ms,k+1) sin θc√
(ck+1 + Nc,k+1 + Mc,k+1)

2 + (Ns,k+1 + Ms,k+1)
2

⎤
⎦ (10 118)

and

esk = Ysk × 1
2

⎡

⎣ Xsk√
X2

ck + X2
sk

− Xs,k+1√
X2

c,k+1 + X2
s,k+1

⎤

⎦

=
(
bk sin θc +

(
M ′

ck + N ′
c,k+1

)
sin θc +

(
M ′

sk + N ′
s,k+1

)
cos θc

)

× 1
2

⎡
⎣ (ck + Nck + Mck) sin θc + (Nsk + Msk) cos θc√

(ck + Nck + Mck)2 + (Nsk + Msk)2

− (ck+1 + Nc,k+1 + Mc,k+1) sin θc + (Ns,k+1 + Ms,k+1) cos θc√
(ck+1 + Nc,k+1 + Mc,k+1)

2 + (Ns,k+1 + Ms,k+1)
2

⎤
⎦ (10 119)
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The total error signal, ek, is now the sum of Eqs. (10-118) and (10-119), which
after some trigonometric simplification becomes

ek =
1
2

(
bk + M ′

ck + N ′
c,k+1

)
⎡
⎣ ck + Nck + Mck√

(ck + Nck + Mck)2 + (Nsk + Msk)2

− ck+1 + Nc,k+1 + Mc,k+1√
(ck+1 + Nc,k+1 + Mc,k+1)

2 + (Ns,k+1 + Ms,k+1)
2

⎤
⎦

+
1
2

(
M ′

sk + N ′
s,k+1

)
⎡
⎣ Nsk + Msk√

(ck + Nck + Mck)2 + (Nsk + Msk)2

− Ns,k+1 + Ms,k+1√
(ck+1 + Nc,k+1 + Mc,k+1)

2 + (Ns,k+1 + Ms,k+1)
2

⎤
⎦ (10 120)

which is clearly independent of the unknown carrier phase, θc, as desired. To an-
alytically compute even just the S-curve, much less the equivalent power spectral
density, is now a daunting if not impossible task. Thus, in order to determine the
tracking performance of this scheme, we shall have to turn to results obtained
from computer simulations. Before doing this, however, we do note that in the
absence of noise (i.e., in the limit of infinite SNR), the error signal of Eq. (10-120)
becomes

ek = bk
sgn ck − sgn ck+1

2
(10 121)

which is the exact same result as for the coherent conventional (nonlinear) DTTL,
and thus one can anticipate that, in the limit of large SNR, the noncoherent
scheme should suffer little or no performance penalty relative to the coherent
one. To demonstrate this as well as the behavior of the symbol synchronizer in
other SNR regions, we turn to results obtained from computer simulation.

Figures 10-17 and 10-18 are illustrations of the normalized S-curves for the
NC-NLDTTL for two different values of normalized window width and a variety
of SNR values. The curves were obtained by numerically averaging the error
signal of Eq. (10-120) over the data and noise statistics Also superimposed on
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these results are the corresponding S-curves for the NC-LDTTL as obtained from
Eq. (10-112), which as previously mentioned are independent of SNR.

To demonstrate the performance trade-off of the noncoherent versus
the coherent DTTL schemes as a function of SNR, Figs. 10-19 and 10-20
plot the mean-squared timing-error ratios σ2

λ |NC-NLDTTL /σ2
λ |DTTL and

σ2
λ |NC-LDTTL /σ2

λ |LDTTL , respectively, in dB versus SNR in dB for three dif-
ferent values of normalized window width ξ. For the first of the two ratios, the
variance σ2

λ |NC-NLDTTL is obtained by computer simulation and then divided
by the variance of the conventional (nonlinear) DTTL obtained from the results
in [1] as

σ2
λ |DTTL =

ξ

(
1 +

ξRs

2
− ξ

2

[
1√
π

exp (−Rs) +
√

Rs erf
√

Rs

]2
)

2ρ

(
erf

√
Rs −

ξ

2

√
Rs

π
exp (−Rs)

)2 (10 122)

The second of the two ratios is simply obtained from the division of Eq. (10-117)
by Eq. (10-40). In both cases we observe that, as expected, the noncoherent
and coherent performances approach each other as the SNR gets large (i.e., the
above variance ratios approach unity or 0 dB). In the limit of infinitesimally small
SNR, the noncoherent schemes pay a performance penalty with respect to the
coherent schemes, which in the linear case is easily computed from Eqs. (10-117)
and (10-40) to be 3 dB, while in the nonlinear case it appears to be somewhat less
and mildly dependent on the window width. Finally, a comparison between the
noncoherent linear and nonlinear DTTL performances is illustrated in Fig. 10-21,
where the ratio of σ2

λ |NC-LDTTL to σ2
λ |NC-NLDTTL in dB is plotted versus SNR,

Rs, in dB for a variety of different window widths. Analogous to a similar plot
for the coherent DTTL schemes in Fig. 10-6, for each window width there exists
a crossover point at which the variance ratio equals unity (or, equivalently, 0 dB),
indicating the value of SNR that separates the SNR regions where one scheme
is preferable over the other.

10.7 The Impact of Carrier Frequency Offset on
Performance

Thus far in our discussions of noncoherent symbol synchronization, the word
“noncoherent” was used to mean that the carrier phase was completely un-
known [i.e., uniformly distributed in the interval (−π, π)] but at the same time
the carrier frequency was assumed to be known exactly. Here, as an example,
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we investigate the impact on the performance of the NC-LDTTL of imperfect
knowledge of the carrier frequency, i.e., the presence of a fixed carrier frequency
offset. In particular, we shall briefly rederive the expression for the variance of
the normalized timing error in the loop and demonstrate its exact dependence on
the ratio of symbol rate to frequency offset. Comparing this expression with that
corresponding to the zero frequency offset case allows us to assess the additional
degradation in performance that arises from the presence of the offset.

Consider the NC-LDTTL illustrated in Fig. 10-15, whose bandpass input
r (t) = s (t, ε) + n (t) is as before a BPSK modulation consisting of a binary
NRZ data stream direct-modulated onto a carrier plus noise. While the signal
component s (t, ε) of this input will still be modeled as in the combination of
Eq. (10-65) with Eq. (10-64), as we shall discuss momentarily it will be mathe-
matically convenient to choose a slightly different representation of the bandpass
noise n (t) than the one given in Eq. (10-65).

The first step is to demodulate the received signal with the quadrature carrier
reference signals

rc (t) =
√

2 cos ω̂ct

rs (t) = −
√

2 sin ω̂ct

(10 123)
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whose frequency is now assumed to be in error by an amount ∆ω = ωc − ω̂c.
Since the choice of frequency and phase used for representation of a bandpass
noise process is arbitrary, for the purpose of analysis we choose these parameters
corresponding to those of the carrier demodulation reference signals, in which
case we have

n (t) =
√

2
[
nc (t) cos ω̂ct − ns (t) sin ω̂ct

]
(10 124)

where nc (t) , ns (t) are as before low-pass AWGN processes with two-sided power
spectral density (PSD) N0/2 W/Hz. Thus, demodulating r (t) with the quadra-
ture reference signals of Eq. (10-123) results in the pair of baseband observables
in the kth symbol interval (k + ε) T ≤ t ≤ (k + 1 + ε) T ,

xck (t) =
√

Pdkp
(
t − (k + ε)T

)
cos (∆ωt + θc) + nc (t)

xsk (t) =
√

Pdkp
(
t − (k + ε)T

)
sin (∆ωt + θc) + ns (t)

(10 125)

Analogous to Eq. (10-104), the outputs of the I and Q I&D filters are now

Xck =
∫ (k+1)T+ε̂

kT+ε̂

xck(t)dt

=

cck︷ ︸︸ ︷∫ (k+1)T+ε̂

kT+ε̂

√
Pdk cos (∆ωt + θc) dt +

νck︷ ︸︸ ︷∫ (k+1)T+ε̂

kT+ε̂

nc (t) dt

Yck =
∫ (

k+1+
ξ
2

)
T+ε̂

(
k+1− ξ

2

)
T+ε̂

xck(t)dt

=

bck︷ ︸︸ ︷
∫ (

k+1+
ξ
2

)
T+ε̂

(
k+1− ξ

2

)
T+ε̂

√
Pdk cos (∆ωt + θc) dt +

µck︷ ︸︸ ︷
∫ (

k+1+
ξ
2

)
T+ε̂

(
k+1− ξ

2

)
T+ε̂

nc (t) dt
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and
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Xsk =
∫ (k+1)T+ε̂

kT+ε̂

xsk(t)dt

=

csk︷ ︸︸ ︷∫ (k+1)T+ε̂

kT+ε̂

√
Pdk sin (∆ωt + θc) dt +

νsk︷ ︸︸ ︷∫ (k+1)T+ε̂

kT+ε̂

ns (t) dt

Ysk =
∫ (

k+1+
ξ
2

)
T+ε̂

(
k+1− ξ

2

)
T+ε̂

xsk(t)dt

=

bsk︷ ︸︸ ︷
∫ (

k+1+
ξ
2

)
T+ε̂

(
k+1− ξ

2

)
T+ε̂

√
Pdk sin(∆ωt + θc)dt +

µsk︷ ︸︸ ︷
∫ (

k+1+
ξ
2

)
T+ε̂

(
k+1− ξ

2

)
T+ε̂

ns (t) dt
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Taking the difference of two successive soft decisions, Xck and Xc,k+1 (or Xsk

and Xs,k+1), and multiplying the average of the result by the quadrature I&D
output Yck (or Ysk), delayed by (1 − ξ/2)T , gives the sine and cosine channel
error signal components in the kth symbol interval:

eck =
(
bck + M ′

ck + N ′
c,k+1

) (cck + Nck + Mck) − (cc,k+1 + Nc,k+1 + Mc,k+1)
2

(10 128)

and

esk =
(
bsk + M ′

sk + N ′
s,k+1

) (cck + Nsk + Msk) − (cs,k+1 + Ns,k+1 + Ms,k+1)
2

(10 129)

The total error signal, ek, is again the sum of the two components in Eqs.
(10-128) and (10-129).

10.7.1 S-Curve Performance

Using Eqs. (10-128) and (10-129), the S-curve g (λ) is evaluated as

g(λ) = En,s {eck + esk}

= Es

{
bck

(
cck − cc,k+1

2

)
+ bsk

(
csk − cs,k+1

2

)}
(10 130)
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which as we shall see shortly is still independent of the carrier phase but is now
dependent on the frequency offset. Evaluating the signal terms in Eq. (10-130),
whose definition appears in Eqs. (10-126) and (10-127), and carrying out the
necessary integrations, we arrive at the following results:

cck =
√

Pdk−1λT

(
sinπηλ

πηλ

)
cos

(
2πη

(
k +

λ

2

)
+ θ

)

+
√

PdkλT

(
sinπη (1 − λ)

πη (1 − λ)

)
cos

(
2πη

(
k +

1
2

+
λ

2

)
+ θ

)

(10 131)

bck =
√

Pdk

(
ξ

2
+ λ

)
T

⎛
⎜⎜⎝

sinπη

(
ξ

2
+ λ

)

πη

(
ξ

2
+ λ

)

⎞
⎟⎟⎠cos

⎛
⎜⎝2πη

⎛
⎜⎝k + 1 +

λ − ξ

2
2

⎞
⎟⎠ + θ

⎞
⎟⎠

+
√

Pdk+1

(
ξ

2
− λ

)
T

⎛
⎜⎜⎝

sin η

(
ξ

2
− λ

)

η

(
ξ

2
− λ

)

⎞
⎟⎟⎠cos

⎛
⎜⎝2πη

⎛
⎜⎝k + 1 +

λ +
ξ

2
2

⎞
⎟⎠+ θ

⎞
⎟⎠

and

csk = −
√

Pdk−1λT

(
sinπηλ

πηλ

)
sin

(
2πη

(
k +

λ

2

)
+ θ

)

−
√

PdkλT

(
sinπη (1 − λ)

πη (1 − λ)

)
sin

(
2η

(
k +

1
2

+
λ

2

)
+ θ

)
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bsk = −
√

Pdk

(
ξ

2
+ λ

)
T

⎛
⎜⎜⎝

sinπη

(
ξ

2
+ λ

)

πη

(
ξ

2
+ λ

)

⎞
⎟⎟⎠sin

⎛
⎜⎝2πη

⎛
⎜⎝k + 1 +

λ − ξ

2
2

⎞
⎟⎠ + θ

⎞
⎟⎠

−
√

Pdk+1

(
ξ

2
− λ

)
T

⎛
⎜⎜⎝

sinπη

(
ξ

2
− λ

)

πη

(
ξ

2
− λ

)

⎞
⎟⎟⎠sin

⎛
⎜⎝2πη

⎛
⎜⎝k + 1 +

λ +
ξ

2
2

⎞
⎟⎠+ θ

⎞
⎟⎠
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where η
�= ∆ωT/2π = ∆fT . Finally, substituting Eqs. (10-131) and (10-132)

into Eq. (10-130) and performing the average over the data symbols gives, after
some trigonometric simplification,15

gn (λ) �=
g (λ)
PT 2

=
1
2

(1 − λ)
(

ξ

2
+ λ

) (
sinπη (1 − λ)

πη (1 − λ)

)
⎛
⎜⎜⎝

sinπη

(
ξ

2
+ λ

)

πη

(
ξ

2
+ λ

)

⎞
⎟⎟⎠ cos πη

(
1 − ξ

2

)

− 1
2
λ

(
ξ

2
+ λ

) (
sinπηλ

πηλ

)
⎛
⎜⎜⎝

sinπη

(
ξ

2
+ λ

)

πη

(
ξ

2
+ λ

)

⎞
⎟⎟⎠ cos πη

ξ

2

− 1
2

(1 − λ)
(

ξ

2
− λ

)(
sinπη (1 − λ)

πη (1 − λ)

)
⎛
⎜⎜⎝

sinπη

(
ξ

2
− λ

)

πη

(
ξ

2
− λ

)

⎞
⎟⎟⎠cos πη

(
1 − ξ

2

)
;

0 ≤ λ ≤ ξ

2
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In the case of no frequency offset (η = 0), the S-curve of Eq. (10-133) simplifies
to Eq. (10-112) as it should.

Taking the derivative of Eq. (10-133) with respect to λ and evaluating the
result at λ = 0 gives the slope of the S-curve at the origin as

Kg
�=

dg (λ)
dλ

|λ=0 = PT 2

{(
sinπηξ/2

πηξ/2

)

×
[
1 +

(
sinπη

πη

)
cos πη (1 − ξ/2) − ξ

4
cos πηξ/2

]
− cos πηξ/2

}
(10 134)

which in the case of no frequency offset (η = 0) simplifies to Eq. (10-113).

15 For the sake of brevity, we do not present the result for the S-curve in the region ξ/2 ≤ λ ≤
1/2 since for the purpose of mean-squared timing-error evaluation we have already seen that
only the slope of the S-curve at the origin (λ = 0) is needed.
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10.7.2 Noise Performance

As before, we must determine the PSD at λ = 0 of the equivalent noise,
nλ (t), perturbing the loop as given by Eq. (10-30). Following an analogous
approach to that taken for the zero frequency offset case, the following results
are obtained:

En,s

{
e2
k |λ=0

}
= P 2T 4

(
ξ

4Rs

) [(
sinπη

πη

)2

+
ξ

2

(
sinπηξ/2

πηξ/2

)2

+
1

Rs

]

(10 135)

En,s {ekek+1 |λ=0 } =

⎧
⎨
⎩

−P 2T 4

(
ξ2

32Rs

)
cos 2πη (1 − ξ/2) , m = 1

0, m > 1

where as before Rs
�= PT/N0 denotes the detection symbol SNR. Substituting

Eq. (10-135) into Eq. (10-30) gives the desired equivalent PSD as

N ′
0 =

P 2T 5

(
ξ

2Rs

) {(
sin πη

πη

)2

+
ξ

2

[(
sinπηξ/2

πηξ/2

)2

− 1
2

cos 2πη (1 − ξ/2)

]
+

1
Rs

}
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10.7.3 Mean-Squared Timing-Error Performance

The mean-squared timing error σ2
λ of the LDTTL in the presence of fre-

quency offset is now readily computed using the results in Eqs. (10-134) and
(10-136) in Eq. (10-39), resulting in

σ2
λ =

ξ

⎧
⎪⎪⎨

⎪⎪⎩

(
sin πη

πη

)2

+
ξ

2

⎡
⎢⎢⎣

⎛
⎜⎝

sinπη
ξ

2

πη
ξ

2

⎞
⎟⎠

2

− 1
2

cos 2πη

(
1 − ξ

2

)
⎤
⎥⎥⎦ +

1
Rs

⎫
⎪⎪⎬

⎪⎪⎭

2ρ

⎧
⎪⎨

⎪⎩

⎛
⎜⎝

sinπη
ξ

2

πη
ξ

2

⎞
⎟⎠

[
1 +

(
sinπη

πη

)
cos πη

(
1 − ξ

2

)
− ξ

4
cos πη

ξ

2

]
− cos πη

ξ

2

⎫
⎪⎬

⎪⎭

2

(10 137)
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For zero frequency offset (η = 0), Eq. (10-137) simplifies to Eq. (10-117).
To demonstrate the additional degradation in performance of the NC-LDTTL

due to frequency offset, Fig. 10-22 plots the mean-squared timing-error ratio
σ2

λ/σ2
λ |∆f=0 in dB versus SNR in dB for several different values of normalized

frequency offset, η = ∆fT , and two different values of normalized window width,
ξ. We observe from these results that over a wide range of SNRs the degrada-
tion is virtually insensitive to this parameter. Furthermore, the degradation also
appears to be relatively insensitive to window width. Finally, for values of nor-
malized frequency offset less than 0.1, it can be observed that the performance
degradation is quite small (i.e., less than 0.5 dB).

10.7.4 A Final Note

Thus far in our discussion of the noncoherent DTTL in this section we have
assumed an input signal in the form of BPSK modulation. Before concluding
this section, we wish to point out that it is possible to apply the same MAP
estimation approach to QPSK to arrive at LFs that can be used to motivate
closed-loop symbol synchronizers for this modulation. Without going into detail,
it can be shown that, under the same approximations used to derive the low and
high SNR versions of the noncoherent DTTLs for BPSK, the LFs that result
from this approach when applied to QPSK are identical to those obtained for
BPSK. Equivalently stated, noncoherent symbol synchronization of QPSK with
a DTTL type of structure takes on the exact same form as that for BPSK.
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Fig. 10-22.  Mean-squared timing-error performance degradation versus 
detection SNR with normalized frequency error as a parameter.
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10.8 Coarse Estimation of Symbol Timing for Use in
SNR Estimation

In our discussions of SNR estimation for autonomous receiver operation in
Chapter 6, we considered the behavior of the split-symbol moments estimator
(SSME) in the presence of unknown symbol timing. Although originally derived
on the basis of perfect symbol sync information, it was shown there that, in the
presence of unknown symbol timing, the performance of a conventional SSME
becomes quite sensitive to the amount of symbol-timing error. In fact, in order
to properly operate at all, the form of the estimator now requires knowledge (an
estimate) of the symbol timing [via the parameters ĥ+ and ĥ− in Eq. (6-54)].
Thus, it is essential that one provide a coarse estimate of symbol timing to the
SNR estimator,16 preferably derived from the same statistics as those used to
form this estimator itself.

Using the relations for the mean of the sums U+ and U− of the squared
magnitudes of the sum and difference half-symbol I&D outputs [see Eqs. (6-49)
and (6-51)], we have

E
{
U+

}
− E

{
U−}

= 2σ2
(
h

+ − h
−)

R = 2σ2 (1 − 2 |ε|)R (10 138)

While Eq. (10-138) provides the needed measure of the symbol timing, it also de-
pends on σ2 and R, which are parameters that themselves need to be estimated.
Thus, it behooves us to find another measure of the product of σ2 and R that is
independent of the symbol sync timing, which could then be used together with
Eq. (10-138) to isolate the 1 − 2 |ε| factor.

Also considered in Chapter 6 was a modification of the conventional SSME
that produced a set of observables obtained from oversampling the symbol in-
terval by a factor L and as such was capable of providing improved performance
at SNRs above 3 dB. It was also shown there that this same modification had
the added advantage of reducing the sensitivity of the estimator performance
to incorrect symbol-timing information and, in the limit of sufficiently large L,
became completely insensitive to knowledge of ε. In fact, for L approaching
infinity, the difference of the means considered in Eq. (10-138) now became [see
Eq. (6-110)]

E
{
U+

}
− E

{
U−}

= 2σ2R (10 139)

16 Actually, because of the noncoherent nature of the SNR estimator, it requires only an estimate
of the magnitude of the symbol sync timing.
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Hence, taking the ratio of Eq. (10-138) to Eq. (10-139) gives

(E {U+} − E {U−}) |L=1

(E {U+} − E {U−}) |L=∞
= 1 − 2 |ε| (10 140)

which is the desired result. Thus, it follows from Eq. (10-140) that a coarse
estimator of symbol timing based on the same statistics used to produce the
SNR estimator is given by

|ε̂| =
1
2

[
1 − (U+ − U−) |L=1

(U+ − U−) |L=∞

]
(10 141)

Since in practice one deals with a finite oversampling factor, what follows next
is a quantification of the difference of means E {U+} − E {U−} as a function
of L to enable one to determine how large one must make L in order to reach
the limiting value as in Eq. (10-139).

For a given oversampling factor L, we can characterize the fractional (with
respect to T ) symbol timing by ε = (lε + 1/2 + δ) /L, lε = 0, 1, 2, · · · , L − 1,
where lε represents the integer number of symbol interval subdivisions and |δ| ≤
1/2 represents the remaining fraction of a subdivision. Then, it is straightforward
to see that for L − 1 subdivisions both the entire first and second half-symbol
I&Ds correspond to the same symbol, and thus the contribution of each of these
subdivisions to the mean-squared accumulations U+ and U− is independent of ε!
More explicitly, for l = 1, 2, · · · , L− lε − 1, assuming for simplicity no frequency
uncertainty, the first and second half-symbol I&D outputs are given by (see
Section 6.11 for a description of the notation)

Yαkl =
mdk

2
ejφ + nαkl

Yβkl =
mdk

2
ejφ + nβkl

(10 142)

and similarly for l = L − lε + 1, L − lε + 2, · · · , L,

Yαkl =
mdk+1

2
ejφ + nαkl

Yβkl =
mdk+1

2
ejφ + nβkl

(10 143)
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where nαkl and nβkl are complex Gaussian zero-mean noise variables with vari-
ance σ2L. This leaves one subdivision, i.e., the one corresponding to l = L − lε,
to be affected by the lack of symbol sync knowledge. For this one subdivision,
the first and second half-symbol I&D outputs are given by

Yαkl |l=L−lε =
m

2

[
dk

(
1
2
− δ

)
+ dk+1δ

]
ejφ + nαkl |l=L−lε ,

Yβkl =
mdk+1

2
ejφ + nβkl; 0 ≤ δ ≤ 1

2
(10 144)

Yαkl |l=L−lε =
mdk

2
ejφ + nαkl |l=L−lε ,

Yβkl =
m

2

[
dk |δ| + dk+1

(
1
2
− |δ|

)]
ejφ + nβkl; −1

2
≤ δ ≤ 0

Forming the sum and difference signals from Eqs. (10-142) through (10-144), we
get

u+
kl = mdkejφ + nαkl + nβkl

u−
kl = nαkl + nβkl, l = 1, 2, · · · , L − lε − 1

u+
kl = mdk+1e

jφ + nαkl + nβkl

u−
kl = nαkl + nβkl, l = L − lε + 1, L − lε + 2, · · · , L

(10 145)

u±
kl = m

[
dk

(
1
2
− δ

)
+ dk+1

(
δ ± 1

2

)]
ejφ + nαkl ± nβkl,

0 ≤ δ ≤ 1
2
, l = L − lε

u±
kl = m

[
dk

(
1
2
± |δ|

)
± dk+1

(
|δ| − 1

2

)]
ejφ + nαkl ± nβkl,

− 1
2
≤ δ ≤ 0, l = L − lε

Finally, the means of U± = (1/NL)
∑N

k=1

∑L
l=1

∣∣u±
kl

∣∣2 are easily shown to be
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E
{
U+

}
= 2σ2

⎡
⎢⎣L + R

⎛
⎜⎝1 −

1
2
− 2 |δ|2

L

⎞
⎟⎠

⎤
⎥⎦

E
{
U−}

= 2σ2

⎡
⎢⎣L + R

⎛
⎜⎝

1
2
− 2 |δ| + 2 |δ|2

L

⎞
⎟⎠

⎤
⎥⎦ , 0 ≤ |δ| ≤ 1

2

(10 146)

which agrees with the results in Eq. (6-110) when |δ| = 1/2, i.e., a fractional
(with respect to a subdivision of T ) timing error equal to 1/2.
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Chapter 11
Implementation and Interaction of

Estimators and Classifiers

Jon Hamkins and Hooman Shirani-Mehr

In each of the previous chapters, a method was proposed to estimate or
classify a given signal parameter based on observations of the received sig-
nal. When tractable, the estimation or classification was derived from the
maximum-likelihood (ML) principle, i.e., the parameter was estimated in the
way that would best explain the observations. When ML solutions were im-
practical, reduced-complexity approximations to the ML solutions, or ad hoc
estimators/classifiers were proposed.

In this final chapter, we explain how the algorithms of the previous chapters
may be incorporated into a single, practical, and operational autonomous radio.
This chapter is the bookend to Chapter 1, once again addressing the overall ar-
chitecture of the autonomous radio and the interactions of its components. In
particular, we summarize the algorithms that result from the analysis of the ear-
lier chapters, show their interdependence, and construct an explicit sequence of
coarse and fine estimation/classification that accomplishes all the functions of an
autonomous radio. We have used the technique outlined in this chapter to write
a software implementation of an autonomous radio that successfully identifies
and processes an Electra-like signal with unknown attributes.

The chapter is organized as follows. In Section 11.1, we review the conven-
tional approach to converting continuous-time signal processing to the discrete-
time processing appropriate for a software implementation. In Section 11.2, we
review a sequence of estimator/classifier actions that provides the first, coarse
estimates of signal parameters, and a technique to refine the estimates by feeding
back the coarse estimates to all the estimator modules. The individual estima-

391
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tion/classification modules are discussed in the order in which they process the
signal, including modulation index estimation in Section 11.3.1.

11.1 Signal Model
The complex baseband representation of the received signal is given by

Eq. (1-8), which we restate here:

r̃(t) =
√

2Pd

∞∑

l=−∞
dl(t)p[t− lT − εT ]ej[ωrt+θc] +

√
2Pce

j[ωrt+θc(t)] + ñ(t) (11 1)

In order to process this continuous-time signal digitally, we sample the signal at
regular time intervals, separated by Ts seconds.

Although there is nothing new about sampling a continuous-time signal, it
is helpful to be explicit about the variance of the noise samples, which is re-
lated to the bandwidth of Eq. (1-1). If we follow the convention we have used
throughout the monograph that ñ(t) =

√
2
(
nc(t)+jns(t)

)
and that each of nc(t)

and ns(t) has two-sided power spectral density (PSD) N0/2, we quickly see that
a sample ñ(kTs) will have variance Rñ(0) = 2N0δ(0) per dimension, which is not
bounded.

Instead, following standard practice [1], we implicitly assume that the pass-
band signal r(t) in Eq. (1-1) can be sent through an ideal passband filter that
introduces negligible distortion to the signal but which eliminates the noise fre-
quency components outside the passband. If the filter has bandwidth ωs and is
centered at the carrier ωc, then the passband noise n(t) at the filter output has
PSD

Sn(ω) =
{

N0/2, |ω − ωc| ≤ ωs/2 or |ω + ωc| ≤ ωs/2
0, otherwise

(11 2)

In complex baseband, the PSD of each of nc(t) and ns(t) is given by

Snc(ω) = Sns(ω) =
{

N0/2, |ω| ≤ ωs/2
0, |ω| > ωs/2 (11 3)

(Note that the PSD of each of
√

2nc(t) and
√

2ns(t) is twice this amount.)
If ωs = 2π/Ts, then based on the above, each passband noise sample n(kTs)
has variance N0/Ts, and each complex baseband noise sample ñ(kTs) also has
variance N0/Ts in each dimension.

Thus, we model the discrete-time complex baseband signal as
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r̃[k] �=
√

2Pd

∞∑

l=−∞
dk(kTs)p[kTs − lT − εT ]ej[ωrkTs+θc]

+
√

2Pce
j[ωrkTs+jθc(kTs)] + ñ(kTs) (11 4)

where each noise complex sample ñ(kTs) has variance N0/Ts per dimension.
After reception of the baseband signal in Eq. (11-4), the signal is separated

into its data-modulated and residual carrier components. We assume that, when
a residual carrier signal is used, its spectrum is distinct enough from that of the
data-modulated portion of the signal that these two components may be ideally
separated. A high-pass filter extracts the data-modulation component, while a
low-pass filter (LPF) extracts the residual carrier component:

r̃d[k] �=
√

2Pd

∞∑

l=−∞
dk(kTs)p[kTs − lT − εT ]ej[ωrkTs+θc] + ñ′(kTs) (11 5)

r̃c[k] �=
√

2Pce
j[ωrkTs+jθc(kTs)] + ñ′′(kTs) (11 6)

The complex process ñ′(kTs) is the same as ñ(kTs) except that it has had a
notch of spectrum removed. Generally the notch is small relative to the overall
bandwidth, and so the complex sample ñ′(kTs) can be assumed to have variance
N0/Ts per dimension, as before.

The situation for ñ′′(kTs) is a little more complicated. If the low-pass band-
width ωlp satisfies ωlp < 2π/Ts, then sampling at rate Ts results in a correlated
ñ′′(kTs) noise sequence. To avoid this situation, we may sample the residual
carrier component at a different frequency, every Tc = ωlp/(2π) seconds. Re-
defining rc[k] in this way results in

r̃c[k] �=
√

2Pce
j[ωrkTc+jθc(kTc)] + ñ′′(kTc) (11 7)

where now {ñ′′(kTc)} is an uncorrelated complex noise sequence with variance
N0/Tc per dimension.

11.2 Interaction of Estimator and Classifiers
Chapter 1 described a sequence of operations that accomplishes the task of

estimating all the signal parameters shown in Table 11-1. This order is summa-
rized in Fig. 1-3. We now become more explicit about the inputs and outputs
from each of the modules and how they are connected.
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Table 11-1. Signal parameters to be estimated
and classified.

Notation Description

β Modulation index

ωr Residual frequency

T Symbol duration

p(t) Data format/pulse shape

R Signal-to-noise ratio

ε Fractional symbol timing

θc Carrier phase

M Modulation order (in M -PSK signals)

The autonomous radio begins in a coarse estimation phase in which the
signal flow is unidirectional, without feedback. In coarse estimation, shown in
Fig. 11-1, each estimation module has parameter estimates from the modules to
its left, but no parameter estimates from the modules on its right. For example,
the modulation index estimator operates without knowledge of the modulation
type. Of course, every module has access to the r̃[k] observables. Thus, in coarse
estimation we employ the algorithms that require the least parameter informa-
tion, which results in worse performance as compared to conventional receivers
that rely on known attributes of the signal.

After the coarse estimation phase, estimates of all signal parameters are avail-
able to all blocks in the subsequent iterations. Therefore, the better-performing
estimation techniques can be used in the fine estimation phase. For example,
the modulation index estimator can make use of the modulation order M̂ , the
data-transition tracking loop (DTTL) can make use of θ̂c to operate coherently,
and so on. In the fine estimation phase, the modules can iteratively update their
estimates until convergence takes place.

A complete functional diagram of both the coarse and fine estimation phases
is shown in Fig. 11-2. In coarse estimation, the switches are in the “coarse” po-
sition. After all parameter estimates are available, the switches may be placed
in the “fine” position. The received discrete-time signal is shown on the left.
It enters the modulation index classifier and then, depending on the result, the
appropriate structure is used to correct any residual frequency. Following this,
the residual carrier (if any is detected) and data components are separated using
low- and high-pass filters, and the joint estimator for data rate, data format,
signal-to-noise ratio (SNR), and coarse symbol synchronization (sync) is run.
These parameters, along with the carrier and data signal, are fed to the carrier
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Fig. 11-1.  Signal flow in coarse estimation.
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sync, fine symbol sync, and modulation classifier structures. Depending on the
modulation index, one of several carrier loops may be chosen. When carrier
lock is detected, the coherent versions of any of the estimators may be used, as
indicated in Fig. 11-2.

11.3 Coarse and Fine Estimators/Classifiers
In this section, we summarize the operation of the individual modules as they

operate in coarse and fine modes.

11.3.1 Modulation Index Estimation

In the coarse estimation phase, the modulation index estimator requires no
parameter estimates, other than the minimum symbol period T ∗. It directly
estimates the carrier and data powers by integrating over a sufficient epoch. In
the fine estimation phase, it may operate coherently and use knowledge of the
date rate, modulation type, symbol boundaries, and pulse shape to improve its
performance.

The coarse estimator is given by Eq. (3-49), which becomes, after transform-
ing to discrete-time,
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Fig. 11-2.  A more detailed functional diagram of the autonomous radio architecture.
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β̂ = cot−1

⎡
⎢⎢⎢⎣

√√√√√√
2

[(∑K′−1
k=0 yc[k]

)2

+
(∑K′−1

k=0 ys[k]
)2

]

K ′ ∑K′−1
k=0

[(
yc[k] − yc[k − T ∗/Ts]

)2 +
(
ys[k] − ys[k − T ∗/Ts]

)2
]

⎤
⎥⎥⎥⎦

(11 8)

where K ′ = KT ∗/Ts, and yc[k] = yc(kTs) and ys[k] = ys(kTs), which are defined
in Eq. (3-42).

In the fine estimation phase, we may replace T ∗ in Eq. (11-8) by the esti-
mate T̂ at the output of the data rate estimator. Also, timing estimates will
allow us to define yc and ys as in Eq. (3-32) instead of as in Eq. (3-42), i.e., with
the symbol-timing offset removed, which improves the fidelity of summations in
Eq. (11-8).

If the modulation type is estimated to be binary phase-shift keying (BPSK)
in the coarse phase, we may improve the modulation index estimate in the fine
estimation phase by using the modulation index estimator for coherent BPSK
in Eq. (3-9), which in discrete-time becomes

cot β̂ =
∑KT̂/Ts−1

k=0 ys[k]
∑K−1

k=0

∣∣∣
∑(k+1)T̂ /Ts

l=kT̂/Ts
yc[l]p

[
l − kT̂ /Ts

]∣∣∣
(11 9)

If the carrier tracking loop is not yet in lock, then the noncoherent BPSK mod-
ulation index estimator from Eq. (3-39) may be used. If the modulation type is
a higher-order M -ary phase-shift keying (M -PSK), we may use a discrete-time
version of Eq. (3-29).

11.3.2 Frequency Correction

Frequency correction is performed in the coarse estimation phase only if the
modulation index estimator determines that the signal contains a residual car-
rier (θ̂c < π/2). In that case, the technique of Section 4.1 can be applied. The
scheme for a residual carrier signal is illustrated in Fig. 11-3.

In the fine estimation phase, when the symbol rate 1/T , fractional symbol
timing ε, and pulse shape p(t) are known, the techniques of Section 4.2 or Sec-
tion 4.3 may be used. Figure 11-4 illustrates one of these schemes. The input to
the block diagram is the output of a matched filter, which requires prior knowl-
edge of T , M , ε, and p(t).

Examples of the acquisition and tracking performance are illustrated in
Fig. 11-5. In Fig. 11-5(a), there is no residual frequency, and this is tracked
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Fig. 11-3.  Closed-loop frequency correction for a residual

carrier signal (NCO = numerically controlled oscillator).
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quite readily. In Fig. 11-5(b), the residual frequency is a half percent of the
sample rate, and we see a short acquisition period followed by active tracking.
In Fig. 11-5(c), the residual frequency is one percent of the sampling rate, and
we see a longer acquisition period.

11.3.3 Joint Estimation of Data Rate, Data Format, SNR,
and Coarse Symbol Timing

As shown in Fig. 11-2, the joint estimator for data rate, data format, SNR,
and coarse symbol synchronization operates in the same way during both coarse
and fine estimation phases. This is a consequence of the fact the the split-
symbol moments estimator (SSME) for SNR estimation is independent of both
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Fig. 11-5.  Dynamic response of the frequency-

tracking loop for a signal with SNR = 10 dB, θc = π/4: 

(a) ωrTs 
/(2π) = 0, (b) ωrTs 

/(2π) = 0.005, and (c) ωrTs 
/(2π) 

= 0.01.

(a)

(b)

(c)
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the M -PSK modulation order and the carrier phase θc. This module takes the
frequency-corrected version of r̃[k] as input and produces T̂ , p̂(t), R̂, and ε̂ as
output.

Figure 11-6 illustrates an example of the performance of the SNR estimator,
assuming the residual frequency and symbol timing are known (ωr = 0 and
ε = 0). The simulated signal used BPSK modulation, a symbol period of
T = 15 µs, and a non-return to zero (NRZ) data format, also assumed known.
The asterisk on Fig. 11-6 represents the estimator output, while the line (corre-
sponding to x = y) is the desired output. With an observation of 100 samples,
the SNR estimator is seen to perform quite well for this example.

11.3.4 Modulation Classification

The various modulation classifiers discussed in Chapter 9 each require knowl-
edge of the data rate, pulse shape, and symbol timing in order to form a matched-
filter output, i.e., the single-sample per symbol statistic r̃n. That statistic is
obtained by summing up L received samples, where L is the ratio of the sample
rate to the symbol rate:

Fig. 11-6.  Example output from an SNR estimator.
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r̃n =
nL∑

k=(n−1)L+1

r̃d[k], n = 1, 2, · · · , N (11 10)

with r̃d[k] given by Eq. (11-5).
The normalized quasi-log-likelihood ratio (nqLLR) modulation classifier does

not need to know the SNR, which makes it a good candidate for modulation clas-
sification in the coarse estimation phase. However, the nqLLR classifier must
still wait for the data rate and symbol-timing estimates to become available for
Eq. (11-10) to be computed, at which point the SNR estimate is also available,
since it comes from the same joint estimator. Therefore, there is no advantage
in the coarse phase to using the nqLLR, even though in principle it requires less
knowledge about the signal attributes.

Instead, the modulation classification in the coarse estimation phase is ac-
complished with the quasi-generalized-likelihood ratio test (qGLRT), discussed
in Section 9.2.2. The qGLRT is based on the conditional-likelihood function
CLFM (θ), given by Eq. (9-9) evaluated at a best-available estimate of θc. As
shown in Chapter 9, this produces only a small loss compared to the ML classi-
fier, which computes a full-blown average over θc:

LFM =
M

2π

∫ 2π/M

0

CLFM (θ) dθ (11 11)

The estimate for θc is given by

θ̂(M)
c =

1
M

arg
N−1∑

n=0

r̃M
n (11 12)

For BPSK we have

θ̂(2)
c =

1
2

arg
N−1∑

n=0

r̃2
n (11 13)

and for quadrature phase-shift keying (QPSK) we have

θ̂(4)
c =

1
4

arg
N−1∑

n=0

r̃4
n (11 14)

and, thus, the qGLRT classifier metric is
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LR =
CLF2

(
θ̂
(2)
c

)

CLF4

(
θ̂
(4)
c

) (11 15)

If this is greater than unity, the modulation is declared to be BPSK; otherwise,
the modulation is declared to be QPSK.

Figure 11-7 illustrates an example comparing the ML, generalized likelihood
ratio test (GLRT), quasi-log-likelihood ratio (qLLR), and nqLLR modulation
classifiers, when discriminating BPSK from QPSK. The performance is mea-
sured by probability of misclassification, which is the probability of deciding
either BPSK or QPSK at the receiver when in fact the other modulation was
transmitted. In the example, the symbol SNR is Es/N0 = −4 dB, and perfect
residual frequency correction and symbol timing are assumed. As can be seen
from the bar chart, even for such a low SNR, correct classification can still be
accomplished about 90 percent of the time.

In the fine estimation phase, the phase tracking loop has locked onto the
carrier phase θc. Thus, we switch to the coherent ML modulation classifier,
which is the same as the qGLRT except that the phase estimate θ̂c coming from

Fig. 11-7.  Classification error probability of various 

classifiers for BPSK/QPSK, where Es /N0 = −4 dB, ε = 0, ωr = 0, 

using N = 100 observed symbols.
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the carrier tracking loop is used in place of the GLRT estimate. In the case of
BPSK/QPSK classification, Eq. (11-15) becomes

LR =
CLF2

(
θ̂c

)

CLF4

(
θ̂c

) (11 16)

11.3.5 Carrier Synchronization

As shown in Fig. 11-2, carrier synchronization takes several forms, depend-
ing on the modulation index and coarse/fine operation.

If the modulation index estimator has determined that there is a residual
carrier, then a phase-locked loop (PLL) may be used to lock onto the residual
carrier signal. The residual carrier itself is the output of a low-pass filter of the
received signal, which suppresses the data modulation (except for the portion of
the spectrum at zero frequency). When a residual carrier is present, the PLL
may be the best choice for carrier synchronization in the fine estimation mode
as well, but this depends on the SNR and the value of the modulation index. In
cases when the residual carrier is weak, a hybrid loop may outperform the PLL
alone in the fine estimation phase.

If the modulation index estimator has determined that the carrier is sup-
pressed, then the carrier synchronization in the coarse estimation phase relies on
a carrier loop with passive arms. As discussed in Chapter 8, such a loop uses
passive filters in each arm, so that the symbol timing and pulse shape need not
be known. A universal loop can be constructed that will work for all M -PSK
modulation orders up to some maximum Mmax. This is shown in Fig. 8-12 for
M ∈ {2, 4, 8}, where the in-phase (I) and quadrature (Q) arm filters can be imple-
mented with simple low-pass filters such as simple integrators. Since modulation
classification is not yet available to the carrier loop during the coarse phase, the
carrier loop begins in the coarse estimation phase configured for Mmax-PSK.

For suppressed carrier signals in the fine estimation phase, the switch for M

in Fig. 8-12 can be set according to the modulation classifier output, and the
passive arm filters can be replaced with matched filters that make use of the pulse
shape and symbol-timing estimates, which results in improved performance as
discussed in Chapter 8.

We now discuss the conversion of the passband continuous-time loops dis-
cussed in Chapter 8 to the discrete-time complex baseband loops suitable for a
digital implementation. First we will discuss the continuous model for tracking
a BPSK signal. For QPSK signals, the same approach applies.

Assume that the input to the loop is the BPSK suppressed carrier passband
signal r(t) in the form of
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r(t) = s(t) =
N∑

n=1

anp
[
t − (n − 1)T

]
sin (ωct + θc) + n(t) (11 17)

where an is random binary data corresponding to the nth transmitted BPSK
symbol taking on values ±1 with equal probability and for simplicity p(t) is
assumed to be a unit amplitude rectangular pulse. Let

ws (t) �= sin
(
ωct + θ̂c

)

wc (t) �= cos
(
ωct + θ̂c

) (11 18)

where θ̂c is the estimate of θc. Therefore, the nth transmitted BPSK symbol in
the interval (n − 1)T ≤ t ≤ nT is given by

U =
∫ nT

(n−1)T

ws (t) r (t) dt

Neglecting noise terms and double frequency terms results in

U ∝ cos
(
θc − θ̂c

)
(11 19)

Similarly,

V =
∫ nT

(n−1)T

wc (t) r (t) dt ∝ sin
(
θc − θ̂c

)

Let φ
�= θc − θ̂c. Then,

U ∝ cos (φ) (11 20)

V ∝ sin (φ) (11 21)

Now, consider r̃n [k], which is the input of the equivalent complex baseband,
discrete-time loop. Assuming perfect carrier frequency estimation (ωr = 0),

r̃n [k] =
1
L

ej[θn+θc] + ñn [k] (11 22)
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The estimated signal ˆ̃r is the output of the discrete-time voltage-controlled os-
cillator (VCO) and has the form

ˆ̃r = e−jθ̂c (11 23)

where θ̂c is the estimate of θc. From Eqs. (11-22) and (11-23), the multiplication
signal w̃n [k] has the form

w̃n [k] = r̃n [k] × ˆ̃r (11 24)

=
(

1
L

ej[θn+θc] + ñn [k]
)

e−jθ̂c (11 25)

=
1
L

ejθnej[θc−θ̂c] + ñn [k] e−jθ̂c (11 26)

Since ñ [k] and ñ [k] e−jθ̂c have the same statistical distributions, we may write

w̃n [k] =
1
L

ej(θn+φ) + ñn [k] (11 27)

The equivalent of integration in the continuous domain is summation in our
domain. Therefore, the integrators are replaced with summations. Also note
that, since we are dealing with complex signals, in order to extract the trigono-
metric functions (sine and cosine) of the signal angle, the loop requires extracting
the imaginary and real parts, respectively, of the signal w̃(k). Applying these
modifications results in the loops that are illustrated in Figs. 11-8(a) and 11-8(b),
where

S : ỹn =
nL∑

k=(n−1)L+1

x̃n [k]

Note that the loop filter is identical to the continuous case that is discussed
in Chapter 8. Hence, the transfer function of the loop filter has the form

F (s) =
1 + τ2s

τ1s
, τ1 � τ2 ⇒ (τ1 = 1, τ2 = 0.01) (11 28)
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Fig. 11-8.  Sampled implementation of a Costas-type

loop capable of tracking: (a) BPSK and (b) QPSK.
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Figures 11-9(a) and 11-9(b) illustrate the sample acquisition behavior of
each loop for a set of parameters. In each case, the phase error φ is shown as
a function of time measured in terms of the number of observed samples at the
receiver. As it is represented in the plots, the carrier phase tracking loop starts
operating after the frequency correction is performed on 1000 symbols.

As can be observed, the loops do not always lock at zero phase error (φ = 0).
The reason is that, in BPSK and QPSK, the lock points of the loops are where
sin(2φBPSK) = 0 and sin(4φQPSK) = 0, respectively, which result in an ambiguity
of π for BPSK and π/2 for QPSK. Figures 11-9(a) and 11-9(b) show constant
lines to indicate the other potential phases at which the carrier loop could lock.

11.3.6 Symbol Synchronization

In the coarse estimation phase, either the noncoherent cross-spectrum sym-
bol synchronizer (CSSS) or the noncoherent DTTL may be used to acquire the
symbol timing. The choice of which to use depends on the SNR, as discussed in
Chapter 10, with the CSSS being preferred at low SNR. For either synchronizer,
the symbol period and pulse shape must be known.
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Fig. 11-9.  Carrier synchronization loop performance:

(a) BPSK and (b) QPSK.

(a)

(b)
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In the fine estimation phase, a conventional coherent DTTL may be
used. The remainder of this section discusses the method by which discrete-
time matched-filter output samples are used by a DTTL. As discussed in the
section on modulation classification, the complex observables corresponding to
the matched-filter output at the time instants nL, where n = 1, 2, · · · , N , are
given by

r̃n =
nL∑

k=(n−1)L+1

r̃n [k], n = 1, 2, · · · , N (11 29)

Thus,

r̃n =
nL∑

k=(n−1)L+1

[
1
L

ej[ωrkTs+θn+θc] + ñ′
n [k]

]
(11 30)

Therefore, the observation vector r̃ = (r̃1, r̃2, · · · , r̃N ) for a sequence of N symbols
can be modeled as

r̃n = ej[ωrkTs+θn+θc] + ñ′
n, n = 1, 2, · · · , N (11 31)

where ñ′
n is a complex Gaussian random variable with mean zero and variance

σ
′2 per dimension.

Figures 11-10(a) and 11-10(b) provide a visualization of the derotation of
the signal constellation that takes place as a result of frequency and phase cor-
rection. The upper plot in each figure corresponds to the observation vector
r̃ = (r̃1, r̃2, · · · , r̃N ), where N = 100 and a non-zero frequency offset (ωr) was
introduced to the system, and the lower plot represents the frequency- and phase-
corrected version of r̃.

Reference

[1] J. G. Proakis, Digital Communications, third ed., New York: McGraw Hill,
Inc., 1995.



Implementation and Interaction of Estimators and Classifiers 409

Fig. 11-10.  Signal constellations for a signal with 

different modulations and the same parameters 

before and after frequency correction, with Es 
/N0 = 

20 dB: (a) BPSK and (b) QPSK.
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Acronyms and Abbreviations 

ADC analog-to-digital converter 

AGC automatic gain control 

AM/AM amplitude-modulation-to-amplitude-modulation 

AM/PM amplitude-modulation-to-phase-modulation 

ASIC application-specific integrated circuit 

AWGN additive white Gaussian noise 

  

BCH Bose–Chaudhuri–Hocquenghem 

BPSK binary phase-shift keying 

BT bandwidth–time (product) 

  

Caltech California Institute of Technology 

CCSDS Consultative Committee for Space Data Systems 

CIC cascaded integrator comb 

CLF conditional-likelihood function 

CMOS complementary metal oxide semiconductor 

CPFSK continuous phase frequency-shift keyed 

C-R Cramer–Rao 
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CRB C-R bounds 

CRC cyclic redundancy check 

CSSS cross-spectrum symbol synchronizer 

CTL carrier-tracking loop 

CW continuous wave 

  

DAC digital-to-analog converter  

dB  decibel(s) 

DESCANSO Deep Space Communications and Navigation Systems 
Center of Excellence 

DMF derivative matched filter 

DSN Deep Space Network 

DTTL data-transition tracking loop 

  

EDL entry, descent, and landing 

ESA European Space Agency 

  

FEC forward error-correcting 

FFT fast Fourier transform 

FMF frequency-matched filter 

FPGA field programmable gate array 

  

GLRT generalized likelihood ratio test 

GMSK Gaussian-filtered minimum-shift keying 

  

I in-phase 

I&D integrate-and-dump 

IEEE Institute of Electrical and Electronics Engineers 

IF intermediate frequency 
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iid independent, identically distributed 

I-Q in-phase–quadrature 

  

JPL Jet Propulsion Laboratory 

  

kbps kilobit(s) per second 

ksps kilosymbol(s) per second 

  

LDTTL linear data-transition tracking loop 

LF likelihood function 

LLF log-likelihood function 

LPF low-pass filter 

LR likelihood ratio 
  

MAP maximum a posteriori 

Mbps megabit(s) per second 

MCAS Micro Communications and Avionics Systems 

MF matched filter 

MIT Massachusetts Institute of Technology 

ML maximum likelihood 

MMS minimum mean-squared 

M-PSK M-ary phase-shift keying 

M'-PSK M'-ary phase-shift keying 

MSK minimum-shift keying 

Msps megasymbol(s) per second 

  

NASA National Aeronautics and Space Administration 

NC-LDTTL noncoherent linear data-transition tracking loop 

NCO numerically controlled oscillator 
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nqLLR normalized quasi-log-likelihood ratio 

NRZ non-return to zero 

  

OQPSK offset quadrature phase-shift keying 

  

pdf probability density function 

PLL phase-locked loop  

PN pseudo-noise 

PSD power spectral density 

PSK phase-shift keying 

  

Q quadrature 

QAM quadrature amplitude modulation 

qGLRT quasi-generalized-likelihood ratio test 

qLLR quasi-log-likelihood ratio 

QPSK quadrature phase-shift keying 

  

RC resistor capacitor 
Res residual 

RF radio frequency 

rms root-mean-square 

RS Reed–Solomon 

RV random variable 

  

S-band around 2 GHz 

SDR software-defined radio 

SNR signal-to-noise ratio 

SQPSK staggered quadrature phase-shift keying 

SSME split-symbol moments estimator 
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ST-2 Space Technology-2 

Sup suppressed 

SW switch 

sync synchronization 

  

T/R transmitter/receiver 
TT&C telemetry, tracking, and control 

  

UCLA University of California, Los Angeles 

UHF ultra-high frequency 

UQPSK unbalanced quadrature phase-shift keying 

U.S. United States 

USC University of Southern California 

USO ultra-stable oscillator 

  

VCO voltage-controlled oscillator 

  

X-band around 8 GHz 

  
 
 




