
Chapter 10
Symbol Synchronization

Marvin K. Simon

As we have seen in other chapters, the operation and performance of var-
ious receiver functions can be quite sensitive to knowledge of the timing (data
transition epochs) of the received data symbols. Thus, the ability to accurately
estimate this parameter and continuously update the estimate, i.e., perform sym-
bol synchronization (sync), with little knowledge of other parameters is critical
to successful operation of an autonomous receiver. Traditionally, symbol syn-
chronization techniques have been developed assuming that the data symbols
are binary, the modulation format, e.g., non-return to zero (NRZ) or Manch-
ester data, is known a priori, and carrier synchronization is perfect. Thus, the
symbol synchronization problem has been solved entirely at baseband, assuming
perfect knowledge of the carrier phase and frequency.

Among the various symbol sync schemes that have been proposed in the
literature, by far the most popular in terms of its application in binary commu-
nication systems is the data-transition tracking loop (DTTL) [1,2]. The scheme
as originally proposed in the late 1960s is an in-phase–quadrature (I-Q) structure
where the I arm produces a signal representing the polarity of a data transition
(i.e., a comparison of hard (±1) decisions on two successive symbols) and the
Q arm output is a signal whose absolute value is proportional to the timing
error between the received signal epoch and the receiver’s estimate of it. The
result of the product of the I and Q signals is an error signal that is proportional
to this timing error, independent of the direction of the transition. Although
originally introduced as an efficient symbol synchronization means for track-
ing an NRZ data signal received in additive white Gaussian noise (AWGN), it
was later demonstrated (although not formally published) that the closed-loop
DTTL structure can be obtained from a suitable interpretation of the maximum
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a posteriori (MAP) open-loop estimate of symbol timing based on an observation
of, say, N symbols at high symbol signal-to-noise ratio (SNR).

At the time of the DTTL’s introduction, the binary communication systems
in which the DTTL was employed were for the most part uncoded, and thus
high symbol SNR was the region of primary interest. As time marched on, the
design of communication systems became more and more power efficient through
the application of error-correction coding, and as such a greater and greater de-
mand was placed on the symbol synchronizer, which now had to operate in a low
symbol1 SNR region, with values based on today’s coding technology perhaps as
low as −8 dB. Since in this very low symbol SNR region, the DTTL scheme as
originally proposed would no longer be the one motivated by MAP estimation
theory, it is also likely that its tracking capability would be degraded in this
region of operation. Despite this fact, the conventional DTTL appears to have
continued to be used in coded communication applications.

Since autonomous receiver operation requires, in general, functioning over
a wide range of SNRs, it is prudent to employ symbol-timing estimation and
tracking schemes whose implementations can adapt themselves to this changing
environment using the knowledge obtained from the SNR estimator. Further-
more, since as we have seen in a previous chapter, the SNR estimator itself
requires knowledge of symbol timing, a means for obtaining a coarse estimate of
this timing is essential.

In this chapter, we start out by considering the problem of obtaining symbol
synchronization under the admittedly ideal assumption of perfect carrier syn-
chronization. We refer to the class of schemes that results from solution of this
problem as phase-coherent symbol synchronizers. In this context, we first review
the MAP estimate of symbol timing based on an observation of a block of N sym-
bols and then describe the means by which the conventional DTTL is motivated
by this open-loop estimate. Next, we consider the appropriate modification of
the DTTL so that it is motivated by the MAP estimate of symbol timing at low
SNR; in particular, the I arm hard decisions are replaced by soft decisions where-
upon, in the limiting case, the hard limiter is replaced by a linear device. As
we shall show, such a loop will outperform the conventional DTTL at low SNR.
We then consider the extension of the MAP-motivated closed-loop ideas to non-
binary modulations such as M -ary phase-shift keying (M -PSK) and quadrature
amplitude modulation (QAM). Following this, we return to the open-loop MAP
estimation of symbol sync and describe a sliding-window realization that pro-
vides sequential updates at the symbol (as opposed to the N -symbol block) rate
and as such resembles the closed-loop techniques. Next, we investigate means of

1 It is important to note here that, in a coded communication system, the symbol synchronizer
precedes the decoder and thus performs its function on the coded symbols whose SNR is equal
to the bit SNR times the code rate.
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performing the symbol synchronization function in the absence of carrier phase
information, i.e., so-called phase-noncoherent symbol synchronization. We show
that a class of ad hoc symbol synchronizers previously proposed for solution of
the phase-coherent symbol synchronization problem can be easily adapted to the
noncoherent case. Finally, we propose a coarse symbol-timing estimator for use
in the SNR estimation that is derived from the same statistics that are used to
form the SNR estimate itself.

10.1 MAP-Motivated Closed-Loop Symbol
Synchronization

Analogous to the maximum-likelihood (ML) approach taken in Chapter 9
on modulation classification, we first form the likelihood function (LF) of the
received signal vector conditioned on the unknown parameters to be estimated.
Specifically, for the case of M -PSK modulation with carrier phase and symbol
timing as the unknown parameters, it was shown there that, after averaging over
the data in a sequence of length-N symbols, the conditional-likelihood function
(CLF) is given by

CLFM (θc, ε) = C exp

⎡
⎣N−1∑

n=0

ln

⎛
⎝ 2

M

M/2−1∑
q=0

cosh
[
xn (q; θc, ε)

]⎞⎠
⎤
⎦ (10 1)

where θc denotes the carrier phase, ε denotes the unknown fractional symbol
timing, C is a constant independent of θc and ε, and

xn (q; θc, ε)
�=

A

σ2
Re

{
r̃n(ε)e−j([2q+(1+(−1)M/2)/2]π/M+θc)

}
(10 2)

with A =
√

2P the signal amplitude (P is the transmitted power in the data)2

and σ the standard deviation of the noise component (per dimension) of r̃n (ε).
Also, in Eq. (10-2), the complex observables corresponding to the matched filter
outputs at time instants (n + ε)T, n = 0, 2, · · · , N − 1 are given by

r̃n (ε) =
1
T

∫ (n+1+ε)T

(n+ε)T

r̃ (t) p (t − nT − εT ) dt (10 3)

2 For simplicity of notation, we denote the data power by P rather than Pd since here we are
not dealing with the power in the discrete carrier (if it exists) at all.
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where r̃ (t) is the complex baseband received signal in the time interval (n + ε)T

≤ t ≤ (n + 1 + ε)T and p (t) is the pulse shape. Finally, the SNR at the complex
output of the matched filter is given by γs = A2/(2σ2) = Es/N0, where Es = PT

is the symbol energy and N0 is the single-sided power spectral density of the
additive noise.

For the purpose of finding the MAP estimate of symbol sync alone, we may
assume perfect knowledge of the carrier phase, in which case, without any loss
in generality, we can set θc = 0. Under this assumption, the MAP estimate of
symbol timing ε̂MAP is given by

ε̂MAP = argmax
ε̂

exp

⎡
⎣N−1∑

n=0

ln

⎛
⎝ 2

M

M/2−1∑
q=0

cosh
[
xn (q; ε̂)

]⎞⎠
⎤
⎦ (10 4)

where now

xn (q; ε)

=
A

σ2
Re

{
r̃n (ε) e−j([2q+(1+(−1)M/2)/2]π/M)

}

=
2
√

P

N0
Re

{
e−j([2q+(1+(−1)M/2)/2]π/M)

∫ (n+1+ε)T

(n+ε)T

r̃ (t) p (t − nT − εT ) dt

}

(10 5)

Note that the actual fractional symbol-timing offset ε is embedded in the received
complex baseband signal r̃ (t), and thus the difference between ε̂MAP and ε rep-
resents the normalized symbol-timing error.

As an alternative to Eq. (10-4), recognizing that the natural logarithm is a
monotonic function of its argument, one can first take the natural logarithm of
the CLF in Eq. (10-1), in which case the MAP estimate of symbol timing has
the simpler form

ε̂MAP = argmax
ε̂

⎡
⎣N−1∑

n=0

ln

⎛
⎝ 2

M

M/2−1∑
q=0

cosh
[
xn (q; ε̂)

]⎞⎠
⎤
⎦ (10 6)

As is well-known in MAP-motivated closed-loop schemes, the argument can be
made that, since the value of ε̂ that maximizes the CLF is also the value at which
the derivative of the CLF with respect to ε̂ equates to zero, then one can use the
CLF derivative itself as an error signal in a closed-loop symbol synchronization
(tracking) configuration. As such, the MAP-motivated symbol synchronization
loop would form
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e =
d

dε̂
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] (10 7)

as its error signal. Furthermore,

x′
n (q; ε̂)

=
A

σ2
Re

{
d

dε̂
r̃n (ε̂) e−j([2q+(1+(−1)M/2)/2]π/M)

}

=
2
√

P

N0
Re

{
e−j([2q+(1+(−1)M/2)/2]π/M)

∫ (n+1+ε̂)T

(n+ε̂)T

r̃ (t)
dp (t − nT − ε̂T )

dε̂
dt

}

=
2
√

P

N0
Re

{
−Te−j([2q+(1+(−1)M/2)/2]π/M)

∫ (n+1+ε̂)T

(n+ε̂)T

r̃ (t) p′ (t − nT − ε̂T ) dt

}

(10 8)

where the second equation follows from the Leibnitz rule, assuming
p(0) = p(T ) = 0. A closed-loop configuration that implements the expression in
Eq. (10-7) as an error signal is referred to as a MAP estimation loop.

10.2 The DTTL as an Implementation of the MAP
Estimation Loop for Binary NRZ Signals at
High SNR

For binary signals (M = 2), the error signal of Eq. (10-7) simplifies to

e =
N−1∑
n=0

tanh
[
xn (0; ε̂)

] d

dε̂
xn (0; ε̂) (10 9)

where

xn (0; ε̂) =
2
√

P

N0

∫ (n+1+ε̂)T

(n+ε̂)T

r (t) p (t − nT − ε̂T ) dt

x′
n (0; ε̂) =

−2T
√

P

N0

∫ (n+1+ε̂)T

(n+ε̂)T

r (t) p′ (t − nT − ε̂T ) dt

(10 10)



326 Chapter 10

and r (t) is now a real signal. A block diagram of a MAP estimation loop
that uses e of Eq. (10-9) as an error signal to control a timing-pulse generator is
illustrated in Fig. 10-1, where the shorthand notation Tn (ε̂) has been introduced
to represent the time interval (n + ε̂) T ≤ t ≤ (n + 1 + ε̂)T . In this figure, the
accumulator represents the summation over N in Eq. (10-9). Thus, based on the
above model, the loop would update itself in blocks of N symbols. In practice,
however, one would replace this block-by-block accumulator by a digital filter
that updates the loop every T seconds and whose impulse response is chosen to
provide a desired dynamic response for the loop. The design of this filter and
its associated closed-loop response characteristic are not dictated by the MAP
estimation theory, which explains the use of the term “MAP-motivated” when
describing the MAP estimation loop.

To go from the MAP estimation loop to the conventional DTTL, one needs
to (1) approximate the hyperbolic tangent nonlinearity for large values of its
argument, equivalently, at high SNR and (2) characterize, i.e., approximate, the
derivative of the pulse shape required in Eq. (10-10). Specifically, for large values
of its argument, one has the approximation

tanhx ∼= sgn x (10 11)

In theory, if p (t) were a unit amplitude rectangular pulse shape, as would be the
case for NRZ signals, then the derivative of p (t) would be a positive delta func-
tion at the leading edge and a negative delta function at the trailing edge of the
symbol interval. In practice, these unrealizable delta functions are replaced by a
pair of narrow rectangular pulses whose width is treated as a design parameter.
Denoting this pulse width by ξT , the above representation for two successive
symbol intervals is shown in Fig. 10-2, where for simplicity of illustration we
have assumed ε = ε̂ = 0. If we now group these pulses in pairs corresponding to

Fig. 10-1.  A closed-loop symbol synchronizer motivated by the MAP estimation approach.
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Assume ε = ε = 0 for Simplicity of Explanation. Also, tanh x → sgn x
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Fig. 10-2.  Formation of the error signal from narrow-pulse 

approximation of the derivative of the pulse shape.

the trailing edge of one symbol and the leading edge of the next, then taking into
account the approximation of the nonlinearity in Eq. (10-11), the contribution
of the nth pair to the error signal in Eq. (10-9) would be expressed as

en = tanh

(
2
√

P

N0

∫ (n+1)T

nT

r (t) p (t − nT ) dt

)

× 2T
√

P
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(
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(10 12)
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The first factor in the final result of Eq. (10-12) represents an integration of
width ξT across the data transition instant (often referred to as the window
width of the synchronizer), whereas the second factor represents the difference
of hard decisions on integrations within two successive symbol intervals. In the
presence of a symbol-timing offset, when a data transition occurs, the first factor
would provide a measure of the error between the actual symbol timing and the
estimate of it produced by the loop. Thus, this factor is referred to as a sync
error detector. The second factor is a measure of the occurrence of a transition
in the data and thus is referred to as a data transition detector. Since the output
of the sync error detector integrate-and-dump (I&D) occurs at time (n + ξ/2)T ,
where the data transition decision occurs at time (n + 1)T , one must delay the
output of the former by an amount (1− ξ/2)T before the two can be multiplied.
Based on the above assumptions and discussion, it is now clear that the MAP
estimation loop migrates to the DTTL as illustrated in Fig. 10-3.

10.3 Conventional versus Linear Data Transition
Tracking Loop

In the previous section, we observed that under high SNR conditions, where
the nonlinearity is approximated as in Eq. (10-11), the I arm of the resulting
symbol synchronizer becomes a detector of a transition in hard decisions made
on successive symbols. In this section, we consider the synchronizer that re-
sults from approximating the nonlinearity for small values of its arguments, as
would be appropriate at low SNR. It will be shown that, depending on the
Q arm window width, there always exists a value of symbol SNR at which the

Fig. 10-3.  Conventional DTTL derived from MAP estimation loop at high SNR.
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linear data-transition tracking loop (LDTTL) outperforms the conventional
DTTL with a hard decision I arm transition detector.

For sufficiently small values of its argument, the hyperbolic tangent nonlin-
earity can be approximated by

tanhx ∼= x (10 13)

i.e., a linear function. Under this assumption, the appropriate MAP-motivated
closed-loop synchronizer is illustrated in Fig. 10-4, and its performance is ana-
lyzed as follows. After perfect (known carrier phase) demodulation by the carrier
reference

√
2 cos (ωct + θc), the baseband signal input to the LDTTL is given by

r (t) = s(t, ε) + n (t)

s(t, ε) =
√

P

∞∑
n=−∞

dnp (t − nT − εT )
(10 14)

where, consistent with the assumption of NRZ data, p (t) is a unit amplitude
rectangular pulse of duration T seconds and {dn} is an independent, identically
distributed (iid) ±1 sequence with dn representing the polarity of the nth data
symbol. The additive noise is a white Gaussian process with single-sided power
spectral density N0 W/Hz. The local clock produces a timing reference for the
I and Q I&D filters that depends on its estimate ε̂ of ε. Thus, the outputs of
these filters corresponding to the nth symbol interval are respectively given by

yIn =K1

∫ (n+1+ε̂)T

(n+ε̂)T

r(t)dt =

cn︷ ︸︸ ︷
K1

∫ (n+1+ε̂)T

(n+ε̂)T

s(t, ε)dt

+

νn︷ ︸︸ ︷
K1

∫ (n+1+ε̂)T

(n+ε̂)T

n(t)dt

yQn =K2

∫ (
n+1+

ξ
2 + ε̂

)
T(

n+1− ξ
2 + ε̂

)
T

r(t)dt =

bn︷ ︸︸ ︷
K2

∫ (
n+1+

ξ
2 + ε̂

)
T(

n+1− ξ
2 + ε̂

)
T

s(t, ε)dt

+

µn︷ ︸︸ ︷
K2

∫ (
n+1+

ξ
2 + ε̂

)
T(

n+1− ξ
2 + ε̂

)
T

n(t)dt

(10 15)
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Fig. 10-4.  The linear data transition tracking loop (LDTTL).
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Since µn and νn are not independent, it is convenient, as was done in [1,2], to
express them in terms of a new set of variables:

νn = Nn + Mn

µn = N ′
n+1 + M ′

n

(10 16)

where

Nn = K1

∫ (
n+

1
2 + ε̂

)
T

(n+ε̂)T

n(t)dt, Mn = K1

∫ (n+1+ε̂)T(
n+

1
2 + ε̂

)
T

n(t)dt

N ′
n = K2

∫ (
n+

ξ
2 + ε̂

)
T

(n+ε̂)T

n(t)dt, M ′
n = K2

∫ (n+1+ε̂)T(
n+1− ξ

2 + ε̂
)
T

n(t)dt

(10 17)

with the properties

Nk, Mn are mutually independent for all k, n

N ′
k, M ′

n are mutually independent for all k, n

N ′
k, Mn and M ′

k, Nn are mutually independent for all k, n

N ′
k, N ′

n and Mk, Mn are mutually independent for all k �= n

Furthermore, all Mn, M ′
n, Nn, N ′

n, and their sums are Gaussian random vari-
ables with zero mean and variances
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σ2
Mn

= σ2
Nn

= K2
1N0T/4

σ2
M ′

n
= σ2

N ′
n

= K2
2ξN0T/4

(10 18)

Taking the difference of two successive soft decisions yIn and yI,n−1 and mul-
tiplying the average of the result by the quadrature I&D output (delayed by
(1 − ξ/2) T ) gives the loop-error signal (prior to digital filtering),

e(t) = en =
(
bn + M ′

n + N ′
n+1

) [
(cn + Mn + Nn) − (cn+1 + Mn+1 + Nn+1

2

]
,

(n + 2)T + ε̂ ≤ t ≤ (n + 3) + T + ε̂ (10 19)

which is a piecewise constant (over intervals of T seconds) random process. In
Eq. (10-19),

bn =

⎧⎪⎪⎨
⎪⎪⎩

K2

√
PT

[
dn

(
ξ

2
+ λ

)
+ dn+1

(
ξ

2
− λ

)]
, 0 ≤ λ ≤ ξ

2

K2

√
PTdnξ,

ξ

2
≤ λ ≤ 1

2

(10 20)

cn = K1

√
PT [dn−1λ + dn (1 − λ)] , 0 ≤ λ ≤ 1

2

where λ
�= ε − ε̂, −1/2 ≤ λ ≤ 1/2 denotes the normalized timing error.

10.3.1 The Loop S-Curve

The S-curve of the loop is by definition the statistical average of the error
signal of Eq. (10-19) over the signal and noise probability distributions, i.e.,

g (λ) �= E

{(
bn + M ′

n + N ′
n+1

) [
(cn + Mn + Nn) − (cn+1 + Mn+1 + Nn+1)

2

]}

(10 21)

Substituting Eq. (10-20) into Eq. (10-21) and performing the necessary averaging
over the noise and the data symbols dn−2, dn−1, and dn gives the desired result,
namely,
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gn (λ) �=
g (λ)

K1K2PT 2
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
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1 − ξ

4

)
− 3

2
λ2, 0 ≤ λ ≤ ξ

2

ξ

2
(1 − 2λ) ,

ξ

2
≤ λ ≤ 1

2

(10 22)

where the n subscript here stands for normalization. By comparison, the result
corresponding to Eq. (10-22) for the DTTL is [1,2]

gn (λ) �=
g (λ)

K2

√
PT

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

λ erf
(√

Rs (1 − 2λ)
)
− 1

8
(ξ − 2λ)

×
[
erf

(√
Rs

)
− erf

(√
Rs (1 − 2λ)

)]
, 0 ≤ λ ≤ ξ

2

ξ

2
erf

(√
Rs (1 − 2λ)

)
,

ξ

2
≤ λ ≤ 1

2

(10 23)

where Rs
�= PT/N0 denotes the symbol SNR. Without belaboring the analysis,

it is also straightforward to show that for −(1/2) ≤ λ ≤ 0, g (λ) = −g (−λ), i.e.,
the S-curve is an odd function of the normalized timing error. Also note from
Eq. (10-22) that the normalized S-curve for the LDTTL is independent of SNR,
whereas that for the conventional DTTL [see Eq. (10-23)] is highly dependent
on SNR. Figure 10-5 is an illustration of the S-curve in Eq. (10-22) for various
values of window width ξ.

The slope of the normalized S-curve at the origin (λ = 0) will be of interest in
computing the mean-squared timing-jitter performance. Taking the derivative
of Eq. (10-22) with respect to λ and evaluating the result at λ = 0 gives for the
LDTTL

Kg
�=

dg(λ)
dλ

|λ=0 = K1K2PT 2

(
1 − ξ

4

)
(10 24)

whereas the corresponding result for the DTTL, based on the derivative of
Eq. (10-23), is

Kg
�=

dg (λ)
dλ

|λ=0 = K2

√
PT

[
erf

(√
Rs

)
− ξ

2

√
Rs

π
exp (−Rs)

]
(10 25)

which clearly degrades with decreasing Rs.
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Fig. 10-5.  Normalized S-curves for linear DTTL.
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10.3.2 Noise Performance

The stochastic differential equation that characterizes the operation of the
DTTL or the LDTTL is [1,2]

λ̇ = −KF (p)
[
g (λ) + nλ(t)

]
(10 26)

where K is the total loop gain, F (p) is the transfer function of the loop filter
with p denoting the Heaviside operator, and nλ(t) is the equivalent additive
noise that characterizes the variation of the loop-error signal around its mean
(the S-curve). Because of the I&D and sample-and-hold operations in the I and
Q arms of the loops, nλ(t) is a piecewise (over intervals of T seconds) constant
random process. In particular,

nλ(t) = en − E {en} = en − g (λ) , (n + 2 + ε̂) T ≤ t ≤ (n + 3 + ε̂)T (10 27)

with a covariance function that is piecewise linear between the sample values
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Rn (τ) |τ=mT = E {nλ (t)nλ (t + τ)} |τ=mT

= E {(en − E {en}) (en+m − E {en+m})}

= E {enen+m} − g2 (λ) �= R (m, λ) , m = 0,±1,±2, · · · (10 28)

As is customary in the analysis of loops of this type, for loop bandwidths that
are small compared to the reciprocal of the symbol time interval, nλ(t) can be
approximated by a delta-correlated process with equivalent flat (with respect to
frequency) power spectral density

N ′
0

�= 2
∫ ∞

−∞
Rn(τ)dτ =2T

[
R (0, λ) + 2

∞∑
m=1

R (m, λ)

]
(10 29)

Furthermore, for large loop SNR,3 it is customary to consider only the value of
the equivalent power spectral density at λ = 0, namely,

N ′
0 = 2T

[
R (0, 0) + 2

∞∑
m=1

R (m, 0)

]

= 2T

[
E

{
e2
n |λ=0

}
+ 2

∞∑
m=1

E {enen+m |λ=0 }
]

(10 30)

With a good deal of effort, the following results can be obtained from Eq. (10-19):

E
{
e2
n|λ=0

}
=

1
4

[
E

{
b2
n (cn+1 − cn)2 |λ=0

}
+ E

{
b2
n

}
× E

{
(Nn+1 + Mn+1)

2 + (Nn + Mn)2
}

+ E
{

(cn+1 − cn)2 |λ=0

}

×E
{(

N ′
n+1 + M ′

n

)2
}

+ E
{(

N ′
n+1 + M ′

n

)2 (Nn + Mn − Nn+1 − Mn+1)
2
}]

(10 31)

3 Note that this assumption does not require that the symbol SNR be large. Large loop SNR
simply implies that the loop operates in the so-called linear region, i.e., where the mean-
squared value of the timing error is small and the probability density function of the timing
error is Gaussian distributed.
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E {enen+1 |λ=0 } =
1
4

[
E {bnbn+1 (cn+1 − cn) (cn+2 − cn+1) |λ=0 }

−E {bnbn+1 |λ=0 }E
{

(Nn+1 + Mn+1)
2
}]

(10 32)

E {enen+m |λ=0 } = 0, m �= 0, 1 (10 33)

Averaging Eqs. (10-31) through (10-33) over the signal (data sequence) and then
using Eq. (10-18), we obtain the desired results, namely,

R (0, 0) �= E
{
e2
n |λ=0

}
=

(
K1K2PT 2

)2
[

ξ

4Rs

(
1 +

ξ

2
+

1
2Rs

)]
(10 34)

R (1, 0) �= E {enen+1 |λ=0 } = −
(
K1K2PT 2

)2 ξ2

32Rs
(10 35)

R (m, 0) �= E {enen+m |λ=0 } = 0, m �= 0, 1 (10 36)

Combining Eqs. (10-34) through (10-36), the equivalent power spectral density
is then

N ′
0 = T

(
K1K2PT 2

)2
[

ξ

2Rs

(
1 +

ξ

4
+

1
2Rs

)]
(10 37)

The equivalent quantity for the conventional DTTL can be obtained from the
results in [1,2] to be

N ′
0 = T

(
K2

√
PT

)2
[

ξ

2Rs

[
1 +

ξRs

2
− ξ

2

[
1√
π

exp (−Rs) +
√

Rs erf
√

Rs

]2
]]

(10 38)

10.3.3 Mean-Squared Timing-Error Performance

The mean-squared timing jitter σ2
λ of either the LDTTL or the DTTL is

readily computed for a first-order loop filter (F (p) = 1) and large loop SNR
conditions. In particular, linearizing the S-curve to g (λ) = Kgλ and denoting
the single-sided loop bandwidth by BL, we obtain
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σ2
λ =

N ′
0BL

K2
g

(10 39)

where Kg is obtained from either Eq. (10-24) or Eq. (10-25) and N ′
0 from either

Eq. (10-37) or Eq. (10-38). Making the appropriate substitutions in Eq. (10-39)
gives the results

σ2
λ =

ξ

[
1 +

ξ

4
+

1
2Rs

]

2ρ

(
1 − ξ

4

)2 (LDTTL)

σ2
λ =

ξ

[
1 +

ξRs

2
− ξ

2

[
1√
π

exp (−Rs) +
√

Rs erf
√

Rs

]2
]

2ρ

[
erf

(√
Rs

)
− ξ

2

√
Rs

π
exp (−Rs)

]2 (DTTL)

(10 40)

where ρ
�= P/N0BL is the so-called phase-locked loop SNR. Figure 10-6 is a

plot of the ratio of σ2
λ

∣∣LDTTL to σ2
λ

∣∣DTTL in dB as a function of Rs in dB
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Fig. 10-6.  Mean-squared jitter comparison of the nonlinear
and linear DTTLs.
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with quadrature arm normalized window width ξ as a parameter. The numerical
results clearly illustrate the performance advantage of the LDTTL at low symbol
SNRs. In fact, in the limit of sufficiently small SNR, the ratio of the variances
approaches the limit

lim
Rs→0

σ2
λ

∣∣ LDTTL
σ2

λ

∣∣ DTTL
=

(
2 − ξ

2

)2

2π
(
1 − ξ

4

)2
(

1 − ξ

2π

) (10 41)

which for ξ = 0 (the theoretical value suggested by the MAP estimation of
symbol sync approach) becomes

lim
Rs→0
ξ→0

σ2
λ

∣∣ LDTTL
σ2

λ

∣∣ DTTL
=

2
π

(10 42)

The fact that this ratio approaches a finite limit is not surprising in view of a sim-
ilar behavior for other synchronization loops motivated by the MAP estimation
approach. For example, when comparing the conventional Costas loop (moti-
vated by the low SNR approximation to the MAP estimation of carrier phase)
to the polarity-type Costas loop (motivated by the high SNR approximation to
the MAP estimation of carrier phase), the ratio of variances of the phase error
is given by (see Chapter 8)

σ2
φ

∣∣Conventional
σ2

φ

∣∣∣Polarity-Type
=

erf2
(√

Rs

)
2Rs/ (1 + 2Rs)

(10 43)

which for sufficiently small SNR becomes

lim
Rs→0

σ2
φ

∣∣Conventional
σ2

φ

∣∣∣Polarity-Type
=

2
π

(10 44)

For large symbol SNR, the ratio of the variances in Eq. (10-40) approaches

lim
Rs→∞

σ2
λ

∣∣ LDTTL
σ2

λ

∣∣ DTTL
=

1 +
ξ

4(
1 − ξ

4

)2 (10 45)
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which for small window widths results in a small penalty for removing the I arm
hard limiter.

10.4 Simplified MAP-Motivated Closed-Loop Symbol
Synchronizers for M-PSK

In Section 10.1, we derived the form of the error signal [see Eq. (10-7)] for a
MAP-motivated closed-loop symbol synchronizer of M -PSK, which is somewhat
complicated at best. Applying a large argument (high SNR) approximation
to the nonlinearities in the numerator and denominator of the expression in
Eq. (10-7), namely, sinhx ∼= (ex/2) sgnx, cosh x ∼= ex/2, unfortunately does
not simplify matters because of the summation over the index (q) resulting from
averaging over the signal constellation. In problems of this nature, it is common
to approximate the summation by its largest term. In this particular case, it is
most convenient to make this approximation in the CLF of Eq. (10-1) prior to
taking its derivative to form the error signal in the MAP estimation loop. When
this is done, we obtain for the MAP estimate (again setting θc = 0)

ε̂MAP
∼= argmax

ε̂

[
N−1∑
n=0

ln
(

2
M

max
q

{
cosh

[
xn (q; ε̂)

]})]
(10 46)

or, equivalently, because of the monotonicity of the hyperbolic cosine function,

ε̂MAP
∼= argmax

ε̂

[
N−1∑
n=0

ln
(

2
M

cosh xn (qmax; ε̂)
)]

(10 47)

where

qmax
�= max

q

{∣∣xn (q; ε̂)
∣∣} (10 48)

Now differentiating Eq. (10-47) with respect to ε̂, we obtain an expression for
the error signal in a MAP-motivated symbol synchronizer for M -PSK at high
SNR, namely,

e =
d

dε̂

[
N−1∑
n=0

ln
(

2
M

cosh xn (qmax; ε̂)
)]

=
N−1∑
n=0

tanh [xn (qmax; ε̂)]
d

dε̂
xn (qmax; ε̂)

(10 49)
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Note the similarity of Eq. (10-49) to Eq. (10-9). In fact, for binary phase-shift
keying (BPSK), the only value of q in the sum is q = 0, and thus for this case
qmax = 0, which establishes the equivalence between Eq. (10-49) and Eq. (10-9).
Because of this similarity, one can immediately apply the same small and large
argument approximations to the hyperbolic tangent nonlinearity and, analogous
to Figs. 10-3 and 10-4, arrive at DTTL-like implementations that are illustrated
in Figs. 10-7 and 10-8.

10.5 MAP Sliding-Window Estimation of Symbol Timing

As discussed in Section 10.1, open-loop MAP estimation of the symbol epoch
involves finding the conditional (on the symbol timing) likelihood function of the
received signal based on a single observation of the received signal over a block
of symbols. Furthermore, since the unknown symbol epoch is assumed to be
uniformly distributed over the symbol interval, the MAP estimate is equivalent
to the ML estimate. We have also seen that the traditional closed-loop estima-
tion scheme motivated by the MAP estimation approach employs an error signal
derived from the derivative of the CLF that can be updated at intervals corre-
sponding to the symbol time. Since for rectangular pulses, e.g., an NRZ data
stream, the derivative of the CLF, which is related to the derivative of the pulse
shape, is undefined, closed-loop structures motivated by the MAP estimation ap-
proach strictly speaking do not exist. Nevertheless, with suitable approximations
of the derivative of the pulse shape, such a closed loop, e.g., the DTTL, will in
fact provide symbol sync for an NRZ data stream with rectangular pulses; how-
ever, it does so with a degradation in performance relative to that which can be
provided by the MAP or minimum mean-squared (MMS) open-loop estimators.
On the other hand, the closed-loop approach provides a continuous updating
(tracking) of the symbol timing (once per bit interval) that is desirable in the
presence of channel dynamics, whereas the open approach usually is regarded
as either a one-shot estimator, i.e., compute the MAP or MMS estimate based
on a single observed long block of data, or a block-by-block estimator where the
single shot is sequentially repeated over and over.

What is important to observe is that the open-loop estimation techniques
can be modified to provide sequential updates at the symbol rate to the symbol-
timing epoch estimates and as such resemble the closed-loop techniques with,
however, improved performance. It is this issue that we wish to discuss here,
namely, a simple sequential digital implementation of the MAP estimation of
symbol epoch that can track the dynamics in this parameter yet provide a per-
formance approaching that of the true optimum MAP estimation technique.
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Fig. 10-8.  A weighted running accumulator.
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10.5.1 A Brief Discussion of Performance and Its Bounds for
Open- and Closed-Loop Symbol-Timing Techniques

As we have noted in other chapters, an appropriate measure of the perfor-
mance of an unbiased estimator of a parameter is its variance, which is equal
to the mean-squared value of the error between the estimator and the parame-
ter. Although it is usually difficult to arrive at an analytical expression for the
variance of the MAP or MMS estimator, there exist many lower bounds on this
quantity that can be evaluated analytically. The most popular of these bounds
is the Cramer–Rao (C-R) bound [3–5] since it can be obtained directly from the
conditional probability density function (pdf) of the received signal given the
unknown epoch, which as shown earlier has the analytically desirable Gaussian
form. In particular, the C-R bound on the variance of any unbiased estimator ε̂

of ε is given by

σ2
ε ≥

⎡
⎣E

⎧⎨
⎩

(
∂ ln p

(
r(t) |ε

)
∂ε

)2
⎫⎬
⎭

⎤
⎦−1

= −
[
E

{
∂2 ln p

(
r(t) |ε

)
∂ε2

}]−1
∆=σ2

C−R

(10 50)

In order to evaluate the derivative required in Eq. (10-50), it is necessary that the
pulse shape be differentiable—the same condition as needed to form the MAP
estimation loop. If the pulse shape is in fact differentiable and the other condi-
tions for the C-R bound to exist [3–5] are satisfied, then for large SNR γ, the C-R
bound varies inversely as the SNR, i.e., σ2

C−R = Cγ−1, where the constant of
proportionality, C, depends on the particular pulse shape and its second deriva-
tive [5]. It is also true that, if the C-R bound is achievable, then clearly the MMS
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estimator will be the one that achieves it, but so does the MAP estimator. That
is, in this situation the MAP estimator is asymptotically (large SNR) efficient.
On the other hand, if the C-R bound is not achievable, then by definition the
more complex MMS estimator still will achieve the smallest estimator variance,
and the MAP estimator may in fact result in a larger variance. That is, in this
situation one cannot guarantee how close the MAP estimator comes to the C-R
bound.

It can similarly be shown that closed loops motivated by the MAP approach,
i.e., those that employ an error signal derived from the derivative of the LF,
have a mean-squared timing error that varies inversely linearly with SNR. In the
closed-loop case, one must make an appropriate adjustment to the term “SNR”
to reflect the relation between the reciprocal of the loop bandwidth and the ob-
servation time of the open-loop estimate, analogously to what was done for the
carrier synchronization case in Chapter 8. In particular, if the two-sided loop
bandwidth is defined as equal to the reciprocal of the observation time (which
is appropriate for a noise bandwidth definition), then the mean-squared timing
error of the closed loop satisfies the C-R bound, i.e., σ2

ε = γ−1.
When the pulse is not differentiable, such as the rectangular pulse that is char-

acteristic of NRZ modulation, then as previously mentioned the C-R bound does
not exist. One might consider trying to use the C-R bound in such situations by
approximating the square pulse with a trapezoidal shape (which leads to deriva-
tives at the edges that are rectangular pulses, as discussed in Section 10.2 for the
DTTL), and then taking the limit as the slope of the edges approaches infinity.
Unfortunately, when this is done the C-R bound becomes directly proportional
to the inverse of the slope, and thus in the limit as the slope approaches infinity
for any finite SNR, the bound degenerates to being useless, i.e., σ2

C−R → 0.
To get around this enigma, researchers have investigated other bounds on the

estimator variance that exist even when the pulse is non-differentiable. A vari-
ety of these bounds [6–9] are reviewed and compared in [10]. All of the results
obtained in these references are for the case of a transmitted signal correspond-
ing to either a single pulse, a periodic repetition of a single pulse, or a known
sequence of pulses, such as a pseudo-noise (PN) code, and as such correspond to
navigation, radar, and direct sequence spread spectrum system applications. For
the case of data communication, where the transmitted waveform is a sequence
of pulses with random (unknown) polarity, in order to make the results given in
the above references applicable in this situation, one must draw an appropriate
equivalence between the two scenarios. It is relatively straightforward to show
that the C-R bound (which again does not apply in the square-pulse case) on
the variance of the delay estimator for a random pulse stream of N symbols is
equivalent to the C-R bound on the variance of a single pulse of N times the
energy. Although establishing this equivalence is more formidable for the other
bounds that do apply to the square-pulse case, we anticipate that a similar be-
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havior will occur. Proceeding with this intuitive assumption, we now discuss the
behavior of the various bounds considered in [10] as they would apply to the
NRZ communication problem.

What is interesting about all the bounds in [6–9] is that, for rectangular
pulses, they all predict (for large SNR) an inverse square-law behavior with
SNR, i.e., σ2 ≥ Cγ−2, as opposed to the inverse linear behavior one might ex-
pect (at least from C-R bound considerations which granted do not apply here).
The difference between the various bounds is the constant of proportionality, C.
Monte Carlo simulations performed in [10] show that, in this situation, the MAP
and MMS estimators have a similar inverse square-law behavior with SNR and
come quite close to the tightest of the lower bounds. Thus, since the closed-
loop schemes derived from the above-mentioned approximations to the MAP
approach can achieve only inverse linear behavior with SNR, it behooves one to
reexamine the possibility of using open-loop epoch estimation with the hope of
obtaining a simple sequential structure that will allow for an improvement in
performance as well as the ability to track variations in the parameter.

10.5.2 Formulation of the Sliding-Window Estimator

To arrive at the sliding-window version of the MAP estimator, we slightly
modify the approach taken in Section 10.2 by assuming now that the observation
of the received signal extends over the entire past up to the present time t = NT ,
and furthermore that the unknown parameter, ε, is constant over this observa-
tion, i.e., in the interval −∞ ≤ t ≤ NT .4 In this case, the estimate at time NT

becomes

ε̂N = argmax
ε̂

Λ (ε̂;NT ) (10 51)

where

Λ (ε;NT )
∆=

N−1∑
l=−∞

ln cosh

(
2
√

P

N0

∫ NT

−∞
r(t)p (t − lT − εT ) dt

)
(10 52)

Ignoring the partial (less than a full symbol interval) contribution of the
N−1st pulse p (t − (N − 1)T − εT ) [since the full contribution will be picked
up in the LF for the next interval, namely, Λ (ε; (N + 1)T )], we can rewrite
Eq. (10-52) as

4 Shortly we shall say more about how to tailor the results to the more practical case where
the parameter is dynamic but slowly (with respect to the symbol duration) varying.
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Λ (ε;NT ) �=
N−2∑

l=−∞
ln cosh

(
2
√

P

N0

∫ (l+1)T+ε

lT+ε

r(t)dt

)
(10 53)

The LF as defined in Eq. (10-53) is a function of a parameter ε that takes
on a continuum of values in the interval 0 ≤ t ≤ T . In order to construct a prac-
tical implementation of Eq. (10-53), it is customary to quantize the uncertainty
interval, i.e., approximate the continuous variable εT by a discrete variable that
takes on values εiT = iT/Nε

�= i∆, i = 0, 1, 2, · · · , Nε−1. Since the quantization
increment ∆ determines the resolution to which the parameter can be estimated,
the value of Nε is chosen to satisfy this requirement. The time-quantized LF can
now be written as

Λ (εi;NT ) �=
N−2∑

l=−∞
ln cosh

(
2
√

P

N0

∫ ((l+1)Nε+i)∆

(lNε+i)∆

r(t)dt

)
,

i = 0, 1, 2, · · · , Nε − 1 (10 54)

The integral in Eq. (10-54), which represents the integration of the received signal
over the lth symbol interval (shifted by the epoch εiT = i∆), can be expressed
as a sum of Nε integrals over each quantization interval. In particular,

Λ (εi;NT ) �=
N−2∑

l=−∞
ln cosh

(
2
√

P

N0

Nε−1∑
k=0

∫ (lNε+i+k+1)∆

(lNε+i+k)∆

r(t)dt

)
,

i = 0, 1, 2, · · · , Nε − 1 (10 55)

Thus, the quantized MAP estimator of εT at time t = NT is given by

ε̂NT = îN∆ =
[
argmax

i
Λ (ε̂i;NT )

]
∆ (10 56)

The MAP estimate of symbol epoch at time t = (N + 1)T (i.e., one symbol time
later) is given by

ε̂N+1T =
[
argmax

i
Λ

(
ε̂i; (N + 1)T

)]
∆ (10 57)
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where

Λ (εi; (N + 1)T ) =
N−1∑

l=−∞
ln cosh

(
2
√

P

N0

Nε−1∑
k=0

∫ (lNε+i+k+1)∆

(lNε+i+k)∆

r(t)dt

)

= Λ (εi;NT ) + ln cosh

(
2
√

P

N0

Nε−1∑
k=0

∫ [(N−1)Nε+i+k+1]∆

[(N−1)Nε+i+k]∆

r(t)dt

)

(10 58)

Thus, every T seconds (as in a closed-loop symbol synchronizer that up-
dates its error signal every symbol time, e.g., the DTTL), we obtain an epoch
estimate. An implementation of Eq. (10-56) that does not require a parallel bank
of Nε correlators as is traditional for an Nε-quantized MAP parameter estimator
is illustrated in Fig. 10-7. First,

∫ (lNε+i+k+1)∆

(lNε+i+k)∆
r(t)dt is computed, which repre-

sents the integral of the received signal in the kth quantization (sample) interval
of the lth symbol corresponding to the ith epoch position. Next, Nε successive
integrals, each scaled by 2

√
P/N0, are summed for each epoch position that, be-

cause of the recursive nature of the index i in Eq. (10-55), can be implemented
by a sliding accumulator. That is, Nε successive outputs of the sliding accu-
mulator represent the argument of the “ln cosh” function in Eq. (10-55) for the
Nε epoch positions corresponding to the lth symbol. Next, we take the hyper-
bolic cosine of these outputs and pass them to a running accumulator (with delay
equal to a symbol time or equivalently Nε sample times.) Thus, in accordance
with Eq. (10-58) each output of the running accumulator (which occurs every
∆ seconds) is an accumulation of inputs spaced Nε samples (N∆ = T seconds)
apart. The output of this running accumulator in Nε successive sampling in-
tervals then is the quantized LF of Eq. (10-58) for the current symbol interval,
namely, the Nth. The “comparator” and “store maximum” blocks then proceed
to find the maximum of these Nε likelihood values for the Nth symbol interval,
after which the estimate is output. The “store maximum” block then is reset,
and the procedure is repeated for the next (i.e., the N+1st) symbol interval. It
is important that the “store maximum” block be reset in each symbol interval
so that an erroneous symbol epoch in one symbol interval does not propagate to
succeeding intervals, that is, the symbol epoch estimate for each symbol interval
should be made from the maximum of the set of Nε LF samples for that interval
and not by comparison with the maximum of samples from any previous interval.

Because of the assumption that the unknown parameter being estimated, i.e.,
symbol epoch, is constant over the observation, the implementation in Fig. 10-7
includes a running accumulator with uniform weighting. In the more practical
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case, where the parameter is dynamic but slowly varying, one can only assume
that the unknown parameter is constant over a finite number of symbol intervals.
As such, the uniform running accumulator should be replaced with a weighted
running accumulator that reflects a fading memory and is analogous to what is
done in a closed-loop architecture by using a digital filter following the error sig-
nal. The simplest method for accomplishing this is illustrated in Fig. 10-8, where
the feedback term is multiplied by a constant α < 1. This achieves a running
accumulator with a geometric weighting that has the input–output characteristic

yi =
∞∑

m=0

αmxi−m (10 59)

Finally, since the running accumulator also accomplishes the data detection
(matched-filter) function, then the epoch estimate index, îN , of Eq. (10-56) can
be used to determine in each symbol interval which running accumulator output
to use for making a hard decision on that symbol.

10.5.3 Extension to Other Pulse Shapes

When the pulse shape is other than rectangular, then, strictly speaking, the
simplification that allows the bank of Nε correlators to be replaced by a sliding
accumulator as in Fig. 10-7 is not possible. However, if Nε is large and the pulse
shape is approximated by a piecewise constant staircase function with Nε steps,
then the correlation of the received signal and the pulse shape in a quantization
interval can be written as

∫ (i+1)∆

i∆

r(t)p(t)dt = pi

∫ (i+1)∆

i∆

r(t)dt (10 60)

where pi is the assumed constant value of p (t) in the interval i∆ ≤ t ≤ (i + 1) ∆.
In view of Eq. (10-60), the only modification of Fig. 10-7 that is necessary to
allow for the inclusion of an arbitrary pulse shape is to replace the uniform
sliding accumulator with a weighted sliding accumulator (see Fig. 10-9), where
the weights are equal to the piecewise constant values of p(t). Furthermore, for
sufficiently large Nε, one can approximately replace the integral of r(t) over the
quantization interval by the value of r(t) at the midpoint of this interval times
the duration of this interval, ∆. As such, the integrator at the input of Fig. 10-7
can be replaced simply by a uniform sampler at rate 1/∆.
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Fig. 10-9.  A weighted sliding-window accumulator.
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10.6 Symbol Synchronization in the Absence of
Carrier Phase Information

10.6.1 Suboptimum Schemes

In addition to “optimum” symbol synchronizers, such as the ones discussed
thus far that are motivated by the MAP estimation approach, several other sub-
optimum schemes have been proposed in the literature that offer the advantage
of a simpler implementation and at the same time perform nearly as well as the
more complex optimum ones. One of the more popular of these ad hoc schemes
that draws its roots from the squaring loop used for carrier synchronization is
called the “filter and square symbol synchronizer,” whose tracking performance
was analyzed in [11] for the case of an NRZ input and a single-pole Butterworth
low-pass filter for H(s). A block diagram of this synchronizer is provided in
Fig. 10-10. The operation of this scheme is briefly summarized as follows.

For a binary NRZ input described by s (t, ε)=
√

P
∑∞

n=−∞ dnp (t − nT − εT ),
the output of the filter is given as ŝ (t, ε) =

√
P

∑∞
n=−∞ dnp̂ (t − nT − εT ),

where5

5 Here, the hat on s (t, ε) and p (t) is simply used to denote the result of low-pass filtering by
H (s).
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Fig. 10-10.  Filter and square symbol synchronizer.
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p̂ (t) =
1
2π

∫ ∞

−∞
P (ω)H (ω) dω (10 61)

with P (ω) the Fourier transform of the NRZ rectangular pulse p (t). Squaring
s̄ (t, ε) results in

ŝ2 (t, ε) = P

∞∑
n=−∞

p̂2 (t − nT − εT )

+ P

∞∑
m=−∞

∞∑
n=−∞

dmdnp̂ (t − mT − εT ) p̂ (t − nT − εT ) (10 62)

which after ensemble averaging over the random data becomes

ŝ2 (t, ε) = P

∞∑
n=−∞

p̂2 (t − nT − εT ) (10 63)
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The term
∑∞

n=−∞ p̂2 (t − nT − εT ) is periodic with fundamental period equal
to T and thus possesses a line spectrum with harmonics that are multiples of
the data rate, each of which carries along the symbol-timing information. Thus,
following this signal with a zonal filter (to extract, say, the nth harmonic), a
sinusoidal tone is generated at f = n/T that can be tracked by a phase-locked
loop (PLL) whose voltage-controlled oscillator (VCO) output after frequency di-
vision by n and an appropriate phase shift6 represents a symbol-timing clock
that is synchronous with the input data stream.

Shortly thereafter [12], a generalization of the filter and square symbol syn-
chronizer was proposed in which the square-law device was replaced by a delay-
and-multiply operation (see Fig. 10-11). The resulting configuration, referred to
as a “cross-spectrum symbol synchronizer (CSSS),” allowed in general for a delay
element equal to a fraction α of the symbol time, where the value of α would
be chosen to optimize the tracking performance in the sense of minimizing the
mean-squared timing error. It is clear from a comparison of Figs. 10-10 and 10-11
that the filter and square-law symbol synchronizer is a special case of the cross-
spectrum symbol synchronizer corresponding to α = 0. Once again assuming a

Fig. 10-11.  Cross-spectrum symbol synchronizer.
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6 The phase shifter is required to cancel the known phase shift inherent in the nth harmonic
of the Fourier series representation of the signal component in the output of the squaring
device.
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single-pole Butterworth low-pass filter for H (s), the line spectrum at the out-
put of the delay-and-multiply operation was analyzed in [12] as a function of the
fractional delay α for both low and high SNRs. In particular, for a given value of
SNR and α, it was shown that there exists an optimum filter bandwidth-to-data
rate ratio7 in the sense of minimizing the mean-squared timing error and that
the optimum value of α in each case was equal to 1/2. Furthermore, in addition
to α = 1/2 optimizing the performance for the best choice of filter bandwidth-to-
data rate ratio, it also resulted in a significant improvement in robustness with
regard to variations in this ratio.

Although the filter and square symbol synchronizer and its generalization,
the cross-spectrum symbol synchronizer, were initially proposed as real baseband
schemes that implicitly assumed perfect carrier synchronization, it is straight-
forward to modify them so as to be useful in a noncoherent carrier phase en-
vironment. Specifically, if we now model the signal component of the input in
complex form as

s̃ (t, ε) =
√

2Pejθc

∞∑
n=−∞

dnp (t − nT − εT ) (10 64)

where θc denotes the unknown carrier phase, then performing the delay-and-
multiply function in complex conjugate form again will result in a zonal filter
output that is a tone at the nth harmonic of the data rate that can be tracked by
a PLL. Furthermore, the performance of this scheme will be independent of the
value of θc. A block diagram of the real noncoherent version of the cross-spectrum
synchronizer is illustrated in Fig. 10-12, where the input is now the bandpass
received signal whose signal component is given by s (t, ε) = Re

{
s̃ (t, ε) ejωct

}
with ωc denoting the carrier frequency. In what follows, we present the tracking
performance of the symbol synchronizer in Fig. 10-12, drawing heavily on the
detailed results already contained in [11] and [12].

In accordance with the above, the received bandpass signal is given by

r (t) = s (t, ε) + n(t)

=
√

2Pm (t) cos ( ωct + θc) +
√

2
[
nc (t) cos ωct − nc (t) sinωct

]
(10 65)

where nc(t), ns(t) are independent low-pass Gaussian noise processes with single-
sided power spectral density N0 W/Hz. After demodulation with quadrature
reference signals

7 This phenomenon is entirely synergistic with the tracking performance of the Costas or
squaring loop as exemplified by its squaring-loss behavior as a function of the ratio of arm
filter bandwidth to data rate (see Chapter 8).



Symbol Synchronization 351

Fig. 10-12.  Noncoherent cross-spectrum symbol synchronizer.
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rc (t) =
√

2 cos ωct

rs (t) = −
√

2 sinωct

(10 66)

and then filtering and delay-and-multiplying, we obtain the I and Q low-pass
signals

x̂c (t) = Pm̂ (t) m̂ (t − αT ) cos2 θc + n̂c(t) n̂c(t − αT )

+
√

P cos θc

[
m̂ (t) n̂c(t − αT ) + m̂ (t − αT ) n̂c(t)

]
x̂s (t) = Pm̂ (t) m̂ (t − αT ) sin2 θc + n̂s(t) n̂s(t − αT )

+
√

P sin θc

[
m̂ (t) n̂s(t − αT ) + m̂ (t − αT ) n̂s(t)

]
(10 67)

Summing these I and Q signals produces
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x(t) = Pm̂(t)m̂(t − αT ) + n̂c(t)n̂c(t − αT ) + n̂s(t)n̂s(t − αT )

+
√

Pm̂(t)
[
n̂c(t − αT ) cos θc + n̂s(t − αT ) sin θc

]
+
√

Pm̂ (t − αT )
[
n̂c(t) cos θc + n̂s(t) sin θc

]
(10 68)

whose signal × signal (S × S) component [the first term on the right-hand side
of Eq. (10-68)] is identical to that of the phase coherent cross-spectral symbol
synchronizer and as such is independent of the carrier phase. It now remains to
investigate to what extent the noise × noise (N × N) component [the second and
third terms on the right-hand side of Eq. (10-68)] and the signal × noise (S × N)
component [the fourth and fifth terms on the right-hand side of Eq. (10-68)] have
changed and what impact these changes have on the tracking performance of the
loop.

As is typical of all synchronization loops of this type, the tracking perfor-
mance as measured by the mean-squared timing error can be characterized by
the “squaring loss,” which represents the degradation8 in this measure due to the
nonlinear nature (S×S, S×N , and N ×N operations) of the loop. Specifically,
the squaring loss is formed from a scaled version of the ratio of the power in the
S × S component to the equivalent noise power spectral density of the sum of
the S×N and N ×N components, all evaluated at the nth harmonic of the data
rate. As we shall see shortly, it will not be necessary to redo the evaluations of
these component contributions to the squaring loss from what was done in [11]
and [12] for the phase-coherent symbol synchronizer. Rather, we shall simply
be able to make direct use of the evaluations found there with simple or no
modification at all. As such the evaluation of the squaring loss itself will follow
immediately almost by inspection.

To evaluate the equivalent noise power spectral densities of the S × N and
N ×N components, namely, N ′

0S×N
and N ′

0N×N
, respectively, we must first com-

8 As we shall see shortly, the squaring loss can at times exceed 0 dB and thus, in reality,
can represent a gain rather than a loss. The reason for using such a nomenclature here
nonetheless is by analogy with its usage in the carrier sync application, where it represents
the additional degradation of the mean-squared phase error relative to that of a linear carrier
tracking loop such as a PLL, and hence its value there can never exceed 0 dB. The difference
between the two usages is centered around the fact that in the carrier sync application the
phase error can vary over a range of 2π rad, whereas in the symbol sync application the
normalized (to the T -second symbol duration) timing error can vary over a range of unity.
Thus, there is a scale factor of (2π)2 that comes into play when relating the mean-squared
phase error of the sinusoidal clock supplied by the PLL portion of the cross-spectrum symbol
synchronizer to the mean-squared normalized timing error of this same reference when used
as a symbol sync clock. The important point to keep in mind is that the squaring loss is just
a relative measure of performance and thus is useful in comparing different sync schemes.
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pute their autocorrelation function. The autocorrelation of the S×N component
is by definition

Rsn (τ) =P E
{[

m̂ (t)
[
n̂c(t − αT ) cos θc + n̂s(t − αT ) sin θc

]
+m̂ (t − αT )

[
n̂c(t) cos θc + n̂s(t) sin θc

]]
×

[
m̂ (t + τ)

[
n̂c(t − αT + τ) cos θc + n̂s(t − αT + τ) sin θc

]
+m̂ (t − αT + τ)

[
n̂c(t + τ) cos θc + n̂s(t + τ) sin θc

]]}
=2PRm̂ (τ)

[
Rn̂c

(τ) cos2 θc + Rn̂s
(τ) sin2 θc

]
+ PRm̂ (τ + αT )

[
Rn̂c

(τ − αT ) cos2 θc + Rn̂s
(τ − αT ) sin2 θc

]
+ PRm̂ (τ − αT )

[
Rn̂c

(τ + αT ) cos2 θc + Rn̂s
(τ + αT ) sin2 θc

]
(10 69)

which after recognizing that Rn̂c
(τ) = Rn̂s

(τ) = Rn̂ (τ) simplifies to

Rsn (τ) = P
[
2Rm̂ (τ)Rn̂ (τ) + Rm̂ (τ + αT ) Rn̂ (τ − αT )

+Rm̂ (τ − αT ) Rn̂ (τ + αT )
]

(10 70)

Again it can be observed that the autocorrelation in Eq. (10-8) is independent of
the carrier phase θc and furthermore is identical to the analogous result for the
phase-coherent cross-spectrum symbol synchronizer as given in Eq. (10) of [12].9

Next, the autocorrelation of the N × N component is obtained as

Rnn (τ) = E
{[

n̂c(t)n̂c(t − αT ) + n̂s(t)n̂s(t − αT )
]

×
[
n̂c(t + τ)n̂c(t − αT + τ) + n̂s(t + τ)n̂s(t − αT + τ)

]}
= 2

[
R2

n̂ (αT ) + R2
n̂ (τ) + Rn̂ (τ − αT )Rn̂ (τ + αT )

]
(10 71)

9 Note that the multiplicative factor P has been included here in the definition of Rsn (τ)
whereas in [12], where P is denoted by S, it has been erroneously omitted in defining the
total noise power spectral density.
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which is exactly twice the analogous result for the phase-coherent cross-spectrum
symbol synchronizer as given in [12]. Thus, since the equivalent noise power
spectral densities are computed from the Fourier transforms of the autocor-
relations evaluated at the nth harmonic of the data rate, i.e., N ′

0S×N
=

2
∫ ∞
−∞ Rsn (τ) ej2πnτ/T dτ and N ′

0N×N
= 2

∫ ∞
−∞ Rnn (τ) ej2πnτ/T dτ , then ignor-

ing the zero frequency term R2
n (αT ) as was done in [12] (since it leads to a

power spectral line component at the zeroth harmonic of the data rate which is
eliminated by the zonal filter), we conclude that

N ′
0S×N

|noncoh. = N ′
0S×N

|coh.

N ′
0N×N

|noncoh. = 2N ′
0N×N

|coh.

(10 72)

Finally, since, as previously stated, the S × S component of the noncoherent
cross-spectral symbol synchronizer is identical to that of the phase coherent
one, then letting |Cn|2 denote the normalized power in this component at the
nth harmonic of the data rate, the squaring loss of the former is obtained as (see
Eq. (48) of [12] with minor corrections applied)

SL |noncoh. = (2πn)2 PN0

⎡
⎣ 2 |Cn|2

∣∣∣
noncoh.

N ′
0S×N

∣∣∣
noncoh.

+ N ′
0N×N

∣∣∣
noncoh.

⎤
⎦

= (2πn)2 PN0

⎡
⎣ 2 |Cn|2

∣∣∣
coh.

N ′
0S×N

∣∣∣
coh.

+ 2N ′
0N×N

∣∣∣
coh.

⎤
⎦ (10 73)

At this point, it is straightforward to evaluate Eq. (10-73) by making use of the
expressions in [12] for |Cn|2

∣∣
coh.

, N ′
0S×N

∣∣
coh.

, and N ′
0N×N

∣∣
coh.

. A summary of
these results for the special case of a single-pole Butterworth low-pass filter for
H(s) (with 3-dB cutoff frequency fc), random (transition density equal to 0.5)
NRZ data, n = 1 (tracking of the first harmonic), and either α = 0 (the fil-
ter and square-law implementation) or α = 0.5 (a half-symbol delay that was
shown in [12] to be optimum in the sense of minimizing the squaring loss at the
best ratio of low-pass filter bandwidth to symbol time) is given in the following.10

10 These results were not explicitly given in [12] but have been independently derived here after
considerable manipulation and integral evaluation.
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For α = 0:

|C1|2 =

[
1 − exp (−2πR)

]2
(2πR)2

1
[1 + 1/R2] [1 + 1/4R2]

N ′
0S×N

∣∣∣
coh.

=
4PN0

1 + 1/R2

{
1 − 1 − exp (−2πR)

8πR

[
6 + 1/R2 + 1/R4

[1 + 1/R2] [1 + 1/4R2]

]}
(10 74)

N ′
0N×N

∣∣∣
coh.

=
PN0

1 + 1/4R2

(
πR

2Es/N0

)

For α = 0.5:

|C1|2 =
1

(2π)2 [1 + 1/R2] [1 + 1/4R2]

×
{[

exp (−πR)
[
3 − exp (−2πR)

]
− 2

]2
4R2

+ 4

}

N ′
0S×N

∣∣∣
coh.

=
2PN0

1 + 1/R2

{
1 − 1

4πR

[
1 − 1/R2

1 + 1/R2

+
1
2

(
1 + 1/R2

1 + 1/4R2

)] [
3 − 4 exp (−2πR) + exp (−4πR)

]}

N ′
0N×N

∣∣∣
coh.

=
PN0

1 + 1/4R2

(
πR

4Es/N0

) [
1 − exp (−2πR)

]

(10 75)

where R
�= fcT and Es = PT is the symbol energy.

Figure 10-13 is an illustration of SL

∣∣
noncoh. as computed from Eq. (10-73)

together with Eq. (10-74) or Eq. (10-75) versus R with Es/N0 as a parame-
ter. Also shown in dashed lines are the corresponding plots of the squaring-
loss performance for the coherent cross-spectrum symbol synchronizer, namely
SL

∣∣
coh., as previously obtained in [12] or equivalently from Eq. (10-73) by ignor-

ing the factor of two in front of N ′
0N×N

∣∣
coh.

. We observe that the noncoherent
symbol synchronizer performs almost as well as the coherent one at high SNR
(where the S × N noise dominates over the N × N noise), whereas at low SNR
(where the N ×N noise dominates over the S ×N noise) there is a more signif-
icant degradation of the former relative to the latter. Next, as was the case for
the coherent symbol synchronizers, the noncoherent cross-spectrum scheme with
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Fig. 10-13.  Squaring-loss performance of noncoherent and coherent
cross-spectrum symbol synchronizers.
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half-symbol delay provides an improvement in performance over the filter and
square-law scheme when implemented with the optimum value of bandwidth–
time product R. Furthermore, although the cross-spectrum schemes exhibit a
dependence on the bandwidth–time product for all values of α, this dependence
is considerably reduced by the use of a half-symbol delay, particularly when com-
pared with that for α = 0.

To explain the much slower roll-off of the squaring loss performance with R

for the half-symbol delay case, we reason as follows. In the limit of large low-pass
filter bandwidth (theoretically no filtering at all), when α = 0 the signal com-
ponent of the output of the delay-and-multiply circuit (equivalent to a squaring
operation in this case) is a squared NRZ waveform which simply is a constant
equal to unity and as such does not contain a harmonic at 1/T . This is born out
by the fact that the normalized signal power of the harmonic at 1/T as given by
|C1|2 in Eq. (10-74) is equal to zero in the limit of R → ∞. On the other hand,
in the same limit with α = 0.5, the output of the delay-and-multiply circuit
randomly alternates between a ±1 square wave at the data rate and a +1 con-
stant. The average of these two waveforms is a unipolar (0, 1) square wave at
the data rate whose Fourier series expansion clearly contains a nonzero harmonic
at 1/T . Once again this is born out by the fact that, using Eq. (10-75), in the
limit of R → ∞ and Es/N0 → ∞ we have |C1|2 = 1/π2. Since, for large R,
the N ′

0N×N

∣∣
coh.

term dominates over the N ′
0S×N

∣∣
coh.

and since for α = 0 and
α = 0.5 they both have the same behavior (except for a factor of two smaller
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for the latter), then when taking the ratio of |C1|2 to the sum of N ′
0S×N

∣∣
coh.

and
N ′

0N×N

∣∣
coh.

, the squaring loss for the half-symbol delay case will decay with R

much less rapidly than for the zero-delay (squaring) case.
It is now of interest to compare the performance of the noncoherent cross-

spectrum symbol synchronizers to that of the coherent DTTL whose squaring
loss is obtained from Eq. (10-40) using the relation σ2

λ = 1/ρSL, i.e.,

SL =

2

[
erf

(√
Es

N0

)
− ξ

2

√
Es/N0

π
exp

(
−Es

N0

)]2

ξ

⎧⎨
⎩1 +

ξ

2

(
Es

N0

)
− ξ

2

[
1√
π

exp
(
−Es

N0

)
+

√
Es

N0
erf

(√
Es

N0

)]2
⎫⎬
⎭
(10 76)

Figures 10-14(a) and 10-14(b) are plots of the squaring loss given by
Eq. (10-76) versus Es/N0 in dB and, for comparison, the optimum (with respect
to choice of R) squaring loss for the coherent and noncoherent cross-spectrum
schemes corresponding to α = 0 and α = 0.5, respectively. In the case of
Fig. 10-14(a), we observe that, regardless of its window width, the DTTL out-
performs the noncoherent cross-spectrum (filter and square) scheme over the
entire range of SNR illustrated. On the other hand, when compared to the co-
herent cross-spectrum scheme, for sufficiently large window width, the DTTL
performance will suffer a degradation at low values of SNR. This should not
be surprising since, as mentioned earlier in the chapter, the DTTL is derived
from a high SNR approximation to the MAP symbol synchronizer which itself is
motivated by the MAP estimation approach only in the limit of infinitesimally
small window width.11 With reference to Fig. 10-14(b), we observe that the
performance of the coherent cross-spectrum scheme is quite competitive with
that of the DTTL having a window width ξ = 0.5, and even the noncoherent
cross-spectrum scheme can slightly outperform this DTTL at high SNR. As the
window width is increased beyond a value of one-half, the cross-spectrum symbol
sync schemes will clearly outperform the DTTL over the entire range of SNRs.

11 The window width, ξ, of the DTTL corresponds to the approximation of the derivative
of an NRZ pulse at a transition point in the data stream, namely, a delta function, with
a finite-width rectangular pulse. Thus, the validity of the approximation, as well as the
tracking performance of the closed-loop DTTL, monotonically improves as the window width
becomes smaller and smaller. However, while in principle the MAP approach suggests an
infinitesimally small window width, in practice there is a lower limit on its value since the
width of the tracking region is directly proportional to ξ. Thus, if the window width is made
too small, the ability of the loop to remain in lock will severely diminish. The choice of
window width is determined by the condition σλ � ξ.
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While it is difficult analytically to obtain the limiting behavior of the cross-
spectrum schemes when Es/N0 approaches infinity, it can be shown numerically
that, for both the noncoherent and coherent versions, the optimum value of R

is approximately equal to 1.1, and the accompanying value of squaring loss is
6.84 dB.
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Fig. 10-14.  A comparison of the squaring-loss performance of noncoherent 
and coherent cross-spectrum symbol synchronizers with that of the DTTL: 
(a) α = 0 and (b) α = 0.5.
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10.6.2 The Noncoherent DTTL

In this section, we return to the ML approach for obtaining a symbol syn-
chronizer in the absence of carrier phase information with particular emphasis
on the necessary modifications of the conventional (coherent) DTTL structures
as treated earlier in this chapter. We shall see that, in the low SNR region, the
modification resembles that found for the suboptimum schemes discussed in the
previous subsection, i.e., the independent addition of the symbol sync component
derived from the quadrature carrier arm, whereas for the high SNR region, the
structure involves a nonlinear cross-coupling of symbol sync components from
both the in-phase and quadrature carrier arms. Wherever possible, results will
be obtained from a combination of theory and simulation. Before proceeding,
it should be mentioned that the MAP approach to symbol sync was consid-
ered in [13] in the context of arriving at a non-data-aided recursive algorithm
for symbol timing. Although at first glance it might appear that the approach
taken there corresponds to noncoherent symbol sync since the carrier phase was
assumed to be unknown but independent from symbol to symbol,12 in reality
the derivation of the MAP estimate of symbol sync was preceded by a recursive
estimate of the carrier phase which justifies such an assumption. Our empha-
sis here, as mentioned above, is on interpreting the likelihood function derived
from such an approach in such a way as to arrive at noncoherent versions of the
DTTL. For the sake of brevity and consistent with the original derivation of the
coherent DTTL, we shall focus only on the BPSK (M = 2), NRZ case.

10.6.2.1 MAP Symbol Sync Estimation in the Absence of Carrier
Phase Information. The input to the receiver is a bandpass signal modeled
by the combination of Eq. (10-65) together with Eq. (10-64). The first step is to
demodulate the received signal with the quadrature carrier reference signals

rc (t) =
√

2 cos ωct

rs (t) = −
√

2 sinωct

(10 77)

resulting in the pair of baseband observables in the nth symbol interval (n + ε)T

≤ t ≤ (n + 1 + ε)T

12 As we shall see shortly, the appropriate assumption for truly noncoherent symbol sync is an
unknown carrier phase that is constant over the duration of the observation, i.e., a sequence
of symbols.
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xcn (t) =
√

Pdnp
(
t − (n + ε)T

)
cos θc + nc (t) cos θc − ns (t) sin θc

= s (t, ε, dn) cos θc + ncn (t, θc)

xsn (t) =
√

Pdnp
(
t − (n + ε)T

)
sin θc + nc (t) sin θc + ns (t) cos θc

= s (t, ε, dn) sin θc + nsn (t, θc)

(10 78)

or, equivalently, in complex form,

x̃n (t) = xcn (t) + jxsn (t) = s (t, ε, dn) ejθc + ñn (t, θc) (10 79)

where

ñn (t, θ) = ncn(t) + jnsn(t) = ñn(t)ejθc

ñn (t) = nc (t) + jns(t)

(10 80)

Then, for an observation of duration T0 = NT seconds, i.e., N iid symbols, the
CLF (conditioning is now on both the unknown carrier phase θc and fractional
symbol timing offset ε) is given by

L (d, ε, θc) =
1

πN0
exp

(
− 1

N0

∫
T0

∣∣x̃ (t) − s (t, ε,d) ejθc
∣∣2 dt

)

= C exp
(

2
N0

Re
{∫

T0

x̃ (t) s (t, ε,d) e−jθcdt

})
(10 81)

where x̃ (t) =
(
x̃1 (t) , x̃2 (t) , · · · , x̃N (t)

)
is the collection of complex observables

and C is a constant that is independent of the unknown parameters and also
reflects the constant energy nature of the BPSK modulation. As before, because
of the iid property of the data symbols, the CLF can be expressed as the product
of per-symbol CLFs, namely,

L (d, ε, θc) =
N−1∏
n=0

exp

(
2

N0
Re

{∫
Tn(ε)

x̃n (t) s (t, ε, dn) e−jθcdt

})
(10 82)
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where Tn (ε) denotes the time interval (n + ε)T ≤ t ≤ (n + 1 + ε)T and for
simplicity we have ignored all multiplicative constants since they do not affect
the parameter estimation.

The issue that arises now is the order in which to perform the averaging over
the unknown data sequence and the unknown carrier phase. Suppose that one
attempts to first average over the carrier phase. In order to do this, we rewrite
Eq. (10-82) in the form

L (d, ε, θc) = exp

(
2

N0
Re

{
N∑

n=1

∫
Tn(ε)

x̃n (t) s (t, ε, dn) e−jθcdt

})

= exp
{

2
N0

R (d, ε) cos
[
θc − α (d, ε)

]}
(10 83)

where

R(d, ε) =

∣∣∣∣∣
N−1∑
n=0

∫
Tn(ε)

x̃n(t)s(t, ε, dn)dt

∣∣∣∣∣

=

∣∣∣∣∣
N−1∑
n=0

dn

√
P

∫
Tn(ε)

x̃n(t)p
(
t − (n + ε)T

)
dt

∣∣∣∣∣

α(d, ε) = arg

{
N−1∑
n=0

∫
Tn(ε)

x̃n(t)s(t, ε, dn)dt

}
(10 84)

Averaging over the uniformly distributed carrier phase, we get13

L (d, ε) = I0

(
2

N0
R (d, ε)

)

= I0

(
2
√

P

N0

∣∣∣∣∣
N−1∑
n=0

dn

∫
Tn(ε)

x̃n (t) p
(
t − (n + ε)T

)
dt

∣∣∣∣∣
)

(10 85)

13 At this point, it should be re-emphasized that our approach differs from that in [13] in that
in the latter the per symbol likelihood function is averaged over the carrier phase and then,
because of the iid nature of the data, an LF is formed from the product of these phase-
averaged LFs. Forming the LF in such a way implicitly assumes that the carrier phase varies
independently from symbol to symbol, which is in opposition to our assumption that the
carrier phase is constant over the observation.
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The difficulty now lies in analytically averaging over the data sequence in
Eq. (10-85) when N is large. Thus, in order to obtain simple metrics, before
averaging over the data, we must first simplify matters by approximating the
nonlinear (Bessel) function in Eq. (10-85). For small arguments (e.g., low SNR),
the following approximation is appropriate:

I0(x) ∼= 1 +
x2

4
(10 86)

Applying Eq. (10-86) to Eq. (10-85) and defining the real observables

Xcn (ε) �=
∫

Tn(ε)

x̃cn (t) p
(
t − (n + ε) T

)
dt

Xsn (ε) �=
∫

Tn(ε)

x̃sn (t) p
(
t − (n + ε) T

)
dt

(10 87)

we obtain

L (d, ε) = I0

(
2
√

P

N0

∣∣∣∣∣
N−1∑
n=0

dn

(
Xcn (ε) + jXsn (ε)

)∣∣∣∣∣
)

∼= 1 +
P

N2
0

(
N−1∑
n=0

dnXcn (ε)

)2

+
P

N2
0

(
N−1∑
n=0

dnXsn (ε)

)2

(10 88)

Finally, averaging over the iid data sequences gives the simplified LF

L(ε) = 1 +
P

N2
0

N−1∑
n=0

X2
cn (ε) +

P

N2
0

N−1∑
n=0

X2
sn (ε) (10 89)

To arrive at a closed-loop symbol sync structure motivated by this LF, we
proceed in the usual way by differentiating the LF with respect to ε and using
the result to form the error signal in the loop. Taking the partial derivative of
Eq. (10-89) with respect to ε and again ignoring multiplicative constants gives

∂L (ε)
∂ε

=
N−1∑
n=0

Xcn (ε)
dXcn (ε)

dε
+ Xsn (ε)

dXsn (ε)
dε

(10 90)
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each of whose terms is analogous to that which forms the error signal in the low
SNR version of the coherent DTTL, i.e., the LDTTL. Thus, the low SNR version
of the noncoherent DTTL, herein given the acronym NC-LDTTL, is nothing
more than the parallel combination of two independent coherent LDTTLs acting
on the I and Q baseband signals. A block diagram of this structure is given in
Fig. 10-15, and the analysis of its performance will follow in the next subsection.

For large SNR, we need to approximate I0 (x) in Eq. (10-85) by its large
argument form, which behaves as exp (|x|). Thus, in this case the CLF would
be approximated as

L (d, ε) ∼= exp

(
2
√

P

N0

∣∣∣∣∣
N−1∑
n=0

dn

∫
Tn(ε)

x̃n (t) p
(
t − (n + ε) T

)
dt

∣∣∣∣∣
)

(10 91)

which unfortunately does not ease the burden of averaging over the data se-
quence.

Suppose now instead we first average the CLF over the data. Then from
Eq. (10-82) we have

L (ε, θc) = E
d

⎧⎪⎨
⎪⎩

N−1∏
n=0

exp

⎛
⎜⎝ 2

N0
Re

⎧⎪⎨
⎪⎩

∫
Tn(ε)

x̃n (t) s (t, ε, dn) e−jθcdt

⎫⎪⎬
⎪⎭

⎞
⎟⎠

⎫⎪⎬
⎪⎭

=
N−1∏
n=0

E
dn

⎧⎪⎨
⎪⎩exp

⎛
⎜⎝dn

2
√

P

N0
Re

⎧⎪⎨
⎪⎩

∫
Tn(ε)

x̃n (t) p
(
t − (n + ε) T

)
e−jθcdt

⎫⎪⎬
⎪⎭

⎞
⎟⎠

⎫⎪⎬
⎪⎭

=
N−1∏
n=0

cosh

(
2
√

P

N0

[
Xcn ( ε) cos θc + Xsn ( ε) sin θc

])

=
N−1∏
n=0

cosh

(
2
√

P

N0

√(
Xcn ( ε)

)2 +
(
Xsn ( ε)

)2 cos (θc − βn)

)
(10 92)

where
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βn = tan−1 Xsn (ε)
Xcn (ε)

(10 93)

If we now apply the large argument (e.g., high SNR) approximation to the hy-
perbolic cosine function, namely,

cosh x ∼= exp (|x|)
2

(10 94)

then Eq. (10-92) becomes (ignoring multiplicative constants)

L (ε, θc) = exp

{
N−1∑
n=0

∣∣∣∣∣2
√

P

N0

√(
Xcn ( ε)

)2 +
(
Xsn ( ε)

)2 cos (θc − βn)

∣∣∣∣∣
}

(10 95)

which still presents difficulty in analytically averaging over the unknown param-
eter, in this case θc. Thus, having failed on both attempts at averaging the CLF
over both the carrier phase and the data sequence at high SNR, we are forced
to deviate from the true ML approach in favor of one that will provide a simple
metric.

Another approach, albeit suboptimum, that can achieve near-ML perfor-
mance is to choose (rather than average over) the value of the unknown param-
eter that maximizes the CLF. With reference to Eq. (10-85), in the limit of no
noise (infinite SNR), the CLF L(d, ε), or equivalently the argument of the Bessel
function, would be maximized when

dn = sgn

[∫
Tn(ε)

s(t, ε, dn)p
(
t − (n + ε)T

)
dt

]
(10 96)

i.e., all the signal vectors are aligned in the same direction, in which case the
argument of the Bessel function (ignoring the constant multiplicative factor)
would become
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∣∣∣∣∣
N∑

n=1

dn

∫
Tn(ε)

s(t, ε, dn)ejθcp
(
t − (n + ε)T

)
dt

∣∣∣∣∣ =

N∑
n=1

∣∣∣∣∣
∫

Tn(ε)

s(t, ε, dn)ejθcp
(
t − (n + ε)T

)
dt

∣∣∣∣∣
Thus, as a high SNR approximation of this limiting case, we propose the ad hoc
unconditional LF

LF(ε) = I0

(
2
√

P

N0

N−1∑
n=0

∣∣∣∣∣
∫

Tn(ε)

x̃n (t) p
(
t − (n + ε) T

)
dt

∣∣∣∣∣
)

(10 97)

or, equivalently, taking the natural logarithm of Eq. (10-97), the log-likelihood
function (LLF)

LLF(ε) = ln LF(ε) = ln I0

(
2
√

P

N0

N−1∑
n=0

∣∣∣∣∣
∫

Tn(ε)

x̃n(t)p
(
t − (n + ε)T

)
dt

∣∣∣∣∣
)

= ln I0

(
2
√

P

N0

N−1∑
n=0

|Xcn(ε) + jXsn(ε)|
)

= ln I0

(
2
√

P

N0

N−1∑
n=0

√
X2

cn(ε) + X2
sn(ε)

)
(10 98)

For large arguments, the nonlinearity in Eq. (10-98) can be approximated
(to within a scaling constant) as

ln I0 (x) ∼= |x| (10 99)

which after substitution in Eq. (10-98) yields

LLF(ε) =
2
√

P

N0

N−1∑
n=0

√
X2

cn (ε) + X2
sn(ε) (10 100)
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Thus, analogous to Eq. (10-90), differentiating LLF(ε) with respect to ε, the
error signal in a closed-loop configuration should be formed from

e =
N−1∑
n=0

[
Xcn (ε)√

X2
cn (ε) + X2

sn (ε)
dXcn (ε)

dε
+

Xsn (ε)√
X2

cn (ε) + X2
sn (ε)

dXsn (ε)
dε

]

(10 101)

A noncoherent DTTL-type symbol synchronizer that is motivated by using
Eq. (10-101) as its error signal is illustrated in Fig. 10-16. The analysis of its
performance will be discussed later on. In the meantime it is interesting to note
that if one were to consider the coherent case wherein Xsn (ε) would be absent,
then setting Xsn (ε) equal to zero in Eq. (10-101) gives

e =
N−1∑
n=0

Xcn (ε)√
X2

cn (ε)
dXcn (ε)

dε
=

N−1∑
n=0

dXcn (ε)
dε

sgn Xcn (ε) (10 102)

which is exactly the error signal that would be derived from the MAP approach
under the assumption of perfectly known carrier phase and thus motivates the
construction of the conventional nonlinear DTTL.

Before proceeding, it is interesting at this point to note that the LLF in
Eq. (10-98) is the same14 as that given in [13, Eq. 6.279], which is obtained
by averaging over the carrier phase under the assumption that it varies inde-
pendently from symbol to symbol as discussed in Footnote 13. The LLF in
Eq. (10-98) can also be obtained from Eq. (10-95) by again assuming that the
carrier phase varies independently from symbol to symbol, which is tantamount
to replacing θc with θcn in this equation, and then maximizing over the sequence
of carrier phases. It is clear from Eq. (10-95) that this maximization would occur
for θcn = βn, in which case we obtain the LF

L(ε) = exp

{
N−1∑
n=0

∣∣∣∣∣2
√

P

N0

√(
Xcn ( ε)

)2 +
(
Xsn ( ε)

)2

∣∣∣∣∣
}

(10 103)

14 The only difference is a factor of
√

T in the argument of the Bessel function, i.e., 2
√

P/N0

in our result versus 2
√

E/N0 = 2
√

PT/N0 in that of [13], which comes about because of the
difference in the normalization of the carrier reference signals between the two approaches.
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Finally, taking the natural logarithm of Eq. (10-103) produces a result identical
to Eq. (10-100) for the LLF.

10.6.2.2 Tracking Performance of the Noncoherent Linear DTTL.
With reference to Fig. 10-15, the upper and lower channel (herein referred to as
“cosine” and “sine” channels) inputs to the I&D filters in the nth symbol interval
are described by Eq. (10-78). The local clock produces a timing reference for the
I and Q I&D filters of each of these channels that depends on the estimate ε̂ of ε.
As such, the outputs of these same filters are respectively given by (assuming
for simplicity that all gains are set equal to unity)

Xck =
∫ (k+1)T+ε̂

kT+ε̂

xck(t)dt

= cos θc

ck︷ ︸︸ ︷∫ (k+1)T+ε̂

kT+ε̂

s(t, ε, dk)dt + cos θc

νck︷ ︸︸ ︷∫ (k+1)T+ε̂

kT+ε̂

nc (t) dt

− sin θc

νsk︷ ︸︸ ︷∫ (k+1)T+ε̂

kT+ε̂

ns (t) dt

(10 104)

Yck =
∫ (k + 1 + ξ

2 )T + ε̂

(k + 1 − ξ
2 )T + ε̂

xck(t)dt

= cos θc

bk︷ ︸︸ ︷∫ (k + 1 + ξ
2 )T + ε̂

(k + 1 − ξ
2 )T + ε̂

s(t, ε, dk)dt + cos θc

µck︷ ︸︸ ︷∫ (k + 1 + ξ
2 )T + ε̂

(k + 1 − ξ
2 )T + ε̂

nc (t) dt

− sin θc

µsk︷ ︸︸ ︷∫ (k + 1 + ξ
2 )T + ε̂

(k + 1 − ξ
2 )T + ε̂

ns (t) dt

and
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Xsk =
∫ (k+1)T+ε̂

kT+ε̂

xsk(t)dt

= sin θc

ck︷ ︸︸ ︷∫ (k+1)T+ε̂

kT+ε̂

s(t, ε, dk)dt + sin θc

νck︷ ︸︸ ︷∫ (k+1)T+ε̂

kT+ε̂

nc (t) dt

+ cos θc

νsk︷ ︸︸ ︷∫ (k+1)T+ε̂

kT+ε̂

ns (t) dt

(10 105)

Ysk =
∫ (k + 1 + ξ

2 )T + ε̂

(k + 1 − ξ
2 )T + ε̂

xsk(t)dt

= sin θc

bk︷ ︸︸ ︷∫ (k + 1 + ξ
2 )T + ε̂

(k + 1 − ξ
2 )T + ε̂

s(t, ε, dk)dt + sin θc

µck︷ ︸︸ ︷∫ (k + 1 + ξ
2 )T + ε̂

(k + 1 − ξ
2 )T + ε̂

nc (t) dt

+ cos θc

µsk︷ ︸︸ ︷∫ (k + 1 + ξ
2 )T + ε̂

(k + 1 − ξ
2 )T + ε̂

ns (t) dt

Since µck and νck are not independent, and likewise for µsk and νsk, it is conve-
nient as before to express them in terms of a new set of variables:

νck = Nck + Mck, µck = M ′
ck + N ′

c,k+1

νsk = Nsk + Msk, µsk = M ′
sk + N ′

s,k+1

(10 106)

where
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Nck =
∫ (k + 1

2 )T + ε̂

kT+ε̂

nc(t)dt, Mck =
∫ (k + 1)T + ε̂

(k + 1
2 )T + ε̂

nc(t)dt

N ′
ck =

∫ (k + ξ
2 )T + ε̂

kT+ε̂

nc(t)dt, M ′
ck =

∫ (k+1)T+ε̂

(k + 1 − ξ
2 )T + ε̂

nc (t) dt

(10 107)

with the properties

Nck, Mcn are mutually independent for all k, n

N ′
ck, M ′

cn are mutually independent for all k, n

N ′
ck, Mcn and M ′

ck, Ncn are mutually independent for all k, n

N ′
ck, N ′

cn and Mck, Mcn are mutually independent for all k �= n

Furthermore, all Mck, M ′
ck, Nck, N ′

ck, and their sums are Gaussian random vari-
ables with zero mean and variances

σ2
Mck

= σ2
Nck

= N0T/4

σ2
M ′

ck
= σ2

N ′
ck

= ξN0T/4
(10 108)

Analogous definitions and properties apply to the sine channel noise variables.
Taking the difference of two successive soft decisions, Xck and Xc,k+1 (or Xsk

and Xs,k+1), and multiplying the average of the result by the quadrature I&D
output, Yck (or Ysk), delayed by (1 − ξ/2) T gives the sine and cosine channel
error signal components in the kth symbol interval:

eck =
(
bk cos θc +

(
M ′

ck + N ′
c,k+1

)
cos θc −

(
M ′

sk + N ′
s,k+1

)
sin θc

)

× 1
2

{[
ck cos θc + (Nck + Mck) cos θc − (Nsk + Msk) sin θc

]

−
[
ck+1 cos θc + (Nc,k+1 + Mc,k+1) cos θc − (Ns,k+1 + Ms,k+1) sin θc

]}
(10 109)

and
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esk =
(
bk sin θc +

(
M ′

ck + N ′
c,k+1

)
sin θc +

(
M ′

sk + N ′
s,k+1

)
cos θc

)

× 1
2

{[
ck sin θc + (Nck + Mck) sin θc + (Nsk + Msk) cos θc

]

−
[
ck+1 sin θc + (Nc,k+1 + Mc,k+1) sin θc + (Ns,k+1 + Ms,k+1) cos θc

]}
(10 110)

The total error signal, ek, is the sum of the two components in Eqs. (10-110)
and (10-109).

10.6.2.3 S-Curve Performance. The S-curve is by definition the statistical
average of the error signal over the signal and noise probability distributions.
Letting λ

�= ε − ε̂ denote the normalized timing error (−1/2 ≤ λ ≤ 1/2), the
S-curve g (λ) becomes

g (λ) = En,s {eck + esk}

= Es

{
bk

(
ck − ck+1

2

)
cos2 θc + bk

(
ck − ck+1

2

)
sin2 θc

}

= Es

{
bk

(
ck − ck+1

2

)}
(10 111)

which is independent of the carrier phase error as expected and also identical
to the result for the coherent LDTTL. Thus, using the results from Section 4.1
with a slight simplification in the notation, i.e., ignoring the gain constants K1

and K2, we have

gn (λ) �=
g (λ)
PT 2

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λ

(
1 − ξ

4

)
− 3

2
λ2, 0 ≤ λ ≤ ξ

2

ξ

2
(1 − 2λ) ,

ξ

2
≤ λ ≤ 1

2

(10 112)

As noted there, the normalized S-curve for the LDTTL is independent of SNR,
whereas that for the conventional (nonlinear) DTTL is highly dependent on SNR.
Taking the derivative of Eq. (10-112) with respect to λ and evaluating the result
at λ = 0 gives the slope of the normalized S-curve at the origin, namely,
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Kg
�=

dg (λ)
dλ

|λ=0 = PT 2

(
1 − ξ

4

)
(10 113)

10.6.2.4 Noise Performance. The equivalent noise nλ (t) perturbing the
loop is characterized by the variation of the loop error signal around its mean
(the S-curve) as in Eq. (10-27). Following the same approach as that taken in
Section 10.3.2, then after some laborious analysis, we arrive at the equivalent
noise power spectral density given by Eq. (10-30), where now

En,s

{
e2
n |λ=0

}
= P 2T 4

[
ξ

4Rs

(
1 +

ξ

2
+

1
Rs

)]

En,s {enen+m |λ=0 } =

⎧⎪⎨
⎪⎩

−P 2T 4 ξ2

32Rs
, m = 1

0, m > 1

(10 114)

Substituting Eq. (10-114) into Eq. (10-30) gives the desired equivalent power
spectral density as

N ′
0 = P 2T 5 ξ

2Rs

(
1 +

ξ

4
+

1
Rs

)
(10 115)

Interestingly enough, the result for the coherent LDTTL is given by [see
Eq. (10-37)]

N ′
0 = P 2T 5 ξ

2Rs

(
1 +

ξ

4
+

1
2Rs

)
(10 116)

although by comparison the mathematics employed to arrive at Eq. (10-116) is
considerably simpler than that needed to arrive at Eq. (10-115).

10.6.2.5 Mean-Squared Timing-Error Performance. The mean-
squared timing error σ2

λ of the noncoherent LDTTL is readily computed for
a first-order loop filter and large loop SNR conditions using the relation in
Eq. (10-39), where now Kg is obtained from Eq. (10-113) and N ′

0 from
Eq. (10-115). Making the appropriate substitutions in Eq. (10-39) gives the
result
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σ2
λ |NC-LDTTL =

ξ

(
1 +

ξ

4
+

1
Rs

)

2ρ

(
1 − ξ

4

)2 (10 117)

which is to be compared with a similar result in Eq. (10-40) for the coherent
LDTTL.

10.6.2.6 Tracking Performance of the Noncoherent Nonlinear
DTTL. For the nonlinear noncoherent DTTL illustrated in Fig. 10-16, analo-
gous to Eqs. (10-109) and (10-110), the error signal components are now given
by

eck = Yck × 1
2

⎡
⎣ Xck√

X2
ck + X2

sk

− Xc,k+1√
X2

c,k+1 + X2
s,k+1

⎤
⎦

=
(
bk cos θc +

(
M ′

ck + N ′
c,k+1

)
cos θc −

(
M ′

sk + N ′
s,k+1

)
sin θc

)

× 1
2

⎡
⎣ (ck + Nck + Mck) cos θc − (Nsk + Msk) sin θc√

(ck + Nck + Mck)2 + (Nsk + Msk)2

− (ck+1 + Nc,k+1 + Mc,k+1) cos θc − (Ns,k+1 + Ms,k+1) sin θc√
(ck+1 + Nc,k+1 + Mc,k+1)

2 + (Ns,k+1 + Ms,k+1)
2

⎤
⎦ (10 118)

and

esk = Ysk × 1
2

⎡
⎣ Xsk√

X2
ck + X2

sk

− Xs,k+1√
X2

c,k+1 + X2
s,k+1

⎤
⎦

=
(
bk sin θc +

(
M ′

ck + N ′
c,k+1

)
sin θc +

(
M ′

sk + N ′
s,k+1

)
cos θc

)

× 1
2

⎡
⎣ (ck + Nck + Mck) sin θc + (Nsk + Msk) cos θc√

(ck + Nck + Mck)2 + (Nsk + Msk)2

− (ck+1 + Nc,k+1 + Mc,k+1) sin θc + (Ns,k+1 + Ms,k+1) cos θc√
(ck+1 + Nc,k+1 + Mc,k+1)

2 + (Ns,k+1 + Ms,k+1)
2

⎤
⎦ (10 119)
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The total error signal, ek, is now the sum of Eqs. (10-118) and (10-119), which
after some trigonometric simplification becomes

ek =
1
2

(
bk + M ′

ck + N ′
c,k+1

) ⎡
⎣ ck + Nck + Mck√

(ck + Nck + Mck)2 + (Nsk + Msk)2

− ck+1 + Nc,k+1 + Mc,k+1√
(ck+1 + Nc,k+1 + Mc,k+1)

2 + (Ns,k+1 + Ms,k+1)
2

⎤
⎦

+
1
2

(
M ′

sk + N ′
s,k+1

) ⎡
⎣ Nsk + Msk√

(ck + Nck + Mck)2 + (Nsk + Msk)2

− Ns,k+1 + Ms,k+1√
(ck+1 + Nc,k+1 + Mc,k+1)

2 + (Ns,k+1 + Ms,k+1)
2

⎤
⎦ (10 120)

which is clearly independent of the unknown carrier phase, θc, as desired. To an-
alytically compute even just the S-curve, much less the equivalent power spectral
density, is now a daunting if not impossible task. Thus, in order to determine the
tracking performance of this scheme, we shall have to turn to results obtained
from computer simulations. Before doing this, however, we do note that in the
absence of noise (i.e., in the limit of infinite SNR), the error signal of Eq. (10-120)
becomes

ek = bk
sgn ck − sgn ck+1

2
(10 121)

which is the exact same result as for the coherent conventional (nonlinear) DTTL,
and thus one can anticipate that, in the limit of large SNR, the noncoherent
scheme should suffer little or no performance penalty relative to the coherent
one. To demonstrate this as well as the behavior of the symbol synchronizer in
other SNR regions, we turn to results obtained from computer simulation.

Figures 10-17 and 10-18 are illustrations of the normalized S-curves for the
NC-NLDTTL for two different values of normalized window width and a variety
of SNR values. The curves were obtained by numerically averaging the error
signal of Eq. (10-120) over the data and noise statistics Also superimposed on
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these results are the corresponding S-curves for the NC-LDTTL as obtained from
Eq. (10-112), which as previously mentioned are independent of SNR.

To demonstrate the performance trade-off of the noncoherent versus
the coherent DTTL schemes as a function of SNR, Figs. 10-19 and 10-20
plot the mean-squared timing-error ratios σ2

λ |NC-NLDTTL /σ2
λ |DTTL and

σ2
λ |NC-LDTTL /σ2

λ |LDTTL , respectively, in dB versus SNR in dB for three dif-
ferent values of normalized window width ξ. For the first of the two ratios, the
variance σ2

λ |NC-NLDTTL is obtained by computer simulation and then divided
by the variance of the conventional (nonlinear) DTTL obtained from the results
in [1] as

σ2
λ |DTTL =

ξ

(
1 +

ξRs

2
− ξ

2

[
1√
π

exp (−Rs) +
√

Rs erf
√

Rs

]2
)

2ρ

(
erf

√
Rs −

ξ

2

√
Rs

π
exp (−Rs)

)2 (10 122)

The second of the two ratios is simply obtained from the division of Eq. (10-117)
by Eq. (10-40). In both cases we observe that, as expected, the noncoherent
and coherent performances approach each other as the SNR gets large (i.e., the
above variance ratios approach unity or 0 dB). In the limit of infinitesimally small
SNR, the noncoherent schemes pay a performance penalty with respect to the
coherent schemes, which in the linear case is easily computed from Eqs. (10-117)
and (10-40) to be 3 dB, while in the nonlinear case it appears to be somewhat less
and mildly dependent on the window width. Finally, a comparison between the
noncoherent linear and nonlinear DTTL performances is illustrated in Fig. 10-21,
where the ratio of σ2

λ |NC-LDTTL to σ2
λ |NC-NLDTTL in dB is plotted versus SNR,

Rs, in dB for a variety of different window widths. Analogous to a similar plot
for the coherent DTTL schemes in Fig. 10-6, for each window width there exists
a crossover point at which the variance ratio equals unity (or, equivalently, 0 dB),
indicating the value of SNR that separates the SNR regions where one scheme
is preferable over the other.

10.7 The Impact of Carrier Frequency Offset on
Performance

Thus far in our discussions of noncoherent symbol synchronization, the word
“noncoherent” was used to mean that the carrier phase was completely un-
known [i.e., uniformly distributed in the interval (−π, π)] but at the same time
the carrier frequency was assumed to be known exactly. Here, as an example,
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we investigate the impact on the performance of the NC-LDTTL of imperfect
knowledge of the carrier frequency, i.e., the presence of a fixed carrier frequency
offset. In particular, we shall briefly rederive the expression for the variance of
the normalized timing error in the loop and demonstrate its exact dependence on
the ratio of symbol rate to frequency offset. Comparing this expression with that
corresponding to the zero frequency offset case allows us to assess the additional
degradation in performance that arises from the presence of the offset.

Consider the NC-LDTTL illustrated in Fig. 10-15, whose bandpass input
r (t) = s (t, ε) + n (t) is as before a BPSK modulation consisting of a binary
NRZ data stream direct-modulated onto a carrier plus noise. While the signal
component s (t, ε) of this input will still be modeled as in the combination of
Eq. (10-65) with Eq. (10-64), as we shall discuss momentarily it will be mathe-
matically convenient to choose a slightly different representation of the bandpass
noise n (t) than the one given in Eq. (10-65).

The first step is to demodulate the received signal with the quadrature carrier
reference signals

rc (t) =
√

2 cos ω̂ct

rs (t) = −
√

2 sin ω̂ct

(10 123)
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whose frequency is now assumed to be in error by an amount ∆ω = ωc − ω̂c.
Since the choice of frequency and phase used for representation of a bandpass
noise process is arbitrary, for the purpose of analysis we choose these parameters
corresponding to those of the carrier demodulation reference signals, in which
case we have

n (t) =
√

2
[
nc (t) cos ω̂ct − ns (t) sin ω̂ct

]
(10 124)

where nc (t) , ns (t) are as before low-pass AWGN processes with two-sided power
spectral density (PSD) N0/2 W/Hz. Thus, demodulating r (t) with the quadra-
ture reference signals of Eq. (10-123) results in the pair of baseband observables
in the kth symbol interval (k + ε) T ≤ t ≤ (k + 1 + ε) T ,

xck (t) =
√

Pdkp
(
t − (k + ε)T

)
cos (∆ωt + θc) + nc (t)

xsk (t) =
√

Pdkp
(
t − (k + ε)T

)
sin (∆ωt + θc) + ns (t)

(10 125)

Analogous to Eq. (10-104), the outputs of the I and Q I&D filters are now

Xck =
∫ (k+1)T+ε̂

kT+ε̂

xck(t)dt

=

cck︷ ︸︸ ︷∫ (k+1)T+ε̂

kT+ε̂

√
Pdk cos (∆ωt + θc) dt +

νck︷ ︸︸ ︷∫ (k+1)T+ε̂

kT+ε̂

nc (t) dt

Yck =
∫ (

k+1+
ξ
2

)
T+ε̂(

k+1− ξ
2

)
T+ε̂

xck(t)dt

=

bck︷ ︸︸ ︷∫ (
k+1+

ξ
2

)
T+ε̂(

k+1− ξ
2

)
T+ε̂

√
Pdk cos (∆ωt + θc) dt +

µck︷ ︸︸ ︷∫ (
k+1+

ξ
2

)
T+ε̂(

k+1− ξ
2

)
T+ε̂

nc (t) dt

(10 126)

and
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Xsk =
∫ (k+1)T+ε̂

kT+ε̂

xsk(t)dt

=

csk︷ ︸︸ ︷∫ (k+1)T+ε̂

kT+ε̂

√
Pdk sin (∆ωt + θc) dt +

νsk︷ ︸︸ ︷∫ (k+1)T+ε̂

kT+ε̂

ns (t) dt

Ysk =
∫ (

k+1+
ξ
2

)
T+ε̂(

k+1− ξ
2

)
T+ε̂

xsk(t)dt

=

bsk︷ ︸︸ ︷∫ (
k+1+

ξ
2

)
T+ε̂(

k+1− ξ
2

)
T+ε̂

√
Pdk sin(∆ωt + θc)dt +

µsk︷ ︸︸ ︷∫ (
k+1+

ξ
2

)
T+ε̂(

k+1− ξ
2

)
T+ε̂

ns (t) dt

(10 127)

Taking the difference of two successive soft decisions, Xck and Xc,k+1 (or Xsk

and Xs,k+1), and multiplying the average of the result by the quadrature I&D
output Yck (or Ysk), delayed by (1 − ξ/2)T , gives the sine and cosine channel
error signal components in the kth symbol interval:

eck =
(
bck + M ′

ck + N ′
c,k+1

) (cck + Nck + Mck) − (cc,k+1 + Nc,k+1 + Mc,k+1)
2

(10 128)

and

esk =
(
bsk + M ′

sk + N ′
s,k+1

) (cck + Nsk + Msk) − (cs,k+1 + Ns,k+1 + Ms,k+1)
2

(10 129)

The total error signal, ek, is again the sum of the two components in Eqs.
(10-128) and (10-129).

10.7.1 S-Curve Performance

Using Eqs. (10-128) and (10-129), the S-curve g (λ) is evaluated as

g(λ) = En,s {eck + esk}

= Es

{
bck

(
cck − cc,k+1

2

)
+ bsk

(
csk − cs,k+1

2

)}
(10 130)
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which as we shall see shortly is still independent of the carrier phase but is now
dependent on the frequency offset. Evaluating the signal terms in Eq. (10-130),
whose definition appears in Eqs. (10-126) and (10-127), and carrying out the
necessary integrations, we arrive at the following results:

cck =
√

Pdk−1λT

(
sinπηλ

πηλ

)
cos

(
2πη

(
k +

λ

2

)
+ θ

)

+
√

PdkλT

(
sinπη (1 − λ)

πη (1 − λ)

)
cos

(
2πη

(
k +

1
2

+
λ

2

)
+ θ

)
(10 131)

bck =
√

Pdk

(
ξ

2
+ λ

)
T

⎛
⎜⎜⎝

sinπη

(
ξ

2
+ λ

)
πη

(
ξ

2
+ λ

)
⎞
⎟⎟⎠cos

⎛
⎜⎝2πη

⎛
⎜⎝k + 1 +

λ − ξ

2
2

⎞
⎟⎠ + θ

⎞
⎟⎠

+
√

Pdk+1

(
ξ

2
− λ

)
T

⎛
⎜⎜⎝

sin η

(
ξ

2
− λ

)
η

(
ξ

2
− λ

)
⎞
⎟⎟⎠cos

⎛
⎜⎝2πη

⎛
⎜⎝k + 1 +

λ +
ξ

2
2

⎞
⎟⎠+ θ

⎞
⎟⎠

and

csk = −
√

Pdk−1λT

(
sinπηλ

πηλ

)
sin

(
2πη

(
k +

λ

2

)
+ θ

)

−
√

PdkλT

(
sinπη (1 − λ)

πη (1 − λ)

)
sin

(
2η

(
k +

1
2

+
λ

2

)
+ θ

)
(10 132)

bsk = −
√

Pdk

(
ξ

2
+ λ

)
T

⎛
⎜⎜⎝

sinπη

(
ξ

2
+ λ

)
πη

(
ξ

2
+ λ

)
⎞
⎟⎟⎠sin

⎛
⎜⎝2πη

⎛
⎜⎝k + 1 +

λ − ξ

2
2

⎞
⎟⎠ + θ

⎞
⎟⎠

−
√

Pdk+1

(
ξ

2
− λ

)
T

⎛
⎜⎜⎝

sinπη

(
ξ

2
− λ

)
πη

(
ξ

2
− λ

)
⎞
⎟⎟⎠sin

⎛
⎜⎝2πη

⎛
⎜⎝k + 1 +

λ +
ξ

2
2

⎞
⎟⎠+ θ

⎞
⎟⎠



Symbol Synchronization 383

where η
�= ∆ωT/2π = ∆fT . Finally, substituting Eqs. (10-131) and (10-132)

into Eq. (10-130) and performing the average over the data symbols gives, after
some trigonometric simplification,15

gn (λ) �=
g (λ)
PT 2

=
1
2

(1 − λ)
(

ξ

2
+ λ

) (
sinπη (1 − λ)

πη (1 − λ)

) ⎛
⎜⎜⎝

sinπη

(
ξ

2
+ λ

)
πη

(
ξ

2
+ λ

)
⎞
⎟⎟⎠ cos πη

(
1 − ξ

2

)

− 1
2
λ

(
ξ

2
+ λ

) (
sinπηλ

πηλ

) ⎛
⎜⎜⎝

sinπη

(
ξ

2
+ λ

)
πη

(
ξ

2
+ λ

)
⎞
⎟⎟⎠ cos πη

ξ

2

− 1
2

(1 − λ)
(

ξ

2
− λ

)(
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In the case of no frequency offset (η = 0), the S-curve of Eq. (10-133) simplifies
to Eq. (10-112) as it should.

Taking the derivative of Eq. (10-133) with respect to λ and evaluating the
result at λ = 0 gives the slope of the S-curve at the origin as

Kg
�=

dg (λ)
dλ

|λ=0 = PT 2

{(
sinπηξ/2

πηξ/2

)

×
[
1 +

(
sinπη

πη

)
cos πη (1 − ξ/2) − ξ

4
cos πηξ/2

]
− cos πηξ/2

}
(10 134)

which in the case of no frequency offset (η = 0) simplifies to Eq. (10-113).

15 For the sake of brevity, we do not present the result for the S-curve in the region ξ/2 ≤ λ ≤
1/2 since for the purpose of mean-squared timing-error evaluation we have already seen that
only the slope of the S-curve at the origin (λ = 0) is needed.
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10.7.2 Noise Performance

As before, we must determine the PSD at λ = 0 of the equivalent noise,
nλ (t), perturbing the loop as given by Eq. (10-30). Following an analogous
approach to that taken for the zero frequency offset case, the following results
are obtained:

En,s

{
e2
k |λ=0

}
= P 2T 4

(
ξ

4Rs

) [(
sinπη

πη

)2

+
ξ

2

(
sinπηξ/2

πηξ/2

)2

+
1

Rs

]
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En,s {ekek+1 |λ=0 } =

⎧⎨
⎩−P 2T 4

(
ξ2

32Rs

)
cos 2πη (1 − ξ/2) , m = 1

0, m > 1

where as before Rs
�= PT/N0 denotes the detection symbol SNR. Substituting

Eq. (10-135) into Eq. (10-30) gives the desired equivalent PSD as

N ′
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(
ξ

2Rs

) {(
sin πη

πη

)2

+
ξ

2

[(
sinπηξ/2

πηξ/2

)2

− 1
2
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]
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1
Rs

}
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10.7.3 Mean-Squared Timing-Error Performance

The mean-squared timing error σ2
λ of the LDTTL in the presence of fre-

quency offset is now readily computed using the results in Eqs. (10-134) and
(10-136) in Eq. (10-39), resulting in
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For zero frequency offset (η = 0), Eq. (10-137) simplifies to Eq. (10-117).
To demonstrate the additional degradation in performance of the NC-LDTTL

due to frequency offset, Fig. 10-22 plots the mean-squared timing-error ratio
σ2

λ/σ2
λ |∆f=0 in dB versus SNR in dB for several different values of normalized

frequency offset, η = ∆fT , and two different values of normalized window width,
ξ. We observe from these results that over a wide range of SNRs the degrada-
tion is virtually insensitive to this parameter. Furthermore, the degradation also
appears to be relatively insensitive to window width. Finally, for values of nor-
malized frequency offset less than 0.1, it can be observed that the performance
degradation is quite small (i.e., less than 0.5 dB).

10.7.4 A Final Note

Thus far in our discussion of the noncoherent DTTL in this section we have
assumed an input signal in the form of BPSK modulation. Before concluding
this section, we wish to point out that it is possible to apply the same MAP
estimation approach to QPSK to arrive at LFs that can be used to motivate
closed-loop symbol synchronizers for this modulation. Without going into detail,
it can be shown that, under the same approximations used to derive the low and
high SNR versions of the noncoherent DTTLs for BPSK, the LFs that result
from this approach when applied to QPSK are identical to those obtained for
BPSK. Equivalently stated, noncoherent symbol synchronization of QPSK with
a DTTL type of structure takes on the exact same form as that for BPSK.
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Fig. 10-22.  Mean-squared timing-error performance degradation versus 
detection SNR with normalized frequency error as a parameter.
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10.8 Coarse Estimation of Symbol Timing for Use in
SNR Estimation

In our discussions of SNR estimation for autonomous receiver operation in
Chapter 6, we considered the behavior of the split-symbol moments estimator
(SSME) in the presence of unknown symbol timing. Although originally derived
on the basis of perfect symbol sync information, it was shown there that, in the
presence of unknown symbol timing, the performance of a conventional SSME
becomes quite sensitive to the amount of symbol-timing error. In fact, in order
to properly operate at all, the form of the estimator now requires knowledge (an
estimate) of the symbol timing [via the parameters ĥ+ and ĥ− in Eq. (6-54)].
Thus, it is essential that one provide a coarse estimate of symbol timing to the
SNR estimator,16 preferably derived from the same statistics as those used to
form this estimator itself.

Using the relations for the mean of the sums U+ and U− of the squared
magnitudes of the sum and difference half-symbol I&D outputs [see Eqs. (6-49)
and (6-51)], we have

E
{
U+

}
− E

{
U−}

= 2σ2
(
h

+ − h
−)

R = 2σ2 (1 − 2 |ε|)R (10 138)

While Eq. (10-138) provides the needed measure of the symbol timing, it also de-
pends on σ2 and R, which are parameters that themselves need to be estimated.
Thus, it behooves us to find another measure of the product of σ2 and R that is
independent of the symbol sync timing, which could then be used together with
Eq. (10-138) to isolate the 1 − 2 |ε| factor.

Also considered in Chapter 6 was a modification of the conventional SSME
that produced a set of observables obtained from oversampling the symbol in-
terval by a factor L and as such was capable of providing improved performance
at SNRs above 3 dB. It was also shown there that this same modification had
the added advantage of reducing the sensitivity of the estimator performance
to incorrect symbol-timing information and, in the limit of sufficiently large L,
became completely insensitive to knowledge of ε. In fact, for L approaching
infinity, the difference of the means considered in Eq. (10-138) now became [see
Eq. (6-110)]

E
{
U+

}
− E

{
U−}

= 2σ2R (10 139)

16 Actually, because of the noncoherent nature of the SNR estimator, it requires only an estimate
of the magnitude of the symbol sync timing.
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Hence, taking the ratio of Eq. (10-138) to Eq. (10-139) gives

(E {U+} − E {U−}) |L=1

(E {U+} − E {U−}) |L=∞
= 1 − 2 |ε| (10 140)

which is the desired result. Thus, it follows from Eq. (10-140) that a coarse
estimator of symbol timing based on the same statistics used to produce the
SNR estimator is given by

|ε̂| =
1
2

[
1 − (U+ − U−) |L=1

(U+ − U−) |L=∞

]
(10 141)

Since in practice one deals with a finite oversampling factor, what follows next
is a quantification of the difference of means E {U+} − E {U−} as a function
of L to enable one to determine how large one must make L in order to reach
the limiting value as in Eq. (10-139).

For a given oversampling factor L, we can characterize the fractional (with
respect to T ) symbol timing by ε = (lε + 1/2 + δ) /L, lε = 0, 1, 2, · · · , L − 1,
where lε represents the integer number of symbol interval subdivisions and |δ| ≤
1/2 represents the remaining fraction of a subdivision. Then, it is straightforward
to see that for L − 1 subdivisions both the entire first and second half-symbol
I&Ds correspond to the same symbol, and thus the contribution of each of these
subdivisions to the mean-squared accumulations U+ and U− is independent of ε!
More explicitly, for l = 1, 2, · · · , L− lε − 1, assuming for simplicity no frequency
uncertainty, the first and second half-symbol I&D outputs are given by (see
Section 6.11 for a description of the notation)

Yαkl =
mdk

2
ejφ + nαkl

Yβkl =
mdk

2
ejφ + nβkl

(10 142)

and similarly for l = L − lε + 1, L − lε + 2, · · · , L,

Yαkl =
mdk+1

2
ejφ + nαkl

Yβkl =
mdk+1

2
ejφ + nβkl

(10 143)
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where nαkl and nβkl are complex Gaussian zero-mean noise variables with vari-
ance σ2L. This leaves one subdivision, i.e., the one corresponding to l = L − lε,
to be affected by the lack of symbol sync knowledge. For this one subdivision,
the first and second half-symbol I&D outputs are given by

Yαkl |l=L−lε =
m

2

[
dk

(
1
2
− δ

)
+ dk+1δ

]
ejφ + nαkl |l=L−lε ,

Yβkl =
mdk+1

2
ejφ + nβkl; 0 ≤ δ ≤ 1

2
(10 144)

Yαkl |l=L−lε =
mdk

2
ejφ + nαkl |l=L−lε ,

Yβkl =
m

2

[
dk |δ| + dk+1

(
1
2
− |δ|

)]
ejφ + nβkl; −1

2
≤ δ ≤ 0

Forming the sum and difference signals from Eqs. (10-142) through (10-144), we
get

u+
kl = mdkejφ + nαkl + nβkl

u−
kl = nαkl + nβkl, l = 1, 2, · · · , L − lε − 1

u+
kl = mdk+1e

jφ + nαkl + nβkl

u−
kl = nαkl + nβkl, l = L − lε + 1, L − lε + 2, · · · , L

(10 145)

u±
kl = m

[
dk
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1
2
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)
+ dk+1

(
δ ± 1

2

)]
ejφ + nαkl ± nβkl,

0 ≤ δ ≤ 1
2
, l = L − lε

u±
kl = m

[
dk

(
1
2
± |δ|

)
± dk+1

(
|δ| − 1

2

)]
ejφ + nαkl ± nβkl,

− 1
2
≤ δ ≤ 0, l = L − lε

Finally, the means of U± = (1/NL)
∑N

k=1

∑L
l=1

∣∣u±
kl

∣∣2 are easily shown to be
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E
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}
= 2σ2
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which agrees with the results in Eq. (6-110) when |δ| = 1/2, i.e., a fractional
(with respect to a subdivision of T ) timing error equal to 1/2.
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