
Chapter 6
Signal-to-Noise Ratio Estimation

Marvin K. Simon and Samuel Dolinar

Of the many measures that characterize the performance of a communica-
tion receiver, signal-to-noise ratio (SNR) is perhaps the most fundamental in that
many of the other measures directly depend on its knowledge for their evaluation.
In the design of receivers for autonomous operation, it is desirable that the esti-
mation of SNR take place with as little known information as possible regarding
other system parameters such as carrier phase and frequency, order of the mod-
ulation, data symbol stream, data format, etc. While the maximum-likelihood
(ML) approach to the problem will result in the highest quality estimator, as is
typically the case with this approach, it results in a structure that is quite com-
plex unless the receiver is provided with some knowledge of the data symbols
typically obtained from data estimates made at the receiver (which themselves
depend on knowledge of the SNR). SNR estimators of this type have been re-
ferred to in the literature as in-service estimators, and the evaluation of their
performance has been considered in [1]. Since our interest here is in SNR estima-
tion for autonomous operation, the focus of our attention will be on estimators
that perform their function without any data symbol knowledge and, despite
their ad hoc nature, maintain a high level of quality and robustness with respect
to other system parameter variations.

One such ad hoc SNR estimator that has received considerable attention in
the past is the so-called split-symbol moments estimator (SSME) [2–5] that forms
its SNR estimation statistic from the sum and difference of information extracted
from the first and second halves of each received data symbol. Implicit in this
estimation approach, as is also the case for the in-service estimators, is that the
data rate and symbol timing are known or can be estimated. (Later on in the
chapter we shall discuss how the SNR estimation procedure can be modified
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122 Chapter 6

when symbol timing is unknown.) In the initial investigations, the performance
of the SSME was investigated only for binary phase-shift keying (BPSK) modu-
lations with and without carrier frequency uncertainty and as such was based on
real sample values of the channel output. In fact, it was stated in [1, p. 1683], in
reference to the SSME, that “none of these methods is easily extended to higher
orders of modulations.” More recently, it has been shown [6] that such is not the
case. Specifically, the traditional SSME structure, when extended to the complex
symbol domain, is readily applicable to the class of M -phase-shift keying (M -
PSK) (M ≥ 2) modulations, and furthermore its performance is independent of
the value of M ! Even more generally, the complex symbol version of the SSME
structure can also be used to provide SNR estimation for two-dimensional signal
sets such as quadrature amplitude modulation (QAM) although the focus of the
chapter will be on the M -PSK application.

We begin the chapter by defining the signal model and formation of the SSME
estimator. Following this, we develop exact as well as highly accurate approx-
imate expressions for its mean and variance for a variety of different scenarios
related to the degree of knowledge assumed for the carrier frequency uncertainty
and to what extent it is compensated for in obtaining the SNR estimate. With
regard to the observables from which the SNR estimate was formed, two dif-
ferent models will be considered. In one case, we consider the availability of
a plurality of uniformly spaced independent1 samples of the received signal in
each half-symbol, whereas in the second case only one sample of information
from each half-symbol, e.g., the output of half-symbol matched filters, is as-
sumed available—hence, two samples per symbol. Furthermore, we consider the
wideband case wherein the symbol pulse shape is assumed to be rectangular,
and thus the matched filters are in fact integrate-and-dump (I&D) filters. Fi-
nally, we discuss in detail a method for reconfiguring the conventional SSME to
improve its performance for SNRs above a particular critical value. The recon-
figuration, initially disclosed in [7], consists of partitioning the symbol interval
into a larger (but even) number of subdivisions than the two that characterize
the conventional SSME where the optimum number of subdivisions depends on
the SNR region in which the true SNR lies. It will also be shown that these SNR
regions can be significantly widened with very little loss in performance. Most
important is the fact that, with this reconfiguration, the SNR estimator tracks
the Cramer–Rao bound (with a fixed separation from it) on the variance of the
estimator over the entire range of SNR values.

1 Clearly the independence assumption on the samples is dependent on the sampling rate in
relation to the bandwidth of the signal.
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6.1 Signal Model and Formation of the Estimator

6.1.1 Sampled Version

A block diagram of the SSME structure in complex baseband form is il-
lustrated in Fig. 6-1. Corresponding to the kth transmitted M -PSK symbol
dk = ejφk in the interval (k − 1) T ≤ t ≤ kT , the lth complex baseband received
sample is given by2

ylk =
m

Ns
dkej(ωlTs+φ) + nlk, l = 0, 1, · · · , Ns − 1, k = 1, 2, · · · , N (6 1)

where φ and ω are the carrier phase and frequency uncertainties (offsets), Ns is
the number of uniform samples per symbol and is assumed to be an even integer,
1/Ts is the sampling rate, N is the number of symbols in the observation, nlk is
a sample of a zero-mean additive white Gaussian noise (AWGN) process with
variance σ2/Ns in each (real and imaginary) part, and m reflects the signal
amplitude. It is also convenient to denote the duration of a symbol by T = NsTs.
Based on the above, the true symbol SNR is given by

R =
m2

2σ2
(6 2)

The received samples of Eq. (6-1) are first accumulated separately over the first
and second halves of the kth symbol interval, resulting in the sums

Yαk
=

Ns/2−1∑
l=0

ylke−jθlk =
Ns/2−1∑

l=0

(
m

Ns
dkej([l/Ns]δ+φ) + nlk

)
e−jθlk

Yβk
=

Ns−1∑
l=Ns/2

ylke−jθlk =
Ns−1∑

l=Ns/2

(
m

Ns
dkej([l/Ns]δ+φ) + nlk

)
e−jθlk

(6 3)

where e−jθlk is a phase compensation that accounts for the possible adjustment
of the lkth sample for phase variations across a given symbol due to the frequency
offset and δ

�= ωT is the normalized (to the symbol time) frequency offset. Next,
the half-symbol sums in Eq. (6-3) are summed and differenced to produce

2 For convenience, we assume that φ includes the accumulated phase due to the frequency
offset up until the beginning of the kth symbol interval.
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u±
k = Yαk

± Yβk

�= s±k + n±
k , k = 1, 2, · · · , N (6 4)

where s±k and n±
k respectively represent the signal and noise components of these

half-symbol sums and differences and can be written in the form

s±k =
m

Ns
ej(φ+φk)

⎡
⎣Ns/2−1∑

l=0

ej([l/Ns]δ−θlk) ±
Ns−1∑

l=Ns/2

ej([l/Ns]δ−θlk)

⎤
⎦

n±
k =

Ns/2−1∑
l=0

nlke−jθlk ±
Ns−1∑

l=Ns/2

nlke−jθlk

(6 5)

Finally, we average the squared norms of the half-symbol sums and differences
over the N -symbol duration of the observation, producing

U± =
1
N

N∑
k=1

∣∣u±
k

∣∣2 (6 6)

Note that U+ is a statistical measure of signal-plus-noise power where U−

is a statistical measure of noise power. Also, depending on the amount of infor-
mation available for the frequency uncertainty ω and the method by which it is
compensated for (if at all), the SNR estimator will take on a variety of forms (to
be discussed shortly), all of which, however, will depend on the received complex
samples only via the averages U+ and U−.

Making the key observation that the observables U+ and U− are independent
random variables (RVs) and denoting the normalized squared norm of their sum
and difference signal components by

h± �=

∣∣s±k ∣∣2
m2

(6 7)

then it is straightforward to show that their means and variances are given by

E
{
U±}

= 2σ2 +
∣∣s±k ∣∣2 = 2σ2

(
1 + h±R

)

var
{
U±}

=
4
N

σ2
(∣∣s±k ∣∣2 + σ2

)
=

4
N

σ4
(
1 + 2h±R

) (6 8)
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Note that while the parameters h± depend on whether or not phase compensa-
tion is used and also on the frequency uncertainty, they are independent of the
random carrier phase φ and the particular data symbol phase φk. As such, the
h± are independent of the order M of the M -PSK modulation and, thus, so are
the first and second moments of U± in Eq. (6-8).

Solving for the true SNR R from the first relation in Eq. (6-8) gives

R =
E {U+} − E {U−}

h+E {U−} − h−E {U+} (6 9)

and the general form of the ad hoc SSME R̂ is obtained by substituting the
sample values U± for their expected values and the estimates ĥ± for their true
values, namely,

R̂ =
U+ − U−

ĥ+U− − ĥ−U+

�= g
(
U+, U−)

(6 10)

For the case of real data symbols, i.e., BPSK, the estimator in Eq. (6-10) is
exactly identical to the SSME considered in [2–5].

Note that in the absence of frequency uncertainty, i.e., δ = 0, and thus of
course no phase compensation, i.e., θlk = 0, we have from Eq. (6-5) that h+ = 1
and h− = 0, in which case Eq. (6-9) simplifies to

R =
E {U+} − E {U−}

E {U−} (6 11)

which appears reasonable in terms of the power interpretations of U+ and U−

given above. Likewise, in this case we would have ĥ+ = 1 and ĥ− = 0, and the
ad hoc SNR estimator would simplify to

R̂ =
U+ − U−

U− (6 12)

6.1.2 I&D Version

A block diagram of the complex baseband SSME for this version is obtained
from Fig. 6-1 by replacing the half-symbol accumulators by half-symbol I&Ds
and is illustrated in Fig. 6-2. Corresponding to the kth transmitted M -PSK
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symbol, the complex baseband received signal that is input to the first and second
half-symbol I&Ds is given by

y (t) = mdkej(ωt+φ) + n (t) , (k − 1) T ≤ t < kT (6 13)

where n (t) is the zero-mean AWGN process. The outputs of these same I&Ds
are given by

Yαk = mdk
1
T

∫ (k−1/2)T

(k−1)T

ej(ωt+φ)dt +
1
T

∫ (k−1/2)T

(k−1)T

n (t) dt

= (mdk/2) ejφejω(k−3/4)T sinc (δ/4) + nαk

Yβk =

(
mdk

1
T

∫ kT

(k−1/2)T

ej(ωt+φ)dt +
1
T

∫ kT

(k−1/2)T

n (t) dt

)
e−jθk

=
(
(mdk/2) ejφejω(k−3/4)T ejωT/2sinc (δ/4) + nβk

)
e−jθk

(6 14)

where sinc x
�= sinx/x, nαk, and nβk are complex Gaussian noise variables with

zero mean and variance σ2/2 for each real and imaginary component and e−jθk

is once again a phase compensation that accounts for the possible adjustment
of the kth second-half sample for phase variations across a given symbol due to
the frequency offset. As before, forming the half-symbol sums and differences
produces

u±
k = Yαk ± Yβk = (mdk/2) ejφejω(k−3/4)T sinc (δ/4)

[
1 ± ej([δ/2]−θk)

]

+ nαk ± nβke−jθk
�= s±k + n±

k (6 15)

If once again, as in Eq. (6-6), we average the squared norms of the half-symbol
sums and differences over the N -symbol duration of the observation, then fol-
lowing the same series of steps as in Eqs. (6-7) through (6-9), we arrive at the
ad hoc SNR estimator in Eq. (6-10).
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6.2 Methods of Phase Compensation
For the sampled version of the SSME, we observe from Eq. (6-6) together

with Eqs. (6-3) and (6-4) that the split-symbol observables U± are defined in
terms of phase compensation factors

{
e−jθlk

}
applied to the received samples

{ylk} to compensate for phase variations across a given symbol due to the fre-
quency offset ω. To perform this compensation, one requires some form of knowl-
edge about this offset. In this regard, we shall assume that an estimate ω̂ of ω is
externally provided. In principle, there are two ways in which this estimate can
be used to provide the necessary compensation. The best-performing but most
complex method adjusts the phases sample by sample, using a sample-by-sample
compensation frequency ωs = ω̂. The alternative and less complex method does
not compensate every sample but rather only once per symbol by adjusting the
relative phase of the two half-symbols using a half-symbol compensation fre-
quency ωsy = ω̂. Of course, the least complex form of phase compensation
would be none at all even though the estimate ω̂ is available. In all three cases,
the phase adjustment θlk can be written in the generic form

θlk =
{

ωslTs, 0 ≤ l ≤ Ns/2 − 1
ωs (l − Ns/2)Ts + ωsyT/2, Ns/2 ≤ l ≤ Ns − 1 (6 16)

where

ωs = ωsy = ω̂ for sample-by-sample phase compensation

ωs = 0, ωsy = ω̂ for half-symbol phase compensation (6-17)

ωs = ωsy = 0 for no phase compensation

For the I&D version of the SSME, we only have the half-symbol phase com-
pensation option available and thus θk = ωsyT/2 = ω̂T/2. Of course, even
though the estimate ω̂ is available, we again might still choose not to use it to
compensate for the phase due to the frequency uncertainty. In this case, we
would simply set θk = 0 in Eqs. (6-14) and (6-15).

Besides being used for phase compensation of the samples or half-symbols
that enter into the expressions for computing U±, the frequency estimate also
enters into play in determining the estimates ĥ± that are computed from h± by
replacing ω with its estimate ω̂. Thus, the performance of the SSME will depend
on the accuracy of the frequency estimate ω̂ with or without phase compensa-
tion. In the most general scenario, we shall consider a taxonomy of cases for
analysis that, for the sampled version of the SSME, are illustrated by the tree
diagram in Fig. 6-3. In this diagram, we start at the square node in the middle
and proceed outward to any of the eight leaf nodes representing interesting com-
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binations of ω, ω̂, ωsy, and ωs. The relative performance and complexity of each
case is given qualitatively in Table 6-1, where the former is rated from worst (*)
to best (****) and the latter from simplest (x) to most complex (xxxx). In the
I&D version, a few of the tree branches of Fig. 6-3, namely, 2c and 3c, do not
apply.

10
ωsy = 0ωs = 0 ω = 0^ ω = 0

3c3b3a

2c2b2a

ω = 0

ωs = 0

ωsy = ω̂ωsy = 0

ωs = 0 ωs = 0

ω = ω^

ω = ω^

ωs = 0^ωsy = 0^

ωs = 0 ωs = 0

ωsy = ω̂

ω = 0^

ωs = ω̂

^ωs = ω

Fig. 6-3.  A taxonomy of interesting cases for analysis.

Table 6-1. Qualitative relative performance and complexity
of the various estimators.

Case Frequency Frequency Phase
Performance Complexity

number offset estimate compensation

0 0 Perfect None **** x

1 �=0 0 None * x

2a �=0 Perfect None ** xx

2b �=0 Perfect Half-symbol *** xxx

2c �=0 Perfect Sample-by-sample **** xxxx

3a �=0 Imperfect None * to ** xx

3b �=0 Imperfect Half-symbol * to *** xxx

3c �=0 Imperfect Sample-by-sample * to **** xxxx
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6.3 Evaluation of h±±±

For the sampled version SSME, we first insert the expression for the phase
compensation in Eq. (6-16) into Eq. (6-5), which after simplification becomes

s±k =
m

Ns
ej(φ+φk)

(
1 − ej(δ−ωsT )/2

1 − ej(δ−ωsT )/Ns

) (
1 ± ej(δ−ωsyT )/2

)
(6 18)

Then taking the squared norm of Eq. (6-18) and normalizing by m2 gives, in
accordance with Eq. (6-7),

h± = WNs
(δs)

1 ± W0 (δsy)
2

(6 19)

where

δs = δ − ωsT

δsy = δ − ωsyT

(6 20)

and

W0 (δ) = cos (δ/2)

WNs (δ) =
sinc2 (δ/4)

sinc2 (δ/2Ns)

(6 21)

are windowing functions. Note that W0 (δ) has zeros at odd multiples of π, and
WNs (δ) has zeros at all multiples of 4π except for multiples of 2Nsπ.

For the I&D version, h± is still given by Eq. (6-19) but with WNs (δs) replaced
by

W (δ) = sinc2 (δ/4) (6 22)

which is tantamount to taking the limit of WNs
(δ) as Ns approaches infinity.
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6.4 Mean and Variance of the SNR Estimator
In this section, we evaluate the mean and variance of R̂ for a variety of special

cases related to (1) the absence or presence of carrier frequency uncertainty ω

and likewise for its estimation, (2) whether or not its estimate ω̂ is used for phase
compensation, and (3) the degree to which ω̂ matches ω. In all cases involving
frequency estimation, we treat ω̂ as a nonrandom parameter that is externally
provided.

6.4.1 Exact Moment Evaluations

Since from Eq. (6-6) U+ and U− are sums of squared norms of complex Gaus-
sian RVs, then they themselves are chi-square distributed, each with 2N degrees
of freedom. Furthermore, since U+ and U− are independent, then the moments
of their ratio can be computed from the product of the positive moments of U+

and the positive moments of 1/U− (or equivalently the negative moments of U−),
i.e.,

E

{(
U+

U−

)k
}

= E
{(

U+
)k

}
E

{(
U−)−k

}
(6 23)

Based on the availability of closed-form expressions for these positive and
negative moments for both central and non-central chi-square RVs [8], we shall
see shortly that it is possible to make use of these expressions to evaluate the
first two moments of the SSME either in closed form or as an infinite series whose
terms are expressible in terms of tabulated functions. In each case considered,
the method for doing so will be indicated but the explicit details for carrying
it out will be omitted for the sake of brevity, and only the final results will be
presented.

•Case 0: No Frequency Uncertainty(
ω = ω̂ = ωsy = 0 ⇒ δ = δ̂ = δsy = δ̂sy = 0

)

Since in this case W (0) = WNs
(0) = W0 (0) = 1, then we have from

Eq. (6-19) that h+ = ĥ+ = 1, h− = ĥ− = 0 and R̂ = (U+ − U−) /U−, which
was previously arrived at in Eq. (6-12). Since R̂ + 1 = U+/U− is the ratio of a
non-central to a central chi-square RV, each with 2N degrees of freedom, then
the mean and variance of R̂ can be readily evaluated as
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E
{

R̂
}

=
N

N − 1
R +

1
N − 1

var
{

R̂
}

=
1

N − 2

(
N

N − 1

)2 [
(1 + 2R)

(
2N − 1

N

)
+ R2

] (6 24)

Since N is known, the bias of the estimator is easily removed in this case by
defining a bias-removed estimator R̂0 = [(N − 1) /N ]R − 1/N whose mean and
variance now become

E
{

R̂0

}
= R

var
{

R̂0

}
=

1
N − 2

[
(1 + 2R)

(
2N − 1

N

)
+ R2

] (6 25)

•Case 1: Frequency Uncertainty, No Frequency Estimation
(and thus No Phase Compensation)(
ω �= 0, ω̂ = ωsy = ωs = 0 ⇒ δ �= 0, δ̂ = 0, δsy = δs = δ, δ̂sy = δ̂s = 0

)

For this case, h± = WNs
(δ) [1 ± W0 (δ)] /2 for the sampled version or h± =

W (δ) [1 ± W0 (δ)] /2 for the I&D version, ĥ+ = 1, ĥ− = 0, and again R̂ =
(U+ − U−) /U−. Since h− is non-zero, then R̂ + 1 = U+/U− is now the ratio
of two non-central chi-square RVs, each with 2N degrees of freedom. Using [8,
Eq. (2.47)] to evaluate the first and second positive moments of U+ and the first
and second negative moments of U−, then using these in Eq. (6-23) allows one,
after some degree of effort and manipulation, to obtain the mean and variance
of R̂ + 1, from which the mean and variance of R̂ can be evaluated as

E
{

R̂
}

=
N

N − 1
(1 + h+R)1F1

(
1;N ;−Nh−R

)
− 1

var
{

R̂
}

=
(

N

N − 1

)2 {(
N − 1
N − 2

) [
(1 + 2h+R)

N
+

(
1 + h+R

)2
]

(6 26)

× 1F1

(
2;N ;−Nh−R

)
−

(
1 + h+R

)2
[
1F1

(
1;N ;−Nh−R

)]2
}
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where 1F1 (a; b; z) is the confluent hypergeometric function [9]. Since ω and
thus h± are now unknown, the bias of the estimator cannot be removed in this
case. Furthermore, since 1F1 (a; b; 0) = 1, then when h+ = 1 and h− = 0,
Eq. (6-26) immediately reduces to Eq. (6-24) as it should.

•Case 2a: Frequency Uncertainty, Perfect Frequency Estimation,
No Phase Compensation(
ω �= 0, ω̂ = ω, ωsy = ωs = 0 ⇒ δ = δ̂ �= 0, δsy = δ̂sy = δs = δ̂s = δ

)
For this case, h± = ĥ± = WNs (δ) [1 ± W0 (δ)] /2 for the sampled version

or h± = ĥ± = W (δ) [1 ± W0 (δ)] /2 for the I&D version, and R̂ is given by the
generic form of Eq. (6-10). Obtaining an exact compact closed-form expression in
this case is much more difficult since h± and ĥ± are now all non-zero. However,
it is nevertheless possible to obtain an expression in the form of an infinite series.
In particular, defining ξ̂

�= ĥ−/ĥ+ = tan2
(
δ̂sy/4

)
(for this case, ξ̂ = tan2 [δ/4])

and Λ = U+/U−, then after considerable effort and manipulation, the mean and
variance of R̂ can be evaluated in terms of the moments of Λ as

E
{

R̂
}

= − 1 +
(
1 − ξ̂

) ∞∑
n=1

ξ̂n−1E {Λn}

var
{

R̂
}

=
(
1 − ξ̂

)2

⎡
⎣ ∞∑

n=2

(n − 1) ξ̂n−2E {Λn} −
( ∞∑

n=1

ξ̂n−1E {Λn}
)2

⎤
⎦

(6 27)

where

E {Λn} =
Γ (N + n) Γ (N − n)

Γ2 (N) 1F1

(
−n;N ;−Nh+R

)
1F1

(
n;N ;−Nh−R

)
(6 28)

For small frequency error, i.e., ξ̂ small, Eq. (6-27) can be simply approximated
by

E
{

R̂
}

= − 1 + E {Λ} + ξ̂
[
E

{
Λ2

}
− E {Λ}

]

var
{

R̂
}

=
(
1 − 2ξ̂

)
× var {Λ} + 2ξ̂

[
E

{
Λ3

}
− E {Λ}E

{
Λ2

}] (6 29)
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Although not obvious from Eq. (6-27), it can be shown that the mean of the
SNR estimator can be written in the form E

{
R̂

}
= R + O(1/N) and thus, for

this case, the estimator is asymptotically (large N) unbiased.

•Case 2b: Frequency Uncertainty, Perfect Frequency Estimation,
Half-Symbol Phase Compensation(
ω �= 0, ω̂ = ω, ωsy = ω, ωs = 0 ⇒ δ = δ̂ �= 0, δsy = δ̂sy = 0, δs = δ̂s = δ

)

Here we have h+ = ĥ+ = WNs (δ) for the sampled version or h+ = ĥ+ =
W (δ) for the I&D version, h− = ĥ− = 0, and thus R̂ = [(U+ − U−) /U−] /ĥ+.
Recognizing then that ĥ+R̂ + 1 = U+/U−, the moments of ĥ+R̂ can be directly
obtained from the moments of R̂ of Case 0 by replacing R with h+R. Thus,

E
{

R̂
}

=
1

ĥ+

[
N

N − 1
h+R +

1
N − 1

]

(6 30)

var
{

R̂
}

=
1(

ĥ+
)2

1
N − 2

(
N

N − 1

)2 [(
1 + 2h+R

) (
2N − 1

N

)
+

(
h+R

)2
]

where for this case, as noted above, we can further set h+ = ĥ+. Once this
is done in Eq. (6-30), then since ĥ+ is known, we can once again completely
remove the bias from the estimator by defining the bias-removed estimator
R̂0 =

[
(N − 1) /N

]
R − 1/

(
Nĥ+

)
, whose mean is given by E

{
R̂0

}
= R and

whose variance is obtained from var
{
R̂

}
of Eq. (6-30) by multiplying it by[

(N − 1) /N
]2.

•Case 2c: Frequency Uncertainty, Perfect Frequency Estimation,
Sample-by-Sample Phase Compensation(
ω �= 0, ω̂ = ω, ωsy = ωs = ω ⇒ δ = δ̂ �= 0, δsy = δ̂sy = δs = δ̂s = 0

)

This case applies only to the sample-by-sample version of the SSME. In
particular, we have h+ = ĥ+ = 1, h− = ĥ− = 0, and thus R̂ = (U+ − U−)/U−,
which is identical to the SSME of Case 0. Thus, the moments of R̂ are given by
Eq. (6-24).
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•Case 3a: Frequency Uncertainty, Imperfect Frequency Estimation,
No Phase Compensation(
ω �= 0, ω̂ �= ω, ωsy = ωs = 0 ⇒ δ, δ̂ �= 0, δsy = δs = δ, δ̂sy = δ̂s = δ̂

)
Here, h± = WNs(δ)

[
1 ± W0(δ)

]
/2, ĥ± = WNs

(
δ̂
)[

1 ± W0

(
δ̂
)]

/2 for the sam-
pled version or h± = W (δ)

[
1 ± W0(δ)

]
/2, ĥ± = W

(
δ̂
)[

1 ± W0

(
δ̂
)]

/2 for the I&D
version, and R̂ is given by the generic form of Eq. (6-10). The method used to
obtain the moments of the SNR estimator is analogous to that used for Case 2a.
In particular, noting that for this case ξ̂ = tan2

(
δ̂/4

)
, the results are obtained

from Eq. (6-27) by multiplying E
{
R̂

}
by 1/ĥ+ and var

{
R̂

}
by

(
1/ĥ+

)2.

•Case 3b: Frequency Uncertainty, Imperfect Frequency Estimation,
Half-Symbol Phase Compensation(
ω �= 0, ω̂ �= ω, ωsy = ω̂, ωs= 0 ⇒ δ, δ̂ �= 0, δsy = δ − δ̂, δ̂sy = 0, δs = δ, δ̂s = δ̂

)
Here h± = WNs

(δ)
[
1 ± W0

(
δ − δ̂

)]
/2, ĥ+ = WNs

(
δ̂
)

for the sampled version
or h± = W

(
δ
)[

1 ± W0

(
δ − δ̂

)]
/2, ĥ+ = W

(
δ̂
)

for the I&D version, ĥ− = 0,
and once again R̂ =

[(
U+ − U−)

/U−]
/ĥ+. Hence, by analogy with Case 1, the

mean and variance of the SNR estimator can be obtained from a scaled version
of Eq. (6-26).

•Case 3c: Frequency Uncertainty, Imperfect Frequency Estimation,
Sample-by-Sample Phase Compensation(
ω �= 0, ω̂ �= ω, ωsy = ωs = ω̂ ⇒ δ, δ̂ �= 0, δsy = δs = δ − δ̂, δ̂sy = δ̂s = 0

)
This case applies only to the sample-by-sample version of the SSME. In

particular, we have h± = WNs

(
δ − δ̂

)[
1 ± W0

(
δ − δ̂

)]
/2, ĥ+ = 1, ĥ− = 0, and

thus R̂ =
(
U+ − U−)

/U−, which is the form given in Eq. (6-12) and resembles
Case 1. Thus, the moments of R̂ are given by Eq. (6-26), using now the values
of h+ and h− as are appropriate to this case.

6.4.2 Asymptotic Moment Evaluations

Despite having exact results, in many instances it is advantageous to have
asymptotic results, particularly if their analytical form is less complex and as
such lends insight into the their behavior in terms of the various system pa-
rameters. In this section, we provide approximate expressions for the mean and
variance of the SSME by employing a Taylor series expansion of g

(
U+, U−)

in
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Eq. (6-10), assuming that this function is smooth in the vicinity of the point(
E

{
U+

}
, E

{
U−})

. With this in mind, the mean and variance of the estimate R̂

are approximated by [10, p. 212]

E
{
R̂

}
= g

(
E

{
U+

}
, E

{
U−})

+
1
2

(
var

{
U+

} ∂2g

∂ (U+)2
+ var

{
U−} ∂2g

∂ (U−)2

)
+ O

(
1

N2

)

var
{
R̂

}
=

(
∂g

∂U+

)2

var
{
U+

}
+

(
∂g

∂U−

)2

var
{
U−}

+ O

(
1

N2

)
(6 31)

In Eq. (6-31), all of the partial derivatives are evaluated at
(
E

{
U+

}
, E

{
U−})

.
Ordinarily, there would be another term in these Taylor series expansions involv-
ing ∂2g/∂U+∂U− and cov

{
U+, U−}

. However, in our case, this term is absent
in view of the independence of U+ and U−.

In Appendix 6-A, we derive explicit expressions for E
{
R̂

}
and var

{
R̂

}
based

on the evaluations of the partial derivatives required in Eq. (6-31). The results
of these evaluations are given below:

E
{

R̂
}

=
(h+ − h−) R

ĥ+ − ĥ− +
(
ĥ+h− − ĥ−h+

)
R

+
1
N

(
ĥ+ − ĥ−

) (
ĥ+ + ĥ−

)
[
ĥ+ − ĥ− +

(
ĥ+h− − ĥ−h+

)
R

]3

×
{

1 +

(
h+ + h− +

ĥ+h− + ĥ−h+

ĥ+ + ĥ−

)
R + 2h+h−R2

}
+ O

(
1

N2

)

(6 32)

and
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var
{

R̂
}

=
1
N

(
ĥ+ − ĥ−

)2

[
ĥ+ − ĥ− +

(
ĥ+h− − ĥ−h+

)
R

]4

×
{

2 + 4
(
h+ + h−)

R +
[(

h+ + h−)2 + 6h+h−
]
R2 + 4h+h− (

h+ + h−)
R3

}

+ O

(
1

N2

)
(6 33)

It is now a simple matter to substitute in the various expressions for h± and ĥ±

corresponding to the special cases treated in Section 6.1 to arrive at asymptotic
closed-form expressions for the mean and variance of R̂ for each of these cases.
The results of these substitutions lead to the following simplifications:

•Case 0: No Frequency Uncertainty

E
{
R̂

}
= R +

1
N

(1 + R) + O

(
1

N2

)

var
{

R̂
}

=
1
N

(
2 + 4R + R2

)
+ O

(
1

N2

) (6 34)

•Case 1: Frequency Uncertainty, No Frequency Estimation
(and thus No Phase Compensation)

E
{

R̂
}

=
(h+ − h−) R

1 + h−R

+
1
N

1
(1 + h−R)3

{
1 +

(
h+ + 2h−)

R + 2h+h−R2
}

+ O

(
1

N2

)

(6 35)

var
{

R̂
}

=
1
N

1
(1 + h−R)4

{
2 + 4

(
h+ + h−)

R +
[(

h+ + h−)2 + 6h+h−
]
R2

+4h+h− (
h+ + h−)

R3
}

+ O

(
1

N2

)
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where h± = WNs(δ)
[
1 ± W0(δ)

]
/2 for the sampled version or h± = W (δ)[

1 ± W0(δ)
]
/2 for the I&D version.

•Case 2a: Frequency Uncertainty, Perfect Frequency Estimation,
No Phase Compensation

E
{

R̂
}

=

R +
1
N

(h+ + h−)
(h+ − h−)2

{
1 +

(
h+ + h− +

2h+h−

h+ + h−

)
R + 2h+h−R2

}
+ O

(
1

N2

)

(6 36)

var
{

R̂
}

=
1
N

1
(h+ − h−)2

{
2 + 4

(
h+ + h−)

R +
[(

h+ + h−)2 + 6h+h−
]
R2

+4h+h− (
h+ + h−)

R3
}

+ O

(
1

N2

)

where h± = WNs
(δ)

[
1 ± W0(δ)

]
/2 for the sampled version or h± = W (δ)[

1 ± W0(δ)
]
/2 for the I&D version.

•Case 2b: Frequency Uncertainty, Perfect Frequency Estimation,
Half-Symbol Phase Compensation

E
{

R̂
}

= R +
1
N

1
h+

(
1 + h+R

)
+ O

(
1

N2

)

var
{

R̂
}

=
1
N

1
(h+)2

[
2 + 4h+R +

(
h+

)2
R2

]
+ O

(
1

N2

) (6 37)

where h+ = WNs
(δ) for the sampled version or h+ = W (δ) for the I&D version.
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•Case 2c: Frequency Uncertainty, Perfect Frequency Estimation,
Sample-by-Sample Phase Compensation

As was true for the exact results, the asymptotic mean and variance are again
the same as for Case 0.

•Case 3a: Frequency Uncertainty, Imperfect Frequency Estimation,
No Phase Compensation

No simplification of the results occurs here, and thus one merely applies
Eqs. (6-32) and (6-33), where h± = WNs(δ)

[
1 ± W0(δ)

]
/2, ĥ± = WNs(δ̂)[

1 ± W0

(
δ̂
)]

/2 for the sampled version or h± = W (δ)
[
1 ± W0(δ)

]
/2, ĥ± =

W
(
δ̂
)[

1 ± W0

(
δ̂
)]

/2 for the I&D version.

•Case 3b: Frequency Uncertainty, Imperfect Frequency Estimation,
Half-Symbol Phase Compensation

E
{

R̂
}

=
(h+ − h−)R

ĥ+ (1 + h−R)
+

1
N

1

ĥ+

1
(1 + h−R)3

×
{
1 +

(
h+ + 2h−)

R + 2h+h−R2
}

+ O

(
1

N2

)
(6 38)

var
{

R̂
}

=
1
N

1(
ĥ+

)2

1
(1 + h−R)4

×
{

2 + 4
(
h+ + h−)

R +
[(

h+ + h−)2 + 6h+h−
]
R2

+4h+h− (
h+ + h−)

R3
}

+ O

(
1

N2

)

where h± = WNs
(δ)

[
1 ± W0

(
δ − δ̂

)]
/2, ĥ+ = WNs

(
δ̂
)

for the sampled version or
h± = W (δ)

[
1 ± W0

(
δ − δ̂

)]
/2, ĥ+ = W

(
δ̂
)

for the I&D version.
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•Case 3c: Frequency Uncertainty, Imperfect Frequency Estimation,
Sample-by-Sample Phase Compensation

E
{
R̂

}
=

(
h+ − h−)

R

1 + h−R
+

1
N

1(
1 + h−R

)3

×
{
1 +

(
h+ + 2h−)

R + 2h+h−R2
}

+ O
( 1
N2

)
(6 39)

var
{
R̂

}
=

1
N

1(
1 + h−R

)4

{
2 + 4

(
h+ + h−)

R +
[(

h+ + h−)2 + 6h+h−
]
R2

+4h+h−(
h+ + h−)

R3
}

+ O

(
1

N2

)

where h± = WNs

(
δ − δ̂

)[
1 ± W0

(
δ − δ̂

)]
.

6.4.2.1. Numerical Results and Comparisons. To compare the perfor-
mances of the estimator corresponding to the various cases just discussed, we first
define a parameter N̂ = Nvar

{
R̂

}
/R2 (or in the cases where a bias-removed esti-

mator is possible, N̂0 = Nvar
{
R̂0

}
/R2), which measures the number of symbols

that are needed to achieve a fractional mean-squared estimation error of 100 per-
cent using that estimator. Then, if one wishes to achieve a smaller fractional
mean-squared estimation error, say var

{
R̂

}
/R2 = ε2 (or var

{
R̂0

}
/R2 = ε2),

then the required number of symbols to achieve this level of performance would
simply be Nreq(ε2) = N̂/ε2 (or Nreq(ε2) = N̂0/ε2). As an example, consider the
bias-removed SNR estimator for Case 2b for which N̂0 can be determined from
Eq. (6-30) as

N̂0 =

(
1 − 1

2N

) (
2

(h+R)2
+

4
h+R

)
+ 1

1 − 2
N

(6 40)

Clearly, the above interpretation of the meaning of N̂0 is a bit circular in that
N̂0 of Eq. (6-40) depends on N . However, this dependence is mild for reasonable
values of N . Thus, to a good approximation one can replace N̂0 by its limiting
value N̂∗

0 corresponding to N = ∞, in which case the required number of symbols
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to achieve a fractional mean-squared estimation of ε2 would approximately be
given by

Nreq

(
ε2

) ∼= N̂∗
0

ε2

N̂∗
0 =

2
(h+R)2

+
4

h+R
+ 1

(6 41)

Alternatively, for this case one uses the exact expression for the fractional mean-
squared estimation error to solve directly for Nreq

(
ε2

)
. In particular, dividing

Eq. (6-30) (multiplied by
[
(N − 1)/N

]2) by R2 and equating the result to ε2

results in a quadratic equation in N whose solution can be exactly expressed as

Nreq

(
ε2

)
=

(
1 +

N̂∗
0

2ε2

)⎡
⎢⎢⎣1 +

√√√√√√1 −

(
N̂∗

0 − 1
)

2ε2(
N̂∗

0 + 2ε2
)2

⎤
⎥⎥⎦ (6 42)

Since the value of the negative term in the square root is less than 2ε2/N̂∗
0 , an

approximate (for small ε2) upper bound on Eq, (6-42) is given by

Nreq

(
ε2

)
<

(
1 +

N̂∗
0

2ε2

) [
1 +

√
1 − 2ε2

N̂∗
0

]
∼=

(
1 +

N̂∗
0

2ε2

) (
2 − ε2

N̂∗
0

)
∼= N̂∗

0

ε2
+

3
2

(6 43)

Thus, we see that the exact number of requisite symbols is not more than two
extra symbols beyond the number that would be obtained from the approximate
number in Eq. (6-41).

Figure 6-4 is a plot of N̂0 versus R in decibels with N as a parameter for
the biased-removed estimator of Case 0, where the results are determined from
Eq. (6-25). We observe that a value of N = 50 is virtually sufficient to approach
the asymptotic value N̂∗

0 = 1+2(1 + 2R)/R2. For the biased-removed estimator
of Case 2b, a plot of N̂0 versus h+R in decibels would be identical to Fig. 6-4,
in accordance with Eq. (6-30) and the comments below this equation. Thus, the
degradation in performance when frequency uncertainty is present but is per-
fectly estimated and fully compensated for is reflected in a horizontal shift of
the curves in Fig. 6-4 to the right by an amount equal to h+. Equivalently, a
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Fig. 6-4.  Case 0:  No frequency offset, perfect frequency estimate,
no phase compensation.
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larger number of symbols is now required to achieve the same SNR estimation
accuracy as for the case of no frequency uncertainty.

For Case 3b where the frequency uncertainty estimate is imperfect but is
still used for compensation, the asymptotic (N large) behavior is obtained from
Eq. (6-33). In particular, for N → ∞,

E{R̂} =
(h+ − h−)R

ĥ+(1 + h−R)

N̂∗ = lim
N→∞

Nvar(R̂)
R2

=
1(

ĥ+
)2

(1 + h−R)4

{
2

R2
+

4(h+ + h−)
R

(6 44)

+ (h+ + h−)2 + 6h+h− + 4h+h−(h+ + h−)R

}

Figures 6-5 and 6-6 are plots of E{R̂} versus R in decibels for fixed δ/(2π) = fT

and fractional frequency estimation error (δ − δ̂)/δ as a parameter varying be-
tween −10 percent and 10 percent. We observe that for a relative frequency
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Fig. 6-5.  Mean of estimator versus SNR in decibels; Case 3b; frequency offset,
imperfect frequency estimate, half-symbol phase compensation; relative fre-
quency uncertainty δ/(2π) = fT = 0.5, fractional frequency error η = 0, −10%,10%.
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Fig. 6-6.  Mean of estimator versus SNR in decibels; Case 3b; frequency offset,
imperfect frequency estimate, half-symbol phase compensation; relative fre-
quency uncertainty δ/(2π) = fT = 1.0, fractional frequency error η = 0, −10%,10%.
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uncertainty of half a cycle (δ/(2π) = 0.5), the amount of bias is quite small
over the range of frequency estimation errors considered. When the relative
frequency error increases to a full cycle (δ/(2π) = 1.0), then the sensitivity
of the bias to frequency estimation error becomes more pronounced. Also, it
can be observed that, for a fixed frequency offset, the bias is not a symmetric
function of the frequency estimation error. Figure 6-7 is a plot of N̂∗ versus R

in decibels for a fixed fractional estimation error η = 5 percent and δ/(2π) = fT

as a parameter varying between 0.5 and 0.9. These curves are analogous to
the ones in Fig. 6-4 with the purpose of demonstrating the sensitivity of the
number of symbols required for a given level of mean-squared error performance
to frequency uncertainty and estimation error.

6.5 SNR Estimation in the Presence of Symbol Timing
Error

Until now we have considered the performance of the SSME estimator as-
suming that the symbol timing was either known or could be perfectly estimated.
In this section, we extend the previous results corresponding to the I&D version3
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Fig. 6-7.  Case 3b: frequency offset, imperfect frequency estimate, half-symbol
phase compensation; fractional frequency uncertainty error η = 5%.
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3 Extension of the results to the sampled version is straightforward and is omitted for the sake
of brevity.
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of the SSME to the case where symbol timing is imperfect but the carrier fre-
quency is known4—carrier phase is still assumed unknown. Clearly, although
in any realistic system implementation both frequency uncertainty and symbol
timing error will exist simultaneously, treating them as separate entities gives
us a means of obtaining analytical results for their individual behavior and the
sensitivity of system performance to each. The true degradation in the perfor-
mance of the SNR estimator in their joint presence must be determined from
simulation results.

6.5.1 Signal Model and Formation of the Estimator

Corresponding to the complex baseband received signal in the kth interval
(k − 1) T ≤ t < kT , as described by Eq. (6-13), in the presence of a symbol
timing error εT (for the moment we assume 0 ≤ ε ≤ 1/2), the outputs of the
first and second half-symbol I&Ds are given by

Yαk = mdk
1
T

∫ (k−1/2+ε)T

(k−1+ε)T

ejφdt +
1
T

∫ (k−1/2+ε)T

(k−1+ε)T

n (t) dt =
mdk

2
ejφ + nαk

Yβk = mdk
1
T

∫ kT

(k−1/2+ε)T

ejφdt + mdk+1
1
T

∫ (k+ε)T

kT

ej(ωt+φ)dt

(6 45)

+
1
T

∫ (k+ε)T

(k−1/2+ε)T

n (t) dt

= mejφ

[
dk

(
1
2
− ε

)
+ dk+1ε

]
+ nβk

Independent of the symbol timing offset εT , the complex noise variables nαk

and nβk are still zero-mean Gaussian with variance σ2/2 for each real and imag-
inary component. From the observables in Eq. (6-45), we again form the sum
and difference variables

u±
k = Yαk ± Yβk = mejφ

[
dk

(
1
2
±

(
1
2
− ε

))
± dk+1ε

]
+ nαk ± nβk

�= s±k + n±
k

(6 46)

4 Later on, we shall consider one particular system model that allows for frequency uncertainty
with perfect compensation and that falls in the same mathematical framework.
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It is straightforward to show that the normalized squared norm of the signal
components can be evaluated as

h+
k

�=

∣∣s+
k

∣∣2
m2

= 1 − 4ε (1 − ε) sin2

(
∆φk+1

2

)

h−
k

�=

∣∣s−k ∣∣2
m2

= 4ε2 sin2

(
∆φk+1

2

) (6 47)

where ∆φk+1 = φk+1 − φk denotes the transition in the data symbol phase in
going from the kth symbol interval to the k+1st. Note that, as in the previous
publication on the subject [6], the parameters h±

k do not depend on the random
carrier phase φ; however, unlike these previous investigations, they do now de-
pend on the data via the transitions in the symbol phase sequence. Furthermore,
it is not obvious at this point (this will become clear shortly) to what extent h±

k

is independent of the order M of the M -PSK modulation. For −1/2 ≤ ε ≤ 0,
the analogous relations to Eq. (6-47) are

h+
k = 1 + 4ε (1 + ε) sin2

(
∆φk

2

)

h−
k = 4ε2 sin2

(
∆φk

2

) (6 48)

Next, we calculate N -symbol averages of the squared norms of the half-symbol
sums to produce U± as in Eq. (6-6). Once again we make the key observation (as
previously proved) that, now conditioned on the data symbol transition sequence,
the observables U+ and U− are independent RVs. Defining, as before, the true
SNR by R = m2/2σ2, then after averaging over the uniform distribution of
the data symbol transitions around the circle defining the M -PSK constellation,
it is straightforward (although a bit laborious) to show that their means and
variances are, analogous to Eq. (6-8), given by

E
{
U±}

= 2σ2
(
1 + h̄±R

)

var
{
U±}

=
4
N

σ4
(
1 + 2h̄±R + var

{
h±}

R2
) (6 49)
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where the overbar on h± denotes the above-mentioned statistical averaging over
the data symbol transition sequence and the subscript k has been dropped since
the statistical averages do not depend on k. Making use of the relations

sin2

(
∆φk

2

)
=

1
M

M−1∑
k=0

sin2 kπ

M
=

1
2

sin4

(
∆φk

2

)
=

1
M

M−1∑
k=0

sin4 kπ

M
=

⎧⎪⎪⎨
⎪⎪⎩

1
2
, M = 2

3
8
, M > 2

(6 50)

we have from Eqs. (6-47) and (6-48) that

h̄+ = 1 − 2 |ε| (1 − |ε|)

h̄− = 2 |ε|2
(6 51)

and

var
{
h+

}
=

{
4 |ε|2 (1 − |ε|)2 , M = 2

2 |ε|2 (1 − |ε|)2 , M > 2

var
{
h−}

=

{
4 |ε|4 , M = 2

2 |ε|4 , M > 2

(6 52)

Finally, since from the first relation in Eq. (6-49) R is expressible as

R =
E {U+} − E {U−}

h̄+E {U−} − h̄−E {U+} (6 53)

then, as in the perfect symbol timing case, the general form of the ad hoc SSME R̂

is obtained by substituting the sample values U± for their expected values and

the estimates ˆ̄h
±

for their true values, namely,

R̂ =
U+ − U−

ˆ̄h
+
U− − ˆ̄h

−
U+

(6 54)
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where ˆ̄h
±

are obtained from h̄±, defined in Eq. (6-51) by substituting the symbol
timing estimate ε̂ for ε. Actually, in view of Eq. (6-51), it is necessary to have
only an estimate of the magnitude of ε. A method for obtaining such an estimate
based on the same statistics used to form the SNR estimator will be discussed
elsewhere in the text.

6.5.2 Mean and Variance of the SNR Estimator

In this section, we evaluate the mean and variance of R̂ using the same

techniques as in previous sections of the chapter. Since, for |ε̂| > 0, ˆ̄h
±

are
both non-zero, obtaining an exact compact closed-form expression is difficult.
Nevertheless, it is possible to obtain a closed-form expression in the form of an

infinite series. In particular, defining ξ̂
�= ˆ̄h

−
/ˆ̄h

+
and Λ �= U+/U−, we can

express R̂ of Eq. (6-54) in the form

R̂ =
1
ˆ̄h
+

Λ − 1

1 − ξ̂Λ
=

1
ˆ̄h
+ (Λ − 1)

∞∑
n=0

(
ξ̂Λ

)n

=
1
ˆ̄h
+

[
−1 +

(
1 − ξ̂

) ∞∑
n=1

ξ̂n−1Λn

]

(6 55)

Thus, the mean of R̂ is expressed in terms of the moments of Λ by

E
{

R̂
}

=
1
ˆ̄h
+

[
−1 +

(
1 − ξ̂

) ∞∑
n=1

ξ̂n−1E {Λn}
]

(6 56)

Similarly, the variance of R̂ can be evaluated in terms of the moments of Λ as

var
{

R̂
}

=

(
1 − ξ̂

)2

(
ˆ̄h
+
)2

⎡
⎣ ∞∑

n=2

(n − 1) ξ̂n−2E {Λn} −
( ∞∑

n=1

ξ̂n−1E {Λn}
)2

⎤
⎦ (6 57)

An expression for the moments of Λ in terms of h± can be obtained from
Eq. (6-23) and [8, Eq. (2.47)] as

E {Λn} =
Γ (N + n) Γ (N − n)

Γ2 (N) 1F1

(
−n;N ;−Nh+R

)
1F1

(
n;N ;−Nh−R

)
(6 58)
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Since, in accordance with Eqs. (6-47) and (6-48), h± are now functions of the
data phase symbol transitions ∆φk+1, we must further average Eq. (6-58) over
the uniformly distributed statistics of this RV in the same manner as we did
previously in arriving at h̄±. The difference here is that h± are embedded as
arguments of the hypergeometric function, and thus the average cannot be ob-
tained in closed form. Nevertheless, the appropriate modification of Eq. (6-58)
now becomes

E {Λn} =
Γ (N + n) Γ (N − n)

Γ2 (N) 1F1 (−n;N ;−Nh+R) 1F1 (n;N ;−Nh−R)
∆φ

(6 59)

where, for M -PSK, ∆φ takes on values 2kπ/M, k = 0, 1, 2, · · · , M − 1, each with
probability 1/M .
For small symbol timing offset, i.e., ξ̂ small, Eqs. (6-56) and (6-57) can be

simply approximated by

E
{

R̂
}

=

(
1
ˆ̄h
+

)[
−1 + E {Λ} + ξ̂

(
E

{
Λ2

}
− E {Λ}

)]
(6 60)

var
{

R̂
}

=

(
1
ˆ̄h
+

)2 [(
1 − 2ξ̂

)
× var {Λ} + 2ξ̂

(
E

{
Λ3

}
− E {Λ}E

{
Λ2

})]

and thus only the first few moments of Λ need be evaluated.

6.6 A Generalization of the SSME Offering Improved
Performance

In this section, we consider a modification of the SSME structure that pro-
vides improved performance in the sense of lowering the variance of the SNR
estimator. To simplify matters, we begin the discussion by considering the ideal
case of no frequency uncertainty. Also, for the sake of brevity, we investigate
only the I&D version. Suffice it to say that the generalization is readily applied
to the sampled version in an obvious manner.

To motivate the search for an SSME structure with improved performance,
we define a measure of “quality” of the SNR estimator by its own SNR, namely,
Q =

(
E{R̂}

)2
/var{R̂}. For large N and large R, we have from Eq. (6-24) that

E
{
R̂

}
= R, var

{
R̂

}
= R2/N , and thus Q = N . Thus, we observe that for fixed
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observation time, the quality of the conventional SSME does not continue to
improve as the true SNR, R, increases, but instead saturates to a fixed value.
With this in mind, we seek to modify the SSME such that for a fixed observation
time the quality of the estimator continues to improve with increasing SNR.

Suppose now that instead of subdividing each data symbol interval T into
two halves, we subdivide it into 2L subintervals of equal length T/(2L) and use
the integrations of the complex-valued received signal plus noise in successive
pairs of these intervals to form the SNR estimator. In effect, we are estimating
the symbol SNR of a data sequence at L times the actual data rate. This data
sequence is obtained by repeating each original data symbol L times to form
L consecutive shorter symbols, and thus it is reasonable to refer to L as an over-
sampling factor. For a given total observation time (equivalently, a given total
number of original symbols N), there are LN short symbols corresponding to
the higher data rate, and their symbol SNR is r = R/L. Since the SSME is
completely independent of the data sequence, the new estimator, denoted by r̂L,
is just an SSME of the SNR r = R/L of the short symbols, based on observing
LN short symbols, each split into half. Thus, the mean and variance of r̂L are
computed by simply replacing N by LN and R by R/L in Eq. (6-24), which is
rewritten here for convenience as

E
{

R̂
}

= R +
R + 1
N − 1

var
{

R̂
}

=
1

N − 2

(
N

N − 1

)2 [
(2 + 4R)

(
N − 1/2

N

)
+ R2

] (6 61)

Since, however, we desire an estimate of R, not r = R/L, we define R̂L = Lr̂L

and write the corresponding expressions for the mean and variance of R̂L:

E
{

R̂L

}
= L

[
R

L
+

R/L + 1
LN − 1

]
= R +

R + L

LN − 1

var
{

R̂L

}
=

L2

LN − 2

(
LN

LN − 1

)2
[(

2 +
4R

L

) (
LN − 1/2

LN

)
+

(
R

L

)2
] (6 62)

With this notation, the original SSME is simply R̂ = R̂1, and the performance
expressions in Eq. (6-62) are valid for any positive integer L ∈ {1, 2, 3, · · ·}.
For large N , i.e., N 	 1, the mean and variance in Eq. (6-62) simplify within
O(1/N2) to
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E
{

R̂L

}
= R +

R + L

LN

var
{

R̂L

}
=

L

N

(
2 +

4R

L
+

R2

L2

) (6 63)

For the remainder of this section, we base our analytic derivations on the asymp-
totic expressions in Eq. (6-63).

For small enough R, we can ignore the R and R2 terms in the variance ex-
pression, and the smallest estimator variance is achieved for L = 1. In this case,
R̂ = R̂1 outperforms (has smaller variance than) R̂L for L > 1, approaching a
10 log10 L dB advantage as R → 0. However, at large enough R for any fixed L,
the reverse situation takes place. In particular, retaining only the R2 term in
Eq. (6-63) for sufficiently large R/L, we see that R̂L offers a 10 log10 L dB advan-
tage over R̂ in this limit. This implies that for small values of R, a half-symbol
SSME (i.e., L = 1) is the preferred implementation, whereas beyond a certain
critical value of R (to be determined shortly) there is an advantage to using val-
ues of L > 1. In general, for any given R, there is an optimum integer L = L∗(R)
that minimizes the variance in Eq. (6-63). We denote the corresponding opti-
mum estimator by R̂∗. We show below that, unlike the case of the estimator R̂L

defined for a fixed L, the optimized estimator R̂∗ requires proportionally more
subdivisions of the true symbol interval as R gets large. As a result, the R2/L2

term in Eq. (6-63) does not totally dominate the variance for R 	 L, and the
amount of improvement at high SNR differs from the 10 log10 L dB improvement
calculated for an arbitrary fixed choice of L and R 	 L.

For the moment we ignore the fact that L must be an integer, and minimize
the variance expression in Eq. (6-63) over continuously varying real-valued L.
We define an optimum real-valued L = L•(R), obtained by differentiating the
variance expression of Eq. (6-63) with respect to L and equating the result to
zero, as

L•(R) =
R√
2

(6 64)

and a corresponding fictitious SNR estimator R̂• that “achieves” the minimum
variance calculated by substituting Eq. (6-64) into the asymptotic variance ex-
pression of Eq. (6-63),

var
{

R̂•
}

=
R

N

(
4 + 2

√
2
)

(6 65)



Signal-to-Noise Ratio Estimation 153

The minimum variance shown in Eq. (6-65) can be achieved only by a re-
alizable estimator for values of R that yield an integer L•(R) as defined by
Eq. (6-64). Nevertheless, it serves as a convenient benchmark for comparisons
with results corresponding to the optimized realistic implementation R̂∗. For
example, from Eqs. (6-63) and (6-65) we see that the ratio of the asymptotic
variance achieved by any given realizable estimator R̂L to that achieved by the
fictitious estimator R̂• is a simple function of the short symbol SNR r, not of R

and L separately. In particular,

var
{

R̂L

}
var

{
R̂•

} =
2/r + 4 + r

4 + 2
√

2
(6 66)

The numerator of Eq. (6-66) is a convex ∪ function of r, possessing a unique
minimum at r =

√
2, at which point the ratio in Eq. (6-66) evaluates to unity.

This result is not surprising since, from Eq. (6-64), r =
√

2 is the optimality
condition defining the fictitious estimator R̂•. For r >

√
2 or r <

√
2, the ratio

in Eq. (6-66) for any fixed value of L grows without bound.
Before going on, let us examine how allowing L to vary with R in an optimum

fashion in accordance with Eq. (6-64) has achieved the improvement in “quality”
we previously set out to obtain. In particular, since for large N and large R

we have E{R•} = R and from Eq. (6-65) var{R̂•} = (R/N)
(
4 + 2

√
2

)
, then

it immediately follows that Q =
(
E{R̂}

)2
/var{R̂} = NR/(4 + 2

√
2 ), which

demonstrates that, for a fixed observation time, the quality of the estimator now
increases linearly with true SNR.

We return now to the realistic situation where L must be an integer, but can
vary with R or r. Since the variance expression in Eq. (6-63) is convex ∪ in L,
we can determine whether R̂L is optimum for a given R by simply comparing its
performance to that of its nearest neighbors, R̂L−1 and R̂L+1. We find that R̂L

is optimum over a continuous range R ∈
[
R−

L , R+
L

]
, where R−

1 = 0, R−
L+1 = R+

L ,
and the upper boundary point is determined by equating the variance expressions
in Eq. (6-63) for R̂L and R̂L+1:

R+
L =

√
2L (L + 1) (6 67)

Thus, the optimum integer L∗(R) is evaluated as

L∗(R) = L, if
√

2L (L − 1) ≤ R ≤
√

2L (L + 1) (6 68)
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In particular, we see that R̂1 is optimum in the region 0 ≤ R ≤ 2, implying
no improvement over the original SSME for these values of R. For values of R

in the region 2 ≤ R < 2
√

3, one should use R̂2 (i.e., an estimator based on
pairs of quarter-symbol integrations), and in general one should use R̂L when√

2L (L − 1) ≤ R ≤
√

2L (L + 1). For R in this interval, the improvement
factor I(R) (reduction in variance) achieved by the new optimized estimator
relative to the conventional half-symbol SSME R̂ = R̂1 is calculated as

I(R) =
var

{
R̂

}
var

{
R̂∗

} =
2 + 4R + R2

L

(
2 +

4R

L
+

R2

L2

) ,
√

2L (L − 1) ≤ R ≤
√

2L (L + 1)

(6 69)

We have already seen that I(R) = 1 for R ranging from 0 to 2, whereupon it
becomes better to use R̂2, allowing I(R) to increase monotonically to a value of(
7 + 4

√
3
)
/
(
5 + 4

√
3
)

= 1.168 (equivalent to 0.674 dB) at R = 2
√

3. Continuing
on, in the region 2

√
3 ≤ R < 2

√
6, one should use R̂3, whereupon I(R) con-

tinues to increase monotonically to a value of
(
13 + 4

√
6

)
/
(
7 + 4

√
6

)
= 1.357

(equivalent to 1.326 dB) at R = 2
√

6. Figure 6-8 is a plot of I(R) versus R,
as determined from Eq. (6-69). Note that while I(R) is a continuous function

R

3.5

2.0

1.5

I (
R

 )

5 20

Fig. 6-8.  Performance improvement as a function of SNR.
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of R, the derivative of I(R) with respect to R is discontinuous at the critical
values of R, namely, R = R+

L for L ∈ {1, 2, 3, · · ·}, but the discontinuity becomes
monotonically smaller as L increases.

It is also instructive to compare the performance of the optimized realizable
estimator R̂∗ with that of the fictitious estimator R̂•. The corresponding variance
ratio is computed directly from Eq. (6-66), as long as we are careful to delineate
the range of validity from Eq. (6-68), where each integer value of L contributes
to the optimized estimator R̂∗:

var
{

R̂∗
}

var
{

R̂•
} =

2/r + 4 + r

4 + 2
√

2
,

√
1 − 1/L∗(R) ≤ r√

2
≤

√
1 + 1/L∗(R) (6 70)

where for the optimized realizable estimator R̂∗ the short symbol SNR r is eval-
uated explicitly in terms of R as r = R/L∗(R). We see that for any value of R

the corresponding interval of validity in Eq. (6-70) always includes the optimal
point r =

√
2, at which the ratio of variances is unity. Furthermore, since the

width of these intervals (measured in terms of r) shrinks to zero as L∗(R) → ∞,
the ratio of variances makes smaller and smaller excursions from its value of
unity at r =

√
2 as R → ∞, implying L∗(R) → ∞ from Eq. (6-68). Thus, the

asymptotic performance for large R and large N of the optimized realizable es-
timator R̂∗ is the same as that of the fictitious estimator R̂• given in Eq. (6-65).
In particular, we see from Eq. (6-65) that var

{
R̂∗

}
grows only linearly in the

limit of large R, whereas var
{
R̂L

}
for any fixed L eventually grows quadratically

for large enough R/L.
As can be seen from Eq. (6-63), the generalized SSME R̂L is asymptotically

unbiased (in the limit as N → ∞). As shown in [6], it is possible to completely
remove the bias of the conventional SSME R̂ and to define a perfectly unbiased
estimator as R̂o = R̂ − (R̂ + 1)/N . Similarly, we can now define a precisely
unbiased version R̂o

L of our generalized estimator R̂L by

R̂o
L = R̂L − R̂L + L

LN
(6 71)

Again we note that the original unbiased SSME R̂o is just a special case of our
generalized unbiased SSME, R̂o = R̂o

1. Using the definition of Eq. (6-71) together
with the expressions in Eq. (6-62) for the exact mean and variance of R̂L, we
find that the exact mean and variance of the unbiased estimator R̂o

L are given
by
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E
{

R̂o
L

}
= R

var
{

R̂o
L

}
=

L2

LN − 2

[(
1 +

4R

L

) (
LN − 1/2

LN

)
+

(
R

L

)2
] (6 72)

For large N , the asymptotic variance expression obtained from Eq. (6-72) is
identical to that already shown in Eq. (6-63) for the biased estimator. Thus,
all of the preceding conclusions about the optimal choice of L for a given R,
and the resulting optimal estimator performance, apply equally to the unbiased
versions R̂o

L of the estimators R̂L.

6.7 A Method for Improving the Robustness of the
Generalized SSME

For any fixed L, our generalized SSME R̂L is only optimal when the true
SNR R lies in the range

√
2L (L − 1) ≤ R ≤

√
2L (L + 1). Indeed R̂L for

any L > 1 is inferior to the original SSME R̂1 for small enough R (at least for
0 ≤ R ≤ 2). The range of optimality for a given value of L, measured in decibels,
is just 10 log10

[√
2L(L + 1)/

√
2L(L − 1)

]
= 5 log10

[
(L+1)/(L−1)

]
dB, which

diminishes rapidly toward 0 dB with increasing L. In order to achieve the exact
performance of the optimized estimator R̂∗ over an unknown range of values of
the true SNR R, one would need to select, and then implement, the optimal sym-
bol subdivision based on arbitrarily precise knowledge (measured in decibels) of
the very parameter being estimated! Fortunately, there is a more robust version
of the generalized SSME that achieves nearly the same performance as R̂∗, yet
requires only very coarse knowledge about the true SNR R.

To define the robust generalized SSME, we use the same set of estimators{
R̂L

}
as defined before for any fixed integers L, but now we restrict the allow-

able choices of L to the set of integers {b�, � = 0, 1, 2, · · ·}, for some integer base
b ≥ 2. The optimal choice of L restricted to this set is denoted by Lb∗(R), and
the corresponding optimized estimator is denoted by R̂b∗. Because our various
estimators differ only in the amount of freedom allowed for the choice of L, their
performances are obviously related as

var
{

R̂•
}
≤ var

{
R̂∗

}
≤ var

{
R̂b∗

}
≤ var

{
R̂1

}
(6 73)

In this section, we will show analytically that the variance achieved by the robust
estimator R̂b∗ with b = 2 comes very close to that achieved by the fictitious
estimator R̂• for all R ≥ 2, and hence Eq. (6-73) implies that for this range
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of R it must be even closer to the less analytically tractable variance achieved
by the optimized realizable estimator R̂∗. Conversely, for all R ≤ 2, we have
already seen that the optimized realizable estimator R̂∗ is the same as the original
SSME R̂1, and hence so is the optimized robust estimator R̂b∗ for any b, since
L = b0 = 1 is a permissible value for the robust estimator as well.

The convexity of the general asymptotic variance expression in Eq. (6-63)
again allows us to test the optimality of R̂b� by simply comparing its performance
versus that of its nearest permissible neighbors, R̂b�−1 and R̂b�+1 . The lower and
upper endpoints of the region of optimality for any particular R̂b� are determined
by equating var

{
R̂b�

}
with var

{
R̂b�−1

}
and var

{
R̂b�+1

}
, respectively. This leads

to the following definition of the optimal Lb∗(R) for L restricted to the set{
b�, � = 0, 1, 2, · · ·

}
:

Lb∗(R) =

{
b�, if

√
2b2�−1 ≤ R ≤

√
2b2�+1 for integer � ≥ 1

b0 = 1, if 0 ≤ R ≤
√

2b
(6 74)

For all R ≤
√

2b, the optimized estimator R̂b∗ is the same as the original
SSME R̂1. For all R ≥

√
2/b (which includes the upper portion of the in-

terval over which l = 0 is optimum), the variance achieved by R̂b∗, normalized
to that of the fictitious estimator R̂•, is obtained from Eqs. (6-66) and (6-74) in
terms of r = R/Lb∗(R), and upper bounded by

var
{
R̂b∗

}
var

{
R̂•

} =
2/r + 4 + r

4 + 2
√

2
≤

4 +
√

2
(√

b + 1/
√

b
)

4 + 2
√

2
,

1√
b
≤ r√

2
≤

√
b (6 75)

As with the earlier expression of Eq. (6-70) for the variance of R̂∗, the intervals of
validity in Eq. (6-75) for any value of R always include the optimal point r =

√
2

at which the ratio of variances is unity. But unlike Eq. (6-70), the width of the
intervals in Eq. (6-75) stays constant independently of r. The upper limit on the
variance ratio shown in Eq. (6-75) occurs at the end points of these intervals,
i.e., for SNR values expressible as R =

√
2b2�−1 for some integer � ≥ 0. This

upper limit is the maximum excursion from unity of the variance ratio for all
R ≥

√
2/b. For all R ≤ 2 and any b ≥ 2, there is no limit on the suboptimality

of R̂b∗ with respect to the fictitious estimator R̂•, but in this range R̂b∗ suffers
no suboptimality with respect to the optimized realizable estimator R̂∗, since
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both are equivalent to the original SSME R̂1 for R ≤ 2. Finally, reiterating our
earlier conclusion based on the simple inequalities in Eq. (6-73), we conclude
that the maximum degradation D(R) of the robust estimator R̂b∗ with respect
to the optimized realizable estimator R̂∗ is upper bounded for all R by

D(R) =
var

{
R̂b∗

}
var

{
R̂∗

} ≤
var

{
R̂b∗

}
var

{
R̂•

} ≤
4 +

√
2

(√
b + 1/

√
b
)

4 + 2
√

2
for all R (6 76)

For example, we consider the case of b = 2, which yields permissible values of L

given by L = 1, 2, 4, 8, 16, · · · and corresponding decision region boundaries at
R = 1, 2, 4, 8, 16, · · ·, i.e., regions separated by 3 dB. From Eq. (6-76), the maxi-
mum degradation Dmax for using the coarsely optimized estimator R̂2∗ instead
of the fully optimized realizable estimator R̂∗ is no more than

Dmax ≤ 7
4 + 2

√
2

= 1.02513 (6 77)

i.e., a penalty of only 2.5 percent. Even if we were to enlarge the regions of
constant Lb∗(R) to a width of 9 dB in R (corresponding to b = 8), the maximum
penalty would increase only to

Dmax ≤ 8.5
4 + 2

√
2

= 1.245 (6 78)

i.e., a penalty just under 25 percent. Thus, even though the optimized gener-
alized SSME R̂∗ requires (in principle) very precise prior knowledge of the true
value of R, its performance can be reasonably well approximated by that of a
robust estimator R̂b∗ requiring only a very coarse prior estimate of R.

6.8 Special Case of the SSME for BPSK-Modulated Data
We can define an analogous sequence of generalized SSMEs {R̃L, L = 1, 2, · · ·}

corresponding to the original SSME R̃ = R̃1 developed for BPSK signals using
real-valued in-phase samples only. In this case, the (exact) mean and variance
of the original SSME R̃ are given by [4]
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E
{

R̃
}

= R +
2R + 1
N − 2

var
{

R̃
}

=
1

N − 4

(
N

N − 2

)2 [
(1 + 4R)

(
N − 1

N

)
+ 2R2

] (6 79)

The mean and variance of the generalized SSME R̃L based on real-valued sam-
ples are obtained from Eq. (6-79) by following the same reasoning that led to
Eq. (6-62):

E
{

R̃L

}
= L

[
R

L
+

2R/L + 1
LN − 2

]
= R +

2R + L

LN − 2

var
{

R̃L

}
=

L2

LN − 4

(
LN

LN − 2

)2
[(

1 +
4R

L

) (
LN − 1

LN

)
+ 2

(
R

L

)2
] (6 80)

and the asymptotic forms for large N , i.e., N 	 1, are within O(1/N2) of

E
{

R̃L

}
= R +

2R + L

LN

var
{

R̃L

}
=

L

N

[
1 + 4

(
R

L

)
+ 2

(
R

L

)2
] (6 81)

We can argue as in [5] that the first- and second-order statistics of the SSME R̂L

based on complex samples are derivable from those of the SSME R̃L based on
real samples. Specifically, since R̂L is obtained from twice as many real ob-
servables as R̃L, with (on average) only half the SNR (since the SNR is zero
in the quadrature component for BPSK signals), we have the following (exact)
equalities:

E

{
R̂L

2

}∣∣
(R,N) = E

{
R̃L

} ∣∣
([R/2],2N)

var

{
R̂L

2

}∣∣
(R,N) = var

{
R̃L

} ∣∣
([R/2],2N)

(6 82)
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where now we have explicitly denoted the dependence of R̂L and R̃L on the SNR
and the number of symbols. The equalities in Eq. (6-82) can be verified by direct
comparison of Eq. (6-80) with Eq. (6-62) and Eq. (6-81) with Eq. (6-63).

As in our earlier analysis of the generalized SSME R̂L based on complex-
valued samples, we can also optimize the generalized SSME R̃L based on
real-valued samples with respect to its asymptotic performance expressions in
Eq. (6-81). We define for any fixed value of R an optimum integer L = L̃∗(R)
and an optimum real number L = L̃•(R) to minimize the asymptotic variance
expression in Eq. (6-81), and corresponding optimal realizable and fictitious esti-
mators R̃∗ and R̃•. For the optimum realizable estimate, we find, corresponding
to Eq. (6-68), that the optimum integer L̃∗(R) is evaluated as

L̃∗(R) = L, if
√

L (L − 1) /2 ≤ R ≤
√

L (L + 1) /2 (6 83)

We find, corresponding to Eqs. (6-64) and (6-65), that the optimal real value
of L is L̃•(R) = R

√
2 and the corresponding variance is

var
{

R̃•
}

=
R

N

(
4 + 2

√
2
)

= var
{

R̂•
}

(6 84)

In other words, the fictitious estimator achieves identical variance using either
real samples or complex samples.

Finally, we observe from a comparison of Eqs. (6-62) and (6-80) an interesting
(exact) relationship between the means and variances of the two generalized
SSMEs for different values of the symbol rate oversampling factor L:

E
{

R̂L

}
= E

{
R̃2L

}

var
{

R̂L

}
= var

{
R̃2L

} (6 85)

Thus, the estimators R̃L based on real samples can be viewed as a more finely
quantized sequence than the estimators R̂L based on complex samples, in that
any mean and variance achievable by an estimator in the latter sequence is also
achievable by taking twice as many subintervals in a corresponding estimator
from the former sequence. This implies, for example, that the maximum devia-
tion of the variances of R̃∗ and R̃• is no greater than that calculated in Eq. (6-70)
for the deviation between the variances of R̂∗ and R̂•.
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6.9 Comparison with the Cramer–Rao Lower Bound
on the Variance of SNR Estimators

A good benchmark for the performance of a given SNR estimator is the
Cramer–Rao (C-R) lower bound on its variance [11]. Here we present for com-
parison the C-R lower bound for any SNR estimator using a given number of
observables (samples) per symbol interval, with or without knowledge of the
data. For simplicity, we consider only estimators based on real observables,
since a number of C-R bounds reported elsewhere [1,12,13] have explicitly con-
sidered that case.

It has been shown in [13] that the C-R lower bound on the variance of an
arbitrary unbiased estimator of SNR, R∗, in the presence of unknown binary
equiprobable data and K independent real observations per symbol (K subin-
terval samples) is given by

var {R∗} ≥ 2R2

N

[
2K + 2R − E2 (2R)

2KR − (4R + K)E2 (2R)

]
(6 86)

where

E2 (2R) = E
{
X2sech2X

}
(6 87)

with X a Gaussian random variable with mean and variance both equal to 2R.
The expectation in Eq. (6-87), which depends only on R, cannot be determined in
closed form but is easily evaluated numerically. Figure 6-9, described at the end
of this section, compares the C-R bounding variance in Eq. (6-86) with the actual
asymptotic variance in Eq. (6-81) achieved by the generalized SSME R̃L based
on real samples. For this comparison, we substitute K = 2L in the C-R bound
expression (because there are K = 2L subinterval integrations contributing to
the SSME R̃L), and we plot the cases L = 1, 2, 4,∞.

We can also perform analytic comparisons in the limits of low and high SNR.
The low- and high-SNR behavior of the C-R bounding variance in Eq. (6-86) is
given by [13]

var {R∗} ≥

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2N

(
K

K − 1

)
, R � 1 < K

2R

N

(
1 +

R

K

)
, R 	 K

(6 88)
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Fig. 6-9.  A comparison of the performance of several SNR estimators with 
the Cramer–Rao bound.

By comparison, the asymptotic expression in Eq. (6-81) for the variance of R̃L

for any fixed L reduces in the low- and high-SNR limits to

var
{

R̃L

}
∼=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

L

N
=

K

2N
, L 	 R

2R2

NL

(
1 +

2L

R

)
=

4R

N

(
1 +

R

K

)
, R 	 L

(6 89)

Compared to the C-R bounding variance in Eq. (6-88), the actual variance in
Eq. (6-89) is higher by a factor of K − 1 in the low-SNR limit and by a factor
of two in the high-SNR limit.

For any fixed K, the C-R bounding variance in Eq. (6-86) becomes quadratic
in R as R approaches infinity, as evidenced by the second expression in
Eq. (6-89). On the other hand, the limiting behavior of the bound for K ap-
proaching infinity with fixed R is given by
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var {R∗} ≥ 1
N

[
4R2

2R − E2 (2R)

]
, K 	 max (R, 1) (6 90)

Since E2(2R) = 2R + 8R2 + O
(
R3

)
for small R and is exponentially small for

large R [13], the C-R bounding variance on the right side of Eq. (6-90) approaches
a constant at low SNR and becomes linear in R at high SNR:

var {R∗} ≥

⎧⎪⎪⎨
⎪⎪⎩

1
2N

, K 	 1 	 R

2R

N
, K 	 R 	 1

(6 91)

Since the C-R bounding expressions in Eqs. (6-90) and (6-91) for large values
of K = 2L reflect the best possible performance of an estimator with access
to a continuum of samples within each symbol, they are suitably compared to
the performance of the optimized estimator R̃∗, rather than to the performance
of R̃L for any fixed L. As an approximation to R̃∗, we use a stand-in estimator
equal to R̃1 for R ≤ 2 (i.e., where L̃∗(R) = 1) and to the fictitiously optimized
estimator R̃• for R > 2. The corresponding asymptotic variances computed from
Eq. (6-81) for the limits corresponding to those in Eq. (6-91) are

⎧⎪⎪⎨
⎪⎪⎩

var
{

R̃1

}
=

1
N

, 1 	 R

var
{

R̃•
}

=
R

N

(
4 + 2

√
2
)
, R 	 1

(6 92)

The estimator variances in Eq. (6-92) are higher than the corresponding C-R
bounding variances in Eq. (6-91) by a factor of 2 in the low-SNR limit and by
a factor of 2 +

√
2 ∼= 3.4 in the high-SNR limit. The optimized realizable esti-

mator R̃∗ suffers an additional small suboptimality factor with respect to the
performance of the fictitious estimator R̃• used as its stand-in in Eq. (6-92).

Finally we consider for purposes of comparison the C-R bound on an arbi-
trary unbiased estimator when the data are perfectly known. The C-R bound
under this assumption is well known, e.g., [11]. Here we continue with the nota-
tion of [13] by noting that the derivation there for the case of unknown data is
easily modified to the known data case by skipping the average over the binary
equiprobable data. The result is equivalent to replacing the function E2 (2R) by
zero in the C-R bound expression in Eq. (6-41), i.e.,

var
{

R̂
}
≥ 2R2

N

[
2K + 2R

2KR

]
=

2R

N

(
1 +

R

K

)
, for all K, R (6 93)
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We compare this bound for known data, which is valid for all K and R, with
the high-SNR bound for unknown data given by the second expression in Eq. (6-
88), which is valid for any fixed K as R → ∞. These two variance expressions
are identical because the second expression in Eq. (6-88) was obtained from
Eq. (6-86) using the approximation that E2(2R) is exponentially small for
large R. Thus, we reach the interesting and important conclusion that, based on
the C-R bounds, knowledge of the data is inconsequential in improving the accu-
racy of an optimized SNR estimator at high enough SNR! We also note that the
limiting fractional variance, var

{
R∗}/

(
R∗)2, in either case is simply 2/(NK),

i.e., it falls in proportion to the total number NK of samples collected. In this
limit, therefore, it does not matter to an optimal estimator whether it collects
the same total number of samples in step with the symbol rate or faster. From
the second expression in Eq. (6-89), we see that our generalized SSME R̃L be-
haves similarly to an optimum estimator in this respect, because the ratio of its
fractional variance to the C-R bounding variance is a constant factor of 2 when
R 	 K. Whereas with the original SSME one might need to wait Nreq sym-
bol periods to reach a desired estimator variance, our generalized SSME now
offers the capability at high enough SNR to reach this same variance within
Nreq/L symbol periods. Since any practical system will impose limits on the
integrate-and-dump rate, and hence on L, this waiting time for acceptable es-
timator variance cannot be made arbitrarily small. However, at high SNR our
generalized SSME allows this waiting time to be reduced down to the limits
arising from the system’s sampling rate if so desired.

At low SNR, we have seen from the first expression in Eq. (6-88) that the
C-R bounding variance (not the fractional variance) for the case of unknown data
hits a nonzero floor at (1/2N)K/(K − 1) no matter how closely R approaches
zero, whereas the bounding variance in Eq. (6-93) for the case of known data
goes to zero linearly in R. Thus, knowledge of the data fundamentally changes
the behavior of the C-R bound at low SNR, and it can be quite helpful in this
region for improving the accuracy of the estimator. Inspection of Eqs. (6-93)
and (6-88) in the limit of small R shows that, in contrast to the case for high
SNR, oversampling confers no benefit (with known data) or virtually no benefit
(with unknown data) to the performance of an optimized estimator at low SNR.
Indeed, we see from Eq. (6-89) that the performance of our generalized SSME
in this limit is actually worsened by oversampling. Thus, the waiting time to
achieve acceptable estimator variance at low SNR is dictated by the symbol rate,
even if the system’s sampling rate capabilities are significantly faster.

Figure 6-9 summarizes the comparisons of our generalized SSME with the
relevant C-R bounds (CRB). This figure plots the CRB as a function of true
SNR R, for K = 2, 4,∞ with unknown data, and for K = ∞ with known data.
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Also shown for comparison are the actual asymptotic variances achieved by the
original SSME R̃1, the generalized SSME R̃2 using four subinterval integrations
within each symbol, and the optimized generalized SSME R̃∗. In each case, the
asymptotic variance is plotted in normalized form as Nvar{·}/R2, which can
be interpreted as the number of symbols N that must be observed to achieve a
fractional estimator variance of 100 percent; smaller fractional variances require
inversely proportionately larger numbers of symbols. Also, since asymptotically
for large N , var{·}/R2 is an inverse measure of the “quality” of the estimator
as previously defined, which for large R varied inversely with N , then asymp-
totically for large R, Nvar{·}/R2 is an inverse measure of this quality with the
dependence on observation time normalized out.

6.10 Improvement in the Presence of Frequency
Uncertainty
Earlier in the chapter and in [6] we considered the performance of the con-

ventional (L = 1) SSME in the presence of carrier phase and frequency uncer-
tainties for a variety of cases corresponding to the degree to which the frequency
uncertainty is estimated and compensated for. Here we extend these results to
the generalized SSME, i.e., we examine the improvement in performance when
frequency uncertainty is present, obtained by optimally partitioning the symbol
interval in accordance with the value of the true SNR. In the case where the fre-
quency uncertainty is not estimated, one has no choice other than to use the SNR
boundaries determined in the no-frequency-uncertainty case, i.e., those given in
Eq. (6-68) or Eq. (6-74). For the cases where an estimate of the frequency un-
certainty is available, and therefore can be compensated for, one can use this
information, if desired, to modify the SNR boundaries. However, to a first-order
approximation, we shall assume in what follows that we always determine the
boundaries for the symbol regions of fixed partitioning from their zero-frequency
uncertainty values. This allows one to implement a fixed-SSME configuration
independent of the knowledge of the frequency error and yet still to obtain the
possibility of a performance advantage relative to the conventional half-symbol
split structure. To illustrate the application of the principles involved and re-
sulting performance gains obtained, we shall consider only a few of the cases
previously treated.

•Case 1: Frequency Uncertainty, No Frequency Estimation
(and thus No Phase Compensation)

For this case, it was shown earlier that the variance of the conventional SSME
is given by Eq. (6-26). To modify this expression for the case of 2L partitions



166 Chapter 6

of the symbol interval, we proceed as before by replacing R by R/L, N by LN ,
δ by δ/L, and then multiplying the result by L2, resulting in5

var
{

R̂L

}
=

L2

(
LN

LN − 1

)2 {(
LN − 1
LN − 2

) ⎡
⎢⎢⎣

(
1 + 2h+

(
δ

L

)
R

L

)
LN

+
(

1 + h+

(
δ

L

)
R

L

)2

⎤
⎥⎥⎦

× 1F1

(
2;LN ;−Nh−

(
δ

L

)
R

)
−

(
1 + h+

(
δ

L

)
R

L

)2

×
[
1F1

(
1;LN ;−Nh−

(
δ

L

)
R

)]2
}

(6 94)

Then, the improvement in performance is obtained by taking the ratio of
Eq. (6-26) to Eq. (6-94), i.e.,

I (R) =
var

{
R̂

}
var

{
R̂L

} (6 95)

where, for a value of R in the interval R−
L ≤ R < R+

L , the value of L to be used
corresponds to that determined from Eq. (6-68) or alternatively from Eq. (6-74).
We note that since the boundaries of the SNR regions of Eqs. (6-68) and
(6-74) are determined from the asymptotic (large N) expressions for the esti-
mator variance, a plot of I(R) versus R determined from Eq. (6-95) will exhibit
small discontinuities at these boundaries. These discontinuities will become van-
ishingly small as N increases.

Figures 6-10 and 6-11 illustrate such a plot for values of N equal to 20 and 100,
respectively, with δ as a parameter. We make the interesting observation that,
although on an absolute basis the variance of the estimator monotonically im-
proves with increasing N , the improvement factor as evaluated from Eq. (6-95),
which makes use of the exact expression for the estimator variance, shows a larger
improvement for smaller values of N . To see how this comes about analytically,

5 To make matters clear, we now include the dependence of h± on δ in the notation.
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4 6 10

0.2

0.15
0.1

0.05

δ = 0

1.20

I (
R

 )

0 2 8 12 14

R

Fig. 6-11.  Improvement factor versus SNR with normalized frequency
uncertainty as a parameter; Case 1; N = 100.

4 6 10

1.25

1.50

1.75

2.00

2.25

2.50

2.75

0.2

0.15
0.1

0.05
δ = 0



168 Chapter 6

we examine the behavior of the zero-frequency uncertainty improvement factor
for large SNR. For sufficiently large SNR (equivalently, large L), we obtain from
Eq. (6-62) the same asymptotic expression as given in Eq. (6-63) when assuming
N large. Also, since for large SNR L and R are approximately related by L =
R/

√
2, then substituting this in Eq. (6-63) gives the asymptotic result

var
{

R̂L

}
∼= R

N

(
4 + 2

√
2

)
(6 96)

From Eq. (6-61), we have for sufficiently large SNR

var
{

R̂
}

=
1

N − 2

(
N

N − 1

)2

R2 (6 97)

Thus, the improvement factor for large SNR is the ratio of Eq. (6-97) to
Eq. (6-96), namely,

I (R) =

1
N − 2

(
N

N − 1

)2

R2

R

N

(
4 + 2

√
2

) =
R

4 + 2
√

2

(
N

N − 2

) (
N

N − 1

)2

(6 98)

which, for a given R, is a monotonically decreasing function of N approaching
I(R) = R/

(
4 + 2

√
2

)
in the limit as N → ∞.

•Case 2b: Frequency Uncertainty, Perfect Frequency Estimation,
Fractional-Symbol Phase Compensation

The case where the frequency uncertainty is perfectly estimated and then
used to compensate for the phase shift caused by this uncertainty in the second
half of the symbol interval variance of the estimator was given in Eq. (6-30).
Making the same substitutions as before, for a 2L-partition of the symbol interval
we obtain

var
{

R̂L

}
=

L2 1
(h+ (δ/L))2

1
LN − 2

(
LN

LN − 1

)2
[(

1 + 2h+

(
δ

L

)
R

L

) (
2LN − 1

LN

)

+
(

h+

(
δ

L

)
R

L

)2
]

(6 99)
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Comparing Eq. (6-30) with Eq. (6-61), we observe that, in this case, the variance
of h+ (δ) R̂ for the conventional SSME is identical to the variance of R̂ in the
zero-frequency uncertainty case. From a comparison of Eqs. (6-99) and (6-62),
a similar equivalence can be made between the variance of h+ (δ/L) R̂ and the
variance of R̂ for the 2L-partition estimator.

Analogous to what was done for Case 1, the improvement factor, I(R), here
can be obtained from the ratio of Eq. (6-30) to Eq. (6-99). Figures 6-12 and 6-13
are plots of I(R) versus true SNR, R, for values of N equal to 20 and 100, respec-
tively, with δ as a parameter. Once again we make the observation that a larger
improvement is obtained for smaller values of N . An analytical justification for
this observation can be demonstrated by examining the behavior of I for large
SNR. Specifically, the analogous expression to Eq. (6-98) now becomes

I(R) =

(
1

(h+ (δ))2 R
+

2
h+ (δ)

)(
2N − 1

N

)
+ R

4
h+

(√
2δ/R

) +
√

2

(
1 +

1(
h+

(√
2δ/R

))2

) (
N

N − 2

) (
N

N − 1

)2
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which for sufficiently large R relative to δ (i.e., h+
(√

2δ/R
) ∼= 1) becomes

I(R) =

(
1

(h+ (δ))2 R
+

2
h+ (δ)

)(
2N − 1

N

)
+ R

4 + 2
√

2

(
N

N − 2

) (
N

N − 1

)2

(6 101)

Once again we see in Figs. 6-12 and 6-13 the same dependence on N as before
approaching

I(R) =

2

(
1

(h+ (δ))2 R
+

2
h+ (δ)

)
+ R

4 + 2
√

2
(6 102)

in the limit as N → ∞. We also note that, whereas in the previous figures
for a given value of R the improvement factor decreased with increasing fre-
quency uncertainty, here it increases, which is consistent with Eq. (6-102) since



170 Chapter 6

3.0

2.5

2.0

1.5

I (
R

 )

3.5

1.0

0 2 8 12 14
R

Fig. 6-12.  Improvement factor versus SNR with normalized frequency uncertainty
as a parameter; Case 2b; N = 20.
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h+ (δ) = sinc2 (δ/4) is a monotonically decreasing function of δ. The intu-
itive reason for this occurrence is that, for the conventional SSME, the perfor-
mance degrades much more severely in the presence of large frequency uncer-
tainty than for the improved SSME since for the former the degradation factor
h+ (δ) operates out on its tail, whereas for the latter the effective frequency
uncertainty is reduced by a factor of L, and thus for large L the degradation
factor h+(δ/L) ∼= h

(√
2δ/R

)
operates near its peak of unity. Eventually, for

sufficiently large R, the improvement approaches I(R) = R/
(
4 + 2

√
2

)
as in

Case 1. Finally, comparing Figs. 6-12 and 6-13 with Figs. 6-10 and 6-11, we
observe that much larger frequency uncertainties can be tolerated for Case 2b
than for Case 1.

6.11 The Impact of the Oversampling Factor on the
Performance of the Modified SSME in the
Presence of Symbol Timing Error
In Section 6.5 we investigated the performance of the conventional SSME

in the presence of symbol timing error. From the results given there, we see for
example that if the fractional symbol timing error ε were equal to 1/2, then from
Eqs. (6-49) and (6-51) we would have that

E
{
U±}

= 2σ2

(
1 +

R

2

)
(6 103)

in which case the performance of the SSME completely degenerates. Since it is
desirable to perform SNR estimation prior to obtaining symbol synchronization,
it would be advantageous to reduce the sensitivity of the operation of the SSME
to knowledge of the symbol timing offset. As we shall show shortly, interestingly
enough this can be accomplished by employing an oversampling factor L greater
than unity. In fact, the larger the value of L, the less the sensitivity, and in
the limit of sufficiently large L, the SSME performance becomes independent of
knowledge of the symbol timing.

To illustrate the above statements, assume that for a given L the fractional
symbol timing error ε is quantized to ε = Lε/L, where for L even, Lε can take
on any of the integer values 0, 1, 2, · · · , L/2, and for L odd, Lε can take on any
of the integer values 0, 1, 2, · · · , (L − 1) /2. Under these circumstances, in the
absence of frequency error, the first and second half-symbol I&D outputs would
be given by
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Yakl = mdk
L

T

∫ (k−1+(l−1/2+Lε)/L)

(k−1+(l−1+Lε)/L)T

ejφdt +
L

T

∫ (k−1+(l−1/2+Lε)/L)

(k−1+(l−1+Lε)/L)T

n (t) dt

=
mdk

2
ejφ + nakl

(6 104)

Yβl = mdk
L

T

∫ (k−1+(l+Lε)/L)

(k−1+(l−1/2+Lε)/L)T

ejφdt +
L

T

∫ (k−1+(l+Lε)/L)

(k−1+(l−1/2+Lε)/L)T

n (t) dt

=
mdk

2
ejφ + nβkl, l = 1, 2, · · · , L − Le

and

Yakl = mdk+1
L

T

∫ (k−1+(l−1/2+Lε)/L)

(k−1+(l−1+Lε)/L)T

ejφdt +
L

T

∫ (k−1+(l−1/2+Lε)/L)

(k−1+(l−1+Lε)/L)T

n (t) dt

=
mdk+1

2
ejφ + nakl

(6 105)

Yβl = mdk+1
L

T

∫ (k−1+(l+Lε)/L)

(k−1+(l−1/2+Lε)/L)T

ejφdt +
L

T

∫ (k−1+(l+Lε)/L)

(k−1+(l−1/2+Lε)/L)T

n (t) dt

=
mdk+1

2
ejφ + nβkl, l = L − Lε + 1, L − Lε + 2, · · · , L

where nαkl and nβkl are zero-mean Gaussian RVs with variance independent of
the value of ε. Thus, in so far as the modified SSME is concerned, the partition-
ing of each symbol into L pairs of subdivisions occurs as before with, however,
the first L − Lε now containing the data symbol dk and the remaining Lε ones
containing the data symbol dk+1. However, since the statistics of the SSME
are independent of the data symbols themselves, then we conclude that for the
assumed quantization of ε, the performance of the SSME is independent of the
value of symbol timing error.

Next assume that for a given L the fractional symbol timing error ε is quan-
tized to ε = (Lε + 1/2) /L, where again for L even, Lε can take on any of the
integer values 0, 1, 2, · · · , L/2, and for L odd, Lε can take on any of the integer
values 0, 1, 2, · · · , (L − 1) /2. Under these circumstances, in the absence of fre-
quency error, the first and second half-symbol I&D outputs would be given by
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the results in Eqs. (6-104) and (6-105) for all values of l with the exception of
l = L − Lε, in which case these outputs become

Yakl |l=L−Lε
=

mdk

2
ejφ + nakl |l=L−Lε

Yβl |l=L−Lε
=

mdk+1

2
ejφ + nβkl |l=L−Lε

(6 106)

In this case, the sum and difference of the first and second half-symbol I&D
outputs become

u+
kl = mdkejφ + nakl + nβkl

u−
kl = nakl − nβkl, l = 1, 2, · · · , L − Lε − 1

u+
kl |l=L−Lε

= m

(
dk + dk+1

2

)
ejφ + nakl |l=L−Lε

+ nβkl |l=L−Lε

u−
kl |l=L−Lε

= m

(
dk − dk+1

2

)
ejφ + nakl |l=L−Lε

− nβkl |l=L−Lε

u+
kl = mdk+1e

jφ + nakl + nβkl

u−
kl = nakl − nβkl, l = L − Lε + 1, L − Lε + 2, · · · , L

(6 107)

Thus, for the kth symbol, L − 1 sum and difference pairs contribute values
whose statistics are independent of the value of ε (and thus the same as in
the ideal SSME), whereas one sum and difference pair contributes values whose
statistics are different from those of the ideal SSME and thus will result in some
degradation of performance. To quantify this performance degradation, we need
to compute the statistics of the accumulated squared norms of the sum and
difference RVs in Eq. (6-107), namely, U± = (1/NL)

∑N
k=1

∑L
l=1

∣∣u±
kl

∣∣2. After
some effort, the results for the means and variances, assuming for simplicity
BPSK modulation, are as follows:
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E
{
U+

}
= m2

(
L − 1/2

L

)
+ 2σ2L = 2σ2

[
L +

(
L − 1/2

L

)
R

]

E
{
U−}

=
m2

2L
+ 2σ2L = 2σ2

(
L +

R

2L

) (6 108)

and

var
{
U+

}
=

4
N

[
σ4L +

(
L − 1/2

L

)
m2σ2 +

m4

16L2

]

=
4
N

σ4

[
L + 2

(
L − 1/2

L

)
R +

R2

4L2

]

var
{
U−}

=
4
N

(
σ4L +

m2σ2

2L
+

m4

16L2

)

=
4
N

σ4

(
L +

R

L
+

R2

4L2

)

(6 109)

Note that for L = 1 (the conventional SSME) and thus Lε = 0, i.e., ε = 1/2,
Eq. (6-108) agrees with Eq. (6-103) and Eq. (6-109) agrees with the combination
of Eqs. (6-49) and (6-52). Furthermore, for sufficiently large L, the moments of
U± given in Eqs. (6-108) and (6-109) reduce to

E
{
U+

}
= 2σ2 (L + R) , E

{
U−}

= 2σ2L

var
{
U+

}
=

4
N

σ4 (L + 2R) , var
{
U−}

=
4
N

σ4L

(6 110)

which correspond to those of the ideal (perfect symbol timing) SSME.
Finally, we note that for other values of ε between the best quantized ones,

namely, ε = Lε/L which yield the same performance as the ideal SSME, and the
worst quantized ones, namely, ε = (Lε + 1/2) /L which yield the most degrada-
tion in performance, the modified SSME will have a performance between these
two extremes.
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6.12 Other Modulations
Thus far, we have considered the behavior and performance of the SSME

for the class of M -PSK (M ≥ 2) modulations with and without frequency uncer-
tainty. As we shall show in this section, it is also possible to use the same basic
SSME structure (with perhaps slight modification) to provide SNR estimation
for offset quadrature phase-shift keying (OQPSK) as well as non-constant enve-
lope modulations such as QAM. As before, the performance of the estimator is
still independent of the data symbol sequence as well as the carrier phase and
allows for the same enhancement by increasing the number of pairs of observ-
ables per symbol in accordance with the true value of SNR.

6.12.1 Offset QPSK

For the case of M -PSK, we indicated in Section 6.1 that the kth transmit-
ted complex symbol in the interval (k − 1)T ≤ t ≤ kT can be represented in the
form dk = ejφk , where φk takes on one of M phases uniformly spaced around
the unit circle. A special case of the above, corresponding to M = 4, results
in conventional quadrature phase-shift keying (QPSK). It is well-known that on
nonlinear channels OQPSK provides a performance advantage since it reduces
the maximum fluctuation in the signal amplitude by limiting the maximum phase
change to 135 deg rather than 180 deg. Since for OQPSK the complex represen-
tation of a symbol extends over one and one-half symbols (because of the offset
between the I and Q channels), it cannot conveniently be represented in the
polar form dk = ejφk as above. Rather, one should consider the I and Q channel
modulations separately. Thus, it is of interest to investigate whether the SSME
can be easily modified to accommodate OQPSK and, if so, how its performance
is affected. For convenience, we consider only the I&D implementation of the
SSME since the same conclusions that will be reached also apply to the multiple
samples per symbol version.

Corresponding to the kth QPSK symbol dk = ejφk = (ak + jbk)/
√

2,
where ak and bk are independent binary (±1) symbols, the OQPSK transmit-
ter sends ak/

√
2 during the interval (k − 1)T ≤ t ≤ kT and bk/

√
2 during the

interval (k − 1/2)T ≤ t ≤ (k + 1/2)T . Thus, after complex demodulation by
the receiver carrier with frequency uncertainty ω and unknown phase φ, the
kth complex baseband received signal in the I channel is described by

yI(t) =
1√
2
makej(ωt+φ) + nI(t), (k − 1)T ≤ t ≤ kT (6 111)

where as before nI(t) is a zero-mean AWGN process. The signal in Eq. (6-111)
is, as before, input to first and second I-channel half-symbol I&Ds operating over
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the intervals (k − 1)T ≤ t ≤ (k − 1/2)T and (k − 1/2)T ≤ t ≤ kT , respectively.
Analogous to Eq. (6-14), the outputs of these I&Ds are given by

YIαk
=

1√
2
mak

1
T

∫ (k−1/2)T

(k−1)T

ej(ωt+φ)dt +
1
T

∫ (k−1/2)T

(k−1)T

nQ (t) dt

=
[
mak/

(
2
√

2
)]

ejφejω(k−3/4)T sinc (δ/4) + nIαk

(6 112)

YIβk
=

(
1√
2
mak

1
T

∫ kT

(k−1/2)T

ej(ωt+φ)dt +
1
T

∫ kT

(k−1/2)T

nI (t) dt

)
e−jθk

=
([

mak/
(
2
√

2
)]

ejφejω(k−3/4)T ejωT/2 sinc (δ/4) + nIβk

)
e−jθk

where nαk and nβk are complex Gaussian noise variables with zero mean and
variance σ2, and e−jθk is a phase compensation that accounts for the possible
adjustment of the kth second-half sample for phase variations across a given
symbol due to the frequency offset.

Similarly, the kth complex baseband received signal in the Q channel is de-
scribed by

yQ(t) =
1√
2
mbkej(ωt+φ) + nQ(t), (k − 1/2)T ≤ t ≤ (k + 1/2)T (6 113)

where nQ(t) is also a zero-mean AWGN process independent of nI(t). The signal
in Eq. (6-113) is input to first and second Q-channel half-symbol I&Ds operating
over the intervals (k − 1/2)T ≤ t ≤ kT and kT ≤ t ≤ (k + 3/2)T , respectively.
Analogous to Eq. (6-112), the outputs of these I&Ds are given by

YQαk
=

1√
2
mbk

1
T

∫ kT

(k−1/2)T

ej(ωt+φ)dt +
1
T

∫ kT

(k−1/2)T

nQ (t) dt

=
[
mbk/

(
2
√

2
)]

ejφejω(k−1/4)T sinc (δ/4) + nQαk

(6 114)

YQβk
=

(
1√
2
mbk

1
T

∫ (k+3/2)T

kT

ej(ωt+φ)dt +
1
T

∫ (k+3/2)T

kT

nQ (t) dt

)
e−jθk

=
([

mbk/
(
2
√

2
)]

ejφejω(k−1/4)T ejωT/2 sinc (δ/4) + nQβk

)
e−jθk
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Separately taking the half-symbol sums and differences of the YI ’s and YQ’s
results in the following:

u±
Ik

= YIαk
± YIβk

e−jθk

=
(

mak

2
√

2

)
ejφejω(k−3/4)T sinc

(
δ

4

) [
1 ± ej([δ/2]−θk)

]
+ nIαk

± nIβk
e−jθk

�= s±Ik
+ n±

Ik
(6 115)

and

u±
Qk

= YQαk
± YQβk

e−jθk

=
(

mbk

2
√

2

)
ejφejω(k−1/4)T sinc

(
δ

4

) [
1 ± ej([δ/2]−θk)

]
+ nQαk

± nQβk
e−jθk

�= s±Qk
+ n±

Qk
(6 116)

Note by comparison of Eq. (6-112) with Eq. (6-114) that an additional phase
shift of an amount ωT/2 exists in the u±

Q’s relative to the u±
I ’s, which would not

be present if one were to generate the comparable I&D outputs for conventional
QPSK. In principle, this phase shift could be perfectly compensated for if one
had knowledge of the frequency uncertainty ω. However, in the absence of this
exact knowledge, the best one could do at this point would be to multiply the
u±

Q’s by e−jω̂T/2, which ultimately would result in a degradation in performance
if one were first to combine the u±

I ’s and u±
Q’s into a complex quantity and then

to proceed with the formation of the SSME in the same manner as for QPSK.
Rather than compensate the phase shift at this point in the implementation, we
proceed instead to separately form the averages of the squared norms of the u±

I ’s
and u±

Q’s over the N -symbol duration of the observation resulting in

U±
I =

1
N

N∑
k=1

∣∣u±
Ik

∣∣2 =
1
N

N∑
k=1

[∣∣s±Ik

∣∣2 +
∣∣n±

Ik

∣∣2 + 2 Re
{

s±Ik

(
n±

Ik

)∗}]

U±
Q =

1
N

N∑
k=1

∣∣u±
Ik

∣∣2 =
1
N

N∑
k=1

[∣∣∣s±Qk

∣∣∣2 +
∣∣∣n±

Qk

∣∣∣2 + 2 Re
{

s±Qk

(
n±

Qk

)∗}] (6 117)
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Since taking the magnitude of the u±
I ’s and the u±

Q’s eliminates the relative phase
shift between these quantities noted above, then it is straightforward to show
that combining U±

I (delayed by T/2) with U±
Q results in a pair of signals U±

that have the identical statistics as those for conventional QPSK. In particular,
setting the half-symbol phase compensation θk = ωsyT/2 (independent of k),
then the signal term corresponding to the kth term in the average would be
given by

∣∣s±k ∣∣2 =
∣∣s±Ik

∣∣2 +
∣∣∣s±Qk

∣∣∣2 = m2

(
a2

k + b2
k

2

)
sinc2

(
δ

4

) [
1 ± cos (δsy/2)

2

]

= m2 sinc2

(
δ

4

) [
1 ± cos (δsy/2)

2

]
�= m2h± (6 118)

where as before δsy = δ − ωsyT .
To see how one can implement a universal SSME structure that will handle

OQPSK as well as conventional QPSK, we proceed as follows. Consider parti-
tioning the results of inputting the I- and Q-channel baseband signals to half-
symbol I&Ds into even and odd outputs. That is, we define YIαk

and YQβ,k−1 ,
which correspond to half-symbol integrations in the interval (k − 1)T ≤ t ≤
(k − 1/2)T , as odd outputs, and YIβk

and YQαk
, which correspond to half-symbol

integrations in the interval (k − 1/2)T ≤ t ≤ kT , as even outputs. Then, for
conventional QPSK, since u±

Ik
is formed from the sum and difference of YIαk

and
YIβk

and u±
Qk

is formed from the sum and difference of YQαk
and YQβ,k−1 , we can

say that u±
Ik

is formed from the kth even and odd outputs, whereas u±
Qk

is formed
from the kth even and (k-1)st (i.e., the preceding) odd outputs. On the other
hand, since for OQPSK u±

Ik
is still formed from the sum and difference of YIαk

and YIβk
but u±

Qk
is formed from the sum and difference of YQαk

and YQβk
, we

can say that both u±
Ik

and u±
Qk

are formed from the kth even and odd outputs.
Thus, from this viewpoint, the only difference in the SSME implementation be-
tween OQPSK and conventional QPSK is that for the former the Q-channel sum
and difference signals are formed from the corresponding even and succeeding
odd half-symbol I&D outputs, whereas for the latter the Q-channel sum and
difference signals are formed from the same even but the preceding odd half-
symbol I&D outputs. Other than this minor difference in implementation, the
two SSMEs would yield performances identical to that given previously in this
chapter.
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6.12.2 QAM

For the case of QAM with an M -symbol square signal constellation, the
kth transmitted complex symbol in the interval (k − 1)T ≤ t ≤ kT can be
represented in the form dk = dIk + jdQk where dIk and dQk are independent,
identically distributed (iid) RVs that take on the values ±1,±3, · · · ,±

(√
M − 1

)
with equal probability. It is straightforward to show that the mean and variance
of U± are, analogous to Eq. (6-8), given by

E
{
U±}

= 2σ2 + E
{∣∣s±k ∣∣2}

var
{
U±}

=
4
N

σ2
(
E

{∣∣s±k ∣∣2} + σ2
) (6 119)

where now
∣∣s±k ∣∣2 = m2h

∣∣dk

∣∣2 and thus

E
{∣∣s±k ∣∣2} = m2hE

{
|dk|2

}
=

2
3

(M − 1) m2h (6 120)

However, since in the case of QAM the average SNR is given by

R =
m2

2σ2

R =

2
3
(M − 1)m2

2σ2

(6 121)

then combining Eq. (6-121) with Eq. (6-121) and substituting the result in
Eq. (6-119), we obtain

E
{
U±}

= 2σ2
(
1 + h±R

)
var

{
U±}

=
4
N

σ4
(
1 + 2h±R

) (6 122)

which is identical with the second relations in Eq. (6-8). Thus, solving for R

from Eq. (6-122) and following the same logic that led to the ad hoc SSME in
Eq. (6-10), we conclude that no modification of this SSME is required to allow
its use for estimating SNR when QAM is transmitted. Similarly, in view of the
equivalence between Eqs. (6-122) and (6-8), we conclude that the performance
is identical to that previously determined for M -PSK modulations.
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6.13 The Time-Multiplexed SSME
In Section 6.6, we described a means for potentially improving the perfor-

mance of the conventional SSME by increasing the number of subdivisions (ob-
servables) per symbol beyond two (but still an even number). In particular, we
showed that the variance of the so-modified estimator tracks (with a fixed sep-
aration from it) the Cramer–Rao bound on the variance of an SNR estimator
over the entire range of SNR values. Implicit in the derivation of the expression
for the variance of the SNR estimator was the assumption that the even num-
ber of subdivisions was the same for all symbols in the observation from which
the SNR estimator was formed, and as such an optimum value of the number
of subdivisions, denoted by 2L, was determined for a given true SNR region,
the totality of which spans the entire positive real line. Moreover, it was shown
that, if one ignores the requirement of having the number of subdivisions be
an even integer and proceeds to minimize with respect to L the expression for
the variance derived as mentioned above, an optimum value of L can be deter-
mined for every value of true SNR. The resulting estimator was referred to as the
fictitious SSME and resulted in a lower bound on the performance of the prac-
tical realizable SSME corresponding to integer L.

In this section, we show how one can in practice turn the fictitious SNR esti-
mator into a non-fictitious one. In particular, we demonstrate an implementation
of the SSME that allows one to approach the unrestricted optimum value of L

(to the extent that it can be computed as the average of a sum of integers) at
every true SNR value. More specifically, the proposed approach, herein referred
to as the time-multiplexed SSME, allows each symbol to possess its own number
of subdivisions arranged in any way that, on the average (over all symbols in
the observed sequence), achieves the desired optimum value of L. Furthermore,
we propose an algorithm for adaptively achieving this optimum value of L when
in fact one has no a priori information about the true value of SNR. Once again
for simplicity of the discussion, we consider the case wherein the symbol pulse
shape is assumed to be rectangular, and thus the observables from which the
estimator is formed are the outputs of I&Ds.

A block diagram of the complex baseband time-multiplexed SSME is illus-
trated in Fig. 6-14 with the input signal in the kth interval (k − 1)T ≤ t ≤ kT

as described by Eq. (6-13). Consider uniformly subdividing the kth symbol
interval into 2Lk (Lk integer) subdivisions each of length Tk/2 = (T/Lk)/2.
In each of these Lk pairs of split symbol intervals, we apply the signal in
Eq. (6-9) to first and second half-symbol normalized (by the integration inter-
val) I&Ds, the outputs of which are summed and differenced to form the signals{
u±

kl

�= s±kl + n±
kl, l = 1, · · · , Lk

}
. For each k, the u±

kl’s are iid; however, their
statistics vary from symbol to symbol. Denote the relevant symbol-dependent
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parameters of the signal and noise components of u±
kl as m2

k, σ2
k, h±

k , and the SNR
in the kth symbol as Rk = m2

k/
(
2σ2

k

)
. In particular, σ2

k = σ2Lk is the variance
per component (real and imaginary) of n±

kl, and the mean-squared value of s±kl

can be expressed as6

∣∣s±kl

∣∣2 = m2
kh±

k (6 123)

where, because of the normalization of the I&Ds, m2
k = m2 independently of k,

and h±
k is again a parameter that reflects the amount of frequency offset and the

degree to which it is compensated for. Specifically,

h±
k = sinc2

(
δk

4

)
1 ± cos

(
δksy

/2
)

2
(6 124)

where δk
�= ωTk, δksy

�= δk − ωsyTk = (ω − ωsy)Tk, with ωsy the compensation
frequency applied to the second half-symbol I&D outputs.

Based on the above, each
∣∣u±

kl

∣∣2 = σ2
kχ2

2

(
2h±

k Rk

)
, where χ2

n(µ) denotes a
(generally non-central) chi-squared RV with n degrees of freedom, non-centrality
parameter µ, and unit variances for each degree of freedom. In general, we
know that E

{
χ2

n(µ)
}

= n + µ and var
{
χ2

n(µ)
}

= 2n + 4µ for all n and µ.
Furthermore, using [8, Eq. (2.39)] for the inverse moments of central chi-
squared RVs, we have for even n and µ = 0, E

{
[χ2

n(0)]−1
}

= (n − 2)−1 and
E

{
[χ2

n(0)]−2
}

=
[
(n − 2)(n − 4)

]−1. Expressions for higher-order moments of
χ2

n(µ) or its reciprocal can be determined using [8, Eq. (2.47)].
Now for each k define U±

k =
∑Lk

l=1

∣∣u±
kl

∣∣2/Lk. Then, based on the above
chi-squared characterization of

∣∣u±
kl

∣∣2, and recognizing that the true SNR to be
estimated is given by

R = RkLk =
m2

2σ2
(6 125)

we have U±
k =

(
σ2

k/Lk

)
χ2

2Lk

(
2h±

k RkLk

)
= σ2χ2

2Lk

(
2h±

k R
)

with first mean and
variance

E
{
U±

k

}
= 2σ2

(
Lk + h±

k R
)

var
{
U±

k

}
= 4σ4

(
Lk + 2h±

k R
) (6 126)

6 Note that σ2 is the variance per component of the u±
k

’s in the conventional SSME corre-

sponding to L = 1 in each symbol interval.



Signal-to-Noise Ratio Estimation 183

Solving for R in terms of E
{
U±

k

}
from the first equation in Eq. (6-126), we

obtain

R = Lk

[
E

{
U+

k

}
− E

{
U−

k

}
h+

k E
{
U−

k

}
− h−

k E
{
U+

k

}
]

(6 127)

At this point, we could proceed as we did in Section 6.1 by replacing expected
values of U±

k with their sample values to obtain estimates of R from each symbol,
and then averaging over the N estimates obtained from the N symbols, resulting
in the ad hoc estimator

R̂′
L =

1
N

N∑
k=1

Lk

[
U+

k − U−
k

h+
k U−

k − h−
k U+

k

]
(6 128)

where L = (L1, L2, · · · , LN ) denotes the oversampling vector for the N -symbol
observation. Unfortunately, this has the potential of being a very bad estimator,
because from our previous analyses we have observed that both the bias and the
variance of the split-symbol estimate become unbounded if it is based on only
a single symbol, i.e., N = 1. If {Lk} takes on only a few discrete values, we
could avoid this singularity by grouping symbols with the same Lk, obtaining
an estimate from each group, and then averaging the estimates from all the
groups. A better approach is to first average the U±

k ’s prior to forming them
into an ad hoc estimator. Specifically, we form U± = (1/N)

∑N
k=1 U±

k , which
has the chi-squared characterization U± = (σ2/N)χ2

2L̄N
(2h̄±NR), where L̄ =

(1/N)
∑N

k=1 Lk and h̄± = (1/N)
∑N

k=1 h±
k . The mean and variance of U± are

immediately given by

E
{
U±}

= 2σ2
(
L̄ + h̄±R

)

var
{
U±}

=
(
4σ4/N

) (
L̄ + 2h̄±R

) (6 129)

Solving for R in terms of E
{
U±}

, we obtain

R = L̄

[
E {U+} − E {U−}

h̄+E {U−} − h̄−E {U+}

]
(6 130)

Now we replace expected values with sample values and h̄± with estimates ˆ̄h
±

based on an estimate ω̂ of the frequency offset ω in this single equation to get
our SNR estimate:
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R̂L = L̄

[
U+ − U−

ˆ̄h
+
U− − ˆ̄h

−
U+

]
(6 131)

The equations defining both the estimator R̂L and the underlying observables U±

in terms of standard chi-squared random variables are identical in form to
those obtained for the special case of uniform subsampling of all the symbols,
L = (L, L, · · · , L). The parameters L̄, h̄± for the general case reduce to the con-
stants L, h± for the special case. The special case L = (L, L, · · · , L) produces
the estimator R̂L of Section 6.6, where we assumed constant L for all symbols.
Thus, we can apply our previous performance calculations for var

{
R̂L

}
to ob-

tain the corresponding expressions for var
{
R̂L

}
by simply replacing L and h±

in those expressions with L̄ and h̄±, respectively. In the case of zero frequency
offset, we now can achieve the variance expression for any value of L̄ achievable
by averaging integers, not just integer values of L themselves. For large N , this
means that we can achieve the performance of our fictitious estimator R̂• for
a very dense set of values of R satisfying L•(R) = R/

√
2 ≥ 1. Of course, the

fictitious estimator remains fictitious for L•(R) = R/
√

2 < 1 (i.e., the region
of R where we did not attempt to use it as a benchmark).

6.13.1 An Adaptive SSME

Given that R̂L achieves the performance of R̂L̄, we now have a method for
adaptively selecting the oversampling factor L. We can start with an initial
guess, and then increase or decrease L in response to intermediate SNR esti-
mates R̂L based on the symbols observed up to now. The key point is that the
estimator R̂L at any point in time achieves exactly the same performance as
the estimator R̂L with L = L̄, based on the same cumulative number of sym-
bols. Thus, no symbols are wasted if an adaptive SNR estimation algorithm
starts out with a non-optimum value of L but adapts over time to generate
a vector sequence L for which the average L̄ approaches the optimum value
of L, namely, L = L•(R) = R/

√
2. Figure 6-15 is a flow diagram of such an

adaptive scheme modeled after the robust version of the generalized SSME dis-
cussed in Section 6.7, wherein the integer values of L are restricted to the set
bl, l = 0, 1, 2, 3, · · · for some integer base b. The operation of the scheme is de-
scribed as follows.

Initially, consider an observation of n symbols and set Lk = L = 1, k =
1, 2, · · · , n. Next, evaluate the sum and difference accumulated variables U± for
the n symbol observation. Proceed to evaluate the SNR estimator R̂ = R̂L

(
U±)

in accordance with Eq. (6-131) taking note of the fact that, for this choice of
L, L̄ = 1. Next, we compare the current value of L, namely L = 1, to the
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Update 

Fig. 6-15.  A robust adaptive SSME scheme.
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desired optimum value of L, based however on the current estimate of R, i.e.,
L•

(
R̂

)
= R̂/

√
2, to get an indication of how close we are to where we are headed.

If L•
(
R̂

)
exceeds unity, which on the average is likely to be the case if the true

SNR is greater than
√

2, increment L by multiplying it by b and proceed to
process the next n input symbols, as will be described momentarily. On the
other hand, if L•

(
R̂

)
is less than or equal to unity, which on the average is

likely to be the case if the true SNR is less than or equal to
√

2, then leave L

unchanged7 and again proceed to process the next n input symbols. Moving on to
the next set of n symbols, compute new values of U±, denoted by U±

new, using the
updated value of L as determined above for all Lk, k = n+1, n+2, · · · 2n. Let N

denote the running average of the number of symbols. (Assume that initially
N was set equal to n corresponding to the first set of observed symbols.) Update
the current values of U± with the new U±

new values according to the weighted
average

(
NU± + nU±

new

)
/(N + n) and store these as U±. Update the running

average of L in accordance with
(
NL̄ + nL

)
/(N + n) and store this as L̄. Finally,

update the value of N to N +n and store this new value. Using the updated U±,
compute an updated SNR estimate R̂ = R̂L

(
U±)

in accordance with Eq. (6-131).
Next, using this updated SNR estimate, compute the updated estimate of the
optimum L, namely, L•

(
R̂

)
= R̂/

√
2 and use it to update the current value of L

in accordance with the following rule:

7 As we shall see shortly, in all other circumstances of this nature, we would proceed to
decrement L by dividing it by b. However, since the current value of L is already equal to
unity, which is the smallest nonzero integer, we cannot reduce it any further.
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If L•
(
R̂

)
< min

(
L, L̄

)
, then divide L by b

If L•
(
R̂

)
> max

(
L, L̄

)
, then multiply L by b

If min
(
L, L̄

)
≤ L•

(
R̂

)
≤ max

(
L, L̄

)
, do not change L

(6 132)

Finally, using the updated value of L, proceed to process the next n symbols,
whereupon the algorithm repeats as described above.

To illustrate the behavior of the robust adaptive SSME scheme, simulations
were conducted to demonstrate the rate at which L̄ converges to the true op-
timum L and also the manner in which this convergence takes place. The first
simulation, illustrated in Fig. 6-16, demonstrates the ideal performance of the

scheme assuming no frequency error, i.e., ˆ̄h
+

= 1, ˆ̄h
−

= 0, and the following
parameters: R = 10, b = 2, n = 10. By “ideal” is meant that the same adap-
tive feedback rule for updating L as in Eq. (6-132) is used except that a magic
genie is assumed to be available to provide the true SNR, R, to the update
rule rather than using the estimate of R. That is, the update of L in accor-
dance with Eq. (6-132) is carried out using L•(R) rather than L•

(
R̂

)
. The

horizontal axis in Fig. 6-16 is measured in discrete units of time corresponding
to the cumulative number of n-symbol batches processed each with a fixed value
of L. The vertical axis represents two different indicators of the performance
corresponding to the behavior of log2 L and log2 L̄ as they are updated in each
cycle through the feedback loop. For the assumed parameters, the optimum
value of L to which the scheme should adapt is given in logarithmic terms by
log2 L•(10) = log2

(
10/

√
2

)
= 2.822. From the plots in Fig. 6-16, we observe

that log2 L quickly rises (in three steps) from its initial value of log2 1 = 0 to
log2 8 = 3 and then eventually fluctuates between log2 8 = 3 and log2 4 = 2
with a 3:1 or 4:1 duty cycle. At the same time, log2 L̄ smoothly rises toward the
optimum log2 L̄•, converging asymptotically to this limit (with indistinguishable
difference) in fewer than 20 cycles of the feedback loop or, equivalently, 200 sym-
bol intervals.

Figure 6-17 is an illustration of the actual performance of the scheme as
illustrated in Fig. 6-15, i.e., in the absence of a magic genie to provide the true
SNR. The same parameter values as in Fig. 6-16 were assumed, and 10 differ-
ent trials were conducted. Also superimposed on this figure for the purpose of
comparison is the log2 L̄ magic genie performance obtained from Fig. 6-16. For
6 out of the 10 trials, the actual performance was indistinguishable from that
corresponding to the magic genie. For the remaining 4 trials, log2 L̄ overshoots
its target optimum value but still settles toward this value within 20 cycles of the
algorithm. For all 10 trials, there is a small dispersion from the optimum level
even after 40 cycles. This is due to residual error in estimating R after N = 400
symbols since the variance only decreases as 1/N .



Signal-to-Noise Ratio Estimation 187

t /n

Fig. 6-16.  Ideal performance of the robust adaptive SSME scheme. (Adaptive SSME 
with magic genie estimate of true SNR, R = 10.)
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Fig. 6-17.  Actual performance of the robust adaptive SSME scheme. (Adaptive 
SSME: 10 trials with N = 400, n = 10, true R = 10.)
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Appendix 6-A

Derivation of Asymptotic Mean and
Variance of SSME

In this appendix, we derive the asymptotic expressions for the mean and
variance of the SSME as given by Eqs. (6-32) and (6-33), respectively. For
convenience, we repeat the expressions for the mean and variance of U±, namely,

E
{
U±}

= 2σ2 +
∣∣s±k ∣∣2 = 2σ2

(
1 + h±R

)

var
{
U±}

=
4
N

σ2
(∣∣s±k ∣∣2 + σ2

)
=

4
N

σ4
(
1 + 2h±R

) (A-1)

Starting from the definition of g (U+, U−) in Eq. (6-10), we evaluate its first and
second partial derivatives as

∂g

∂U± =
±

(
ĥ+ − ĥ−

)
U∓

(
ĥ+U− − ĥ−U+

)2

1
2

∂2g

∂ (U±)2
=

(
ĥ+ − ĥ−

)
ĥ∓U∓

(
ĥ+U− − ĥ−U+

)3

(A-2)

The quantity ĥ+U−− ĥ−U+ that appears in the denominator of g
(
U+, U−)

and
its partial derivatives is evaluated at the point

(
U+, U−)

=
(
E{U+}, E{U−}

)
as

ĥ+E
{
U−}

− ĥ−E
{
U+

}
= 2σ2

[(
ĥ+ − ĥ−

)
+

(
ĥ+h− − ĥ−h+

)
R

]
(A-3)

The second term in parentheses in Eq. (A-3) evaluates to zero for cases 0, 2a,
2b, and 2c for which the frequency estimate is perfect, i.e., ω̂ = ω, since in this
instance ĥ± = h±. The numerators of g (U+, U−) and its partial derivatives
evaluated at the point (U+, U−) = (E {U+} , E {U−}) are, respectively,
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E
{
U+

}
− E

{
U−}

= 2σ2
(
h+ − h−)

R

±
(
ĥ+ − ĥ−

)
E

{
U∓}

= ±
(
ĥ+ − ĥ−

)
2σ2

(
1 + h∓R

)
(
ĥ+ − ĥ−

)
h∓E

{
U∓}

=
(
ĥ+ − ĥ−

)
h∓2σ2

(
1 + h∓R

)
(A-4)

Substituting the expressions in Eqs. (A-3) and (A-4) into Eqs. (6-10) and (A-2),
we obtain

g
∣∣
(E{U+},E{U−}) =

(h+ − h−) R

ĥ+ − ĥ− +
(
ĥ+h− − ĥ−h+

)
R

∂g

∂U±
∣∣
(E{U+},E{U−}) = ± 1

2σ2

(
ĥ+ − ĥ−

)
(1 + h∓R)[

ĥ+ − ĥ− +
(
ĥ+h− − ĥ−h+

)
R

]2

1
2

∂2g

∂ (U±)2
∣∣
(E{U+},E{U−}) =

1
4σ4

(
ĥ+ − ĥ−

)
h∓ (1 + h∓R)[

ĥ+ − ĥ− +
(
ĥ+h− − ĥ−h+

)
R

]3

(A-5)

Finally, substituting the expression for var
{
U±}

in Eq. (A-1) along with the
expressions in Eq. (A-5) into Eq. (6-31) results after some simplification in

E
{

R̂
}

=
(h+ − h−) R

ĥ+ − ĥ− +
(
ĥ+h− − ĥ−h+

)
R

+
1
N

(
ĥ+ − ĥ−

) (
ĥ+ + ĥ−

)
[
ĥ+ − ĥ− +

(
ĥ+h− − ĥ−h+

)
R

]3

×
{

1 +

(
h+ + h− +

ĥ+h− + ĥ−h+

ĥ+ + ĥ−

)
R + 2h+h−R2

}
+ O

(
1

N2

)

(A-6)
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and

var
{

R̂
}

=

1
N

(
ĥ+ − ĥ−

)2

[
ĥ+ − ĥ− +

(
ĥ+h− − ĥ−h+

)
R

]4

×
{

2 + 4
(
h+ + h−)

R +
[(

h+ + h−)2 + 6h+h−
]
R2 + 4h+h− (

h+ + h−)
R3

}

+ O

(
1

N2

)
(A-7)

which are repeated as Eqs. (6-32) and (6-33) in Section 6.4.2.


