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Traditionally, carrier synchronization (sync) techniques have been developed
assuming that the modulation format and signal constellation characteristics are
known a priori. By modulation format we mean that the modulation index is
chosen so that either the carrier is fully suppressed or a residual carrier com-
ponent remains. By constellation characteristics we refer to the shape of the
constellation, e.g., a circle for M -ary phase-shift keying (M -PSK) or a square
for quadrature amplitude modulation (QAM), and its size in terms of the num-
ber of signal points it contains. Aside from knowing the modulation index and
signal constellation structure, it is also customary to have knowledge of the data
rate and type (e.g., non-return to zero (NRZ) versus Manchester code) since the
true optimum design of the loop depends on this information.

In autonomous radio operation, the most optimistic situation would be that
the receiver contain a carrier synchronization structure that is capable of track-
ing the carrier phase independently of the above-mentioned considerations. Un-
fortunately, this is not completely possible since, for example, a squaring loop
(or equivalently a binary phase-shift keying (BPSK) Costas loop) cannot track
a quadrature phase-shift keying (QPSK) modulation and likewise a 4th power
loop (or equivalently a QPSK Costas loop, sometimes referred to as an in-phase–
quadrature (I-Q) loop) cannot properly track a BPSK signal.1 Nevertheless,
while in principle each carrier synchronization loop developed for a given modula-
tion format, constellation, and data rate/type has certain unique characteristics,
they do share a number of similarities, e.g., a common front-end demodulator

1 The inability of a QPSK Costas loop to properly track a BPSK signal will be treated later
on in the chapter since this is an issue that has not been widely discussed in the literature.
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228 Chapter 8

structure, that allows one to consider designs that could be operational in the ab-
sence of complete a priori knowledge of all of these characteristics. For example,
if the modulation is restricted to the M -PSK class, then it is possible to con-
struct a universal structure that performs the carrier synchronization function
for all values of M . This structure is derived by first determining the maximum
a posteriori (MAP) estimate of carrier phase based on an observation of the re-
ceived signal, namely, M -PSK plus additive white Gaussian noise (AWGN), and
then using this to motivate a closed-loop carrier synchronization loop. Such a
structure, referred to as the MAP estimation loop, has been previously proposed
in the literature for cases where the modulation is known beforehand [1]. In
fact, it can be shown (see Appendix 8-A for a derivation for BPSK modulation)
that, by making an analogy between the closed-loop bandwidth and the noise
bandwidth of an integrate-and-dump (I&D) filter of duration equal to the ob-
servation time for the open-loop MAP estimate, the closed loop approaches the
Cramer–Rao lower bound on the variance of an unbiased estimate of the phase
of a modulated carrier.

Still further, if the modulation is known to be other than suppressed carrier,
i.e., a modulation index less than π/2 rad, then it is still possible to exploit the
power in both the data and residual carrier components for carrier-tracking pur-
poses provided one has knowledge of the modulation index itself. Such knowledge
could be derived noncoherently, i.e., in the absence of carrier synchronization,
from a suitable modulation index estimator (to be discussed elsewhere in the
monograph). Loops of this type have been referred to in the literature as hybrid
carrier tracking loops and like their suppressed-carrier counterparts are moti-
vated by the same MAP considerations.

In what follows, we shall primarily restrict ourselves to the class of M -PSK
modulations with known data format (pulse shape) that once again could be
determined by a separate data format classifier operating noncoherently (to be
discussed in another chapter of the monograph). It is also possible with mi-
nor modification, e.g., by replacing the matched filters in the I and Q arms of
the loop with simple low-pass filters, to make the carrier synchronizer operation
somewhat independent of the exact pulse shape but not without some atten-
dant loss in performance. In deriving a generic carrier synchronization structure
for this class of modulations, we shall consider a system with fixed modulation
bandwidth which implicitly implies a fixed data symbol rate for all values of M .
This is consistent with the same assumption made for various other classifiers in
other chapters of the monograph.

Although the MAP estimation loops mentioned above are optimum in the
sense of yielding the best tracking performance as measured by the variance of
the loop phase error, their implementation typically involves nonlinearities that
depend on other system parameters, such as signal-to-noise ratio (SNR). To cir-
cumvent this dependence, the most convenient form for use in the autonomous
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radio application is the simplification based on low SNR approximations ap-
plied to the nonlinearities inherent in the MAP phase estimate. When this is
done, the error signal in the loop for M -PSK is of the form sinMφ, where
φ is the loop phase error, which from simple trigonometry can be written as
sin Mφ = 2 sin [(M/2)φ] cos [(M/2) φ]. Thus, it is seen that the error signal in
the loop for M -PSK is formed from the product of the error signal sin [(M/2)φ]
and the lock detector signal cos [(M/2)φ] in the loop for M/2-PSK modulation.
This simple relationship forms the basis for implementing the universal structure
and will be discussed and demonstrated later on in the chapter. For a further
treatment of this subject, the reader is referred to [2].

8.1 Suppressed versus Residual Carrier Synchronization
In the past, carrier synchronization loops typically have fallen into two cat-

egories: those that track a discrete carrier, e.g., the phase-locked loop (PLL),
and those that track a fully suppressed carrier, e.g., the Costas loop. A fully
suppressed carrier comes about when a digital modulation is impressed on a
carrier with a modulation index equal to π/2 rad, whereas a discrete (residual)
carrier component appears in the spectrum when the modulation index is less
than π/2 rad. For example, consider a binary modulation phase modulated onto
a carrier with modulation index β, which in mathematical form is described by

s (t) =
√

2Pt sin
(
ωct + βm (t) + θc

)
(8 1)

where Pt is the total available transmitter power, ωc is the radian carrier fre-
quency, θc is the unknown carrier phase to be tracked, and m(t) =

∑∞
n=−∞ cn

× p(t − nT ) is the data modulation with p(t) the pulse shape, {cn} the random
binary data taking on values ±1 with equal probability, and T the data (baud)
interval (R = 1/T is the data rate). Since for NRZ data p(t) is a unit rectangle
and for Manchester code p(t) is a unit square wave, then because of the purely
digital (±1) nature of m(t), by applying simple trigonometry to Eq. (8-1) we get

s (t, θc) =
√

2Pt cos β sin (ωct + θc) +
√

2Pt sinβm (t) cos (ωct + θc)

=
√

2Pc sin (ωct + θc) +
√

2Pdm (t) cos (ωct + θc) (8 2)

where Pc = Pt cos2 β denotes the power in the carrier (unmodulated) component
and Pd = Pt sin2 β denotes the power in the data (modulated) component. Since
the power spectral density (PSD) of an NRZ-formatted signal is of the form
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(sinπfT/πfT )2, then direct modulation of the carrier with such a waveform
would, for any modulation index β < π/2, result in a discrete carrier occurring
at the point of maximum energy (i.e., f = 0) in the data modulation spectrum.
This in turn makes it difficult to extract carrier synchronization from the discrete
component with the loop most commonly used for such purposes, namely, a PLL.
The loss due to the overlapping spectrum is 1/(1+2Es), where Es is the symbol
energy [3]. Because of this, the National Aeronautics and Space Administration
(NASA) proximity-link standard [4] stipulates that direct modulation of a carrier
with BPSK having NRZ formatting is always used in a suppressed-carrier mode,
i.e., with β = π/2. On the other hand, since a Manchester-coded signal has
a PSD of the form

[
sin2(πfT/2)/(πfT/2)

]2 that has a null at zero frequency,
then it is quite natural to allow for insertion of a discrete carrier there, and
thus a modulation index β < π/2 is certainly reasonable from a carrier-tracking
standpoint.

Since a Manchester-coded waveform is equivalent to the product of an NRZ
waveform and a unit square wave at the data rate, one can view the form of the
signal in Eq. (8-1) for this case as direct modulation of a carrier with an NRZ
data waveform that has first been modulated onto a square-wave subcarrier at
the data rate. With that in mind, one could, as is often done (at the expense of
an increase in bandwidth of the signal), achieve a non-suppressed-carrier mode
of operation with an NRZ signal by first modulating it onto a square-wave2

subcarrier (not necessarily at the data rate) prior to direct modulation of the
carrier. When this is done, the signal takes the form

s(t, θc) =
√

2Pt sin
(
ωct + βm(t)Sq(ωsct) + θc

)
(8 3)

where ωsc denotes the radian subcarrier frequency. Most of the discussion of
this chapter will deal with the absence of subcarriers and, thus, unless otherwise
specified, when considering a residual carrier mode of operation, we shall implic-
itly assume the presence of Manchester coding, whereas for suppressed-carrier
operation we shall allow for either NRZ or Manchester formats.

8.2 Hybrid Carrier Synchronization
Despite the fact that a data-modulated suppressed-carrier signal component

also exists in Eq. (8-2), it is often neglected in deriving carrier synchronization.
In other words, for the case where the total transmitted power is divided between
a discrete (unmodulated) carrier and a data-modulated suppressed carrier, the

2 Often, a sine-wave subcarrier is used with the same purpose of shifting the PSD of the
baseband modulation away from the origin to allow insertion of a discrete carrier.
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carrier synchronization function is most often accomplished based on the discrete
carrier component alone, i.e., with a PLL. Thus, since the power split between
discrete and data-modulated carriers results in a carrier power, Pc, that is less
than the total transmitted power, Pt, the loop is operating with an SNR less than
that which is potentially available if one were to emply both signal components
in the carrier synchronization process.

Since a PLL is a closed-loop synchronization scheme motivated by MAP
estimation of the phase of a discrete carrier and a Costas loop is a closed-loop
synchronization scheme motivated by MAP estimation of the phase of a fully
suppressed carrier, one might anticipate that for a signal of the form in Eq. (8-2)
the optimum (in the MAP sense) closed-loop scheme would be a combination
(hybrid) of the two loops [5]. Indeed such is the case, as is illustrated by the
following mathematical development.

Let the signal of Eq. (8-2) received in AWGN be denoted by

r (t) = s (t, θc) + n (t) (8 4)

Then the likelihood function (conditioned on the unknown phase and data) for
the kth interval is given by

p(rk|θc, ck) = C exp

{
− 1

N0

[ ∫ (k+1)T

kT

(
r(t) −

√
2Pdckp(t − kT ) sin(ωct + θc)

−
√

2Pc cos (ωct + θc)
)2

]
dt

}
(8 5)

where N0 is the single-sided noise power spectral density in W/Hz and C is a
constant of proportionality. Averaging over the data and ignoring terms that
are not decision-dependent gives

p (rk |θc ) ∼= exp

{
2
√

2Pc

N0

∫ (k+1)T

kT

r(t) cos(ωct + θc)dt

}

× cosh

{
2
√

2Pd

N0

∫ (k+1)T

kT

r(t)p(t − kT ) sin(ωct + θc)dt

}
(8 6)

The log-likelihood function for a sequence of K bits is then
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Λ (θc) ∼= ln
K−1∏
k=0

p (rk |θc ) =
K−1∑
k=0

2
√

2Pc

N0

∫ (k+1)T

kT

r (t) cos (ωct + θc)dt

+
K−1∑
k=0

ln cosh

{
2
√

2Pd

N0

∫ (k+1)T

kT

r (t) p (t − kT ) sin (ωct + θc)dt

}
(8 7)

Thus, the MAP open-loop estimate of θc, namely, θ̂c, based on the K-bit obser-
vation of r(t) is that value of θc that maximizes Λ (θc).

To obtain a closed-loop synchronizer motivated by the MAP estimation ap-
proach, one differentiates the log-likelihood function with respect to θc and uses
this to form the error signal (to be nulled when θc = θ̂c) in the closed-loop
configuration. Thus, differentiating Λ(θc) of Eq. (8-7) with respect to θc gives

dΛ(θc)
dθc

∼= −
K−1∑
k=0

2
√

2Pc

N0

∫ (k+1)T

kT

r (t) sin (ωct + θc)dt

+
K−1∑
k=0

(
2
√

2Pd

N0

∫ (k+1)T

kT

r (t) p (t − kT ) cos (ωct + θc)dt

)

× tanh

{
2
√

2Pd

N0

∫ (k+1)T

kT

r (t) p (t − kT ) sin (ωct + θc)dt

}
(8 8)

The expression in Eq. (8-8) suggests the hybrid closed loop illustrated in Fig. 8-1.
As is typical in actual implementations, the hyperbolic tangent nonlinearity is
approximated by either its large argument variant, namely, a signum function
(bipolar hard-limiter), or its small argument variant, a linear function. In the
former case, we obtain the so-called polarity-type Costas loop, whereas in the
latter case we obtain the conventional Costas loop. Also, implicit in Fig. 8-1
is knowledge of the data rate and symbol synchronization, both of which are
necessary to implement the matched arm filters, which are of the I&D type.
In the next section, we discuss alternative implementations of these arm filters
using low-pass filters (LPFs) that are suboptimum but that provide additional
robustness to the implementation in terms of the absence of perfect knowledge
of the data rate and actual pulse shape and as such do not require symbol syn-
chronization information. In this regard, Fig. 8-2 is the equivalent structure to
Fig. 8-1, now using passive arm filters.
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Fig. 8-1.  Hybrid closed loop motivated by MAP estimation.
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In theory, the gains Kc and Kd would be chosen proportional to
√

Pc

and
√

Pd, which in turn implies knowledge of the modulation index β. In the
absence of such perfect knowledge, one would set the gains based on an estimate
of β. Even in the absence of such information, one could possibly still use
just the Costas-loop component of the hybrid loop alone since, under certain
circumstances, it is capable of tracking a residual carrier signal whereas a data-
modulated suppressed carrier cannot be tracked by a PLL. Rather than develop
the conditions under which this is possible now, we delay this discussion until
after we first compare the behavior of Costas loops using active (matched-filter)
arm filters to those using passive low-pass filters. At that point, the behavior of
the Costas loop with matched arm filters when tracking a residual carrier signal
will simply become a special case of that discussion.

8.3 Active versus Passive Arm Filters
The most common measure of performance for a carrier synchronization loop

is the variance of the phase error φ = θc − θ̂c. For suppressed-carrier tracking
loops such as the Costas loop (or the Costas-loop component of the hybrid loop),



234 Chapter 8

Fig. 8-2.  MAP estimation loop for single channel, discrete carrier

passive arm filter realization.
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in the linear tracking region, the mean-squared phase error can be related to the
loop SNR by

σ2
φ =

1
ρSL

(8 9)

where

ρ =
Pd

N0BL
(8 10)

with BL denoting the single-sided loop bandwidth and SL the so-called “squar-
ing loss,” which reflects the additional penalty relative to the PLL loop SNR due
to the squaring operation and is caused by the combination of signal × signal
(S × S), signal × noise (S × N), and noise × noise (N × N) distortions. The ex-
act nature of the squaring loss depends heavily on the nonlinearity implemented
in the in-phase arm (i.e., hyperbolic tangent function or its small and large argu-
ment approximations) and the type (active versus passive) of arm filters in both
the I and Q arms.
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From the standpoint of performance, the optimum behavior is obtained using
a hyperbolic tangent nonlinearity and matched (to the pulse shape) arm filters.
For this case, the squaring loss is given by [6]

SL =

(
tanh

[
2Rd −

√
2RdX

]X
)2

tanh2
[
2Rd −

√
2RdX

]X

= exp (−Rd) tanh
(√

2RdX
)

sinh
(√

2RdX
)X

(8 11)

where X is a (0,1) Gaussian random variable (RV), the overbar indicates statis-
tical averaging with respect to the Gaussian probability distribution of X, and
Rd

�= PdT/N0 is the data SNR. For the polarity-type Costas loop (tanh x ∼=
sgn x), Eq. (8-11) simplifies to

SL = erf2
(√

Rd

)
(8 12)

where erf x = (2/
√

π )
∫ x

0
exp

(
−y2

)
dy is the error function, whereas for the

conventional Costas loop (tanhx ∼= x), we obtain

SL =
2Rd

1 + 2Rd
(8 13)

As a compromise between Eqs. (8-12) and (8-13), the hyperbolic tangent non-
linearity is often approximated by a saturated amplifier, i.e.,

tanhx ∼=
{

x, |x| ≤ 1
sgn x, |x| > 1 (8 14)

whose squaring loss can also be obtained in closed form as

SL=

{√
Rd

π

[
exp(−A2

1)−exp(−A2
2)

]
+

(
Rd+

1
2

)
erfA1+

(
Rd− 1

2

)
erfA2

}2

1−
√

Rd

π

{
(1−2Rd) exp(−A2

1)+(1+2Rd) exp(−A2
2)

}
+

[
Rd(1+2Rd)− 1

2

][
erf A1+erf A2

]
;

A1
�
=

1+2Rd

2
√

Rd
, A2

�
=

1−2Rd

2
√

Rd
(8 15)
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Figure 8-3 is a plot of the squaring losses in Eqs. (8-11), (8-12), (8-13), and (8-15)
versus Rd in dB. We observe that, depending on the value of Rd, the polarity-type
and conventional Costas loops trade performance in terms of which is superior,
whereas for all values of Rd, the loop implemented with the hyperbolic tangent
nonlinearity provides the best performance (minimum squaring loss) with the
performance of the saturated amplifier nonlinearity virtually identical to it. Once
again we remind the reader that the performances predicted by Eqs. (8-11), (8-
12), (8-13), and (8-15) require the implementation of matched arm filters, which
in turn require knowledge of the data rate/type and also symbol synchronization.

Before leaving the discussion of Costas loops with active arm filters, it is of
interest to compare the performance (phase error variance) of the loop with the
Cramer–Rao bound [7] on the variance of an unbiased estimator of the phase of a
modulated BPSK carrier. The derivation of such a bound is given in Appendix 8-
A, where it is shown that

σ2
φ ≥

⎧⎪⎪⎨
⎪⎪⎩

1
K (2Rd)

2 , Rd small

1
K (2Rd)

, Rd large
(8 16)

with, consistent with the notation used earlier in the chapter, K the number of
bits in the observation. For the I-Q Costas loop at low SNR, we can rewrite
Eq. (8-9) combined with Eqs. (8-10) and (8-13) as

Fig. 8-3.  A comparison of the squaring-loss performance of the MAP

estimation loop with several practical implementations; BPSK.
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σ2
φ =

N0BL (1 + 2Rd)
Pd (2Rd)

=
2BLT (1 + 2Rd)

(2Rd)
2

∼= BL (2KT )
K (2Rd)

2 (8 17)

Similarly, for high SNR we can rewrite Eq. (8-9) combined with Eqs. (8-10)
and (8-12) as

σ2
φ =

N0BL

Pd erf2(
√

Rd )
=

2BLT

2Rd erf2(
√

Rd )
∼= BL (2KT )

K (2Rd)
(8 18)

Comparing Eqs. (8-17) and (8-18) with the Cramer–Rao bounds in Eq. (8-16),
we observe that the performance of the I-Q Costas loop approaches these bounds
at low and high SNR if we make the equivalence between the loop bandwidth
and the noise bandwidth of an I&D of duration equal to the observation time,
i.e., set BL = 1/2KT . Thus, in conclusion, while for a fixed bandwidth and data
rate the I&D Costas loop asymptotically behaves inverse linearly with SNR at
high SNR, it has an asymptotic inverse square-law behavior with SNR at low
SNR. In both cases, however, the behavior is inverse linear with the duration of
the observation.

As intimated previously, it is possible to implement the arm filters of the
Costas loop in passive form, thereby eliminating the need for symbol synchro-
nization prior to obtaining carrier synchronization. Furthermore, as we shall see
momentarily, in the absence of exact data rate information, the passive arm filter
implementation is robust in that its performance is quite insensitive to a large
variation of the data rate in one direction relative to the optimum choice of arm
filter bandwidth. It is also possible to design the arm filters with different noise
bandwidths ([8] suggests removing the quadrature arm filter completely), which
has the advantage of improving the acquisition capability of the loop and also
reducing its tendency to false lock but is accompanied by a penalty in tracking
performance (as measured by squaring loss). For high-detection SNR, the addi-
tional squaring-loss penalty is quite small, and thus this technique could result
in a significant overall performance advantage. For the current discussion, we
shall assume that the two arm filters have identical designs.

Consider the Costas loop with LPFs having transfer function G(s) (s is the
Laplace transform operator) illustrated in Fig. 8-4. When operating in the linear
tracking region, the mean-squared error is given by Eq. (8-9), where the squaring
loss is now given by [9]

SL =
K2

2

K4 + KL
Bi/R
2Rd

(8 19)



238 Chapter 8

Fig. 8-4.  The Costas loop with passive arm filters.
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where

KL =

∫ ∞
−∞ |G (2πf)|4 df∫ ∞
−∞ |G (2πf)|2 df

(8 20)

is a constant that depends only on the arm filter type,

Kl =
∫ ∞

−∞
Sm (f) |G (2πf)|l df, l = 2, 4 (8 21)

with

Sm (f) =
1
T

|P (j2πf)|2 (8 22)

the power spectral density of the modulation [P (j2πf) is the Fourier transform
of the pulse shape p (t)] and

Bi =
∫ ∞

−∞
|G (j2πf)|2 df (8 23)
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the two-sided noise bandwidth of the arm filters.3 Typical values of the quantities
in Eqs. (8-20) through (8-23) for the class of N -pole Butterworth filters and
several data formats are given below:

Filter Transfer Function:

|G (2πf)|2 =
1

1 +
(

f

f3 dB

)2N

Bi =
(

N

π
sin

π

2N

)−1

f3 dB

(8 24)

Data Modulation Power Spectral Density:

NRZ : Sm (f) = T
sin2 πfT

(πfT )2
(8 25)

Manchester : Sm (f) = T
sin4 πfT/2
(πfT/2)2

(8 26)

Square Wave : Sm (f) =
1
4

(
4
π

)2 ∞∑
k=−∞

1
(2k − 1)2

δ

(
f − 2k − 1

2T

)
(8 27)

The square wave in Eq. (8-27) has period 2T .

Evaluation of KL:

KL =
2N − 1

2N
(8 28)

Evaluation of K2, K4:

(a) Single-Pole Butterworth Filter (N = 1), NRZ Data:

3 We assume that the arm filter transfer function is normalized such that G (0) = 1.
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K2 = 1 − 1
2Bi/R

[
1 − exp (−2Bi/R)

]

K4 = 1 − 3 − (3 + 2Bi/R) exp (−2Bi/R)
4Bi/R

(8 29)

(b) Two-Pole Butterworth Filter (N = 2), NRZ Data:

K2 =1 − 1
4Bi/R

{
1 − exp

(−2Bi

R

) [
cos

(
2Bi

R

)
− sin

(
2Bi

R

)]}

K4 =1 −
5 −

{
4
(

Bi

R

)
cos

(
2Bi

R

)
+ 5

[
cos

(
2Bi

R

)
−sin

(
2Bi

R

)]}
exp

(−2Bi

R

)
16Bi/R

(c) Single-Pole Butterworth Filter (N = 1), Manchester Data:

K2 = 1 − 1
2Bi/R

[
3 − 4 exp (−Bi/R) + exp (−2Bi/R)

]

K4 = 1 − 9 − 4 (3 + Bi/R) exp (−Bi/R) + (3 + 2Bi/R) exp (−2Bi/R)
4Bi/R

(8 30)

(d) Two-Pole Butterworth Filter (N = 2), Manchester Data:

K2 =1 − 1
4Bi/R

{
3 − 4 exp

(−Bi

R

) [
cos

(
Bi

R

)
− sin

(
Bi

R

)]

+ exp
(−2Bi

R

) [
cos

(
2Bi

R

)
− sin

(
2Bi

R

)]}

(8 31)

K4 =1 −
15 −
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)
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)
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(
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)
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−
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(
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)
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(
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)
+ 5

[
cos

(
2Bi

R

)
− sin

(
2Bi

R
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exp

(−2Bi

R

)
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(e) Single-Pole Butterworth Filter (N = 1), Square Wave:

K2 = 1 − 1
Bi/R

tanh
(

Bi

R

)

K4 = 1 +
1
2

sech2

(
Bi

R

)
− 3

2Bi/R
tanh

(
Bi

R

)

Finally, using a partial fraction expansion technique, closed-form expressions for
the squaring loss, specifically, the parameters KL, K2, K4, were derived [10] for
a general class of passive arm filters whose transfer function is characterized by
simple, but in general complex, poles.

The numerator of Eq. (8-19) reflects the S × S distortion whereas the two
terms of the denominator reflect the S ×N and N ×N distortions, respectively.
As the arm filter bandwidth narrows, the decrease in the S ×S term dominates,
whereas when the arm filter widens, the increase in the S × N term dominates.
Thus, for a fixed filter type and data modulation format, KL, K2, and K4 are
only a function of the ratio of arm filter bandwidth to data rate Bi/R, and thus
a plot of SL in dB versus Bi/R will reveal an optimum value in the sense of
maximum SL.4 As an example, Figs. 8-5 and 8-6 illustrate such plots for one-
and two-pole Butterworth arm filters and Manchester-coded data. We observe
that, over a large range of detection SNRs, the squaring loss is extremely sensitive
to values of Bi/R less than the optimum value, whereas it is rather insensitive
to values of Bi/R greater than the optimum value. Thus, in the absence of
exact information about the data rate, one can design the loop arm filters so
that the optimum Bi/R ratio corresponds to the maximum expected data rate
whereupon operation at data rates considerably less than the maximum would
result in only a small squaring-loss penalty. We remind the reader that, with
active arm filters of the I&D type, one does not have this design flexibility since
the arm filter bandwidth of such a filter is fixed at Bi = 1/T = R, and thus
the squaring loss is also fixed at its value given by Eq. (8-13). Figure 8-7 is
a comparison of the squaring-loss behavior for one- and two-pole Butterworth
filters at two different detection SNRs. While the two-pole filter has a slightly
better optimum squaring-loss performance, it is also more sensitive to data rate
variation above the optimum value than is the one-pole filter. Thus, we see that
the design of the arm filter is a trade-off between the optimum performance and
sensitivity to data rate variation.

The next question is: How much do we sacrifice in performance by using
a passive arm filter rather than the active one (matched filter)? Figure 8-8
illustrates a comparison between the optimum squaring-loss performances of the

4 Note that since SL ≤ 1, maximizing SL is equivalent to minimizing the squaring loss in dB.
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Fig. 8-5.  Squaring-loss performance of Costas loop with single-pole

Butterworth arm filters; Manchester-coded data.
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Fig. 8-6.  Squaring-loss performance of Costas loop with two-pole

Butterworth arm filters; Manchester-coded data.
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Fig. 8-7.  A comparison of the squaring-loss performance of Costas

loops with single- and two-pole arm filters at two different SNRs.
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matched filter with perfect symbol synchronization, one- and two-pole Butter-
worth filters, and an ideal (brick wall) filter which corresponds to a Butterworth
filter with N → ∞. The curves are plotted for a Manchester data format. At
high SNR, the optimum squaring-loss performance of the passive filters becomes
independent of the number of filter poles, and at a detection SNR of 10 dB it is
about 1 dB worse than that of the perfectly symbol-synchronized matched filter.
We also note in passing that the performance of the matched-filter implementa-
tion is independent of the data format and is given by Eq. (8-13).

We now return to a point made earlier, namely, the ability of a Costas loop to
successfully track a residual carrier BPSK signal, including the extreme case of a
totally unmodulated carrier. When both a data-modulated and an unmodulated
carrier component are simultaneously present at the input to a Costas loop, the
two components tend to oppose each other at the error signal point in the loop.
In fact, based on an analysis of a similar situation [11], it can be shown that
there exists a critical modulation index at which the signal component of the
loop error signal (loop S-curve) degenerates to zero, in which case the loop will
not track at all. This critical modulation index is given by

β∗ = cot−1
√

K2 (8 32)

where K2 is defined for a particular modulation format and arm filter type in
Eq. (8-21). For a modulation index greater than β∗, the loop S-curve has the
usual sin 2φ characteristic and has stable lock points at φ = ±nπ, n = 0, 1, 2, · · ·,
which corresponds to the desired operation of the loop (assuming that one takes
measures to resolve the normal 180-deg phase ambiguity, such as differential
encoding of the input data). On the other hand, for a modulation index less than
β∗ (which of course includes the limiting case of β = 0, a totally unmodulated
carrier), the loop S-curve has a − sin 2φ characteristic and has stable lock points
at φ = ±(2n + 1)π/2, n = 0, 1, 2, · · · that, from a data detection standpoint, is
an undesirable operating condition. Of course, if one knew the modulation index
was in the region β < β∗, one could always insert a −1 gain in either the I or
Q arm of the loop just prior to the I-Q multiplier, which would thereby invert
the loop S-curve and reestablish the lock points at their desired location.

To quantify the degradation in performance in the presence of a residual
carrier, it is straightforward to modify the results in [10] to show that under
such conditions the squaring loss is given by

SL =

(
K2 sin2 β − cos2 β

)2

cos2 β + K4 sin2 β +
1
2
Rt

(
sin2 2β

) (
Sm(0)

T

)
+ KL

Bi/R

2Rt

(8 33)
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where Rt
�= PtT/N0 is the total SNR. Since for Manchester coding Sm(0) = 0,

Eq. (8-33) simplifies to

SL =

(
K2 sin2 β − cos2 β

)2

cos2 β + K4 sin2 β + KL
Bi/R

2Rt

(8 34)

Next, for the discrete (unmodulated) carrier case wherein β = 0 (Pt = Pc),
Eq. (8-33) becomes

SL =
1

1 + KL
N0Bi

2Pc

(8 35)

Note that, unlike the data-modulated case, there is no optimum arm filter
bandwidth-to-data rate ratio since SL is independent of the data rate. Fur-
thermore, the squaring loss is smallest (SL is maximum) for an unmodulated
carrier. However, since, for any finite arm filter bandwidth, SL < 1, then from
Eq. (8-9), the phase error variance will always exceed that which arises from a
PLL as alluded to previously.

When the data modulation is an NRZ-modulated square-wave subcarrier and
as such the transmitted signal is characterized by Eq. (8-3), then the behavior of
the Costas loop in the presence of a residual carrier is somewhat different from
that described above. To illustrate this difference in the simplest way, we assume
perfect subcarrier demodulation and once again active (I&D) arm filters. Under
these circumstances, the I and Q I&D outputs would be given by

zck =
∫ (k+1)T

kT

r (t)
[√

2 cos
(
ωct + θ̂c

)
Sq (ωsct)

]
dt

=
√

Pc sinφ

∫ (k+1)T

kT

Sq (ωsct) dt +
√

Pdck cos φ

∫ (k+1)T

kT

Sq2 (ωsct) dt + Nc

=
√

PdT ck cos φ + Nc

(8 36)

zsk =
∫ (k+1)T

kT

r (t)
[
−
√

2 sin
(
ωct + θ̂c

)
Sq (ωsct)

]
dt

=−
√

Pc cos φ

∫ (k+1)T

kT

Sq (ωsct) dt +
√

Pdck sinφ

∫ (k+1)T

kT

Sq2 (ωsct) dt + Ns

=
√

PdT ck sinφ + Ns
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where Nc, Ns are again independent zero-mean Gaussian RVs with variance
N0T/2 and we have assumed a unit square-wave subcarrier with either an in-
teger number of subcarrier cycles per bit or instead a large ratio of subcarrier
frequency to bit rate. We observe that aside from the reduction of the power
in the data signal from the total power Pt to Pd = Pt sin2 β, the I&D outputs
in Eq. (8-36) are identical to what would be obtained for the same Costas loop
operating in the conventional suppressed-carrier mode. Thus, we conclude (at
least under the ideal assumptions made) that, in the case of an NRZ-modulated
square-wave subcarrier, the presence of a discrete carrier component does not
degrade the performance of the loop other than to reduce the effective power in
the data component by sin2 β. Before leaving this subject, we also mention that
since, as previously mentioned in Section 8-1, a Manchester-coded BPSK can be
viewed as an NRZ data waveform modulated onto a square-wave subcarrier at
the data rate prior to modulation onto the carrier, then, since the above argu-
ments are independent of the subcarrier frequency, the same conclusion would
also be true for this case when active (matched) filters are used in the I and
Q arms of the Costas loop.

Finally, it is natural to ask whether there is an optimum passive arm filter
type in the sense of minimizing the mean-squared phase error. In particular, one
seeks a solution for |G (2πf)|2 that minimizes

S−1
L =

Pd

∫ ∞
−∞ Sm (f) |G (2πf)|4 df +

N0

2
∫ ∞
−∞ |G (2πf)|2 df{∫ ∞

−∞ Sm (f) |G (2πf)|2 df
}2 (8 37)

Using the method of Lagrange multipliers, it can be shown that the optimum arm
filter magnitude-squared transfer function (which may or may not be physically
realizable) is given by

|Gopt (2πf)|2 = λ
Sm (f)

Sm (f) +
N0

Pd

(8 38)

where λ is a Lagrange multiplier. Note that for low SNR (Pd/N0 � 1), we obtain

Gopt (2πf) =
√

λ
Pd

N0

[
Sm (f)

]+ (8 39)

where the “+” superscript refers to the part of Sm (f) with poles in the left
half-plane and as such represents the matched-filter solution.
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8.4 Carrier Synchronization of Arbitrary Modulations

8.4.1 MPSK

In this section, we begin by continuing to consider the class of M -PSK
modulations, where the value of M = 2m is now arbitrary. In an earlier section,
we considered a carrier synchronization closed loop for BPSK that was motivated
by the MAP estimation technique. Such an “optimum” loop was in the form of
an I-Q structure with a hyperbolic tangent nonlinearity in its in-phase arm that
resulted from using the gradient of the likelihood function as an error-control
signal. Applying the MAP estimation technique for values of M > 2 [1,2], it can
be shown that the derivative of the log-likelihood ratio has the form

dΛ (θc)
dθc

∼=
K−1∑
k=0

m−2∑
l=0

ClV tanh (ClU) − SlU tanh (SlV )

1 +
m−2∑
n=0
n�=l

cosh (CnU) cosh (SnV )
cosh (ClU) cosh (SlV )

(8 40)

where

Cl
�= cos

(2l + 1)π

M

Sl
�= sin

(2l + 1)π

M

(8 41)

and

U =
2
√

2Pd

N0

∫ (k+1)T

kT

r (t) p (t − kT ) sin (ωct + θc)dt

V =
2
√

2Pd

N0

∫ (k+1)T

kT

r (t) p (t − kT ) cos (ωct + θc)dt

(8 42)

Once again using the derivative of the log-likelihood function to motivate an er-
ror signal in a closed-loop implementation, the carrier synchronization loop that
results is again an I-Q structure; however, the nonlinearity no longer resides only
in the in-phase arm and, furthermore, as can be seen from Eq. (8-40), is consider-
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ably more complicated than a simple hyperbolic tangent function.5 An example
of such a closed loop is illustrated in Fig. 8-9 for 8-PSK. We also have seen pre-
viously that, by approximating the nonlinearity for small and large arguments,
one arrives at structures that are synonymous with well-known synchronization
schemes for BPSK and approach the performance of the true MAP-motivated
loop at low and high SNRs. Indeed, for M > 2, one can take the same approach
and arrive at universal structures that lend themselves to simple implementa-
tion.

For large arguments we again use the approximation tanhx ∼= sgn x and in
addition

cosh x ∼= 1
2

exp (|x|) (8 43)

Although not immediately obvious, these approximations lead to a closed-
loop synchronizer that incorporates the optimum M -PSK symbol detector
(MAP phase estimator) in its structure. An example of this is illustrated in
Fig. 8-10 for 8-PSK and thus corresponds to the high SNR approximation of
Fig. 8-9. For QPSK, the structure is somewhat simpler, involving hard-limiters
(signum functions) in each of the I and Q arms as well as a crossover processing
between the inputs and outputs of these nonlinearities to form the error signal [5]
(see Fig. 8-11 for the passive arm filter implementation).

For small arguments, if one tries to use only the first term in the power series
expansion of tanhx, it can be shown [5,6] that for M > 2 the derivative of the
log-likelihood function in Eq. (8-40) becomes equal to zero for all values of θc and
thus cannot be used to motivate an error signal in a closed-loop configuration.
In order to get a nonzero log-likelihood function, it can be shown that one must
retain the first M/2 terms in the power series expansion. Thus, for example, for
M = 4 and M = 8, we should use the approximations

tanhx ∼=

⎧⎪⎪⎨
⎪⎪⎩

x − x3

3
, M = 4

x − x3

3
+

2x5

15
− 17x7

315
, M = 8

(8 44)

and in addition

5 For M = 4, i.e., QPSK, the nonlinearity is still a hyperbolic tangent function that now resides
in both the I and Q arms.
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Fig. 8-9.  A closed loop motivated by the MAP estimation of carrier phase for 8-PSK.
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Applying these approximations and once again using passive arm filters, we
obtain the single closed-loop structure illustrated in Fig. 8-12 capable of carrier
synchronizing BPSK, QPSK, and 8-PSK. Several things are interesting about
this structure. First of all, it is strictly of the I-Q type in that the loop error
signal for all three modulations is derived from the I and Q arm filter outputs
(i.e., U and V ). The second and more interesting feature is that the error signal
for the two higher-order modulations (M = 4 and M = 8) is derived from the
multiplication of a product of two signals and a difference of squares of these
same two signals. To see why this comes about, all one has to do is consider the
following simple trigonometry.

For BPSK, the error signal is proportional to sin 2φ, which can be expressed
as

sin 2φ = 2 sinφ cos φ (8 46)
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Fig. 8-11.  High SNR approximation of the MAP estimation loop for BPSK and QPSK.
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Thus, since U is proportional to sinφ and V is proportional to cosφ, we see that
the error signal is simply proportional to the product of U and V . For QPSK,
the error signal is proportional to sin 4φ, which can be expressed as

sin 4φ = 2 sin 2φ cos 2φ = 2 sin 2φ︸ ︷︷ ︸
error signal
for BPSK

(cos2 φ − sin2 φ)︸ ︷︷ ︸
lock detector signal

for BPSK

(8 47)

Similarly, for 8-PSK, the error signal is proportional to sin 4φ which can be
expressed as

sin 8φ = 2 sin 4φ cos 4φ = 2 sin 4φ︸ ︷︷ ︸
error signal
for QPSK

(cos2 2φ − sin2 2φ)︸ ︷︷ ︸
lock detector signal

for QPSK

(8 48)
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Fig. 8-12.  A Costas-type loop capable of carrier tracking BPSK, QPSK,

and 8-PSK; low SNR approximation of MAP estimation loop.
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Examination of Fig. 8-12 clearly reveals that the error signals for the three modu-
lations are formed in accordance with the relations in Eqs. (8-46) through (8-48).
Thus, we conclude in general that the canonical structure for M -PSK has a front
end (generation of the signals U and V ) as in Fig. 8-12 and forms its error signal
from the product of the error signal for M/2-PSK and the lock detector signal
for M/2-PSK.

To use such a canonical configuration in an environment where the value
of M is not known for certainty, one would proceed as follows. Since a BPSK
loop cannot track QPSK, a QPSK cannot track 8-PSK, etc., one could start with
the switch corresponding to the position of the lowest order modulation (BPSK)
and sequentially move the switch to the positions of QPSK, 8-PSK, etc., until
the loop locks. Another possibility would be to fix the switch in the position
corresponding to the highest order loop and, provided that it would be capable of
tracking all lower order modulations, accept the additional performance penalty
incurred by using a higher order nonlinearity than necessary. To this end, as an
example, we now examine the ability of a QPSK loop to track a BPSK signal.
Since this issue appears not to be readily discussed in the literature, we shall
be a bit more detailed here than we have been thus far in other parts of this
chapter.

Consider the MAP estimation loop for QPSK illustrated in Fig. 8-13. The
input to the loop is the BPSK signal r (t) = s (t, θc) + n (t), where
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Fig. 8-13.  The MAP estimation loop for carrier tracking QPSK with NRZ coding.
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s (t, θc) =
√

2Pdm (t) sin (ωct + θc) (8 49)

and the additive noise has the narrowband expansion

n (t) =
√

2
[
nc (t) cos (ωct + θc) − ns (t) sin (ωct + θc)

]
(8 50)

where nc (t) , ns (t) are independent, low-pass Gaussian processes, each with
single-sided PSD N0 W/Hz and bandwidth BH < ωc/2π. Assuming unit in-
put I and Q phase detector (multiplier) gains and demodulation reference sig-
nals rc (t) =

√
2 cos

(
ωct + θ̂c

)
and rs (t) =

√
2 sin

(
ωct + θ̂c

)
, then, after passing

through the I and Q I&D filters of duration6 T and amplification by
√

2Pd/N0,
the sample-and-hold outputs zc (t) and zs (t) are given by

6 We remind the reader again that we are considering the case where the modulation band-
width is held fixed and thus the I&D filters in all the configurations have a duration equal
to the symbol time. Thus, while for the same information (bit) rate one would associate two
BPSK bits with a QPSK symbol, for the same symbol rate, the I&D filters would correspond
to a single bit interval for BPSK.
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zs(t)
�=

√
2Pd

N0

∫ (k+1)T

kT

r(t)rs(t)dt

=
√

2Rdck cos φ −
√

RdX1 cos φ −
√

RdX2 sinφ

zc(t)
�=

√
2Pd

N0

∫ (k+1)T

kT

r(t)rc(t)dt

=
√

2Rdck sinφ −
√

RdX1 sinφ +
√

RdX2 cos φ

(8 51)

where (k + 1)T ≤ t ≤ (k + 2)T and where X1, X2 are zero-mean, unit variance
independent Gaussian RVs. Multiplying zc (t) by the nonlinearly processed zs (t)
and vice versa gives the dynamic error signal

zo(t) = −zs(t) tanh zc(t) + zc(t) tanh zs(t) (8 52)

As in all analyses of this type, the tracking performance of a loop can, in its
linear region of operation (small phase error), be determined by examining the
equivalent signal and noise components of the zo(t) process, more specifically,
the slope of the equivalent S-curve at φ = 0 and the variance of the equivalent
additive noise. This makes the usual assumption that the loop bandwidth is
much less than the data bandwidth.

Since X1 and X2 are zero-mean random variables, then, from Eq. (8-52)
together with Eq. (8-51), the signal component of zo(t) has a mean, i.e., the
S-curve of the loop, given by

η (φ) = − 4
√

2Rd(ck cos φ) tanh
[√

2Rdck sinφ

−
√

RdX1 sinφ +
√

RdX2 cos φ
]X1,X2,ck

+ 4
√

2Rd(ck sinφ) tanh
[√

2Rdck cos φ

−
√

RdX1 cos φ −
√

RdX2 sinφ
]X1,X2,ck

= − 4
√

2Rd cos φ tanh
(√

2Rd sinφ −
√

RdX1 sinφ +
√

RdX2 cos φ
)X1,X2

+ 4
√

2Rd sin φ tanh
(√

2Rd cos φ −
√

RdX1 cos φ −
√

RdX2 sinφ
)X1,X2

(8 53)
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This S-curve is an odd function of φ and is periodic with period π/2, which
implies a phase ambiguity for the loop of 90 deg. This ambiguity, which must
be resolved for successful data detection, is the same as would be the case for
the loop tracking a QPSK signal. Aside from the ambiguity itself, it can also be
observed from Eq. (8-53) that the S-curve passes through zero midway between
these potential lock points, namely, at φ = π/4. Thus, in order to determine
whether the loop will correctly lock at φ = 0 (assuming resolution of the ambi-
guity) or incorrectly at φ = π/4, one needs to show that the slope of the S-curve
at the former phase error value is positive (which would imply that the slope at
the latter value is negative).

The slope of the S-curve at φ = 0 is obtained by differentiating Eq. (8-53)
with respect to 4φ and evaluating the result at this same phase error value.

Recognizing that X sech2√RdX
X

= 0, it is straightforward to show that

Kη =
dη (φ)
d (4φ)

|φ=0 =
√

2Rd tanh
(√

2Rd −
√

RdX
)X

− 2R2
d sech2

(√
RdX

)X

(8 54)

If we now make the low SNR approximation of the nonlinearities in Eq. (8-54)
using only the first terms of their Taylor series expansions, i.e.,

tanhx ∼= x, sech2 ∼= 1 (8 55)

then since the X’s are zero mean, we immediately get

Kη = 0 (8 56)

which implies that the loop would be unable to lock at all. Thus, as was the case
in deriving the QPSK MAP estimation loop from maximum-likelihood consid-
erations, we must include the next terms in the Taylor series expansions of the
nonlinearities. That is, we apply

tanhx ∼= x − x3

3
, sech2x =

d

dx
tanhx ∼= 1 − x2 (8 57)

which results in the QPSK portion of the implementation in Fig. 8-12 but with
I&D arm filters. When this is done, making use of the moments of a Gaussian
RV, we obtain
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tanh (a − bX)
X ∼= a

(
1 − a2

3
− b2

)

sech2bX
X ∼= 1 − b2

(8 58)

and thus

tanh (a − bX)
X − a sech2bX

X ∼= −a3

3
(8 59)

Using Eq. (8-59) in Eq. (8-54) gives

Kη =
√

2Rd

(
−1

3

(√
2Rd

)3
)

= −4
3
R4

d (8 60)

which is negative and thereby would require that the signs on the summer at the
input to the accumulator in Fig. 8-13 be reversed, i.e., the polarity of the error
signal flipped, in order for the loop to correctly lock at φ = 0 (and equally well
at the ambiguity phase error values φ = π/2, π, 3π/2).

Proceeding now to an evaluation of the equivalent noise PSD, ignoring the
self-noise of the signal component, the noise component of zo (t) (evaluated at
φ = 0) is

Ne (t) =
√

RdX1 tanh
(√

RdX2

)
+

√
RdX2 tanh

[√
2Rdck −

√
RdX1

]
(8 61)

which has zero mean and variance

σ2
Ne

= Rd

{
tanh2

(√
RdX

)X

+ tanh2
(√

2Rd −
√

RdX
)X

+ 2X tanh
(√

RdX
)X [

X tanh
(√

2Rd −
√

RdX
)X]}

(8 62)

Once again we apply the approximations of the nonlinearities in Eq. (8-57) to
evaluate the variance in Eq. (8-62). In particular, the following results for each
statistical average are obtained:
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tanh2
(√

2Rd −
√

RdX
)X

=
8
9
R6

d +
20
3

R5
d +

22
3

R4
d − 19

3
R3

d + Rd

tanh2
(√

RdX
)X

= Rd − 2R2
d +

5
3
R3

d

X tanh
(√

RdX
)X

=
√

Rd (1 − Rd)

X tanh
(√

2Rd −
√

RdX
)X

= −
√

Rd

(
1 − Rd − 2R2

d

)

(8 63)

Substituting the results of Eq. (8-63) into Eq. (8-62) results after some simplifi-
cation in

σ2
Ne

= Rd

(
8
9
R6

d +
20
3

R5
d +

10
3

R4
d − 8

3
R3

d + 2R2
d

)
(8 64)

Because of the I&D arm filters in Fig. 8-13, the noise process of Eq. (8-61)
is piecewise constant over intervals of T -seconds duration. Thus, as long as
the loop bandwidth is much less than the data bandwidth, this process can be
approximated, as has been done in the past, by a delta-correlated process with
correlation function given by

RNe(τ) �= Ne(t)Ne(t + τ) =

⎧⎨
⎩ σ2

Ne

[
1 − |τ |

T

]
, |τ | ≤ T

0; |τ | > T

(8 65)

with equivalent single-sided noise spectral density

N ′
0

�= 2
∫ ∞

−∞
RNe (τ) dτ = 2σ2

Ne
T (8 66)

As such, the linearized phase error variance is given by

σ2
φ = N ′

0BL/K2
η = (ρSL)−1 (8 67)

where ρ is the linear loop (PLL) SNR as defined in Eq. (8-10) and SL is the
“quadrupling loss” which reflects the penalty paid due to the signal and noise
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cross-products present in zo(t). Substituting Eq. (8-66) in Eq. (8-67), the qua-
drupling loss can be identified as

SL =
(

1
2Rd

)
K2

η

σ2
Ne

=
K2

η/
(
2R2

d

)
σ2

Ne
/Rd

(8 68)

Finally, substituting Eqs. (8-60) and (8-64) in Eq. (8-68) gives the desired result:

SL =

8
9
R6

d

8
9
R6

d +
20
3

R5
d +

10
3

R4
d − 8

3
R3

d + 2R2
d

=
1

1 +
15

2Rd
+

15
4R2

d

− 3
R3

d

+
9

4R4
d

(8 69)

It is interesting to compare this loss to that which would result from the
same loop tracking a QPSK signal. In particular, for the MAP estimation loop
with a QPSK input, the squaring loss is given by [4]

SL =

[
tanh

(
Rd −

√
RdX

)X
− Rd sech2

(√
RdX

)X
]2

(1 + Rd) tanh2
(
Rd −

√
RdX

)X

−
[
Xtanh

(
Rd −

√
RdX

)X
−
√

Rdtanh
(
Rd −

√
RdX

)]
(8 70)

which for the low SNR approximation loop (the QPSK portion of Fig. 8-12 with
I&D arm filters) reduces, after considerable manipulation, to [6]

SL =
1

1 +
9

2Rd
+

6
R2

d

+
3

2R3
d

(8 71)

Thus, from a comparison of Eqs. (8-69) and (8-71), we conclude that while the
QPSK carrier tracking loop is capable of tracking a BPSK signal it does so with
a different mean-squared tracking error performance than for a QPSK input
signal. Furthermore, the quadrupling loss of Eq. (8-69) exceeds the squaring loss
of Eq. (8-13) for all SNRs. The more important issue, however, is the means
by which the 90-deg phase ambiguity must be resolved. Whereas for a BPSK
loop tracking a BPSK signal one can easily resolve the associated 180-deg phase
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ambiguity by differentially encoding the binary data, resolving the 90-deg phase
ambiguity associated with the QPSK loop cannot be resolved solely by the same
means. In the case of the latter, one must in addition detect the data from the
outputs of both the I and Q channels and choose the one that has the higher
reliability.

In view of the issues brought forth in the above example, it appears that the
preferred solution for autonomous operation is not to use a single loop for all
modulation orders but rather to first classify the modulation, i.e., determine its
order and then place the switch in Fig. 8-12 in its appropriate position.

8.4.2 QAM and Unbalanced QPSK

It is straightforward to extend the notions described above to other modu-
lations with a quadrature structure such as QAM and unbalanced quadrature
phase-shift keying (UQPSK) [6]. For example, for square QAM with M = K2

symbols described by

s (t, θc) =
√

2AmI (t) cos (ωct + θc) +
√

2AmQ (t) sin (ωct + θc)

A =

√
3

2 (M − 1)
Pd

(8 72)

where mI (t) , mQ (t) are the quadrature data modulations of rate 1/T taking
on values ±1,±3, · · · ,±

√
M − 1, the derivative of the log-likelihood function

becomes

dΛ (θc)
dθc

∼=
K−1∑
k=0

∑√
M/2

l=1 exp
(
−c2

l Rd

)
clV

′ sinh (clU
′)∑√

M/2
l=1 exp (−c2

l Rd) cosh (clU ′)

−
K−1∑
k=0

∑√
M/2

l=1 exp
(
−c2

l Rd

)
clU

′ sinh (clV
′)∑√

M/2
l=1 exp (−c2

l Rd) cosh (clV ′)
(8 73)

where cl = 2l − 1, U ′ =
√

3/ (M − 1)U, V ′ =
√

3/ (M − 1)V , and, as before,
Rd = PdT/N0 is the data SNR. A closed-loop carrier synchronizer motivated
by this MAP estimation approach is illustrated in Fig. 8-14. Here again we
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Fig. 8-14.  The MAP estimation loop for square QAM.
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notice the I-Q front end and crossover (between the I and Q arms) processing
with the appropriate nonlinearity to establish the error signal. The passive arm
filter implementation based on the large argument (high SNR) approximation
of the nonlinearity is illustrated in Fig. 8-15 for M = 16. At low SNR, use
of the approximations sinh ∼= x, cosh x ∼= 1 + 0.5x2, and expx ∼= 1 − x in
Eq. (8-73) results in the carrier synchronization loop of Fig. 8-16, which is iden-
tical to the QPSK portion of the canonical structure of Fig. 8-12. Thus, at low
SNR, the multilevel nature of the QAM has no bearing on the closed-loop struc-
ture motivated by the MAP estimation approach, i.e., it is sufficient to use a
QPSK loop.

For unbalanced QPSK, the transmitted signal is of the form

s (t, θc) =
√

2P1m1 (t) cos (ωct + θc) +
√

2P2m2 (t) sin (ωct + θc) (8 74)

where P1, P2 are the average signal powers in the I and Q arms, respectively,
and mI (t) , mQ (t) are the quadrature data modulations of rates 1/T1 and 1/T2

and, in general, different pulse shapes p1 (t) and p2 (t). For this modulation, the
derivative of the log-likelihood function becomes
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Fig. 8-15.  High SNR approximation of the MAP estimation loop for
amplitude modulation (AM) and QAM.
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dΛ(θc)
dθc

∼=
K2∑
k=0

(
2
√

2P2

N0

∫ δk+1

δk

r(t)p2(t − δk) cos(ωct + θc)dt

)

× tanh

{
2
√

2P2

N0

∫ δk+1

δk

r(t)p2(t − δk) sin(ωct + θc)dt

}

−
K1∑
k=0

(
2
√

2P1

N0

∫ τk+1

τk

r(t)p1(t − τk) cos(ωct + θc)dt

)

× tanh
{

2
√

2P1

N0

∫ τk+1

τk

r(t)p1(t − τk) sin(ωct + θc)dt

}
(8 75)

In Eq. (8-75), τk(k = 0, 1, · · · , K1) is the ordered set of time instants at which the
modulation m1(t) may potentially have a symbol transition in the observation
interval (0 ≤ t ≤ To). Similarly, δk(k = 0, 1, · · · , K2) is the ordered set of time
instants at which the modulation m2(t) may potentially have a symbol transi-
tion in the same observation interval. Note that, since we have not restricted T1

or T2 to be integer related, it is possible that the observation may not contain
an integer number of symbol intervals of one of the two modulations. For this
reason, we allow the summations in Eq. (8-75) to extend over K + 1 symbols.
Furthermore, no restriction is placed on the relative synchronization between the
taus and the deltas.

Figure 8-17 illustrates the MAP estimation closed loop that results from using
Eq. (8-75) as an error signal. As before, one can use the approximations of the
hyperbolic tangent nonlinearity as given in Eq. (8-14) to produce low and high
SNR configurations. The difficulty with using the small argument approxima-
tion is that, as the ratio of rates and powers both approach unity, i.e., balanced
QPSK, the two pairs of matched filters (or equivalently the two pairs of arm
filters in the passive implementation) become identical, and thus the error signal
at the input to the loop filter goes to zero for all phase errors. Thus, as was done
previously in deriving the MAP estimation loop for balanced QPSK, one must
consider the first two terms of the power series expansion of the hyperbolic tan-
gent nonlinearity as in Eq. (8-44), which results in the configuration illustrated
in Fig. 8-18 (assuming the passive arm filter implementation). Note that this
two-channel Costas loop reduces (except for the 1/3 gain factor) to Fig. 8-16
when the transmitted signal becomes balanced QPSK. Thus, this configuration
is capable of tracking unbalanced as well as balanced QPSK.
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Fig. 8-17.  A closed loop motivated by the MAP estimation of carrier phase

for unbalanced QPSK.
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We conclude by noting that, depending on the ratio of powers in the two
channel of the UQPSK signal, it is possible to employ just the simple biphase or
quadriphase Costas loops previously discussed, bearing in mind, however, that
the performance of such would then be inferior to that of the loop in Fig. 8-18.

8.4.3 π/4 Differentially Encoded QPSK

As a final modulation form, we consider the case of π/4 differentially en-
coded QPSK in which the information phase symbols are chosen from the set
(±π/4,±3π/4) and are differentially encoded prior to transmission. Denoting
the information symbol in the nth symbol interval by ∆φn, then the actual
transmitted symbol in the same interval is given by φn = φn−1 +∆φn, which, in
view of the set used to define ∆φn as given above, alternates between the allow-
able sets (0, π/2, π, 3π/2) and (±π/4,±3π/4) in successive transmission inter-
vals. Because of this π/4 rad rotation of the transmitted signaling constellation
from symbol to symbol, the maximum instantaneous phase change between two
successive symbols is 3π/4 rad. This is to be compared to a maximum instanta-
neous phase change of π rad for the case where the signaling constellation does
not rotate from symbol to symbol or, equivalently, the information symbols to
be differentially encoded are chosen from the set (0, π/2, π, 3π/2). Reducing the
maximum phase jump from π to 3π/4 reduces the envelope fluctuation in the
signal, which is desirable on nonlinear channels to prevent spectral side lobes
from being regenerated after having been filtered.

Applying the same MAP phase estimation approach as previously used to
motivate a closed-loop structure, it can be shown that the appropriate carrier
synchronizer for this so-called π/4 differentially encoded QPSK modulation is as
illustrated in Fig. 8-19. Once again, if desired, one can apply the appropriate
approximations to the hyperbolic tangent function to arrive at low and high SNR
implementations of this generic structure.
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Fig. 8-19.  MAP estimation loop for carrier synchronization 
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Appendix 8-A

Cramer–Rao Bound on the Variance of the
Error in Estimating the Carrier Phase

of a BPSK Signal

As we have seen earlier in the chapter, MAP estimation of the carrier phase
of a BPSK-modulated carrier can be formulated as the solution to a problem in
which a suitably defined likelihood function is maximized with respect to the car-
rier phase parameter. As a check on the efficiency of the estimator so obtained,
one often derives the Cramer–Rao lower bound [7] on the performance measure
being considered. Here we derive the Cramer–Rao bound on the variance of the
error in the MAP estimation of the phase of a BPSK signal. More often than
not, what is typically done in the literature in such applications is to use the
result obtained for an unmodulated carrier, which as we shall see is a proper
thing to do only at high SNR.

Consider an observation over an interval To = KT seconds of a BPSK-
modulated carrier in AWGN, where K denotes the number of bits in the ob-
servation and T is the bit time (the reciprocal of the bit rate). The received
signal in the kth bit time interval kT ≤ t ≤ (k + 1)T takes the form
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r(t) = s(t, θc) + n(t) =
√

2Pdck cos (ωct + θc) + n(t) (A-1)

where Pd is the received data power, ωc is the radian carrier frequency, ck is the
kth bit taking on equiprobable ±1 values, and n(t) is the AWGN with single-sided
power spectral density N0 W/Hz. The likelihood function for the observation r(t)
conditioned on the data sequence c = (c1, c2, · · · , cK) and the carrier phase θc is
well-known to be

p
(
r(t) |θc, c

)
= C exp

{
− 1

N0

∫ To

0

[
r(t) − s(t, θc)

]2
dt

}

= C
K−1∏
k=0

exp

{
− 1

N0

∫ (k+1)T

kT

[
r(t) − s(t, θc)

]2
dt

}
(A-2)

To determine the Cramer–Rao bound, it is necessary to evaluate the parameter

γ
�= E

⎧⎨
⎩

(
∂ ln p

(
r (t) |θc

)
∂θc

)2
⎫⎬
⎭ (A-3)

Thus, we must first average Eq. (A-2) over the bit sequence in order to arrive
at p

(
r(t)|θc

)
. Denoting s1(t, θc) as the transmitted signal in the kth bit interval

when ck = 1 and likewise s−1 (t, θc) as the transmitted signal in the kth bit
interval when ck = −1, then

p
(
r(t) |θc

)
= C

K−1∏
k=0

[
1
2

exp

{
− 1

N0

∫ kT

(k−1)T

[
r(t) − s1 (t, θc)

]2
dt

}

+
1
2

exp

{
− 1

N0

∫ (k+1)T

kT

[
r(t) − s−1 (t, θc)

]2
dt

}]

= C

K−1∏
k=0

exp

{
− 1

N0

∫ (k+1)T

kT

r2(t)dt

}
exp (−Rd)

× cosh

{
2

N0

∫ (k+1)T

kT

r(t)s1 (t, θc) dt

}
(A-4)
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where Rd = PdT/N0 is, as before, the data SNR. Taking the natural logarithm
of Eq. (A-4) and differentiating with respect to θc gives

∂ ln p
(
r(t) |θc

)
∂θc

=
K−1∑
k=0

∂

∂θc
ln cosh

{
2

N0

∫ (k+1)T

kT

r(t)s1 (t, θc) dt

}

=
K−1∑
k=0

tanh

{
2

N0

∫ (k+1)T

kT

r(t)s1 (t, θc) dt

}

×
[{

2
N0

∫ (k+1)T

kT

r(t)
∂s1 (t, θc)

∂θc
dt

}]

= −
K−1∑
k=0

tanh

{
2
√

2Pd

N0

∫ (k+1)T

kT

r(t) cos (ωct + θc) dt

}

×
[

2
√

2Pd

N0

∫ (k+1)T

kT

r(t) sin (ωct + θc) dt

]
(A-5)

Consider first the evaluation of Eq. (A-3) together with Eq. (A-5) for the
case of high SNR, where the tanh nonlinearity is approximated by the signum
function. Letting

Ik =
2
√

2Pd

N0

∫ (k+1)T

kT

r(t) cos (ωct + θc) dt

Qk =
2
√

2Pd

N0

∫ (k+1)T

kT

r(t) sin (ωct + θc) dt

(A-6)

then for high SNR we have

∂ ln p
(
y(t) |θc

)
∂θc

= −
K−1∑
k=0

Qk sgn Ik (A-7)

and because the Ik’s and Qk’s are iid and independent of each other,
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E

{(
∂ ln p (r(t) |θc )

∂θc

)2
}

=
K−1∑
k=0

E

⎧⎪⎨
⎪⎩Q2

k

=1︷ ︸︸ ︷
sgn2Ik

⎫⎪⎬
⎪⎭

+ 2
K−1∑
k=0

k �=l

K−1∑
l=0

E {Qk sgn Ik}E {Ql sgn Il} (A-8)

Assuming that indeed s1 (t, θc) was transmitted in the kth interval, i.e., r(t) =
s1 (t, θc) + n(t), then substituting Eq. (A-6) into Eq. (A-8) and carrying out the
expectation over the noise gives, after simplification,

E
{
Q2

k

}
= 2Rd

E {Qk sgn Ik} = 0
(A-9)

If instead one assumes that the transmitted signal was s−1 (t, θc) rather than
s1 (t, θc), then one arrives at the identical result as Eq. (A-9). Thus, independent
of the actual transmitted data sequence, we have

E

{(
∂ ln p (r(t) |θc )

∂θc

)2
}

= K (2Rd) (A-10)

Finally, the Cramer–Rao bound on the variance of the unbiased estimation error
φ

�= θc − θ̂c is given by

σ2
φ ≥

⎡
⎣E

⎧⎨
⎩

(
∂ ln p

(
r(t) |θc

)
∂θc

)2
⎫⎬
⎭

⎤
⎦−1

=
1

K (2Rd)
(A-11)

For an unmodulated carrier of energy E = PdTo over the observation, the
Cramer–Rao bound on the variance of the estimation error is given by

σ2
φ ≥ 1

2E/N0
(A-12)

which in view of the relation To = KT is identical to Eq. (A-8). Thus, as
previously mentioned, we see that the Cramer–Rao bound for the modulated
carrier is equivalent to that for the unmodulated carrier at high SNR.
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For low SNR, one approximates the tanh nonlinearity by a linear function,
i.e., tanhx = x. Thus, the analogous relation to Eq. (A-7) is now

∂ ln p (r(t) |θc )
∂θc

= −
K∑

k=1

QkIk (A-13)

Again because of the independence of the Ik’s and Qk’s we get

E

{(
∂ ln p (r(t) |θc )

∂θc

)2
}

=
K∑

k=1

E
{
Q2

kI2
k

}
+ 2

K∑
k=1

k �=l

K∑
l=1

E {QkIk}E {QlIl}

(A-14)
with (after much simplification)

E
{
Q2

kI2
k

}
= (2Rd)

2 (1 + 2Rd)

E {QkIk} = 0

(A-15)

Finally, substituting Eq. (A-15) into Eq. (A-14) gives the desired result, namely,

σ2
φ ≥ 1

K (2Rd)
2 (1 + 2Rd)

(A-16)

Note that at low SNR the bound approximately has an inverse square-law be-
havior with bit SNR as compared with the inverse linear behavior at high SNR.

It is important to emphasize that Eq. (A-16) is valid only when the denom-
inator on the right-hand side of the equation is large. Thus, it is possible to
apply the bound in Eq. (A-16) for small Rd provided that the number of bits in
the observation, K, is sufficiently large.


