
Chapter 4
Frequency Correction

Dariush Divsalar

Over the years, much effort has been spent in the search for optimum syn-
chronization schemes that are robust and simple to implement [1,2]. These
schemes were derived based on maximum-likelihood (ML) estimation theory. In
many cases, the derived open- or closed-loop synchronizers are nonlinear. Linear
approximation provides a useful tool for the prediction of synchronizer perfor-
mance.

In this semi-tutorial chapter, we elaborate on these schemes for frequency ac-
quisition and tracking. Various low-complexity frequency estimator schemes are
presented in this chapter. The theory of ML estimation provides the optimum
schemes for frequency estimation. However, the derived ML-based scheme might
be too complex for implementation. One approach is to use theory to derive the
best scheme and then try to reduce the complexity such that the loss in perfor-
mance remains small. Organization of this chapter is as follows: In Section 4.1,
we show the derivation of open- and closed-loop frequency estimators when a
pilot (residual) carrier is available. In Section 4.2, frequency estimators are de-
rived for known data-modulated signals (data-aided estimation). In Section 4.3,
non-data-aided frequency estimators are discussed. This refers to the frequency
estimators when the data are unknown at the receiver.

4.1 Frequency Correction for Residual Carrier
Consider a residual-carrier system where a carrier (pilot) is available for

tracking. We consider both additive white Gaussian noise (AWGN) and Rayleigh
fading channels in this section.
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4.1.1 Channel Model

Let r̃c[k] be the kth received complex sample of the output of a low-
pass filtered pilot. The observation vector r̃c with components r̃c[k]; k = 0,

1, · · · , N − 1 can be modeled as

r̃c[k] = Aej(2π∆fkTs+θc) + ñ[k] (4 1)

where the r̃c[k] samples are taken every Ts seconds (sampling rate of 1/Ts).
In the above equation, ñ[k], k = 0, 1, · · · , N − 1, are independent, identically
distributed (iid) zero-mean, complex Gaussian random variables with variance σ2

per dimension. The frequency offset to be estimated is denoted by ∆f , and θc is
an unknown initial carrier phase shift that is assumed to be uniformly distributed
in the interval [0, 2π) but constant over the N samples. For an AWGN channel,
A =

√
2Pc is constant and represents the amplitude of the pilot samples. For a

Rayleigh fading channel, we assume A is a complex Gaussian random variable,
where |A| is Rayleigh distributed and arg A

�= tan−1
(
Im(A)/Re(A)

)
is uniformly

distributed in the interval [0, 2π), where Im(·) denotes the imaginary operator
and Re(·) denotes the real operator.

4.1.2 Optimum Frequency Estimation over an AWGN Channel

We desire an estimate of the frequency offset ∆f based on the received ob-
servations given by Eq. (4-1). The ML estimation approach is to obtain the
conditional probability density function (pdf) of the observations, given the fre-
quency offset. To do so, first we obtain the following conditional pdf:

P (r̃c|∆f, θc) = C0e
−(1/2σ2)Z (4 2)

where C0 is a constant, and

Z =
N−1∑
k=0

∣∣∣r̃c[k] − Aej(2π∆fkTs+θc)
∣∣∣2 (4 3)

Define

Y =
N−1∑
k=0

r̃c[k]e−j(2π∆fkTs) (4 4)

Then Z can be rewritten as
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Z =
N−1∑
k=0

∣∣r̃c[k]
∣∣2 − 2ARe(Y e−jθc) +

N−1∑
k=0

A2 (4 5)

The first and the last terms in Eq. (4-5) do not depend on ∆f and θc. Denoting
the sum of these two terms by C1, then Z can be written as

Z = C1 − 2A|Y |cos(θc − arg Y ) (4 6)

Using Eq. (4-6), the conditional pdf of Eq. (4-2) can be written as

P (r̃c|∆f, θc) = C2 exp
[

A

σ2
|Y |cos(θc − arg Y )

]
(4 7)

where C2 = Ce−(C1/2σ2). Averaging Eq. (4-7) over θc produces

P (r̃c|∆f) = C2I0

(
A|Y |
σ2

)
(4 8)

where I0(·) is the modified Bessel function of zero order and can be represented
as

I0(x) =
1
2π

∫ 2π

0

excos(ψ)dψ (4 9)

Since I0(x) is an even convex cup ∪ function of x, maximizing the right-hand side
of Eq. (4-8) is equivalent to maximizing |Y |. Thus, the ML metric for estimating
the frequency offset can be obtained by maximizing the following metric:

λ(∆f) = |Y | =

∣∣∣∣∣
N−1∑
k=0

r̃c[k]e−j(2π∆fkTs)

∣∣∣∣∣ (4 10)

4.1.3 Optimum Frequency Estimation over a Rayleigh
Fading Channel

We desire an estimate of the frequency offset ∆f over a Rayleigh fading
channel. The ML approach is to obtain the conditional pdf of the observations,



66 Chapter 4

given the frequency offset. To do so, first we start with the following conditional
pdf:

P (r̃c|A,∆f, θc) = C0e
−(1/2σ2)Z (4 11)

where C0 is a constant, and Z and Y are defined as in Eqs. (4-3) and (4-4).
Since A is now a complex random variable, then Z can be rewritten as

Z =
N−1∑
k=0

∣∣r̃c[k]
∣∣2 − 2Re(Y Ae−jθc) +

N−1∑
k=0

|A|2 (4 12)

The first terms in Eq. (4-12) do not depend on A. Averaging the conditional pdf
in Eq. (4-11) over A, assuming the magnitude of A is Rayleigh distributed and
its phase is uniformly distributed, we obtain

P (r̃c|∆f, θc) = C3 exp
(

C4

2σ2
|Y |2

)
(4 13)

where C3 and C4 are constants, and Eq. (4-13) is independent of θc. Thus,
maximizing the right-hand side of Eq. (4-13) is equivalent to maximizing |Y |2 or
equivalently |Y |. Thus, the ML metric for estimating the frequency offset can
be obtained by maximizing the following metric:

λ(∆f) = |Y | =

∣∣∣∣∣
N−1∑
k=0

r̃c[k]e−j(2π∆fkTs)

∣∣∣∣∣ (4 14)

which is identical to that obtained for the AWGN channel case.

4.1.4 Open-Loop Frequency Estimation

For an open-loop estimation, we have

∆̂f = argmax
∆f

λ(∆f) (4 15)

However, this operation is equivalent to obtaining the fast Fourier transform
(FFT) of the received sequence, taking its magnitude, and then finding the
maximum value, as shown in Fig. 4-1.



Frequency Correction 67

Fig. 4-1. Open-loop frequency estimation, 

residual carrier.
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4.1.5 Closed-Loop Frequency Estimation

The error signal for a closed-loop estimator can be obtained as

e =
∂

∂∆f
λ(∆f) (4 16)

We can approximate the derivative of λ(∆f) for small ε as

∂

∂∆f
λ(∆f) =

λ(∆f + ε) − λ(∆f − ε)
2ε

(4 17)

Then, we can write the error signal as (in the following, any positive constant
multiplier in the error signal representation will be ignored)

e = |Y (∆f + ε)| − |Y (∆f − ε)| (4 18)

where

Y (∆f + ε) =
N−1∑
k=0

r̃c[k]e−j(2π∆fkTs)e−j(2πεkTs) (4 19)

The error-signal detector for a closed-loop frequency correction can be imple-
mented based on the above equations. The block diagram is shown in Fig. 4-2,
where in the figure α = e−j2πεTs .

Now rather than using the approximate derivative of λ(∆f), we can take the
actual derivative of λ2(∆f) = |Y |2, which gives the error signal

e = Im(Y ∗U) (4 20)

where
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Fig. 4-2.  Approximate error signal detector, residual carrier.
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U =
N−1∑
k=0

r̃c[k]ke−j(2π∆fkTs) (4 21)

Note that the error signal in Eq. (4-20) can also be written as

e = Im(Y ∗U) = |Y − jU |2 − |Y + jU |2 (4 22)

or for a simple implementation we can use

e = |Y − jU | − |Y + jU | (4 23)

The block diagram of the error signal detector based on Eq. (4-23) is shown in
Fig. 4-3.

The corresponding closed-loop frequency estimator is shown in Fig. 4-4. The
dashed box in this figure and all other figures represents the fact that the hard
limiter is optional. This means that the closed-loop estimators can be imple-
mented either with or without such a box.

4.1.5.1. Approximation to the Optimum Error Signal Detector. Imple-
mentation of the optimum error signal detector is a little bit complex. To reduce
the complexity, we note that
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Fig. 4-3.  Exact error signal detector, residual carrier.
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Fig. 4-4.  Closed-loop frequency estimator, residual carrier.
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e = Im(Y ∗U) =
N−1∑
i=0

Im(X∗
0,iXi+1,(N−1)) ∼= C5Im(X∗

0,(N/2)−1X(N/2),N−1)

(4 24)
where

Xm,n =
n∑

k=m

r̃c[k]e−j(2π∆fkTs) (4 25)

The closed-loop frequency estimator with the approximate error signal de-
tector given by Eq. (4-24) is shown in Fig. 4-5. The parameters Nw = N/2 (the
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number of samples to be summed, i.e., the window size) and δ (gain) should be
optimized and updated after the initial start to perform both the acquisition and
tracking of the offset frequency.

4.1.5.2. Digital Loop Filter. The gain δ that was shown in the closed-loop
frequency-tracking system is usually part of the digital loop filter. However, here
we separate them. Then the digital loop filter without gain δ can be represented
as

F (z) = 1 +
b

1 − z−1
(4 26)

The corresponding circuit for the digital loop filter is shown in Fig. 4-6. Now in
addition to the gain δ, the parameter b also should be optimized to achieve the
best performance.

4.1.5.3. Simulation Results. Performance of the closed-loop frequency esti-
mator in Fig. 4-5 was obtained through simulations. First, the acquisition of the
closed-loop estimator for a 10-kHz frequency offset is shown in Fig. 4-7. Next
the standard deviation of the frequency error versus the received signal-to-noise
ratio (SNR) for various initial frequency offsets was obtained. The results of the
simulation are shown in Fig. 4-8.
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Fig. 4-6.  Loop filter for frequency-tracking loops.
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Fig. 4-7.  Frequency acquisition performance.
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Fig. 4-8.  Standard deviation of frequency error.
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4.2 Frequency Correction for Known Data-Modulated
Signals

Consider a data-modulated signal with no residual (suppressed) carrier. In
this section, we assume perfect knowledge of the symbol timing and data (data-
aided system). Using again the ML estimation, we derive the open- and closed-
loop frequency estimators.

4.2.1. Channel Model

We start with the received baseband analog signal and then derive the
discrete-time version of the estimators. Let r̃(t) be the received complex wave-
form, and ai be the complex data representing an M -ary phase-shift keying
(M -PSK) modulation or a quadrature amplitude modulation (QAM). Let p(t)
be the transmit pulse shaping. Then the received signal can be modeled as

r̃(t) =
∞∑

i=−∞
aip(t − iT )ej(2π∆ft+θc) + ñ(t) (4 27)
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where T is the data symbol duration and ñ(t) is the complex AWGN with two-
sided power spectral density N0 W/Hz per dimension. The conditional pdf of
the received observation given the frequency offset ∆f and the unknown carrier
phase shift θc can be written as

p(r̃|∆f, θc) = C6e
−(1/N0)

∫ ∞
−∞

|r̃(t)−
∑∞

i=−∞
aip(t−iT )ej(2π∆ft+θc)|2dt

(4 28)

where C6 is a constant. Note that

∣∣∣∣∣r̃(t) −
∞∑

i=−∞
aip(t − iT )ej(2π∆ft+θc)

∣∣∣∣∣
2

= |r̃(t)|2 +

∣∣∣∣∣
∞∑

i=−∞
aip(t − iT )

∣∣∣∣∣
2

− 2
∞∑

i=−∞
Re

{
a∗

i r̃(t)p(t − iT )e−j(2π∆ft+θc)
}

(4 29)

The first two terms do not depend on ∆f and θc. Then we have

p(r̃|∆f, θc) = C7e
(2/N0)Re

{∑∞
i=−∞

a∗
i zi(∆f)e−jθc

}
(4 30)

where C7 is a constant and

zi(∆f) =
∫ (i+1)T

iT

r̃(t)p(t − iT )e−j(2π∆ft)dt (4 31)

The conditional pdf in Eq. (4-30) also can be written as

p(r̃|∆f, θc) = C7 exp
[

2
N0

|Y |cos(θc − arg Y )
]

(4 32)

where

Y =
∞∑

i=−∞
a∗

i zi(∆f) (4 33)

Averaging Eq. (4-32) over θc produces
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P (r̃|∆f) = C8I0

(
2

N0
|Y |

)
(4 34)

where C8 is a constant. Again, since I0(x) is an even convex cup ∪ function of x,
maximizing the right-hand side of Eq. (4-34) is equivalent to maximizing |Y | or
equivalently |Y |2. Thus, the ML metric for estimating the frequency offset over
the N data symbol interval can be obtained by maximizing the following metric:

λ(∆f) = |Y | =

∣∣∣∣∣
N−1∑
k=0

a∗
kzk(∆f)

∣∣∣∣∣ (4 35)

4.2.2 Open-Loop Frequency Estimation

For an open-loop estimation, we have

∆̂f = argmax
∆f

λ(∆f) (4 36)

but this operation is equivalent to multiplying the received signal by e−j(2π∆ft),
passing it through the matched filter (MF) with impulse response p(−t), and
sampling the result at t = (k + 1)T , which produces the sequence of zk’s. Next,
sum the zk’s, take its magnitude, and then find the maximum value by varying
the frequency ∆f between −∆fmax and ∆fmax, where ∆fmax is the maximum
expected frequency offset. The block diagram to perform these operations is
shown in Fig. 4-9.

4.2.3 Closed-Loop Frequency Estimation

The error signal for closed-loop tracking can be obtained as

e =
∂

∂∆f
λ(∆f) (4 37)

We can approximate the derivative of λ(∆f) for small ε as in Eq. (4-17). Then
we can approximate the error signal as

e = |Y (∆f + ε)| − |Y (∆f − ε)| (4 38)
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Fig. 4-9.  Open-loop frequency estimation for suppressed carrier, known data.
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where

Y (∆f + ε) =
N−1∑
k=0

a∗
kzk(∆f + ε) (4 39)

The error signal detector for the closed-loop frequency correction is implemented
using the above equations and is shown in Fig. 4-10. In the figure, DAC denotes
digital-to-analog converter.

Now again, rather than using the approximate derivative of λ(∆f), we can
take the derivative of λ2(∆f) = |Y |2 to obtain the error signal as

e = Im(Y ∗U) (4 40)

and

U =
N−1∑
k=0

a∗
kuk(∆f) (4 41)

where

ui(∆f) =
∫ (i+1)T

iT

r̃(t)tp(t − iT )e−j(2π∆ft)dt (4 42)

Thus, uk(∆f) is produced by multiplying r̃(t) by e−j2π∆ft and then passing it
through a so-called derivative matched filter (DMF)—also called a frequency-
matched filter (FMF)—with impulse response tp(−t), and finally sampling the
result of this operation at t = (k + 1)T . Note that the error signal in Eq. (4-40)
also can be written as
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Fig. 4-10.  Error signal detector and closed-loop block diagram for suppressed 

carrier, known data.
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e = Im(Y ∗U) = |Y − jU |2 − |Y + jU |2 (4 43)

or, simply, we can use

e = |Y − jU | − |Y + jU | (4 44)

The block diagram of the closed-loop frequency estimator using the error signal
detector given by Eq. (4-40) is shown in Fig. 4-11. Similarly, the block diagram
of the closed-loop frequency estimator using the error signal detector given by
Eq. (4-44) is shown in Fig. 4-12.

The closed-loop frequency estimator block diagrams shown in this section
contain mixed analog and digital circuits. An all-digital version of the closed-
loop frequency estimator in Fig. 4-11 operating on the received samples r̃[k]
is shown in Fig. 4-13. In the figure, pk represents the discrete-time version of
the pulse shaping p(t). We assume that there are n samples per data symbol
duration T . An all-digital version of other closed-loop estimators can be obtained
similarly.
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4.3 Frequency Correction for Modulated Signals with
Unknown Data

Consider again a data-modulated signal with no residual (suppressed) car-
rier. In this section, we assume perfect timing but no knowledge of the data
(non-data-aided system). Again using the ML estimation, we derive the open-
and closed-loop frequency estimators. In Section 4.2, we obtained the conditional
pdf of the received observation given the frequency ∆f and data sequence a. We
repeat the result here for clarity:

P (r̃|∆f,a) = C8I0

(
2

N0
|Y |

)
(4 45)

where

Y =
∞∑

i=−∞
a∗

i zi(∆f) (4 46)

and

zi(∆f) =
∫ (i+1)T

iT

r̃(t)p(t − iT )e−j(2π∆ft)dt (4 47)
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Now we have to average Eq. (4-46) over a. Unfortunately, implementation of
this averaging is too complex. Instead, first we approximate the I0(x) function
as

I0

(
2

N0
|Y |

)
∼= 1 +

1
N2

0

|Y |2 (4 48)

Now we need only to average |Y |2 over the data sequence a as

E
{
|Y |2

}
= E

⎧⎨
⎩

∣∣∣∣∣
N−1∑
k=0

a∗
kzk(∆f)

∣∣∣∣∣
2
⎫⎬
⎭

=
N−1∑
k=0

N−1∑
i=0

E{a∗
kai}zk(∆f)z∗i (∆f)

= Ca

N−1∑
k=0

|zk(∆f)|2 (4 49)

where Ca
�= E{|ak|2} and the ak’s are assumed to be zero mean and independent.

Thus, estimating the frequency offset over the N data symbol interval can be
obtained by maximizing the following metric:

λ(∆f) =
N−1∑
k=0

|zk(∆f)|2 (4 50)

4.3.1 Open-Loop Frequency Estimation

For open-loop estimation, we have

∆̂f = argmax
∆f

λ(∆f) (4 51)

However, this operation is equivalent to multiplying the received signal by
e−j(2π∆ft), passing it through a matched filter with impulse response p(−t),
and sampling the result at t = (k + 1)T , which produces the sequence of zk’s.
Next, take the magnitude square of each zk, perform summation, and then find



80 Chapter 4

the maximum value by varying the frequency ∆f between −∆fmax and ∆fmax,
where ∆fmax is the maximum expected frequency offset. The block diagram to
perform these operations is shown in Fig. 4-14.

4.3.2 Closed-Loop Frequency Estimation

The error signal for closed-loop tracking can be obtained as

e =
∂

∂∆f
λ(∆f) (4 52)

We can approximate the derivative of λ(∆f) for small ε as in Eq. (4-17). Then,
we can approximate the error signal as

e =
N−1∑
k=0

{|zk(∆f + ε)|2 − |zk(∆f − ε)|2} (4 53)

The error signal detector for the closed-loop frequency correction is implemented
using the above equations, and it is shown in Fig. 4-15.

Now again, rather than using the approximate derivative of λ(∆f), we can
take the derivative of λ(∆f) =

∑N−1
k=0 |zk(∆f)|2 and obtain the error signal as

e =
N−1∑
k=0

Im{z∗k(∆f)uk(∆f)} (4 54)

where

ui(∆f) =
∫ (i+1)T

iT

r̃(t)tp(t − iT )e−j(2π∆ft)dt (4 55)

Fig. 4-14.  Open-loop frequency estimation for suppressed carrier, unknown data.
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Fig. 4-15.  Error signal detector and closed-loop block diagram for suppressed carrier, 

unknown data.
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Note that the error signal in Eq. (4-54) also can be written as

e =
N−1∑
k=0

{|zk(∆f) − juk(∆f)|2 − |zk(∆f) + juk(∆f)|2} (4 56)

The block diagram of the closed-loop frequency estimator using the error
signal detector given by Eq. (4-54) is shown in Fig. 4-16. Similarly, the block
diagram of the closed-loop frequency estimator using the error signal detector
given by Eq. (4-56) is shown in Fig. 4-17.

The closed-loop frequency estimator block diagrams shown in this section
contain mixed analog and digital circuits. An all-digital version of the closed-
loop frequency estimator in Fig. 4-16 operating on the received samples r̃[k] is
shown in Fig. 4-18. All-digital versions of other closed-loop estimators can be
obtained similarly.
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Fig. 4-16.  Closed-loop estimator with error signal detector for suppressed carrier, 

unknown data, Eq. (4-54).
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Fig. 4-17.  Closed-loop estimator with error signal detector for suppressed carrier, 

unknown data, Eq. (4-56).
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Fig. 4-18.  All-digital closed-loop frequency estimator for suppressed carrier, 

unknown data.
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