
Chapter 5
Data Format and Pulse Shape Classification

Marvin K. Simon and Dariush Divsalar

In autonomous radio operation, aside from classifying the modulation type,
e.g., deciding between binary phase-shift keying (BPSK) and quadrature phase-
shift keying (QPSK), it is also desirable to have an algorithm for choosing the
data format, e.g., non-return to zero (NRZ) versus Manchester encoding. We
will see in our discussions of carrier synchronization in Chapter 8 that, in the
absence of subcarriers, when NRZ is employed along with a residual carrier,
the carrier-tracking loop takes a loss due to overlapping carrier and modulation
spectra, whereas Manchester coding may use either suppressed or residual car-
rier without such a loss. With this consideration in mind, we shall consider two
different scenarios. In one case, independent of the data format, the modulations
are assumed to be fully suppressed carrier. In the other case, which is typical of
the current Electra radio design, an NRZ data format is always used on a fully
suppressed carrier modulation whereas a residual carrier modulation always em-
ploys Manchester-coded data. In the latter case, the data format classification
algorithm and its performance clearly will be a function of the modulation in-
dex, i.e., the allocation of the power to the discrete and data-modulated signal
components. Estimation of the modulation index was discussed in Chapter 3.

In this chapter, we derive the maximum-likelihood (ML)-based data format
classification algorithms as well as reduced-complexity versions of them obtained
by applying suitable approximations of the nonlinearities resulting from the ML
formulation. As in previous classification problems of this type, we shall first
assume that all other system parameters are known. Following this, we relax
the assumption of known carrier phase and, as was done for the modulation
classification discussion, we shall consider the noncoherent version of the ML
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86 Chapter 5

classifiers. Numerical performance evaluation will be obtained by computer sim-
ulations and, wherever possible, by theoretical analyses to verify the simulation
results.

5.1 Coherent Classifiers of Data Format for BPSK

5.1.1 Maximum-Likelihood Coherent Classifier of Data Format
for BPSK

We begin by considering suppressed-carrier BPSK modulation and a choice
between NRZ and Manchester encoding. Thus, the received signal is given by
Eqs. (1-3) and (1-6), or in passband by

r(t) =
√

2P

( ∞∑
n=−∞

cnp(t − nT )

)
cos ωct + n(t) (5 1)

where P is the signal power,1 {cn} is the sequence of binary independent, iden-
tically distributed (iid) data taking on values ±1 with equal probability, p(t) is
the pulse shape (the item to be classified), ωc is the radian carrier frequency,
1/T is the data (symbol) rate, and n(t) is a bandpass additive white Gaussian
noise (AWGN) source with single-sided power spectral density N0 W/Hz. Based
on the above AWGN model, then for an observation of K data intervals, the
conditional-likelihood function (CLF) is given by

p
(
r(t)|{cn}, p(t)

)

=
1√
πN0

exp

⎛
⎝− 1

N0

∫ KT

0

[
r(t) −

√
2P

( ∞∑
n=−∞

cnp(t − nT )

)
cos ωct

]2

dt

⎞
⎠

= C exp

(
2
√

2P

N0

K−1∑
k=0

ck

∫ (k+1)T

kT

r(t)p(t − kT ) cos ωctdt

)

= C

K−1∏
k=0

exp

(
2
√

2P

N0
ck

∫ (k+1)T

kT

r(t)p(t − kT ) cos ωctdt

)
(5 2)

1 There is no need to distinguish between total and data power here since in the suppressed-
carrier case all of the signal power is allocated to the data modulation. Thus, for simplicity
of notation, we shall simply use P without a subscript to denote signal power.
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where C is a constant that has no bearing on the classification. Averaging over
the iid data sequence gives

p
(
r (t) |p (t)

)
= C

K−1∏
k=0

cosh

(
2
√

2P

N0

∫ (k+1)T

kT

r (t) p (t − kT ) cos ωctdt

)
(5 3)

Finally, taking the logarithm of Eq. (5-3), we obtain the log-likelihood function
(LLF)

Λ �= ln p
(
r(t)|p(t)

)
=

K−1∑
k=0

ln cosh

(
2
√

2P

N0

∫ (k+1)T

kT

r(t)p(t − kT ) cos ωctdt

)

(5 4)

where we have ignored the additive constant lnC.
For NRZ data, p(t) is a unit rectangular pulse of duration T , i.e.,

p1(t) =
{

1, 0 ≤ t ≤ T
0, otherwise (5 5)

For Manchester-encoded data, p(t) is a unit square-wave pulse of duration T ,
i.e.,

p2(t) =
{

1, 0 ≤ t ≤ T/2
−1, T/2 ≤ t ≤ T

(5 6)

Thus, defining the received observable

rk(l) �=
∫ (k+1)T

kT

r(t)pl(t − kT ) cos ωctdt

=

⎧⎪⎨
⎪⎩

∫ (k+1)T

kT
r(t) cos ωctdt; l = 1

∫ (k+1/2)T

kT
r(t) cos ωctdt −

∫ (k+1)T

(k+1/2)T
r(t) cos ωctdt; l = 2

(5 7)

then a classification choice between the two pulse shapes based on the LLF would
be to choose Manchester if
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K−1∑
k=0

ln cosh

(
2
√

2P

N0
rk(1)

)
<

K−1∑
k=0

ln cosh

(
2
√

2P

N0
rk(2)

)
(5 8)

Otherwise, choose NRZ.

5.1.2 Reduced-Complexity Data Format BPSK Classifiers

To simplify the form of the classification rule in Eq. (5-8), we replace the
ln cosh(·) function by its small and large argument approximations. In particular,

ln coshx ∼=
{

x2/2; x small
|x| − ln 2; x large

(5 9)

Thus, for low signal-to-noise ratio (SNR), Eq. (5-8) simplifies to

K−1∑
k=0

(∫ (k+1)T

kT

r (t) cos ωctdt

)2

<

K−1∑
k=0

(∫ (k+1/2)T

kT

r (t) cos ωctdt −
∫ (k+1)T

(k+1/2)T

r (t) cos ωctdt

)2

(5 10)

or

K−1∑
k=0

∫ (k+1/2)T

kT

r (t) cos ωctdt

∫ (k+1)T

(k+1/2)T

r (τ) cos ωcτdτ < 0 (5 11)

For high SNR, Eq. (5-8) reduces to

K−1∑
k=0

∣∣∣∣∣
∫ (k+1/2)T

kT

r (t) cos ωctdt +
∫ (k+1)T

(k+1/2)T

r (t) cos ωctdt

∣∣∣∣∣
<

K−1∑
k=0

∣∣∣∣∣
∫ (k+1/2)T

kT

r (t) cos ωctdt −
∫ (k+1)T

(k+1/2)T

r (t) cos ωctdt

∣∣∣∣∣ (5 12)

Note that while the optimum classifier of Eq. (5-8) requires knowledge of SNR,
the reduced-complexity classifiers of Eqs. (5-10) and (5-12) do not. Figure 5-1
is a block diagram of the implementation of the low and high SNR classifiers
defined by Eqs. (5-11) and (5-12).
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Fig. 5-1.  Reduced-complexity coherent data format classifiers for BPSK modulation:
(a) low SNR and (b) high SNR.

5.1.3 Probability of Misclassification for Coherent BPSK

5.1.3.1. Exact Evaluation. To illustrate the behavior of the misclassification
probability, PM , with SNR, we consider the low SNR case and evaluate first the
probability of the event in Eq. (5-11) given that the transmitted data sequence
was in fact NRZ encoded. In particular, we recognize that, given a particular
data sequence of K bits,

Xck =
∫ (k+1/2)T

kT

r(t) cos ωctdt

Yck =
∫ (k+1)T

(k+1/2)T

r(τ) cos ωctdτ
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k = 0, 1, · · · , K − 1, are mutually independent and identically distributed (iid)
Gaussian random variables (RVs). Thus, the LLF

D =
K−1∑
k=0

∫ (k+1/2)T

kT

r (t) cos ωctdt

∫ (k+1)T

(k+1/2)T

r (τ) cos ωcτdτ =
K−1∑
k=0

XckYck

(5 13)

is a special case of a quadratic form of real Gaussian RVs and the probability
of the event in Eq. (5-11), namely, Pr{D < 0} can be evaluated in closed form
by applying the results in [1, Appendix B] and the additional simplification
of these in [2, Appendix 9A]. To see this connection, we define the complex
Gaussian RVs Xk = Xck + jXc,k+1, Yk = Yck + jYc,k+1. Then, XkY ∗

k + X∗
kYk =

2 (XckYck + Xc,k+1Yc,k+1). Assuming arbitrarily that K is even, then we can
rewrite D of Eq. (5-13) as

D =
1
2

K/2−1∑
k=0

(XkY ∗
k + X∗

kYk) (5 14)

Comparing Eq. (5-14) with [2, Eq. (B.1)], we see that the former is a special case
of the latter, corresponding to A = B = 0, C = 1/2. Specifically, making use of
the first and second moments of Xk and Yk given by

X̄k = Ȳk = (ck + jck+1)
√

P/8T

µxx =
1
2
E

{∣∣Xk − X̄k

∣∣2} = N0T/8

µyy =
1
2
E

{∣∣Yck − Ȳck

∣∣2} = N0T/8

µxy =
1
2
E

{(
Xck − X̄ck

) (
Yck − Ȳck

)∗} = 0

(5 15)

then from [2, Eq. (9A.15)],

PM (1) =
1
2

+
1

2K−1

K/2∑
k=1

(
K − 1

K/2 − k

) [
Qk(a, b) − Qk(b, a)

]
(5 16)
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where Qk(a, b) is the kth-order Marcum Q-function and

a =

√
v (ξ1v − ξ2)

2

b =

√
v (ξ1v + ξ2)

2

(5 17)

with

v =

√
1

µxxµyy
=

8
N0T

ξ1 =
1
2

K/2−1∑
k=0

(∣∣X̄ck

∣∣2 µyy +
∣∣Ȳck

∣∣2 µxx

)
=

KPT 3N0

64

ξ2 =
K/2−1∑

k=0

∣∣X̄ck

∣∣ ∣∣Ȳck

∣∣ =
KPT 2

8

(5 18)

Substituting Eq. (5-18) into Eq. (5-17) gives

a = 0

b =
√

K (Es/N0)
(5 19)

where Es = PT denotes the signal energy. However,

Qk(0, b) =
k−1∑
n=0

exp
(
−b2

2

)
(b2/2)n

n!

Qk(b, 0) = 1

(5 20)

Thus, using Eqs. (5-19) and (5-20) in Eq. (5-16) gives the desired result:

PM (1) =
1
2

+
1

2Kb−1

K/2∑
k=1

(
K − 1

K/2 − k

) [
k−1∑
n=0

exp
(
−KEs

2N0

)
(KEs/2N0)n

n!
− 1

]

(5 21)
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Noting that

K/2∑
k=1

(
K − 1

K/2 − k

)
= 2K−2 (5 22)

then Eq. (5-21) further simplifies to

PM (1) =
1

2K−1

K/2∑
k=1

(
K − 1

K/2 − k

) k−1∑
n=0

exp
(
−KEs

2N0

)
(KEs/2N0)n

n!
(5 23)

To compute the probability of choosing NRZ when in fact Manchester is the
true encoding, we need to evaluate Pr{D ≥ 0} = 1 − Pr{D < 0} when instead
of Eq. (5-15) we have

X̄k = (ck + jck+1)

√
P

8
T

Ȳk = − (ck + jck+1)

√
P

8
T

(5 24)

Since the impact of the negative mean for Ȳk in Eq. (5-24) is to reverse the sign
of ξ2 in Eq. (5-18), then we immediately conclude that for this case the values
of a and b in Eq. (5-19) merely switch roles, i.e.,

a =

√
K

(
Es

N0

)

b = 0

(5 25)

Substituting these values in Eq. (5-16) now gives

PM (2) =

1 −

⎧⎨
⎩1

2
+

1
2K−1

K/2∑
k=1

(
K − 1

K/2 − k

) [
1 −

k−1∑
n=0

exp
(
−KEs

2N0

)
(KEs/2N0)n

n!

]⎫⎬
⎭

(5 26)
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which again simplifies to

PM (2) =
1

2K−1

K/2∑
k=1

(
K − 1

K/2 − k

) k−1∑
n=0

exp
(
−KEs

2N0

)
(KEs/2N0)n

n!
(5 27)

Since Eqs. (5-23) and (5-27) are identical, the average probability of mismatch,
PM , is then either of the two results.

Illustrated in Fig. 5-2 are numerical results for the misclassification probabil-
ity obtained by computer simulation for the optimum and reduced-complexity
data format classifiers as given by Eqs. (5-8), (5-11) and (5-12). Also illustrated
are the numerical results obtained from the closed-form analytical solution given
in Eq. (5-23) for the low-SNR reduced-complexity scheme. As can be seen, the
agreement between theoretical and simulated results is exact. Furthermore, the
difference in performance between the optimum and reduced-complexity classi-
fiers is quite small over a large range of SNRs.
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Fig. 5-2.  A comparison of the performance of coherent data format classifiers
for BPSK modulation.
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5.1.3.2 Asymptotic Behavior. To evaluate the asymptotic (large K) behavior
of the misclassification probability, we apply the central limit theorem to the
quadratic form in Eq. (5-13). Specifically, in the limit of large K, D tends to a
Gaussian RV with mean

D̄ = KX̄ckȲck =
KPT 2

8
(5 28)

and variance

σ2
D = Kvar {XckYck} = K

[
X2

ck Y 2
ck − X

2

ck Y
2

ck

]
(5 29)

After some manipulation, it can be shown that Eq. (5-29) can be expressed as

σ2
D = K

[
var {Xck} var {Yck} + var {Xck}Y 2

ck + var {Yck}X2
ck

]

= K

[(
N0T

8

)2

+ 2
(

N0T

8

) (
PT 2

8

)]
= K

(
N0T

8

)2 (
1 + 2

Es

N0

)
(5 30)

Thus, in view of the Gaussian assumption, PM = Pr {D < 0} is obtained in the
form of a Gaussian Q-function, namely,

PM = Q

(
D̄

σD

)
= Q

⎛
⎝

√
K

(Es/N0)
2

1 + 2Es/N0

⎞
⎠ (5 31)

The asymptotic misclassification probability of Eq. (5-31) is superimposed on
the results in Fig. 5-1.

5.2 Coherent Classifiers of Data Format for QPSK

5.2.1 Maximum-Likelihood Coherent Classifier of Data Format
for QPSK

For QPSK modulation, the received signal is given by
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r(t) =
√

P

( ∞∑
n=−∞

cnp(t − nT )

)
cos ωct

+
√

P

( ∞∑
n=−∞

bnp(t − nT )

)
sinωct + n(t) (5 32)

where now {cn} and {bn} are the in-phase (I) and quadrature (Q) sequences of
binary iid data taking on values ±1 with equal probability. For simplicity, we
have assumed that the I and Q baseband waveforms have the same data format.
For an observation of K symbol intervals, each of duration T , the CLF is given
by2

p
(
r(t)|{cn}, {bn}, p(t)

)

=
1√
πN0

exp

{
− 1

N0

∫ KT

0

[
r (t) −

√
P

( ∞∑
n=−∞

cnp (t − nT )

)
cos ωct

−
√

P

( ∞∑
n=−∞

bnp (t − nT )

)
sinωct

]2

dt

⎫⎬
⎭

= C exp

(
2
√

P

N0

K−1∑
k=0

ck

∫ (k+1)T

kT

r (t) p (t − kT ) cos ωctdt

)

× exp

(
2
√

P

N0

K−1∑
k=0

bk

∫ (k+1)T

kT

r (t) p (t − kT ) sinωctdt

)

= C

K−1∏
k=0

exp

(
2
√

P

N0
ck

∫ (k+1)T

kT

r (t) p (t − kT ) cos ωctdt

)

× exp

(
2
√

P

N0

K−1∑
k=0

bk

∫ (k+1)T

kT

r (t) p (t − kT ) sinωctdt

)
(5 33)

2 As in other chapters, we again assume a system with a fixed modulation bandwidth or,
equivalently, a fixed symbol rate. Thus, under this assumption, T , which denotes the duration
of a modulation symbol, is equal to two bit times for QPSK and is equal to a single bit time
for BPSK.
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Averaging over the iid data sequences and taking the logarithm gives the LLF

Λ �= ln p
(
r (t) |p (t)

)
=

K−1∑
k=0

[
ln cosh

(
2
√

P

N0

∫ (k+1)T

kT

r (t) p (t − kT ) cos ωctdt

)

+ ln cosh

(
2
√

P

N0

∫ (k+1)T

kT

r (t) p (t − kT ) sinωctdt

)]
(5 34)

Analogous to Eq. (5-7), defining the received I and Q observables

rck (l) �=
∫ (k+1)T

kT

r (t) pl (t − kT ) cos ωctdt

rsk (l) �=
∫ (k+1)T

kT

r (t) pl (t − kT ) sinωctdt

(5 35)

then the classification rule for choosing the data format is as follows: Choose
Manchester encoding if

K−1∑
k=0

[
ln cosh

(
2
√

P

N0
rck (1)

)
+ ln cosh

(
2
√

P

N0
rsk (1)

)]
<

K−1∑
k=0

[
ln cosh

(
2
√

P

N0
rck (2)

)
+ ln cosh

(
2
√

P

N0
rsk (2)

)]
(5 36)

Otherwise, choose NRZ.

5.2.2 Reduced-Complexity Data Format QPSK Classifiers

Here again we may simplify the form of the classification rule in Eq. (5-36)
by using the nonlinearity approximations in Eq. (5-9). For example, for low
SNR, the classification decision would be based on the inequality



Data Format and Pulse Shape Classification 97

K−1∑
k=0

[∫ (k+1/2)T

kT

r (t) cos ωctdt

∫ (k+1)T

(k+1/2)T

r (τ) cos ωcτdτ

+
∫ (k+1/2)T

kT

r (t) sinωctdt

∫ (k+1)T

(k+1/2)T

r (τ) sinωcτdτ

]
< 0 (5 37)

Figure 5-3 illustrates the implementation of the classifier defined above.

Fig. 5-3.  Reduced-complexity coherent data format classifiers for QPSK modulation,
for  low SNR.
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5.2.3 Probability of Misclassification for Coherent QPSK

Defining Xsk =
∫ (k+1/2)T

kT
r (t) sinωctdt, Ysk =

∫ (k+1)T

(k+1/2)T
r (τ) sinωctdτ ; k =

0, 1, · · · , K − 1, and assigning them to the complex Gaussian RVs Xk+K/2 =
Xsk + jXs,k+1, Yk+K/2 = Ysk + jYs,k+1, then analogous to Eq. (5-14) we can
write

D =
1
2

K−1∑
k=0

(XkY ∗
k + X∗

kYk) (5 38)

where the means of the observables are now given by
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X̄k = Ȳk = (ak + jak+1)
√

P/16T ; k = 0, 1, · · · , K/2 − 1

X̄k = Ȳk = (bk + jbk+1)
√

P/16T ; k = K/2, K/2 + 1, · · · , K − 1

(5 39)

Since all the observables are again mutually iid Gaussian RVs, then the LLF
in Eq. (5-38) is still a quadratic form of Gaussian RVs and the probability
Pr{D < 0} can be evaluated in closed form in the same manner as before. Note
that because of the assumption of a fixed modulation bandwidth the probabilities
of misclassification for BPSK and QPSK are different, whereas had we assumed
an equivalence between the information (bit) rates of the two modulations, these
probabilities would have become equal.

Before moving on to a discussion of noncoherent data format classification
schemes, it is of interest to ask whether there exists a universal classification
rule that for a given symbol rate (modulation bandwidth) is appropriate (but
not necessarily optimum) for M -ary phase-shift keying (M -PSK) independent
of the value of M . This would allow determination of the data format prior to
modulation classification, which for M -PSK constitutes determining the value
of M . Before answering this question, we first point out that the low SNR ML
classification rule of Eq. (5-37), which is explicitly derived for QPSK modula-
tion, also would work for BPSK, albeit with a penalty in performance relative
to the ML rule of Eq. (5-11) due to the presence now of a noise-only term in
the quadrature channel. Having said this, it also can be demonstrated that the
classification rule of Eq. (5-37), which can be viewed as the extension of the clas-
sification rule in Eq. (5-11) to complex observables, is also suitable for M -PSK
(M > 4), and furthermore the misclassification performance of this scheme still
would be given by Eq. (5-23) independent now of the value of M .

5.3 Noncoherent Classification of Data Format for BPSK

5.3.1 Maximum-Likelihood Noncoherent Classifier of Data Format
for BPSK

Here we assume that the carrier has a time-invariant random phase, θc, that
is unknown and uniformly distributed. Thus, the received signal of Eq. (5-1) is
now modeled as

r(t) =
√

2P

( ∞∑
n=−∞

cnp (t − nT )

)
cos (ωct + θc) + n(t) (5 40)

and the corresponding CLF becomes
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p
(
r(t)|{cn}, p(t), θc

)
=

C

K−1∏
k=0

exp

(
2
√

2P

N0
ck

∫ (k+1)T

kT

r (t) p (t − kT ) cos (ωct + θc) dt

)
(5 41)

At this point, we have the option of first averaging over the random carrier
phase and then the data or vice versa. Considering the first option, we start by
rewriting Eq. (5-41) as

p
(
r(t)|{cn}, p(t), θc

)
=

C exp

⎛
⎜⎝2

√
2P

N0

√√√√(
K−1∑
k=0

ckrck

)2

+

(
K−1∑
k=0

ckrsk

)2

cos (θc + η)

⎞
⎟⎠ (5 42)

η = tan−1

K−1∑
k=0

ckrsk

K−1∑
k=0

ckrck

Averaging over the carrier phase results in (ignoring constants)

p
(
r(t)|{cn}, p(t)

)
= I0

⎛
⎜⎝2

√
2P

N0

√√√√(
K−1∑
k=0

ckrck

)2

+

(
K−1∑
k=0

ckrsk

)2
⎞
⎟⎠ (5 43)

where I0(·) is the zero-order modified Bessel function of the first kind. Unfor-
tunately, the average over the data sequence cannot be obtained in closed form.
Hence, the classification algorithm can be stated only as follows: Given that
NRZ was transmitted, choose the Manchester format if

E
c

⎧⎪⎨
⎪⎩I0

⎛
⎜⎝2

√
2P

N0

√√√√(
K−1∑
k=0

ckrck (1)

)2

+

(
K−1∑
k=0

ckrsk (1)

)2
⎞
⎟⎠

⎫⎪⎬
⎪⎭ <

E
c

⎧⎪⎨
⎪⎩I0

⎛
⎜⎝2

√
2P

N0

√√√√(
K−1∑
k=0

ckrck (2)

)2

+

(
K−1∑
k=0

ckrsk (2)

)2
⎞
⎟⎠

⎫⎪⎬
⎪⎭ (5 44)
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where E
c
{·} denotes expectation over the data sequence c = (c0, c1, · · · , cK−1).

Otherwise, choose NRZ.
Consider now the second option, where we first average over the data se-

quence. Then,

p
(
r(t)|p(t), θc

)

= C

K−1∏
k=0

E
ck

{
exp

(
2
√

2P

N0
ck

∫ (k+1)T

kT

r (t) p (t − kT ) cos (ωct + θc) dt

)}

= C exp

[
ln

(
K−1∏
k=0

E
ck

{
exp

(
2
√

2P

N0
ck

×
∫ (k+1)T

kT

r(t)p(t − kT ) cos (ωct + θc) dt

)})]

= C exp

[
K−1∑
k=0

ln

(
E
ck

{
exp

(
2
√

2P

N0
ck

×
∫ (k+1)T

kT

r(t)p(t − kT ) cos (ωct + θc) dt

)})]

= C exp

[
K−1∑
k=0

ln cosh

(
2
√

2P

N0

∫ (k+1)T

kT

r(t)p(t − kT ) cos(ωct + θc)dt

)]

(5 45)

Thus, a classification between NRZ and Manchester encoding would be based on
a comparison of

LR =

E
θc

{
exp

[
K−1∑
k=0

ln cosh

(
2
√

2P

N0

∫ (k+1)T

kT

r (t) p1 (t − kT ) cos (ωct + θc) dt

)]}

E
θc

{
exp

[
K−1∑
k=0

ln cosh

(
2
√

2P

N0

∫ (k+1)T

kT

r (t) p2 (t − kT ) cos (ωct + θc) dt

)]}

(5 46)

to unity.
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To simplify matters, before averaging over the carrier phase, one must employ
the approximations to the nonlinearities given in Eq. (5-9). In particular, for low
SNR, we have

p
(
r(t)|p(t)

)

=E
θc

⎧⎨
⎩exp

⎡
⎣1

2
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2
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⎤
⎦

⎫⎬
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2
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[
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0

K−1∑
k=0

(
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)
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[
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(
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{
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(
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[
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k=0

(
r2
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{
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(
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(
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)
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− sin 2θc
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(
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[
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(
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ck + r2

sk

)]
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⎛
⎜⎝ 2P
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√√√√(
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sk) cos 2ηk

)2

+

(
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⎞
⎟⎠

(5 47)
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where

ηk = tan−1 rsk

rck
(5 48)

Thus, since

cos 2ηk =
r2
ck − r2

sk

r2
ck + r2

sk

sin 2ηk =
2rckrsk

r2
ck + r2

sk

(5 49)

we finally have

p
(
r(t)|p(t)

)
= exp

[
2P

N2
0

K−1∑
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(
r2
ck + r2

sk

)]
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⎛
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r̃2
k
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)

(5 50)

where

r̃k
�= rck + jrsk =

∫ (k+1)T

kT

r (t) p (t − kT ) ejωctdt (5 51)

Finally then, the classification decision rule analogous to Eq. (5-44) is: Given
that NRZ data were transmitted, decide on Manchester coding if

exp

[
2P

N2
0

K−1∑
k=0

|r̃k (1)|2
]
I0

(
2P

N2
0

∣∣∣∣∣
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r̃2
k (1)

∣∣∣∣∣
)

<

exp

[
2P

N2
0

K−1∑
k=0

|r̃k (2)|2
]

I0

(
2P

N2
0

∣∣∣∣∣
K−1∑
k=0

r̃2
k (2)

∣∣∣∣∣
)

(5 52)
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Equivalently, normalizing the observables to

r̃′k
�=

1
T

∫ (k+1)T

kT

r (t)√
2P

p (t − kT ) ejωctdt (5 53)

then Eq. (5-52) becomes

exp

[(
2Es

N0

)2 K−1∑
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]
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∣∣∣∣∣
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<
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2Es
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′2
k (2)

∣∣∣∣∣
)

(5 54)

Since we have already assumed low SNR in arriving at Eq. (5-54), we can fur-
ther approximate the nonlinearities in that equation by their values for small
arguments. Retaining only linear terms, we arrive at the simplification

K−1∑
k=0

|r̃′k (1)|2 <

K−1∑
k=0

|r̃′k (2)|2 (5 55)

or, equivalently,

K−1∑
k=0

|r̃k (1)|2 <

K−1∑
k=0

|r̃k (2)|2 (5 56)

which again does not require knowledge of SNR. On the other hand, if we retain
second-order terms, then Eq. (5-54) simplifies to
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1
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1
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⎡
⎣2

(
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+

∣∣∣∣∣
K−1∑
k=0

r̃
′2
k (2)

∣∣∣∣∣
2
⎤
⎦ (5 57)

which is SNR-dependent.
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Expanding Eq. (5-56) in the form of Eq. (5-10), we obtain

K−1∑
k=0

(∫ (k+1)T

kT

r (t) cos ωctdt

)2

+

(∫ (k+1)T

kT
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kT
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∫ (k+1)T

(k+1/2)T
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+
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kT

r (t) sinωctdt −
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)2

or
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r (t) sinωctdt

∫ (k+1)T
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r (τ) sinωcτdτ < 0
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{
K−1∑
k=0

∫ (k+1/2)T

kT

r (t) ejωctdt

∫ (k+1)T

(k+1/2)T

r (τ) e−jωctdτ

}
< 0 (5 58)

which is the analogous result to Eq. (5-11) for the coherent case.
For high SNR, even after applying the approximations to the nonlinearities

given in Eq. (5-9), it is still difficult to average over the random carrier phase.
Instead, we take note of the resemblance between Eqs. (5-58) and (5-59) for the
low SNR case and propose an ad hoc complex equivalent to Eq. (5-12) for the
noncoherent high SNR case, namely,

K−1∑
k=0

∣∣∣∣∣
∫ (k+1/2)T

kT

r (t) ejωctdt +
∫ (k+1)T

(k+1/2)T

r (t) ejωctdt

∣∣∣∣∣ <

K−1∑
k=0

∣∣∣∣∣
∫ (k+1/2)T

kT

r (t) ejωctdt −
∫ (k+1)T

(k+1/2)T

r (t) ejωctdt

∣∣∣∣∣ (5 59)
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Figure 5-4 is a block diagram of the implementation of the low and high SNR
classifiers defined by Eqs. (5-58) and (5-59).

5.3.2 Probability of Misclassification for Noncoherent BPSK

To compute the probability of misclassification, we note that Eq. (5-58) is
still made up of a sum of products of mutually independent real Gaussian RVs
and thus can still be written in the form of Eq. (5-14) with twice as many terms,
i.e.,

D =
1
2

K−1∑
k=0

(XkY ∗
k + X∗

kYk) (5 60)

where now the complex Gaussian RVs are defined as Xk = Xck + jXsk, Yk =
Yck + jYsk. The means of the terms are given by
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Fig. 5-4.  Reduced-complexity noncoherent data format classifiers for BPSK modulation:
(a) low SNR and (b) high SNR.



106 Chapter 5

X̄k = Ȳk = ck (cos θc − j sin θc)
√

P/8T (5 61)

whereas the variances and cross-correlations are the same as in Eq. (5-15). Thus,
since the magnitude of the means in Eq. (5-61) is reduced by a factor of

√
2

relative to that of the means in Eq. (5-15), we conclude that the probability of
misclassification is obtained from Eq. (5-23) by replacing Es/N0 with Es/(2N0)
and K with 2K, resulting in

PM =
1

22K−1

K∑
k=1

(
2K − 1
K − k

) k−1∑
n=0

exp
(
−KEs

2N0

)
(KEs/2N0)n

n!
(5 62)

Furthermore, the asymptotic behavior of Eq. (5-62) for large K can be deter-
mined from Eq. (5-31) by making the same replacements as above, resulting
in

PM = Q

⎛
⎝

√
K (Es/N0)

2

2 + 2Es/N0

⎞
⎠ (5 63)

which for sufficiently large Es/N0 approaches Eq. (5-31) for the coherent case.
Figure 5-5 illustrates numerical results for the misclassification probability

obtained by computer simulation for the low SNR and high SNR reduced-
complexity data format classifiers as specified by Eqs. (5-58) and (5-59), respec-
tively, as well as the optimum classifier described by Eq. (5-46). Also illustrated
are the numerical results obtained from the closed-form analytical solution given
in Eq. (5-62) for the low SNR reduced-complexity scheme (which are in exact
agreement with the simulation results) and the asymptotic results obtained from
Eq. (5-63). As in the coherent case, the difference in performance between the
low and high SNR reduced-complexity classifiers is again quite small over a large
range of SNRs. Furthermore, we see here again that the performances of the ap-
proximate but simpler classification algorithms are in close proximity to that
of the optimum one. Finally, comparison between the corresponding coherent
and noncoherent classifiers is illustrated in Fig. 5-6 and reveals a penalty of
approximately 1 dB or less depending on the SNR.
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Fig. 5-5.  A comparison of the performance of noncoherent data
format classifiers for BPSK modulation.
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5.4 Maximum-Likelihood Noncoherent Classifier of
Data Format for QPSK

Following the same approach as in Section 5.2.1, the LLF for the noncoherent
QPSK case is easily shown to be

Λ �= ln p
(
r (t) |p (t)

)
(5 64)

= E
θc

{
exp

(
K−1∑
k=0

[
ln cosh
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2
√
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N0
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)
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2
√

P

N0

∫ (k+1)T

kT

r (t) p (t − kT ) sin (ωct + θc) dt

)])}
(5 65)

Making the same small argument approximations to the nonlinearities, we get

p
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(5 66)
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Comparing Eq. (5-66) with Eq. (5-50), we note the absence of the Bessel function
factor. However, in arriving at Eq. (5-56), which was based on retaining only
linear terms, we approximated this factor by unity. Thus, applying the same
small argument approximation of the exponential as before, we again arrive at
a classification based on Eq. (5-56). Finally then, as in the coherent case, we
conclude that the performance of the noncoherent classifier of data format for
QPSK is identical to that for BPSK.

5.5 Maximum-Likelihood Coherent Classifier of Data
Format for BPSK with Residual and Suppressed
Carriers

When NRZ is transmitted, the received signal takes the form of Eq. (5-1)
with p(t) = p1(t) and P = Pt, where Pt now denotes the total transmitted power.
On the other hand, when Manchester-coded data are transmitted, the received
signal has the form

r (t) =
√

2Pc sinωct +
√

2Pd

( ∞∑
n=−∞

cnp2 (t − nT )

)
cos ωct + n (t) (5 67)

where Pc = Pt cos2 β and Pd = Pt sin2 β are, respectively, the powers allocated
to the discrete and data-modulated carriers with β the phase modulation index.
Then, analogous to Eq. (5-2), it is straightforward to show that

p
(
r(t)|{cn}, p2(t)

)
= C

K−1∏
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2
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2
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r (t) p2 (t − kT ) cos ωctdt

)

(5 68)

Averaging over the iid data sequence and taking the logarithm gives

ln p
(
r (t) |p (t)

)
=
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)

(5 69)
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Finally then, we obtain the classification rule:
Choose Manchester coding if

K−1∑
k=0

ln cosh
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r (t) p1 (t − kT ) cos ωctdt

)
<
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2
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r (t) p2 (t − kT ) cos ωctdt

)
(5 70)

Otherwise, choose NRZ.
To obtain the reduced-complexity version of Eq. (5-70), we once again use

the nonlinearity approximations in Eq. (5-9). For the low SNR case, we get after
some manipulation

D
�=

K−1∑
k=0

[
2(Pt − Pd)

N2
0

(
X2

ck + Y 2
ck

)
+

4(Pt + Pd)
N2

0

XckYck −
√

2Pc

N0
(Xsk + Ysk)

]

< 0 (5 71)

where for convenience of notation as before we have defined

Xck =
∫ (k+1/2)T

kTb

r (t) cos ωctdt, Yck =
∫ (k+1)T

(k+1/2)T

r (τ) cos ωctdτ

Xsk =
∫ (k+1/2)T

kT

r (t) sinωctdt, Ysk =
∫ (k+1)T

(k+1/2)T

r (τ) sinωctdτ

(5 72)

k = 0, 1, · · · , K − 1. Alternatively, in terms of the modulation index, SNR, and
normalized observables
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Eq. (5-71) becomes
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(
1 + sin2 β

)
X ′

ckY ′
ck

− (cos β) (X ′
sk + Y ′

sk)
]

< 0 (5 74)

where Et/N0
�= PtT/N0. Although the first two terms in the summation satisfy

the type of quadratic form considered in [1, Appendix B], unfortunately, the last
term, which does not contain second-order Gaussian RVs, prevents analytically
evaluating the misclassification probability in the same manner that was done
previously in Section 5.1.3. Nevertheless it is still possible to analytically evalu-
ate the asymptotic (large K) performance in the same manner as before. Here,
however, because of the lack of symmetry of the two hypotheses, one must indi-
vidually evaluate the two misclassification probabilities (probability of choosing
Manchester when NRZ is transmitted and vice versa) and then average the re-
sulting expressions.

Considering first the case where NRZ data are transmitted, i.e., the received
signal takes the form of Eq. (5-1), then after considerable manipulation, it can
be shown that

D̄ =
K

4

(
cos2 β +

2Et

N0

)

σ2
D =

K

8
N0

Et

[
cos2 β +

Et

N0

(
1 + sin4 β

)
+ 4

(
Et

N0

)2
] (5 75)

Thus, making the same Gaussian assumption on D, the probability of misclas-
sification for this case is given by

PM1 = Pr{D < 0} = Q

(
D̄

σD

)

= Q

⎛
⎜⎜⎜⎜⎜⎝

√√√√√√√√√
K

Et

N0

(
cos2 β +

2Et

N0

)2

2

[
cos2 β +

Et

N0

(
1 + sin4 β

)
+ 4

(
Et

N0

)2
]

⎞
⎟⎟⎟⎟⎟⎠ (5 76)
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For the case where Manchester-coded data are transmitted, i.e., the received
signal takes the form of Eq. (5-67), then again, after considerable manipulation,
it can be shown that

D̄ = − K

4

(
cos2 β +

2Et

N0
sin4 β

)

σ2
D =

K

8
N0

Et

[
cos2 β + 2

Et

N0
sin2 β + 4

(
Et

N0

)2

sin6 β

] (5 77)

whereupon the probability of misclassification becomes

PM2 = Pr {D > 0} = Q

(
− D̄

σD

)

= Q

⎛
⎜⎜⎜⎜⎜⎝

√√√√√√√√√
K

Et

N0

(
cos2 β +

2Et

N0
sin4 β

)2

2

[
cos2 β + 2

Et

N0
sin2 β + 4

(
Et

N0

)2

sin6 β

]
⎞
⎟⎟⎟⎟⎟⎠ (5 78)

Finally, assuming the equiprobable data format hypothesis, the asymptotic av-
erage probability of misclassification is the average of Eq. (5-76) and Eq. (5-78),
namely,

PM =
1
2

(PM1 + PM2) (5 79)

Note that, for β = 90 deg, Et = Es and Eq. (5-79) reduces to Eq. (5-31) as it
should.

For high SNR, using the approximation

ln coshx ∼= |x| − ln 2 (5 80)

we obtain, analogous to Eq. (5-71),

D
�=

K−1∑
k=0

[√
Pt |Xck + Yck| −

√
Pc (Xsk + Ysk) −

√
Pd |Xck − Yck|

]
< 0 (5 81)
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or in terms of the modulation index and the normalized observables,

D
�=

K−1∑
k=0

[
|X ′

ck + Y ′
ck| − (X ′

sk + Y ′
sk) cos β − |X ′

ck − Y ′
ck| sinβ

]
< 0 (5 82)

Figure 5-7 is an illustration of the average (over the two hypotheses) misclas-
sification probability for the various coherent classification algorithms, where the
results are all obtained by computer simulation. We observe that, over a very
wide range of SNRs, the performance of the high SNR approximation classifier
is virtually a perfect match to that of the optimum classifier, but its implemen-
tation is somewhat simpler. On the other hand, while the performance of the
low SNR classifier converges to that of the optimum classifier at low SNR as it
should, at high SNR it results in considerable degradation. The reasoning behind
this relative difference in behavior between the approximate and optimum clas-
sifiers can be explained as follows: Whereas at low SNR the maximum difference
between ln cosh x and its high SNR approximation |x| − ln 2 occurs at x = 0 and
is equal to ln 2, at high SNR the difference between ln coshx and its low SNR
approximation x2/2 grows without bound, i.e., the difference between a linear
and a square law behavior. Thus, using the high SNR approximation of ln coshx

over the entire range of SNR is a much better fit than using the low SNR approx-
imation over the same SNR range. Illustrated in Fig. 5-8 is a comparison of the
performances of the coherent classifiers for the residual- and suppressed-carrier
cases, the latter being obtained from the discussion in Section 5.1.1. We observe
that for the optimum and high SNR approximation classifiers the two are quite
similar in performance although the suppressed-carrier one is a bit inferior. This
implies that a discrete carrier component is slightly influential in improving data
format classification for coherent communications.

5.6 Maximum-Likelihood Noncoherent Classifier of
Data Format for BPSK with Residual and
Suppressed Carriers

As in Section 5.3.1, we again assume that the carrier has a random phase, θc,
that is unknown and uniformly distributed. Then when NRZ is transmitted, the
received signal takes the form of Eq. (5-40) with p (t) = p1 (t) and P = Pt.
On the other hand, when Manchester-coded data are transmitted, the received
signal has the form

r(t) =
√

2Pc sin (ωct + θc) +
√

2Pd

( ∞∑
n=−∞

cnp2 (t − nT )

)
cos (ωct + θc) + n(t)

(5 83)
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Fig. 5-7.  Misclassification probability for residual carrier coherent
classifier: β = 60 deg.
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Without going to great length, following the same procedure as in Section 5.3.1,
it is straightforward to show that, analogous to Eq. (5-46), the likelihood ratio
for choosing between NRZ and residual-carrier Manchester-coded data is given
by

LR =

E
θc

{
exp

[ K−1∑
k=0

ln cosh

(
2
√

2Pt

N0

∫ (k+1)T

kT

r(t)p1(t − kT ) cos(ωct + θc)dt

)]}

E
θc

{
exp

[ K−1∑
k=0

ln cosh

(
2
√

2Pd

N0

∫ (k+1)T

kT

r(t)p2(t − kT ) cos(ωct + θc)dt

)

+
2
√

2Pc

N0

K−1∑
k=0

∫ (k+1)T

kT

r(t) sin (ωct + θc) dt

]}
(5 84)

To obtain a low SNR classifier, we approximate the nonlinearities in
Eq. (5-84) by their small argument values which results after considerable sim-
plification in a test analogous to Eq. (5-55) given by the following: Choose
Manchester if

K−1∑
k=0

|r̃′k (1)|2 <
(
sin2 β

) K−1∑
k=0

|r̃′k (2)|2 +
(
cos2 β

) ∣∣∣∣∣
K−1∑
k=0

r̃′k (1)

∣∣∣∣∣
2

(5 85)

where as before the real and imaginary components of r̃k(l) =
(
Tb

√
2Pt

)
r̃′k(l);

l = 1, 2 are defined in Eq. (5-35). Alternatively, in terms of integrals, Eq. (5-85)
becomes

K−1∑
k=0

∣∣∣∣∣
∫ (k+1/2)T

kT

r (t) ejωctdt +
∫ (k+1)T

(k+1/2)T

r (t) ejωctdt

∣∣∣∣∣
2

<

(
sin2 β

) K−1∑
k=0

∣∣∣∣∣
∫ (k+1/2)T

kT

r (t) ejωctdt −
∫ (k+1)T

(k+1/2)T

r (t) ejωctdt

∣∣∣∣∣
2

+
(
cos2 β

) ∣∣∣∣∣
K−1∑
k=0

∫ (k+1/2)T

kT

r (t) ejωctdt +
∫ (k+1)T

(k+1/2)T

r (t) ejωctdt

∣∣∣∣∣
2

(5 86)
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For the high SNR case, by analogy with Eq. (5-86), we propose the ad hoc
test

K−1∑
k=0

∣∣∣∣∣
∫ (k+1/2)T

kT

r (t) ejωctdt +
∫ (k+1)T

(k+1/2)T

r (t) ejωctdt

∣∣∣∣∣ <

(sinβ)
K−1∑
k=0

∣∣∣∣∣
∫ (k+1/2)T

kT

r (t) ejωctdt −
∫ (k+1)T

(k+1/2)T

r (t) ejωctdt

∣∣∣∣∣

+ (cos β)

∣∣∣∣∣
K−1∑
k=0

∫ (k+1/2)T

kT

r (t) ejωctdt +
∫ (k+1)T

(k+1/2)T

r (t) ejωctdt

∣∣∣∣∣ (5 87)

which is consistent with the ad hoc test in Eq. (5-59) when β = 90 deg.
Analogous to Fig. 5-7, Fig. 5-9 is an illustration of the average misclassifica-

tion probability for the various classification noncoherent algorithms, where the
results are all obtained by computer simulation. We again observe that, over
a very wide range of SNRs, the performance of the high SNR approximation
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Fig. 5-9.  Misclassification probability for residual carrier noncoherent
classifier:  β = 60 deg.
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classifier is virtually a perfect match to that of the optimum classifier, but its
implementation is somewhat simpler. On the other hand, while the performance
of the low SNR classifier converges to that of the optimum classifier at low SNR
as it should, at high SNR it results in considerable degradation. Illustrated
in Fig. 5-10 is a comparison of the performances of the coherent classifiers for
the residual- and suppressed-carrier noncoherent classifier cases, the latter being
obtained from the discussion in Section 5.3.1 of the chapter. We observe that,
as in the coherent comparison illustrated in Fig. 5-8, for the optimum and high
SNR approximation classifiers the two are again quite similar in performance,
although now the suppressed-carrier one is a bit superior. Finally, analogous to
Fig. 5-6, a comparison of the corresponding coherent and noncoherent classifiers
for the residual-carrier case is illustrated in Fig. 5-11, and for the optimum metric
reveals a penalty of approximately 1.25 dB or less depending on the SNR.

5.7 Maximum-Likelihood Pulse Shape Classification
The solution to the problem of making an ML decision on the pulse shape of

a modulation from a variety of different possibilities in principle follows the iden-
tical procedure discussed in the previous sections for data format classification,
except for the fact that we no longer restrict ourselves to a digital pulse waveform.
For example, suppose that we are transmitting a binary modulation, where the
pulse shape is known to be one of L possibilities, namely, pl(t), l = 1, 2, · · · , L.
Then, using the LLF of Eq. (5-4) and defining rk(l) as in Eq. (5-7) (without the
special cases of NRZ and Manchester), then the ML coherent classifier of pulse
shape would be to choose pl∗ (t) corresponding to

l∗ = argmax
l

K−1∑
k=0

ln cosh

(
2
√

2P

N0

∫ (k+1)T

kT

r (t) pl (t − kT ) cos ωctdt

)
(5 88)

where the notation argmax
l

f(l) denotes the value of l that maximizes the func-

tion f(l). Once again by making small and large argument approximations of
the ln cosh (·) nonlinearity, one can obtain reduced-complexity classifiers in the
same manner as was used in Section 5.1.2 for the special case of data format
classification. Other examples involving higher-order modulations follow along
the same lines as those just discussed.
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Fig. 5-10.  Comparison of misclassification probability for suppressed
and residual carrier noncoherent classifiers.
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Fig. 5-11.  A comparison of performance of coherent and noncoherent
data format classifiers for BPSK modulation: residual carrier case.
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