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Chapter 1 

Introduction 

William A. Imbriale, John Huang, and Mark S. Gatti 

Spaceborne Antennas for Planetary Exploration traces the development of 

the antennas used on JPL Spacecraft from their inception on the very first 

United States Explorer Mission in 1958 to the present. To completely cover all 

types of spacecraft antennas would be a daunting task indeed, and is not the 

intent of this monograph. Rather, the focus is only on antennas that have flown 

on Jet Propulsion Laboratory (JPL) spacecraft or were used for JPL scientific 

instruments that have flown on other spacecraft. The monograph primarily 

deals with the RF design and performance of the antennas and associated front-

end equipment, but it also includes a chapter on mechanical development. It 

describes all the new designs and technological innovations introduced by JPL. 

There is also a thorough treatment of all the analytical and measurement 

techniques used in the design and performance assessment. This monograph 

can serve as an introduction to newcomers in the field or a reference for the 

advanced practitioner. The technical terms in the text assume that the reader is 

familiar with basic engineering and mathematical concepts including material 

typically found in a senior-level course in electromagnetics. 

This book is complementary to [1], which describes the JPL ground 

network antennas. However, whereas the ground antennas are primarily for 

telecommunication, the antennas on spacecraft can serve the dual purpose of a 

science instrument and/or a means of communicating the science and telemetry 

data to Earth. JPL’s support of the National Aeronautics and Space 

Administration (NASA) space program has several distinct eras. The very first 

mission was an Earth orbiter, quickly followed by unmanned exploration of the 

Moon in preparation for NASA manned flight to the Moon. Missions to the 



2  Chapter 1 

Moon included the Ranger series that captured pictures of the surface as it flew 

into the Moon, and the Surveyor spacecraft that successfully landed on the 

surface of the Moon. The first interplanetary spacecraft were flybys, initially 

targeting the inner planets of Venus, Mercury, and Mars. The flyby era 

concluded with the “Grand Tour” Voyager Mission that flew by Jupiter, Saturn, 

Uranus and Neptune.
1
 The next phase of space exploration was planetary 

orbiters that collected data at Venus, Mars, Jupiter, and Saturn. Probably, the 

most challenging and exciting missions to date have been the Mars landers, and 

several of these missions are currently ongoing. In the planning stage are 

sample-return missions. In addition to planetary exploration missions, there 

have been a number of missions that have explored planet Earth, including 

synthetic aperture radar (SAR) missions that have mapped the entire planet. 

This monograph is organized around the various eras and has contributions 

from many of the engineers involved in the development of the missions. The 

contributors are all identified in the title of the section. Chapter 1 gives a brief 

introduction and presents the methods of analysis, with supporting 

mathematical details of the various antenna types described throughout the 

remainder of the monograph. It also describes some design and measurement 

techniques. John Huang contributed the sections on microstrip antennas, and 

Mark Gatti provided the section on near-field measurements. Chapter 1, 

combined with the first chapter of [1], gives a very thorough reference on 

spacecraft and ground antenna analysis techniques, and it could be used in a 

graduate course on electromagnetics. 

Chapter 2, “The Early Years,” describes some of the antennas used on the 

very first Earth-orbiting and Moon missions, such as the Explorer, Pioneer, 

Ranger, and Surveyor spacecraft. 

Chapter 3, “The Planetary Flybys,” describes the antennas used on the first 

missions that flew by the planets. It includes the Mariner series of spacecraft 

that flew by Mars, Venus, and Mercury, as well as the Grand Tour Voyager 

Mission. 

Chapter 4, “The Mars Missions,” by Joe Vacchoine, is a comprehensive 

chapter that covers all the Mars missions including the early orbiters and 

landers, as well as the more recent orbiters, landers, and rovers. It includes a 

complete description of the antennas on the Mars Exploration Rover (MER) 

landers. 

Chapter 5, “The Orbiters,” with contributions from Roberto Mizzoni and 

Mark Gatti, describes the antennas on the past and current orbiter missions (not 

including the Mars Missions) such as the Magellan (Venus Radar Mapper), and 

the Jupiter and Saturn orbiters. It describes the failed deployable mesh antenna 

                                                
1
 In 1965 Gary Flandro proposed that, due to a once-per 175-year alignment of planets 

on one side of the Sun in the 1970s, a multi-planet “Grand Tour” opportunity existed to 

allow a single spacecraft to explore the four outer planets of the Solar System. 
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on the Galileo Spacecraft as well as the complicated four-frequency combined 

radar and communications antenna on the Cassini spacecraft. 

Chapter 6, “Spaceborne SAR Antennas for Earth Science,” by Yunjin Kim 

and Rolando Jordan, describes the Earth science SAR missions. 

Chapter 7, “Instrument Packages,” by Richard Cofield, describes antennas 

used on various instrument packages for science spacecraft. It includes antennas 

used on scatterometers and radiometers. Richard Hodges contributed the 

section on the Wide Swath Ocean Altimeter. There is some overlap in subject 

material with Chapter 6 as a SAR antenna is also a science instrument, but each 

chapter has a slightly different perspective and describes different instruments.  

Chapter 8, “Mechanical Development of Antenna Systems,” by Greg Davis 

and Rebekah Tanimoto, discusses the various mechanical aspects of spacecraft 

antenna design. It also discusses the test program necessary to qualify a 

spacecraft antenna. 

Chapter 9, “Miscellaneous Other Antennas,” describes a few unique 

antennas that did not readily fit into the other chapters. Included is the Solar 

Probe antenna and the Deep Impact antenna by Dan Hoppe. 

Finally in Chapter 10, John Huang discusses future spacecraft antenna 

research and development. 

1.1 Technology Drivers 
William A. Imbriale 

Antennas on board JPL spacecraft are used for telecommunications, as 

science instruments, or for both purposes. Technology required for science 

instruments is dictated by the specific science objectives and tends to be 

mission specific. Technology drivers for deep-space telecommunications are 

more universal and apply to all missions. The following discusses the main 

requirements for deep-space telecommunications antennas. 

The communication links to deep space are asymmetric, with considerably 

more data on the downlink (space to Earth) than on the uplink (Earth to space) 

because the downlink contains the science, and telemetry data and the uplink is 

primarily used for commanding the spacecraft. The key element of the 

telecommunications-link performance is the ground-received power signal-to-noise 

ratio (SNR), which is given by 

 S /N
PTGTGR
4 R2N

=
4 PT AT AR
2R2kBTs

 (1.1-1) 

where 

PT  = spacecraft transmit power 

GT  = transmit gain 

GR  = receive gain 



4  Chapter 1 

R = distance to the spacecraft 

N  = total noise 

AT  = the effective area of the transmit (spacecraft) antenna 

AR  = the effective area of the receive ground antenna 

Ts  = receive system-noise temperature 

 = wavelength 

k  = Boltzman’s constant 

B = bandwidth 

Thus, data rate is proportional to the spacecraft effective isotropic radiated 

power (EIRP), or the product of antenna gain and radiated power. High-power 

spacecraft transmitters and large-aperture antennas are a priority for increasing 

direct-to-Earth telecommunications performance. Hence, a design that makes 

the maximum use of the transmit antenna area (high efficiency) is desired. 

However, not only should the antenna have high gain, but it must be pointed in 

the right direction. In theory, the main beam pointing could be accomplished 

electronically or mechanically. But to date, JPL has not used electronic beam 

pointing, but has relied on mechanically pointing the beam either by gimbaling 

the antenna or, in the case of a fixed body-mounted antenna, by pointing the 

entire spacecraft. The necessity to point a high-gain antenna in the proper 

direction gives rise to the need for antennas that will work when it is not 

possible to accurately point the antenna. Thus, there is also the need for omni 

type antennas (antennas that have almost complete spatial coverage) for times 

when pointing may be completely unknown (emergency situations) or for 

medium gain (broader beamwidth) when precise pointing may not be available. 

There are also a number of environmental factors that must be considered 

in spacecraft antenna design. The antenna must operate in the vacuum of space 

and over wide temperature ranges. Sometimes, as in the case of the Solar Probe 

antenna (Chapter 9), the extreme temperatures dictate the materials that can be 

used in the design. The antenna must also survive the launch without damage. 

This includes the launch loads, vibration, shock, and acoustic conditions. 

Weight and power consumption are at a premium; hence the requirement for 

light-weight materials. Size is also a major consideration, as the antenna must 

fit inside the launch-vehicle shroud. For antennas that are too large to fit in the 

shroud, it is necessary to fold and stow the antenna for launch and deploy it for 

use.  

There are many cases where a direct-to-Earth link, as described above, is 

not feasible. These applications include small in-situ landers, microprobes, and 

aerobots as currently in use or planned for Mars missions. These surface or 

atmospheric probe missions are characterized by their small size (<100 kg) and 

highly constrained energy budgets (<200 W-hr/sol). Typically, they cannot 

afford the mass and energy required for any meaningful data return directly 

over a deep-space link. Rather, these missions require, and are enabled by, 
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energy-efficient relay communications commonly referred to as proximity links 

[2,3]. Choice of frequency band is largely dictated by whether directional or 

omni links are envisioned. For omni-to-omni links, lower frequencies perform 

better, and the 400-MHz UHF links currently being utilized represent a 

compromise between communications performance and radio frequency (RF) 

component size.  

1.1.1 Frequency Bands Allocated to Deep-Space Communications 

The International Telecommunication Union (ITU) has allocated frequency 

ranges for use in deep-space and near-Earth research. These ranges are listed in 

Table 1-1. 

1.1.2 Frequency Bands Recommended for Proximity Links 

In addition to the formally allocated space-to-Earth links, the Consultative 

Committee for Space Data Systems (CCSDS) provides a recommendation for 

space data system standards in the area of proximity space links [4]. Proximity 

space links are defined to be short-range, bi-directional, fixed, or mobile radio 

links, generally used to communicate among probes, landers, rovers, orbiting 

constellations, and orbiting relays. These links are characterized by short time 

delays, moderate (not weak) signals, and short, independent sessions. The 

ultrahigh frequency (UHF) frequency allocation consists of 60 MHz between 

390 to 450 MHz. The forward frequency band (portion where the caller 

transmits and the responder receives) is defined from 435 to 450 MHz. The 

return band (portion where the responder transmits and the caller receives) is 

defined as from 390 to 405 MHz. There is a 30-MHz deadband between them. 

Table 1-1.  Allocated frequency bands (GHz). 

Deep-Space Bands 

for Spacecraft Farther Than 
2 Million km from Earth 

Near-Earth Bands 

for Spacecraft Closer Than 
2 Million km from Earth 

Band Uplink
a
 Downlink

b
 Uplink

a
 Downlink

b
 

S 2.110–2.120 2.290–2.300 2.025–2.110 2.200–2.290 

X 7.145–7.190 8.400–8.450 7.190–7.235 8.450–8.500 

Ka 34.200–34.700 31.800–32.300 Not applicable Not applicable 

a
 Earth to space.  

b
 Space to Earth. 
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1.2 Analysis Techniques for Designing Reflector 
Antennas 
William A. Imbriale 

Reflector antennas have existed since the days of Hertz. They represent one 

of the best solutions for high gain and lightweight, easily stowable antenna 

systems. The use of physical optics (PO) analysis provides the required 

performance estimate accuracy. Almost all of the spacecraft reflector antennas 

were either designed or analyzed using PO, and the measured performance is 

within a few percent of the calculated values. 

In addition to PO, there are many other techniques required to completely 

design and characterize the antenna system. Accurate programs to design and 

analyze the feed horn, and transform far-field patterns to near field for use in 

the PO analysis are required. Synthesis programs are used to determine the 

reflector shape for maximum gain. The sections on PO analysis, Feed Horn 

analysis, Spherical-Wave Analysis and Dual-Reflector Shaping are covered in 

[1], but these concepts are so fundamental they are also included in this 

reference for completeness. Tools to design and analyze frequency-selective 

surfaces are also needed for use in multi-frequency systems. And, programs to 

characterize the effect of a mesh surface for a lightweight deployable antenna 

are also required. The basic mathematical details of each of these techniques are 

given in this section with examples of their use sprinkled throughout the book. 

1.2.1 Radiation-Pattern Analysis 

Physical optics (PO) is by far the most important analytical tool, and it is 

used to calculate the scattered field from a metallic reflecting surface—in this 

case, a reflector antenna. Electrical currents, which excite the scattered field, 

are induced on the conducting surface by an incident wave assumed to be of a 

known amplitude, phase, and polarization everywhere in space (from a feed or 

other reflecting surface, for example). The PO approximations to the induced 

surface currents are valid when the reflector is smooth and the transverse 

dimensions are large in terms of wavelengths. The closed reflecting surface is 

divided into a region S1, which is illuminated by direct rays from the source 

(“illuminated region”) and a region S2 , which is geometrically shadowed 

(“shadowed region”) from direct rays from the source (Fig. 1-1). The PO 

approximations for the induced surface current distribution are 

 

  

Js =   2( ˆ n Hinc( ) on S1

Js =   0 on S2
 (1.2-1) 

where ˆ n  is the surface normal and Hinc  the incident field. The expressions are 

then inserted into the radiation integral [5] to compute the scattered field. 
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Rusch and Potter [6] provide a good introduction to the early techniques 

used for analyzing the reflector antennas of the Deep Space Network (DSN). 

More recently, due primarily to the orders-of-magnitude improvements in 

computer speed and memory, a very simple but extremely robust algorithm has 

emerged as the computer program of choice for computing the PO radiation 

integral. The algorithm is documented in [7 and 8], but because of its extreme 

importance and to provide a fairly complete reference, it is repeated here. 

One of the simplest possible reflector-antenna computer programs is based 

on a discrete approximation of the radiation integral. This calculation replaces 

the actual reflector surface with a triangular facet representation so that the 

reflector resembles a geodesic dome. The PO current is assumed to be constant 

in magnitude and phase over each facet, so the radiation integral is reduced to a 

simple summation. This program was originally developed in 1970 and has 

proven to be surprisingly robust and useful for the analysis of reflectors, 

particularly when the near field is desired and the surface derivatives are not 

known. The initial limitation to small reflectors was primarily due to the speed 

and memory limitations of the then-existing computers. 

Two improvements significantly enhanced the usefulness of the computer 

program: The first was the orders-of-magnitude increase, over time, in 

computer speed and memory, and the second was the development of a more 

sophisticated approximation of the PO surface current, which permitted the use 

of larger facets. The latter improvement is due to the use of a linear-phase 

Fig. 1-1.  The physical optics approximation: 

(a) original problem and (b) approximation.

(a)

Conductor

S'1

S'1

S2

Js = 2n × Hi

n

n

(b) Es (Approximation)

Ei + Es

Incident Wave
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approximation of the surface current. Within each triangular region, the 

resulting integral is the two-dimensional Fourier transform of the projected 

triangle. This triangular-shape function integral can be computed in closed 

form. The complete PO integral is then a summation of these transforms. 

1.2.1.1 Mathematical Details. The PO radiation integral over the reflector 

surface,  , can be expressed as [8] 

 

  

H(r) =
1

4
jk +

1

R

 

 
 

 

 
 ˆ R Js(  r )

e jkR

R
d  s  (1.2-2) 

in which r designates the field point, r  the source point, R = |r – r | is the 

distance between them, and   ̂  R  = (r – r )/R is a unit vector. 

For the purpose of analysis, the true surface, , is replaced by a contiguous 

set of triangular facets. These facets, denoted i, are chosen to be roughly equal 

in size with their vertices on the surface, . Figure 1-2 shows a typical facet and 

its projection onto the x-y plane. Let (xi, yi, zi) represent the centroid of each 

triangle where the subscript i = 1, ..., N is associated with a triangle. Then, the 

field obtained by replacing the true surface, , by the triangular facet 

approximation is 

Fig. 1-2.  Reflector-analysis coordinate systems and a 

typical triangular facet.
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1
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i

ˆ R J(  r )
e jkR

R
d  s 

i=1

N

  (1.2-3) 

In Eq. (1.2-3), J is now the equivalent surface current evaluated on the 

triangular facets. Since the triangles are small, it is expected that ˆ R  and R do 

not vary appreciably over the area of a given facet. Thus, let ˆ R i  and Ri be the 

value obtained at the centroid (xi, yi, zi) of each facet and approximate 

Eq. (1.2-3) by 

 

      

H(r) =
1

4
jk +

1

Ri

 

 
 

 

 
 
ˆ R i Ti (r)

i=1

N

 (1.2-4) 

 

  

Ti (r) = Ji (  r )
e jkR

Ri
d  s 

i
 (1.2-5) 

Assume that the necessary transformations have been performed so that the 

incident field, Hs, is given in terms of the reflector coordinate system. Then 

 
  
Ji (  r ) = 2 ˆ n i Hs(  r )  (1.2-6) 

Next, assume that the incident field can be represented by a function of the 

form 

 HS = hs(ri )
e jkrs

4 rsi
 (1.2-7) 

where rs is the distance to the source point and rsi is the distance from the 

triangle centroid to the source point. Then, Eq. (1.2-5) can be written 

 

  

Ti (r) =
ˆ n i hs(ri )

2 Rirsi
e jk(R+rs )d  s 

i
 (1.2-8) 

Making use of the Jacobian and approximating 

 R(x,y) + rs(x,y) =
1

k
ai ui x vi y( ) (1.2-9) 

in which ai, ui, and vi are constants, the expression can be rewritten as 
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Ti (r) =
ˆ n i hs(ri )

2 Rirsi
J

i
e jai e j(ui  x  + vi  y )d  x d  y 

  i
 (1.2-10) 

where the surface normal is 

 
  
Ni = ˆ x fxi ˆ y fyi + ˆ z  (1.2-11) 

and the Jacobian is 

 
  
J

i
= Ni =  fxi

2  +  fyi
2 +  1[ ]

1/2
  (1.2-12) 

It may now be observed that this integral is the two-dimensional (2-D) Fourier 

transform of the i
th

 projected triangle   i , expressed as 

 S(u,v) = e j(u  x  + v  y )d  x d  y 
  i

 (1.2-13) 

and can be computed in closed form as described in [9]. The full radiation 

integral is the sum of all the transforms of the individual triangles. 

1.2.1.2 Application to Dual-Reflector Antennas. The PO integration 

methodology is incorporated in a sequential fashion for the analysis of a dual-

reflector antenna system. Initially, the feed illuminates the subreflector, and the 

currents on the subreflector surface are determined. Subsequently, the near 

fields scattered from the subreflector are used to illuminate the main reflector, 

and its induced currents are determined. The main reflector scattered fields are 

then determined by integrating these currents. 

Many coordinate systems are required to allow flexibility in locating and 

orienting the feed, subreflector, main reflector, and output-pattern generation. 

The relation among the various coordinate systems is depicted in Fig. 1-3 

where (xF,yF,zF) is the feed coordinate system, (xS,yS,zS) is the subreflector 

coordinate system, and (xM,yM,zM) is the main reflector coordinate system.  

1.2.1.3 Useful Coordinate Transformations. In the discussion of the 

preceding sections (1.2.1.1 and 1.2.1.2), the analysis is performed using two 

distinct coordinate systems: reflector and feed coordinates. In addition, it is 

sometimes convenient to display the computed patterns in yet another 

coordinate system. Consequently, one must know the transformation equations 

that permit coordinates and vectors described in one coordinate system to be 

expressed in terms of some other coordinate system. The transformation may 

require both translation and rotation. The required transformations are 

described below. They are the Cartesian-to-spherical transformation and 

coordinate rotations using Eulerian angles. 
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The Cartesian-to-spherical transformation is conveniently summarized in 

matrix form. With the Cartesian components of a vector, H, denoted 

(Hx ,Hy ,Hz )  and the spherical components (Hr ,H ,H ) , one finds that the 

transformation is 

 

Hr
H

H

 

 

 
 
 

 

 

 
 
 

=

sin cos sin sin cos

cos cos cos sin sin

sin cos 0

 

 

 
 
 

 

 

 
 
 

Hx
Hy
Hz

 

 

 
 
 

 

 

 
 
 

 (1.2-14) 

The inverse transformation is just the transpose of the above matrix. 

Rotations are handled by the use of the Eulerian angles ( , , ). These 

angles describe three successive rotations that bring one Cartesian system into 

alignment with another. Let the two systems be denoted (x1,y1,z1)  and 

(x2,y2,z2) . As illustrated in Fig. 1-4, the angles are defined as follows: 

 describes a positive rotation about the z1 axis, which brings the x1 axis 

into the  x  axis aligned with the line of nodes (the line of intersection 

between the (x1, y1)  and (x2, y2)  planes) 

 describes a positive rotation about the line of nodes (the  x  axis) that 

brings the z1 axis to z2 

 describes a positive rotation about the z2 axis, which brings the  x  axis 

to the x2 axis. 

The phrase “positive rotation” means the direction of increasing angular 

measure as defined by the right-hand rule with respect to the axis about which 

Fig. 1-3.  Dual-reflector coordinate systems.
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the rotation occurs. Each of the rotations just described is performed using the 

standard rotation of coordinate formulas of plane analytic geometry. 

When these expressions are written in matrix form and applied successively 

as described above, one obtains the following matrix equation that represents a 

general three-dimensional (3-D) rotation of coordinates.  

 

x2
y2
z2

 

 

 
 
 

 

 

 
 
 

=

A 11 A 12 A 13
A21 A22 A23
A31 A32 A33

 

 

 
 
 

 

 

 
 
 

x1
y1
z1

 

 

 
 
 

 

 

 
 
 

 (1.2-15) 

where the individual matrix elements are 

A11 = cos  cos   sin  cos  sin  

A12 = cos  sin  + sin  cos  cos  

A13 = sin  sin  

A21 = sin  cos   cos  cos  sin  

A22 = sin  cos  + cos  cos  cos  

A23 = cos  sin  

A31 = sin  cos   

A32 = sin  cos  

A33 = cos  

Fig. 1-4.  Euler-angle definitions.
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The inverse transformation is just the transpose of the matrix given above. 

Although the formulas are presented in terms of coordinate 

transformations, the transformation matrix is equally valid for the Cartesian 

components of a vector. Thus, the components of a vector, H, transform as 

 

Hx,2

Hy,2
Hz,2

 

 

 
 
 

 

 

 
 
 

=

A11 A12 A13
A21 A22 A23
A31 A32 A33

 

 

 
 
 

 

 

 
 
 

Hx,1
Hy,,1
Hz,1

 

 

 
 
 

 

 

 
 
 

 (1.2-16) 

Further information can be found in [10]. 

1.2.1.4 A Numerical Example of Radiation-Pattern Analysis. In the 1980s, a 

FORTRAN program was written to perform the linear phase calculations 

indicated above. The program was extensively verified by comparing the 

measured data, for example, [11], and many other computer codes. 

A simple but interesting example is that of an ellipse, shown in Fig. 1-5. 

The projected aperture of the ellipse is about 3 m. In the xp  axis, the 

illuminated function is a cos42  pattern function (22.3-dB gain), and the 

frequency is 31.4 GHz. The ellipse is about 350  along the major axis. 

Figure 1-6 compares the constant-phase approximation for three different grid 

densities: approximately 4000, 10,000, and 23,000 triangles. This illustrates a 

general trend of the method; that is, depending on the size of the triangles, there 

is an angular limit over which the solution is valid. Figure 1-7 compares the 

linear-phase approximation with the constant-phase approximation for the 

4000-triangle case and demonstrates that the angular range is larger with the 

linear-phase approximation. 

1.2.2 Feed-Horn Analysis 

An equally critical aspect of the analysis of reflector systems is the ability 

to accurately compute the radiation pattern of the feed. More details on the 

design of the feeds will be given later, but the analysis technique for computing 

the radiation patterns of the feed is summarized below. 

Two types of feed horns possessing equal E- and H-plane patterns are 

commonly used. The first is the dual-mode feed horn [12], and the second is the 

corrugated feed horn [13]. In the dual-mode horn, a dominant mode circular 

waveguide is connected to another guide of slightly larger diameter, where 

modes up to transverse magnetic (TM11) may propagate; the higher order 

modes being generated by the step transition. The step size is chosen to 

generate the precise amount of TM11 mode from the transverse electric (TE11) 

mode so that when the two modes travel through the flared horn section that 

follows, the E- and H-plane patterns are equalized. The bandwidth of this feed 
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horn is limited since the two modes must arrive at the horn aperture in phase, 

and the two modes have phase velocities that vary differently with frequency. 

In the corrugated feed horn, the single-mode smooth-wall waveguide is 

connected to a corrugated waveguide that supports only the hybrid (HE11) 

mode. Some matching between the waveguides is provided by gradually 

changing from /2 slot depth to /4 slot depth in a short transition region. 

Throughout the transition region, only the HE11 corrugated waveguide mode 

may propagate, and the E- and H-plane radiation patterns of this mode become 

nearly equal when the balanced condition is reached (slot depth = ~ /4). The 

bandwidth of this horn is larger than that of the dual-mode horn because the 

transverse electric field patterns and, hence, the radiation pattern of the HE11 

mode are relatively insensitive to small changes in slot depth around the 

balanced condition (slot depth = ~ /4). After the HE11 mode is established in 

the single-mode corrugated waveguide, the guide is gradually flared, without 

changing the slot depth, to the required aperture size. 

The corrugated section is analyzed using a computer code developed by 

Hoppe [14–16]. The analysis follows the method of James [17], expanding the 

Fig. 1-5.  Ellipse geometry.
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fields inside each fin and slot in terms of circular waveguide modes, and 

matching the fields at each slot–fin boundary. All of the possible propagating 

modes (as well as a sufficient number of evanescent modes) are matched at 

each boundary, with results for successive edges and waveguide lengths 

cascading as the analysis moves through the device. In this way, the 

interactions between the fields of nonadjacent as well as adjacent slots are taken 

into account. The result of the calculation is a matrix equation relating the 

reflected and aperture modes to the input modes. 

If a1 is a vector containing the power-normalized amplitudes of the input 

modes, then we may calculate the reflected modes, b1, and the aperture modes, 

b2 , using 

 
  
b2 =  S21[ ]  a1 (1.2-17) 

 
  
b1 =  S11[ ]  a1 (1.2-18) 

Fig. 1-6.  Ellipse example: constant-phase approximation for offset plane.
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Here, [S21] and [S22] are the scattering matrices resulting from the computer run. 

See the appendix of [17]. They depend only on frequency and device 

dimensions, not input modes. We may therefore specify any input vector a1 
and calculate the reflected and aperture fields. Using the normalized amplitudes 

calculated above, and the normalized vector functions giving the field 

distributions for each mode, we find the aperture field EB . The far field is then 

calculated by the method described by Silver and Ludwig [18,19]. 

 
  

Ec =
1

4
 jμ ˆ n   HB( ) + ˆ n EB( )( ) ds

S
 (1.2-19) 

where 

EB  = aperture electric field 

HB  = aperture magnetic field 

ˆ n  = unit vector normal to aperture surface 

ds  = incremented area on aperture surface 

Fig. 1-7.  Ellipse example: constant versus linear phase for offset plane.
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 = 2 f  angular frequency 

f = frequency 

μ  = free-space permeability 

 = gradient operator 

 = e jkr/ r 

k = 2  / o wave number 

r = far-field point distance from origin (spherical radius) 

When EB  and HB  are represented in terms of circular waveguide modes, 

the resulting integrals have already been evaluated by Silver [18]. Therefore, 

given an input vector and the scattering matrix, we determine the aperture 

modes and composite far-field patterns. A spherical-wave analysis is then used 

to compute the feed-horn near-fields pattern for use in the PO software. 

Throughout the analysis, care must be taken to ensure proper normalization of 

the field amplitudes in terms of power. The smooth wall conical feed horn is 

modeled with the same software by approximating the horn taper with small 

steps and zero-depth corrugated slots. 

The mode-matching technique for analyzing corrugated horns yields 

excellent agreement with the measured patterns—so much so, in fact, that if the 

computed and measured patterns do not match, it is most likely due to 

measurement and/or manufacturing errors. There is a recent example of a fairly 

complicated X-/X-/Ka-band horn described in [1] and [20] that shows excellent 

agreement between measured and calculated feed patterns. There are also 

several very good examples given in later chapters with probably the most 

complicated horn being the Cassini antenna three-frequency horn described in 

Chapter 5. 

1.2.3 Spherical-Wave Analysis 

Spherical-wave-expansion coefficients are frequently used in the analysis 

of reflector systems. Their basic purpose is to transform far-field patterns to the 

near-field so that PO may be used for reflectors in the near field of their 

illumination source. 

The theory of spherical waves is described in [21] and will only be briefly 

outlined here. Any electromagnetic field in a source-free region may be 

represented by a spherical-wave expansion. In general, the expansion must 

include both incoming and outgoing waves. If the field satisfies the radiation 

condition, only outgoing waves will be present, and the expansion will be valid 

outside the smallest sphere enclosing all sources (the sphere center must be at 

the coordinate origin used for the expansion). The radial dependence of the 

spherical waves is then given by the spherical Hankel function hn
2(kR) . Another 

common case is an expansion valid inside the largest sphere enclosing no 

sources. In this case, the incoming and outgoing waves are present in equal 
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amounts, producing a radial dependence given by the spherical Bessel 

function jn (kR) . 

Although the spherical-wave expansion can be applied to either of these 

two most common cases, the version used most typically for antenna analysis 

assumes outgoing waves. 

In either case, the input data that are used to specify the field is the 

tangential E-field on the surface of a sphere. For the first case, the data-sphere 

radius must be greater than or equal to the radius of the sphere enclosing the 

sources. For far-field data, the data-sphere radius is considered to be infinite. 

For the second case, the data-sphere radius must be less than or equal to the 

largest sphere enclosing no sources, and must be greater than zero. 

The maximum value of the Hankel function index that is needed to closely 

approximate the field is roughly equal to ka (ka + 10 is typical, but in some 

cases a lower limit will work), where a is the radius of the sphere enclosing all 

(or no) sources for the first (and second) case, respectively. 

Input data is specified on a grid of points defined by the intersection of 

constant contours of  and . The amplitude and phase of E  and E  are given 

at each point. The minimum number of  values is roughly 1.2 times the 

maximum value of n. 

The azimuthal dependence of spherical waves is given by sin(m )  and 

cos(m ) . In general, m runs from 0 to the maximum value of n. As is often the 

case, symmetry can be used to reduce the number of azimuthal terms. A conical 

feed radiates only m = 1 modes, and reflection from a body of revolution will 

maintain this behavior. There can be even and odd  dependence, but quite 

often only one will be present. For the even  dependence, E  can be expanded 

in only sin(m )  terms and E  in onlycos(m )  terms. For the odd case, this is 

reversed. The minimum number of  values for the data sphere is, in general, 

2M + 1, where M is the maximum value of m.  

 The output of the computer program is the set of spherical-wave-expansion 

coefficients. These coefficients may then be used to compute the field 

anywhere within the region of validity. Therefore, the essential utility the 

program is to take data consisting of the tangential E-field on a sphere (whose 

radius may be infinite), and provide the means of computing the field—all three 

components of E and H—at any other point in the region of validity. 

The computer program used is patterned after that in [22]. 

1.2.4 Dual-Reflector Shaping 

The simplest form of a dual reflector system, the Cassegrain, has a 

parabolic main reflector and a hyperbolic subreflector. The efficiency of these 

reflectors is primarily determined by (a) the ability of the feed system to 

illuminate only the reflectors while minimizing the energy that radiates 
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elsewhere and (b) the ability of the feed plus the subreflector to uniformly 

illuminate the parabola. Item (a), above, is termed “spillover efficiency” and (b) 

“illumination efficiency.” The illumination efficiency is 100 percent when the 

energy density on the entire main reflector aperture is a constant. 

Feed-horn patterns always taper gradually from their central maxima to 

nulls. If all this energy is intercepted by the reflector (for maximum spillover 

efficiency), the illumination is far from uniform, and the illumination efficiency 

is very poor. Consequently, any attempt to obtain nearly uniform illumination 

will result in a great loss of energy in spillover. Therefore, a compromise must 

be made. A common choice for both a prime focus system and the Cassegrain 

system is a 10-dB taper of the illumination pattern at the parabolic edge. This 

selection results in a combination of spillover and illumination efficiency of 

from about 75 to 80 percent. 

It is possible, however, to change the shape of the two reflectors to alter the 

illumination function and improve efficiency. This methodology is termed dual-

reflector shaping and was first introduced by Galindo [23], who demonstrated 

that one could design a dual-reflector antenna system to provide an arbitrary 

phase and amplitude distribution in the aperture of the main reflector. Thus, if 

one chose a uniform amplitude and constant phase, 100 percent illumination 

efficiency could be achieved. With the feed pattern given, the subreflector size 

would be chosen to give minimal spillover. 

1.2.4.1 Theoretical Solution for the Symmetric Case. The complete solution 

can be found in [23 and 24], and only the uniform aperture case is summarized 

below. 

The geometry of the symmetric dual-reflector system is shown in Fig. 1-8. 

Due to circular symmetry, the synthesis reduces to the determination of the 

intersection curve (of the surface) with the plane through the axis of symmetry, 

that is, the x,y plane.  

The synthesis method uses the analytical expressions of geometrical optics 

(GO) principles together with the reflector geometry to develop a pair of first-

order, nonlinear ordinary differential equations of the form  

 
dy

dx
=  f (x,y)  (1.2-20) 

which leads to cross sections of each reflector when subject to boundary 

conditions such as 

 y x =  xmax( ) =  0 (1.2-21) 

which are then solved by a high-speed digital computer. 



20  Chapter 1 

The optical principles that are used to develop the required equations are 

that (a) the angle of incidence is equal to the angle of reflection (Snell’s Law), 

(b) energy flow is conserved along the ray trajectories, and (c) surfaces of 

constant phase form normal surfaces to ray trajectories. 

The incident field is assumed to have a spherical-phase function, that is, a 

phase center, and a power-radiation pattern F( ). For uniform phase in the 

aperture, the path length, r +  r +   r , must remain constant for all . Also, the 

amplitude function in the aperture I(x) must also be equal to a prescribed 

distribution (constant for maximum peak gain).  

The equation for equal path lengths resulting in the phase front is obtained 

from trigonometry: 

 r + y +
x r sin

sin
 =  C (constant)  (1.2-22) 

where (x,y) and (r, ) are the coordinates of points on the main reflector and 

subreflector, respectively. 

Fig. 1-8.  Coordinate system for shaping.
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The application of Snell’s law to the two surfaces defines a relationship 

between the angles shown and the first derivates (slopes) of the surfaces. These 

are  

 
1

r

dr

d
= tan

+

2
 (1.2-23) 

 
dy

dx
= tan

2
 (1.2-24) 

Since the dual-reflector system is symmetrical about the y-axis, the total 

power within the increment d  of the pattern F( )  will be F( )2 sin d . 

Similarly, the total power within the increment dx of the main antenna aperture 

is I (x)2 dx , where I(x) is the illumination function of the antenna aperture. 

Making I(x) constant and equating the total power from = 0  to angle  to that 

within x, and normalizing by the total power, one obtains 

 x2 =  xmax
2

F( ) sin d
0

F( ) sin d
0
max

 (1.2-25) 

These four equations now have five dependent variables (x, y, r, , and ) 
and can be solved to provide equations for the surfaces. This procedure yields 

an optimum-gain antenna. The antennas used on the Voyager, Galileo, and 

Cassini spacecraft described in Chapter 5 were all dual-shaped systems.  

1.2.4.2 Offset-Shaped Reflector Antennas. The formulation shown in Section 

1.2.4.1 (above) is for circularly symmetric reflector geometries. The exact 

solution has also been developed for offset geometries [25,26]. The offset 

geometry will have higher efficiency than the symmetric geometry because the 

central blockage due to the subreflector can be eliminated. In the early 1980s, 

an antenna with an offset geometry was designed and built that had an 

efficiency of 84.5 percent—the highest ever recorded [27].  

1.2.5 Dichroic Reflector Analysis 

The ability to transmit and receive simultaneously at multiple frequency 

bands is an important requirement for deep-space communications. It is usually 

accomplished by using either a dual-band feed horn or separate feed horns and 

a frequency selective surface (FSS), typically referred to as a dichroic reflector. 

Dichroic reflectors are important components for both ground and spacecraft 

antennas. The most frequently used type of surface for ground antennas is a flat 

metal plate that passes the higher frequency and reflects the lower frequency. 
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The analysis for those types of surfaces is given in reference [1]. However, for 

spacecraft antennas, the typical use is for a dichroic subreflector that reflects the 

higher frequencies and passes the lower frequencies. Examples are the 

Voyager, Galileo, and Cassini (Chapter 5) high-gain antennas. As these 

dichroic surfaces play an important role in the telecommunications antennas, 

this section presents a typical technique for analyzing them.  

1.2.5.1 Theoretical Formulation. Dichroic surfaces are analyzed using a 

combination of Floquet modes and the method of moments. The theory is well 

documented in references [28–30] and will only be summarized here. In 

particular, the following is derived from reference [28]. Consider the printed 

dipole array shown in Fig. 1-9. The surface is assumed infinite in the xy plane. 

Expanding the fields in the three regions in Floquet modes and applying the 

appropriate boundary conditions allows the development of an integral equation 

for the unknown current distribution J(x,y)  on the dipoles. If J(x,y)  is 

approximated as follows: 

Fig. 1-9.  Geometry of the dichroic surface.
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 J(x,y) = cnhn (x,y)
n=1

N

, (1.2-26) 

where the functions hn (x,y)  are complete and orthonormal over a crossed 

dipole and N is finite for computability, then the integral equation is easily 

solved using the method of moments. The resulting system of equations is:  

 

  

1+ Rm00
slab 

 
 

 

 
 bm ˆ  m00 gi *(k00)

m=1

2

= cn
1

d 2
qpm=1

2

n=1

N

ˆ  mpq gi * k pq( ) ˆ  mpq gn k pq( )

mpq
eq

,

i =1,2,L,N

 (1.2-27) 

where a time-dependence exp( j t)  is assumed, m =1 corresponds to the TM 

mode, m = 2  corresponds to the TE mode, and 

 gl k pq( ) = hl (x,y) exp jk pq( )dx dydipole
, (1.2-28) 

d  = array spacing,  

 = xˆ x + yˆ y , 

k pq  = k0 sin cos + 2 p / d( ) ˆ x + k0 sin sin +
2

d
+

2 2 q

d

 

 
 

 

 
 ̂  y , 

k0 = 2 / 0,  

0  = free-space wavelength,  

( , )  = direction of incidence,  

bm  = incident field magnitude of mth mode,  

ˆ  1pq  = k pq k pq , 

ˆ  2 pq  = ˆ z ˆ  1pq , 

mpq
eq

 = mpq
air

+ mpq
diel 1 - Rmpq

1+ Rmpq

 

 

 
 

 

 

 
 , 

1pq  = k

pq
, 
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2 pq  = 
pq

k
, 

 = /μ , ,μ  are the permittivity and permeability of medium,  

k  = propagation constant of the medium,  

pq  = k2 k pq
2 

 
 

 

 
 

1/2
, k2 > k pq

2
, 

 = j k pq
2

k2
 

 
 

 

 
 

1/2
, k2 < k pq

2
, 

Rmpq  = 
mpq

diel
mpq

air

mpq
diel

+ mpq
air
exp j2 pqs( ) , 

Rmpq
slab

 = 
2 mpq

air
mpq

eq

mpq
eq

. 

Once we select a suitable set of functions hn , the unknown coefficients cn  

can be easily obtained by solving Eq. (1.2-27). The reflected and transmitted far 

fields contain only the propagating Floquet modes for which pq  is real. In a 

suitable design, by using a small array spacing, the higher order Floquet modes 

( p > 0, q > 0) , which correspond to the grating lobes, are made evanescent. 

Thus the reflection and transmission coefficients are computed from the 

following expressions: 

 R( ) = Rm00
slabbm

1

d 2
m00

eq
cngn (k00) ˆ  m00

n=1

N 

 
 

  

 

 
 

  
ˆ  m00

m=1

2

 

  (1.2-29) 

 T( ) = tm00 1+ Rm00
slab( )bm tm00

d 2
m00

eq
cngn (k00) ˆ  m00

n=1

N 

 
 

  

 

 
 

  
ˆ  m00

m=1

2

 

where 

 tmpq =
exp j pq

air
pq
diel( )s{ }+ Rmpg exp j pq

air + pq
diel( )s{ }

1+ Rmpq
, 

 b1 =1, b2 = 0 for TM incidence, 
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and 

 b1 = 0, b2 =1 for TE incidence . 

1.2.5.2 Examples on a Flat Dielectric Sheet. Most of the applications for 

telecommunications require circular polarization; therefore, an array of crossed 

dipoles is a popular choice for the element. The array becomes reflective near 

the dipole resonance and is almost transparent at lower frequencies. In practice, 

these surfaces are often constructed by printing metal dipoles on supporting 

dielectric layers. The exact reflection and transmissions characteristics, 

therefore, depend on the length, width, and spacing of dipoles; the dielectric 

constants; and the thickness of the layers. The reflection coefficient is also a 

function of incident angle. When the application is a dichroic subreflector, there 

is a range of incident angles on the surface. There are two ways to handle the 

varying incident angles, by redesigning the element to be reflective at the given 

incident angle, or, more simply, selecting dimensions for the element that work 

over the entire range of incident angles. Since the exact resonance frequency is 

fairly sensitive to the parameters and some of the parameters are not accurately 

known (dielectric constant of the materials, for example), a flat-sheet test 

sample is sometimes manufactured and tested to verify the design. A 

comparison of the calculated and measured reflection coefficient is given 

below. 

A computer program was written for calculating the reflection coefficients 

for a dipole element using a Fourier expansion in Eq. (1.2-26). Upon 

comparison with the experimental results, it was found that a three-term 

expansion of the current on each dipole was sufficient. Thus, for the crossed 

dipole at the origin we have 

 

h1 = ˆ y 
2

WL
cos( y / L), h2 = ˆ y 

2

WL
sin(2 y / L),

h3 = ˆ y 
2

WL
cos(3 y / L), h4 = ˆ x 

2

WL
cos( x / L),

h5 = ˆ x 
2

WL
sin(2 x / L), h6 = ˆ x 

2
WL

cos(3 x / L),

 

The computed reflection coefficient for L = 0.97  cm, d = 0.92  cm, and 

W =1.016 mm is shown in Fig. 1-10. Fig. 1-10(a) assumes an absence of the 

dielectric ( r =1, s = 0) , and Fig. 1-10(b) is with a sheet of dielectric constant 

r = 4.25 and thickness s = 0.127 mm. Figure 1-10(c) shows the measured 

reflection coefficient of an experimental surface with the same parameters as 

used in the computation of the curves of Fig. 1-10(b). This experimental surface 

is shown in Fig. 1-11, and the method of measurement is described in [28]. As  
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can be seen in Fig. 1-10, the theoretical results are in close agreement with the 

experiment. A major influence of the dielectric sheet appears to be in lowering 

the resonance frequency at which the surface becomes a perfect reflector. 

1.2.6 Mesh Analysis 

The use of a mesh for the surface of a reflector antenna is a very attractive 

solution for large deployable antennas such as those on the Tracking and Data 

Relay Satellite System (TDRSS) and the Galileo spacecraft. These mesh 

surfaces are typically constructed from gold-plated molybdenum wires, which 

are woven in a periodic pattern. A commonly used pattern is the tricot knit. The 

fineness of the wires (typically 1.2 mil [31 m] in diameter) and the complexity 

of the weave made the problem of an exact numerical diffraction analysis quite 

formidable. Nonetheless, Imbriale, Galindo and Rahmat-Samii [31] solved the 

problem using a Floquet-mode expansion to establish an integral equation for 

the mesh wire currents that was solved using the method of moments technique 

with piecewise triangular basis functions. It was observed that it was necessary 

to give special attention to the junction treatment among different branches of 

the mesh configuration. For analytic convenience, the mesh was modeled as flat 

strips on a plane surface. This does not limit the validity of the results since the 

wire diameters are so small that there are only longitudinal currents. An 

Fig. 1-11.  Experimental dichroic surface of copper dipoles printed on 5-mil Kapton 

sheet (s = 0.127 mm).
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equivalent radius of one-fourth the strip width is used to equate round wire and 

flat strips.  

1.2.6.1 Theoretical Formulation. Since the tricot weave is essentially periodic, 

Floquet’s theorem can be applied in the analysis of a plane wave incident upon 

the mesh. Currents induced along the strip are modeled as a series of 

overlapping triangular basis functions (splines)—the coefficients of each 

triangle to be determined by inversion of the matrix obtained when tangential E 

is set to zero on the flat strips.  

The multiwire junction points are carefully modeled so that the currents are 

naturally continues through the junctions and no additional conditions are 

necessary. Conditions of good electrical contact, no contact, or partial contact at 

the junctions are included in the model. Finite conductivity can be included as 

well. 

The formulation follows very closely the development described in the 

previous section on dichroic surfaces. In fact, using Floquet’s theorem and the 

method of moments results in the identical set of equations to be solved, i.e., 

Eq. (1.2-27). The differences stem from the different basis functions used in the 

formulation and the fact that medium 2 is air instead of a dielectric. However, if 

the dielectric constant is included in the formulation, the resulting computer 

code can also be used to analyze dichroic surfaces. In addition, it allows 

experimental verification of the computer code by comparing with various flat-

strip meshes printed on a dielectric sheet. 

As indicated above, the reflection and transmission coefficients are 

computed using Eq. (1.2-29). The major difference in the formulation is the 

representation of the currents to be used in Eq. (1.2-26).  

The actual curved strip is represented as a series of straight segments. The 

currents are modeled as piecewise triangular along the strip and constant in the 

transverse direction. The geometry is shown in Fig. 1-12. In particular the 

currents on the nth segment are 

 

hn (  x ,  y ) = ˆ  x 
(  x + l)

wl
, l  x 0,

w

2
 y 

w

2

hn (  x ,  y ) = ˆ  x 
(l  x )

wl
, 0  x l,

w

2
 y 

w

2

 (1.2-30) 

where 

 x = xn +  x cos  y sin , y = yn +  x sin +  y cos . 

By substituting Eq. (1.2-30) into Eq. (1.2-28) and integrating, we obtain 
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 gnpg = gnpq +gnpq
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where 
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 (1.2-31) 

with 

 Z = kx cos + ky sin , 

 V = kx sin + ky cos , and C = kx xn + ky yn . 
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Y' X'

w

Ψ

Fig. 1-12.  Basic function geometry: (a) geometry 

of nth segment and (b) triangular basis function.
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The complete solution for reflectivity is thus obtained by first using 

Eq. (1.2-31) and Eq. (1.2-28) and solving for the unknown coefficients cn  

using Eq. (1.2-27), and then using the cn  in Eq. (1.2-29) to compute 

reflectivity. 

At the bends in the wire and at wire junctions, special treatment is required 

to insure that the analytical model provides for the vector continuity of current 

from one segment to the next segment. 

If the vector continuity is not provided, then the current along the strip 

“senses” a termination of the conductor, and the coefficient of the end point 

basis function goes to zero. 

Setting tangential E equal to zero is the only constraint required if current 

continuity is insured in the vector sense by the addition of a “wedge” current as 

illustrated in Fig. 1-13. 

The wedge current in Fig. 1-13a is represented by 

 hn =
ˆ x sin + ˆ y cos

w
. (1.2-32) 

This is a circular current of constant amplitude as depicted in Fig. 1-13(a). We 

need to evaluate gnpq  for this segment. The result is 

   gnpq = e jC
ˆ x sin + ˆ y cos

w

 

 
 

 

 
 

n 1

n e jZw jZwe jZw 1

Z 2

 

 
 
 

 

 
 
 
d  (1.2-33) 

where the integration is carried out numerically with C and Z is as described 

above. 

At the junction of more than one strip, a superposition of all possible wedge 

currents is required. For example, if two strips cross and make contact, then this 

junction is treated as a four “port” with six interconnecting wedges necessary to 

permit current flow from any given strip to any other strip. In general, for  N  

strips at a common junction point, 

 

  

 N 1( )+  N 2( )+L[ ] =
 N  N 1( )
2

 

 
 

 

 
  

wedge currents are required. 

Figure 1-13(b) illustrates a crude schematic of three wire strips meeting at a 

junction. Hence  N = 3 and three connecting “wedge” currents are required. 

Since wire 3 connects straight into wire 2, one wedge current, I32, degenerates 

into a straight connecting section. Current Ic2 and Ic3 are circular currents. 
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In order to use simple cylindrical currents in the wedge segment, as 

described earlier, it is necessary to introduce some additional “straight 

connecting segments” into the geometry. This is illustrated in the three-wire 

junction of Fig. 1-13(c). The lower left of the figure contains a simple two-wire 

junction (i.e., a bend) wherein the current wedge is easily introduced and 

centered at point 0 in the figure. 

For the three-wire junction, two straight segments must be introduced in 

order to use circular wedge currents. For an  N  wire junction, we need (  N 1)  
straight wire connecting segments at the junction. Figure 1-13(c) indicates the 

required two straight segments. The cylindrical wedge currents are centered at 

points 1, 2, and 3 (P1, P2, P3) in the figure. The gnpq  for these segments are 

readily evaluated. It is not necessary to introduce an additional unknown for 

each connecting straight segment. 

A number of examples, including experimental results to validate the 

theory, are given in reference [31]. 

1.2.6.2 Galileo Mesh Calculations. The mesh that was used on both the 

Galileo high-gain antenna and the TDRSS single access antennas was a 

complex tricot knit, with 10 openings per inch (4 openings per centimeter) and 

a 1.2-mil (31- m) diameter wire. Since the analysis uses a flat strip model and 

the actual mesh is composed of round wire, it was necessary to demonstrate 

equivalence between wires and strips. It was shown in [31] that the equivalent 

radius is one-fourth of the strip width. Using the equivalent radius and the 

complex mesh geometry (shown in Fig. 1-14), a computation for the Galileo 

type mesh is shown in Fig. 1-15, along with the measured reflectivity at 8 and 

15 GHz. In Fig. 1-15 it was assumed that all the junctions make perfect contact, 

as is the case if there is no corrosion or oxides on the wires. It has been 

experimentally observed, that under certain unfavorable conditions, a loss of 

mesh reflectivity of several dB can occur. This has been attributed to lack of 

electrical contact at the junctions and occurs in part because the tricot knit has 

wires predominantly in one direction. This phenomenon is further discussed in 

[31].  

1.3 Wire Antennas 
William A. Imbriale 

Since the dipole antenna is a very simple and lightweight antenna, many of 

the early spacecraft made use of such antennas (Explorer I for example). For 

some of the same reasons small rovers and instruments also make use of simple 

wire-type antennas. For completeness on the analysis tools, this section 

provides a short summary on the analysis of wire antennas. There are many 

papers and textbooks that describe the use of the method of moments for the 
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solution of wire antennas, with [32] probably the classic reference. The 

following formulation follows the development given in [33] and [34]. 

1.3.1 Theoretical Formulation 

In the moments solution the method of subsectional basis functions is 

applied with both the expansion and testing functions being sinusoidal 

distributions. This allows not only a simplification of near-field terms but also 

the far-field expression of the radiated field from each subsegment, regardless 

of length. Sinusoidal basis functions are extremely useful for the analysis of 

large arrays of dipoles since the use of one subsegment per dipole is equivalent 

to the induced electromotive force (EMF) method of calculating mutual 

impedances and therefore give a physically meaningful result. For an array of N 

dipoles, this allows the use of the minimum matrix size of N  N to achieve a 

good “first order” approximation to the solution. 

1.3.1.1 Basic Theory. Figure 1-16 shows a straight section of wire of circular 

cross section and defines the coordinate system. The wire with radius a extends 

from z = 0 to z = L along the z-axis. It is assumed that the radius is small 

Fig. 1-14.  Complex tricot knit geometry.
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compared to a wavelength, but the ratio of a to L need not be small. The only 

significant component of current on the wire is the axial component, which can 

be expressed in terms of the net current I(z) at any point z along the wire. The 

current distribution is modeled as an infinitely thin sheet forming a tube of 

Fig. 1-15.  Computed and measured Galileo mesh

reflectivity.
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radius a, with the density of current independent of the circumferential position 

on the tube. An integral equation for the problem is given by  

 

L I (z){ } =

j 4( )
1

d 2 /dz2 + k2( ) exp jkR( ) /R[ ] I  z ( )d  z dc = Ez
i z( )

0

L

c

(1.3-1) 

where Ez
i z( ) is the z  component of the impressed electrical field at the wire 

surface, I  z ( )  is surface current density, dcc  represents the integration around 

the circumference, R is the distance from the source point to the field point, and 

L is a shorthand notation for the integral operator. 

The integral equation is solved using the method of moments with 

sinusoidal subsectional currents and Galerkin’s method [34].  

Let the wire be broken up into N segments (each of length 2H, and let I(z) 

be expanded in a series of sinusoidal functions 

 I (z) InS(z nH)
n=1

N 1

, (1.3-2) 

where In  are constants and 

 S(z) =
sink H z( ), z < H

0, z < H

 
 
 

  
. 

Substitute Eq. (1.3-2) into Eq. (1.3-1), multiply each side by S(z mH) , 

  
m =1,2,L,N 1 and integrate from z to L on z. This results in the matrix 

equation  

 Z[ ] I[ ] = V[ ]  (1.3-3) 

where the elements of I[ ]  are In , those of Z[ ]  are 

 Zmn = S(z mH)L S(z nH){ }dz
0

L
 (1.3-4) 

and those of V[ ]  are 

 Vm = S(z mH)Ez
i (z)dz

0

L
. (1.3-5) 

Inverting the Z[ ]  matrix to solve for I[ ]  and substituting in Eq. (1.3-2) gives 

the solution for the unknown current. 



36  Chapter 1 

In solving thin wire antennas, the integration around the current tube is 

normally removed by replacing the integral with the value of the integrand at 

one point. This then reduces the equation to a single integral and obviates the 

singularity of the integrand, which occurs when the source and field points 

coincide during the calculation of the self and first adjacent mutual terms. The 

singularity is, of course, integrable; and by suitably expanding the integrand, 

special series for these terms can be obtained and the integral performed in 

closed form. However, many authors have used an “average” value equal to the 

radius a. This approximation is described as assuming the current to be totally 

located on the center axis and the distance a is used to represent an average 

distance from the current filament to the true current surface. A thorough 

discussion of this singularity and its effect on numerical convergence is given 

in [33]. However, if the radius is sufficiently small and the number of 

subsegments limited to the condition when a/H is small, then this 

approximation is sufficient. The Zmn term for an infinitely thin current filament 

is given as 

  

Zmn = 30 [ jexp jkR1( ) /R1 jexp jkR2( ) /R2 +2 jcos kHnHm 1

Hm+1

exp jkR0( ) /R0] sin k Hm z( )[ ]dz,
 (1.3-6) 

where R1 and R2  are the distances from the end points, and R0  the distance 

from the center of subsegment Hn  to the field point on Hm  when integrating 

over subsegment Hm . For the self-term and the first adjacent subsegment 

where the source and field terms coincide, the impedance term is computed by 

separating the source and field E by the radius a. 

1.3.1.2 Far-Field Evaluation. The radiation pattern of a wire antenna is 

obtained by superposition of the fields of the many small subsegments with 

sinusoidal current distributions. Utilizing the general expression for the electric 

field of a subsegment of any half-length H oriented along the z-axis the far-

zone field is given by 

 
E ,( ) = j 4 r( )

1
exp jkr( ) In[cos(kH cos ) cos kH]

n=1

N

exp( jk H) /sin ˆ u ,

 (1.3-7) 

where  is the intrinsic impedance of free space and ˆ u  is a unit vector. 

The power gain pattern of the radiation field is 
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 g( , ) = 4 r2 1 E( , )
2
/Pin , (1.3-8) 

where Pin  is the power input to the antenna 

 Pin = Re[ ˜ V ][I*] , (1.3-9) 

where [ ˜ V ]  denotes the transpose of [V ] , and * denotes conjugation. 

1.3.2 Arbitrarily Shaped Wires and Wire Junctions 

The procedure for solving arbitrarily shaped wires is similar to that used for 

straight wire as the wire is divided into subsections, over each of which a 

sinusoidal current distribution is assumed, and a generalized impedance matrix 

[Z] obtained to describe interactions between subsections. The junction of two 

or more straight segments can be thought of as the intersection of two or more 

half subsegments superimposed on one another. Thus, Kirchoff’s current law is 

not invoked at the junction; it is a consequence of Maxwell’s equations. 

To complete the description of arbitrarily shaped wires we need to obtain 

the mutual impedances between two full subsegments, between a full 

subsegment and a half subsegment, and between two half subsegments. The 

details for computing these impedance terms are given in [34]. 

1.4 Microstrip Antenna: Analysis, Design, and 
Application 
John Huang 

1.4.1 Introduction 

Since the invention of the microstrip antenna a half-century ago [35,36], the 

demand for its application [37–43] has been increasing rapidly, especially 

within the past two decades. Because of microstrip antennas’ many unique and 

attractive properties, there seems to be little doubt that they will continue 

finding many applications in the future. These properties include low profile, 

light weight, compact and conformable to mounting structure, easy to fabricate, 

and integratable with solid-state devices. Although, the microstrip antenna is 

well known for its shortcoming of narrow bandwidth, recent technology 

advances have improved its bandwidth from a few percent to tens of percent. 

To understand a microstrip antenna’s performance and to simplify its design 

process, several numerical analysis techniques have been developed and 

converted to computer-aided-design (CAD) tools. Some of these analysis 

techniques also allow the designer to know the physical insight of the antenna’s 

electrical operating mechanism. It is the purpose of this section to discuss some 

of the microstrip antenna’s technical features, its advantages and disadvantages, 
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as well as its material considerations for space application. Analysis techniques, 

design processes, and CAD tools are briefly presented. Several spacecraft 

applications of the microstrip antenna are also highlighted. 

1.4.2 Technical Background 

This subsection presents the technical background of the microstrip 

antenna, which is separated into three areas: features of the microstrip antenna, 

advantage and disadvantage tradeoffs, and material considerations. 

1.4.2.1 Features of the Microstrip Antenna. A microstrip antenna [44,45], as 

shown in Fig. 1-17, consists of a radiating metallic patch or an array of patches 

situated on one side of a thin, nonconducting, substrate panel with a metallic 

ground plane situated on the other side of the panel. The metallic patch is 

normally made of thin copper foil or is copper-foil-plated with a corrosion 

resistive metal, such as gold, tin, or nickel. Each patch can be designed with a 

variety of shapes, with the most popular shapes being rectangular of circular. 

The substrate panel generally has a thickness in the range of 0.01 to 0.05 free-

space-wavelength ( 0). It is used primarily to provide proper spacing and 

mechanical support between the patch and its ground plane. It is also often used 

with high dielectric-constant material to load the patch and reduce its size. The 

substrate material should be low in insertion loss with a loss tangent of less than 

0.005, in particular for large array application. Generally, substrate materials 

[45] can be separated into three categories in accordance with their dielectric 

constant: 

1) Having a relative dielectric constant ( r) in the range of 1.0 to 2.0. This type 

of material can be air, polystyrene foam, or dielectric honeycomb. 

2) Having r in the range of 2.0 to 4.0 with material consisting mostly of fiber-

glass reinforced Teflon. 

3) With an r between 4 and 10. The material can consist of ceramic, quartz, or 

alumina. 

Although there are materials with r much higher than 10, one should be 

careful in using these materials. As is discussed later, they can significantly 

reduce the antenna’s radiation efficiency. 

A single microstrip patch can be excited either by a coaxial probe or by a 

microstrip transmission line as shown in Fig. 1-17. For an array of microstrip 

patches, the patches can be combined either with microstrip lines located on the 

same side of the patches or with microstrip-lines/striplines designed on separate 

layers placed behind the ground plane. For the separate-layer configuration, 

each patch and its feed line are electrically connected either by a small-diameter 

metal post or by an aperture-coupling slot [46]. Regardless of the different layer 

configurations, tens or hundreds of patch elements in an array can be fabricated 
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by a single low-cost chemical etching process, and each single patch element 

does not need to be fabricated individually (as many other types of radiating 

elements do), which will lead to an overall lower antenna manufacturing cost. 

1.4.2.2 Advantage and Disadvantage Trade-offs. There are advantages as 

well as disadvantages associated with the microstrip antenna. By understanding 

them well, one can readily design a microstrip antenna with optimum 

efficiency, minimum risk, and lower cost for a particular application.  

The advantages of microstrip antennas when compared to conventional 

antennas (helix, horn, reflector, etc.) are: 

• The extreme low profile of the microstrip antenna makes it lightweight, 

and it occupies very little volume of the structure or vehicle on which it 

is mounted. It can be conformally mounted onto a curved surface so it is 

aesthetically appealing and aerodynamically sound. Large aperture 

microstrip arrays on flat panels can be made mechanically foldable for 

space applications [47,48].  

• The patch element or an array of patch elements, when produced in 

large quantities, can be fabricated with a simple etching process, which 

can lead to greatly reduced fabrication cost. The patch element can also 

be integrated or made monolithic with other microwave active/passive 

components. 

• Multiple-frequency operation is possible by using either stacked patches 

[49] or a patch with a loaded pin [50] or a stub [51]. 

Fig. 1-17.  Rectangular and circular microstrip patch 

antenna configurations.
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• There are other miscellaneous advantages, such as the low antenna-radar 

cross section (RCS) when conformally mounted on aircraft or missiles, 

and the microstrip antenna technology can be combined with the 

reflectarray technology [52] to achieve very large aperture requirement.  

The disadvantages of the microstrip antennas are: 

• The microstrip antenna generally has a narrow bandwidth of less than 5 

percent. However, with technology advancement, up to 50 percent 

bandwidths have been achieved. Some of the techniques used are 

multiple stacked patches, thicker substrates with aperture slot coupling 

[53,54], external matching circuits [55], a sequential rotation element 

arrangement [56,57], parasitic coupling [58], U-slot feed [59], and 

L-shaped probe feed [60]. It is generally true that wider bandwidth is 

achieved with the sacrifice of increased antenna physical volume. 

• The microstrip antenna can handle relatively lower RF power due to the 

small separation between the radiating patch and its ground plane 

(equivalent to small separation between two electrodes). Generally, a 

few tens of watts of average power or less is considered safe. However, 

depending on the substrate thickness, metal edge sharpness, and the 

frequency of operation, a few kilowatts of power for microstrip lines at 

X-band have been reported [61]. It should be noted that for space 

application, the power-handling capability is generally less than that for 

ground application due to a mechanism called multipacting breakdown 

[62]. 

• The microstrip array generally has a larger ohmic insertion loss than 

other types of antennas of equivalent aperture size. This ohmic loss 

mostly occurs in the dielectric substrate and the metal conductor of the 

microstrip line power-dividing circuit. It should be noted that a single 

patch element generally incurs very little loss because it is only a one-

half wavelength long. The loss in the power-dividing circuit of a 

microstrip array can be minimized by using several approaches, such as 

the series feed power-divider lines [45, 63], waveguide and microstrip 

combined power dividers, and honeycomb or foam low-loss substrates. 

For very large arrays, transmit/receive (T/R) amplifier modules can be 

used on elements or subarrays to mitigate the effect of large insertion 

loss. 

1.4.2.3 Material Consideration. The purpose of the substrate material of a 

microstrip antenna is primarily to provide mechanical support for the radiating 

patch elements and to maintain the required precision spacing between the 

patch and its ground plane. With higher dielectric constant of the substrate 

material, the patch size can also be reduced due to a loading effect to be 

discussed later. Certainly, with reduced antenna volume, higher dielectric 
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constant also reduces bandwidth. There is a variety of types of substrate 

materials. As discussed in Section 1.4.2.1, the relative dielectric constant of 

these materials can be anywhere from 1 to 10. Materials with dielectric 

constants higher than 10 should be used with care. They can significantly 

reduce the radiation efficiency by having overly small antenna volumes. The 

most popular type of material is Teflon-based with a relative dielectric constant 

between 2 and 3. This Teflon-based material, also named PTFE 

(polytetrafluoroethylene), has a structure form very similar to the fiberglass 

material used for digital circuit boards, but it has a much lower loss tangent or 

insertion loss. The selection of the appropriate material for a microstrip antenna 

should be based on the desired patch size, bandwidth, insertion loss, thermal 

stability, cost, etc. For commercial application, cost is one of the most 

important criteria in determining the substrate type. For example, a single patch 

or an array of a few elements may be fabricated on a low-cost fiberglass 

material at the L-band frequency, while a 20-element array at 30 GHz may have 

to use higher-cost, but lower loss, Teflon-based material. For a large number of 

array elements at lower microwave frequencies (below 15 GHz), a dielectric 

honeycomb or foam panel may be used as substrate to minimize insertion loss, 

antenna mass, and material cost with increased bandwidth performance. A 

detailed discussion of substrate material can be found in reference [45]. 

1.4.2.3.1 Space Application. When a microstrip antenna is used in space, its 

substrate material must survive three major effects related to the space 

environment: radiation exposure, material outgassing, and temperature change. 

These effects are separately discussed below. 

Radiation exposure. Exposure to cosmic high-energy radiation is an 

important factor in space applications. Cosmic radiations, such as beta, gamma, 

and X-rays, are similar to nuclear radiation in many respects. They can damage 

materials after the prolonged exposure typical of a long space mission. The 

most popular substrate material, as discussed earlier, for the microstrip antenna 

is the Teflon-based PTFE. This material is generally combined with glass 

microfibers or ceramic filler to strengthen its mechanical properties. In either 

case, the component that is most susceptible to space radiation exposure 

damage is the PTFE. This is because of the low cohesive forces between PTFE 

molecular chains [64,65]. The primary effect of radiation on PTFE is the 

reduction of molecular weight by breaking the large polymer molecule into 

smaller parts. Oxygen is essential to some of the possible radiation induced 

reactions. Thus, the damage due to radiation is minimized in an oxygen-free 

environment such as space. The effect of molecular weight reduction is 

primarily on mechanical properties. There will be an increase in brittleness and 

reduction in tensile strength, modulus, and elongation. The electrical properties, 

such as dielectric constant and loss tangent, are also affected by electrical 

charge distributions in the resin which decays with time; and thus, the radiation 
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dose rate is important. The degree to which PTFE is affected is essentially a 

function of the amount of energy absorbed and is generally regardless of the 

types of radiation. For examples, beta, gamma, X-ray, etc. all have about the 

same effect. The radiation dose unit is the “rad” with one rad being equal to 

100 ergs/gram. Table 1-2 is a summary of radiation doses in rads related to 

damage levels to PTFE. 

Frequently, the dose rate of 10 rads/hour is quoted for the Van Allen 

Radiation Belt. At this rate, PTFE could operate for 5 to 50 years before a 

threshold level of damage would occur. 

Material outgassing. Outgassing is another phenomenon that needs to be 

concerned when flying material in space. Outgassing causes a material to lose 

its mass in the form of gases or volatile condensable matter when subject to a 

vacuum, especially when it is heated as the antenna is exposed to sunlight in 

space. Losing mass will certainly affect the material’s mechanical and electrical 

properties. Several substrate materials manufactured by Rogers Corporation 

have passed the outgassing test and are approved for space usage. Rogers’ 

composites of PTFE with either glass microfibers, ceramic filler, or Thermoset 

Microwave Material (TMM) temperature stable hydrocarbon have all shown 

outstanding resistance to outgassing (see Table 1-3), according to data 

Table 1-2. Radiation amount in rads for damage to PTFE material. 

 In Air In Vacuum 

Threshold level 2–7  10
4 

2–7  10
5
 or more 

50% tensile strength 

remains 

10
6
 10

7
 or more 

Retains 100% elongation 2–5  10
5
 2–5  10

6
 

Table 1-3. Outgassing test results of Rogers substrate material. 

Material 
Type 

Rogers 

Duroid 
5870 

Rogers 

Duroid 
5880 

Rogers 

Duroid 
6002 

Rogers 

Duroid 
6010 TMM 3 TMM 10 

Material 
Composition 

PTFE with 

Glass 
Microfiber 

PTFE with 

Glass 
Microfiber 

PTFE 

with 
Ceramic 

Filler 

PTFE 

with 
Ceramic 

Filler 

Thermoset 

Polymer 
Composite 

Thermoset 

Polymer 
Composite 

Dielectric 

constant 

2.3 2.2 2.9 10.0 3.0 10.0 

% TML 0.05 0.03 0.02 0.03 0.04 0.06 

% CVCM 0.0 0.0 0.01 0.0 0.0 0.0 

% WVR 0.04 0.02 0.01 0.02 0.03 0.04 
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compiled by NASA test procedure SP-R-0022A [66,67]. The test procedure 

consists of vacuum heating of 100- to 300-mg specimens in an enclosure. The 

total mass loss (TML), collected volatile condensable materials (CVCM), and 

water vapor recovered (WVR) are expressed as a percentage of the original 

specimen mass. In general, materials with a TML greater than 1 percent or a 

CVCM greater than 0.1 percent should be avoided in space application. 

Temperature change. The effect of temperature in space on electrical and 

physical properties of the substrate material must be taken into consideration 

when designing a microstrip antenna. Since the space is a vacuum without 

conduction medium, the temperature of an object could be extremely cold, e.g., 

–100 deg C, when it is not exposed to the sunlight or it could become very hot, 

e.g., +100 deg C, when it is directly illuminated by the Sun over a period of 

time. The effects of these extreme temperatures could cause change to the 

microstrip substrate material include dielectric constant ( ) and substrate 

thickness, which will together cause an impedance change of the microstrip 

patch or transmission line. Table 1-4 gives examples of the expected response 

of microstrip transmission line to temperature change [45,68] for both non-

woven-glass PTFE and ceramic-loaded PTFE. 

In addition to the above two substrate materials, Rogers corporation 

developed a substrate material that is very insensitive to temperature changes 

and is named the Thermoset Microwave Material (TMM). It is a highly filled 

inorganic resin composite with tightly controlled dielectric constant value. Over 

a temperature range of ±100 deg C, the TMM only changed its dielectric 

constant value by less than 0.5 percent. At the high temperature of 300 deg C, 

the TMM exhibited a thermal expansion amount of 1/3 of that of the PTFE 

material. This TMM is highly recommended for space applications where there 

is a concern regarding wide ranges of temperature variation. 

Table 1-4. Example of microstrip substrate property change vs. temperature  

change in vacuum. 

Percent Change from 20 deg C Value;  
Frequency = 18 GHz, 50-ohm Line 

Non-Woven-Glass PTFE  Ceramic-Loaded PTFE 

Temperature 
(deg C) 

Thickness  Impedance  Thickness  Impedance 

–100 –1.31 1.36 –1.60  –0.26 5.06 –2.2 

–60 –0.89 1.02 –1.20  –0.19 3.38 –1.4 

+70 1.31 –0.53 1.20  0.15 –2.27 1.0 

+110 2.37 –0.87 2.20  0.19 –3.42 1.6 

+150 3.42 –1.50 3.40  0.26 –4.47 2.0 
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1.4.3 Analysis, Design, and CAD Tools 

1.4.3.1 Analysis Techniques. The main reason for developing an analytic 

model for the microstrip antenna is to provide a means of designing the antenna 

without costly and tedious experimental iteration. Also, it may help the 

designer to know the physical mechanisms of how the microstrip antenna 

operates. With an analysis technique, the engineer should be able to predict the 

antenna performance qualities, such as the input impedance, resonant 

frequency, bandwidth, radiation patterns, and efficiency. There are many 

different analysis techniques that have been developed for analyzing the 

microstrip antennas. However, the most popular ones can be separated into four 

groups: transmission-line circuit model, multimode cavity model, moment 

method, and finite difference time domain (FDTD) approach. They are briefly 

discussed below: 

1.4.3.1.1 Transmission-Line Circuit Model. A microstrip patch, operating at 

its fundamental mode, is essentially a -long microstrip transmission line and 

can be represented by an equivalent circuit network [69,70]. For a rectangular 

or square patch, its radiation is basically generated from its two edges with two 

equivalent slots along the resonating dimension, as shown in Fig. 1-18. Thus, 

the microstrip radiator can be characterized by two slots separated by a 

transmission line, where each slot is represented by a parallel circuit of 

conductance (G) and susceptance (B). The complete patch antenna can be 

represented by the equivalent network shown in Fig. 1-19 [69]. This 

transmission line model is simple, intuitively appealing, and computationally 

fast, but it suffers from limited accuracy. For examples, this model lacks the 

radiation from the non-radiating edges of the patch, and it has no mutual 

coupling between the two radiating slots. Although, this model has led to a 

much improved version [70], it lacks the flexibility and generalization of 

analyzing other shapes of patches. 

1.4.3.1.2 Multimode Cavity Model. Any microstrip radiator can be thought as 

an open cavity bounded by the patch and its ground plane. The open edges can 

also be represented by radiating magnetic walls. Such a cavity will support 

multiple discrete modes in a manner similar to that of a completely enclosed 

metallic cavity. As an example, for a rectangular patch with relatively dielectric 

constant of r, substrate thickness of h, and patch dimensions of w l  as that 

shown in Fig. 1-18, its total electric field in the cavity can be expressed as the 

sum of the fields associated with each sinusoidal mode [71]: 

 Ez (x,y) = Cmn •cos
m

w

 

 
 

 

 
 

nm

x •cos
n

l

 

 
 

 

 
 y  (1.4-1) 
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where Cmn  is a constant that depends on the feed location, w and l dimensions, 

and the dielectric constant. Due to the very thin substrate, the fields are 

assumed to be z-directed only with no variation in the z-direction. The most 

important dominant mode is the TM10 mode, which can be obtained if the 

dimension l is approximately g /2  ( g  is the effective wavelength in the 

dielectric). By knowing the fields at the edges of the patch, the equivalent edge 

magnetic currents can be determined and integrated to find the far-field 

radiation patterns. By knowing the total radiated power and the input power, 

one can also determine the input impedance. The cavity model technique allows 

one to know the mode structure underneath the patch; and therefore, its 

physical mechanisms are more easily understood, such as its resonating and 

cross-polarization behaviors. However, because it assumes the field has no 

z-variation, its solution is not very accurate; in particular, when the substrate 

becomes thick (for wider bandwidth consideration). Also the calculation of 

mutual coupling between patches in an array environment is very tedious and 

not accurate. 

1.4.3.1.3 Moment Method. The radiated fields of a microstrip antenna can be 

determined by integrating all the electrical currents on its metallic surfaces via 

the integral equation approach whose solution is obtained by the so-called 

moment method. This integral equation approach [72–75] is analyzed by first 

Fig. 1-18.  Microstrip patch with two equivalent radiating slots.
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Fig. 1-19.  Equivalent network of microstrip patch element.
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solving the vector potential 
  

r 
A (x,y,z)  which satisfies the wave equation with Js  

being the patch surface current: 

 
  
2 r 
A I + k2

r 
A I = juJS (x,y)    in the dielectric (region I) (1.4-2) 

and  

 
  
2 r 
A II + k0

2 r 
A II = 0    in the free space (region II) (1.4-3) 

then the vector potential may be given as 

 

  

r 
A I,II (x,y,z) =

r 
J Spatch
(  x ,  y )•G

I,II x,y,z

 x ,  y ,  z 

 

 
 

 

 
 d  x ,d  y  (1.4-4) 

where G
I,II

 is the dyadic Green’s function for regions I and II. Region I 

contains the substrate, while region II being the free-space area above the 

substrate. The electric field   
r 
E  everywhere is given by 

 
  

r 
E (x,y,z) = j

r 
A +

j

k2

r 
 (
r 

 •
r 
A )  (1.4-5) 

By weighting the Green’s function of Eq. (1.4-4) with the unknown electrical 

current density and integrating over the patch, the radiated electric or magnetic 

field can be calculated anywhere outside the dielectric. An integral equation for 

the unknown current is obtained by forcing the total tangential electric field on 

the patch surface to zero. Using the proper basis and testing functions for the 

unknown current, the integral equation is then discretized and reduced to a 

matrix equation: 

 E[ ] = Zmn[ ] J[ ]  (1.4-6) 

where the impedance matrix element has the form: 

 

Zmn = J m
kykx y  x yx

(x,y) G(kx ,ky ) J n (  x ,  y )

e jkx (x  x ) e
jky (y  y )

dkydkxd  y d  x dydx

 (1.4-7) 

where G(kx ,ky ) is the Fourier transform of the Green’s function given in 

Eq. (1.4-4), Jm  is the mth expansion mode, and J n  is the nth weighting or 

testing mode. Equation (1.4-7) has been solved by two different approaches. 

One uses the space domain approach [74,75], where the spectral variables kx  
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and ky  are transformed to spatial polar coordinates  and . The other approach 

uses the spectral domain approach [72,73] where the spatial integrations in 

Eq. (1.4-7) are done in closed form, which results in an integral in spectral 

domain only. Nevertheless, both approaches are derived to solve, via the 

method of moment and matrix inversion, for the patch surface current, which is 

then used to determine the properties of the microstrip antenna, such as the 

input impedance and radiation patterns. The moment method, a two-

dimensional integration technique, is considered very accurate and includes the 

effects of mutual coupling between two surface current elements as well as the 

surface wave effect in the dielectric. It is computationally more time consuming 

than the transmission-line model and the cavity model. However, it is more 

computationally efficient than the three-dimensional technique to be discussed 

in the following subsection. 

1.4.3.1.4 Finite-Difference Time-Domain (FDTD) Method. The previous 

moment method is basically a two-dimensional solver. It solves for the 2-D 

surface current on the microstrip patch. The FDTD method, on the other hand, 

is a three-dimensional solver. It solves for the electromagnetic fields in a 3-D 

volumetric space. Thus, it can solve more complex problems with 3-D 

interfaces and connections, such as the multi-layer microstrip antenna with 

complicated multi-layer connections. However, it suffers from laborious 

computation time, and it is not suitable (with current computer capability) for 

solving large microstrip array problems. The FDTD method [76–78] uses Yee’s 

algorithm [79] to discretize Maxwell’s equation in three-dimensional space and 

in time. The volume-space of interest is discretized into many cubes, and the E 

and H fields are then solved through Maxwell equations with given boundary 

conditions from cube to adjacent cubes. This is illustrated briefly in the 

following Maxwell’s curl equations: 

 μ
H

t
= E  (1.4-8) 

 
E

t
= H  (1.4-9) 

With time and space discretized, the E- and H-fields are interlaced within the 

spatial 3-D grid. For example, Eq. (1.4-9) can be discretized for the x-directed 

E field: 
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 (1.4-10) 

where x, y, and z are the space steps in the x-, y-, and z-directions, and t is 

the time step. The same discretization can be carried out for Eq. (1.4-8). 

Now, Maxwell’s equations have been replaced by a set of computer-

recognizable finite-difference equations, which can be solved sequentially from 

cube to cube once the known boundary conditions are applied. Certainly, this 

cube-to-cube solver cannot continue indefinitely outside the volume of interest 

and must be terminated. However, the fields will bounce back from any 

terminating boundary (which does not happen in reality) and disturb the correct 

solution. The solution is to use the electromagnetic absorbing boundaries to be 

set up outside the areas of interest and to absorb all outgoing fields. One 

significant advantage of the FDTD method is that, by discretizing time, one is 

able to see on a computer screen how the field is actually traveling and 

radiating in time sequence in a complicated antenna/circuit configuration. 

1.4.3.2 Design Methodology. The previous section presented different 

techniques to analyze the microstrip antenna. To ease the design process, these 

different analysis techniques have been developed into several user-friendly 

computer-aided-design (CAD) tools by several institutions. However, an 

analysis technique or a CAD tool, by itself, cannot generate an antenna design. 

It can only analyze a design and provide calculated performance results for a 

design. The basic antenna design has to originate from human experience, 

knowledge, and innovation, even though an optimal and accurate design often 

cannot be achieved without an analysis tool. Figure 1-20 depicts a typical 

microstrip antenna development process. The block labeled “Computer 

Analysis Software” represents the central processing unit into which a human 

must enter the proper design data to initiate the design process. The block 

labeled “Antenna Design Techniques” represents the knowledge for generating 

a set of preliminary input design data, which is the main subject of this section. 

It includes techniques to design array configurations, patch elements, and 

power division transmission lines, which are separately discussed in the 

following subsections. 

1.4.3.2.1 Array Configuration Design. Before performing a detailed design, it 

is critically important to lay out the most suitable array configuration for a 

particular application. Array configuration variables include series feed or 

parallel feed, single layer versus multiple layers, substrate thickness, dielectric 
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constant, array size, patch-element shape, element spacing, etc. The selection of 

the proper configuration depends upon many factors, such as the required 

antenna gain, bandwidth, insertion loss, beam angle, grating/sidelobe level, 

polarization, and power-handling capability. Several important microstrip array 

configurations that often challenge the skills of antenna designers are presented 

below. 

Series feed. In a series feed configuration [45,80], multiple elements are 

arranged linearly and fed serially by a single transmission line. Multiples of 

these linear arrays can then be connected together serially or in parallel to form 

a two-dimensional planar array. Figure 1-21 illustrates two different 

configurations of the series feed method. The in-line feed [81,82] has the 

transmission line serially connected to two ports of each patch and is sometime 

called the two-port series feed. The out-of-line feed [63]
 
has the line connected 

to one port of each patch and is thus called one-port series feed. The in-line 

Fig. 1-20.  Microstrip antenna development procedures.
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Fig. 1-21.  Series-fed microstrip arrays.

In-Line Series Feed

Ou

 



50  Chapter 1 

feed array occupies the smallest real estate with the lowest insertion loss, but it 

generally has the least polarization control and the narrowest bandwidth. The 

in-line feed, as shown in Fig. 1-21, is generally more suitable for generating 

linear polarization than circular polarization. It has the narrowest bandwidth 

because the line goes through the patches, and, thus, the phase between adjacent 

elements is not only a function of line length but also of the patches’ input 

impedances. Since the patches are amplitude weighted with different input 

impedances, the phases will be different for different elements and will change 

more drastically as frequency changes due to the narrow-band characteristic of 

the patches. 

The series feed can also be classified into two other configurations: 

resonant and traveling-wave [45,80]. In a resonant array, the impedances at the 

junctions of the transmission lines and patch elements are not matched. The 

elements are spaced multiple integrals of one wavelength apart so that the 

multiply bounced waves, caused by mismatches, will radiate into space in 

phase coherence in the broadside direction. Because of this single- or multiple-

wavelength element spacing, the beam of the resonant array is always pointed 

broadside. For the same reason, the bandwidth of a resonant array is very 

narrow, generally less than 1 percent. With a slight change in frequency, the 

one-wavelength spacing no longer exists, thereby causing the multiply bounced 

waves not to radiate coherently but, instead, to travel back to the input port as 

mismatched energy. Both the in-line and out-of-line feed arrays can be 

designed to be of the resonant type. 

For the traveling-wave array type, the impedances of the transmission lines 

and the patches are generally all matched, and the element spacing can be one 

wavelength for broadside radiation, or less than one wavelength for off-

broadside radiation. Because the energy travels toward the end of the array 

without multiple reflections, there is generally a small amount of energy 

remaining after the last element. This remaining energy can be either absorbed 

by a matched load or reflected back to be re-radiated in phase for broadside 

radiation [63]. The array can also be designed such that the last element radiates 

all of the remaining energy [63]. The traveling-wave array has a wider 

impedance bandwidth, but its main beam changes in direction as frequency 

changes. A general rule-of-thumb for the frequency-scanned beam of a 

traveling-wave array is one degree of beam scan per one percent of frequency 

change. For an instantaneous wideband signal, such as a pulsed system, a beam 

broadening effect will occur. Both the in-line and out-of-line series-fed arrays 

of Fig. 1-21 can be designed as the traveling-wave type. There are also other 

forms of series-fed microstrip arrays: chain, comb line, rampart line, Franklin, 

and coupled dipole [45,80]. These arrays operate similarly to the arrays shown 

in Fig. 1-21, except that they use microstrip radiators with different radiating 

mechanisms. 
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Parallel feed. The parallel feed, also called the corporate feed [83], is 

illustrated in Fig. 1-22. In the parallel feed, the patch elements are fed in 

parallel by the power-division transmission lines. The transmission line divides 

the power into two branches, and each branch divides again until it reaches the 

patch elements. In a broadside-radiating array, all the parallel division lines 

have the same length. For a series-fed array, the insertion loss is generally less 

than that of a parallel-fed array because most of the insertion loss occurs in the 

transmission line at the first few elements, and very little power remains at the 

end of the array. Most of the power has already been radiated by the time the 

end elements are reached. Despite its higher insertion loss, the parallel-fed array 

does have one significant advantage over the series-feed, which is its wideband 

performance. Since all elements in a parallel-fed array are fed by equal-length 

transmission lines, when the frequency changes, the relative phases between all 

elements will remain the same; and thus, no beam squint will occur. The 

bandwidth of a parallel-fed microstrip array is limited by two factors: the 

bandwidth of the patch element and the impedance matching circuit of the 

power-dividing transmission lines, such as the quarter-wave transformer. 

Whereas a series-fed array can only achieve a bandwidth of 1 percent or less, a 

parallel-fed array can achieve a bandwidth of 15 percent or more. 

Hybrid series/parallel feed. An example of a hybrid series/parallel-fed 

array is depicted in Fig. 1-22, where a combination of series and parallel feed 

lines is used. In a hybrid array [63], the smaller series-fed subarray has a 

broader beamwidth, which will suffer only a small gain degradation due to 

beam squint with frequency change. Hence, a hybrid array will achieve a wider 

bandwidth than a purely series-fed array having the same aperture size. Of 

course, because of its partial parallel feed, the insertion loss of hybrid array is 

higher than that of a purely series-fed array. This hybrid technique gives the 

Fig. 1-22.  Configurations of parallel feed and hybrid parallel/series feed 

microstrip arrays.
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designer an opportunity to make design trade-offs between bandwidth and 

insertion loss.  

Regardless of whether the array is parallel or series fed, two recently 

developed arraying techniques can be employed to significantly improve the 

array’s performance. The first is to reduce cross-polarization (cross-pol) 

radiation in a planar array by oppositely exciting adjacent rows or columns of 

elements in phase and in orientation [63], as shown in Fig. 1-23(a). Another 

technique is shown in Fig. 1-23(b) for a circularly polarized array, in which 

every adjacent four elements placed in a rectangular lattice can be sequentially 

Fig. 1-23.  Microstrip array configuration: (a) rows excited 

by opposite phases and orientations and (b) sequentially 

arranged four-element subarray.

0 deg

(a)

(b)

180 deg

180 deg

90 deg

0 deg

270 deg

180 deg

0 deg



Introduction  53 

arranged in both phase and orientation to achieve good circular polarization 

over a wide bandwidth [56,57]. 

Single-layer or multilayer design. A microstrip array can be designed in 

either a single-layer or multilayer configuration. The factors that determine this 

choice are complexity and cost, sidelobe/cross-pol level, number of discrete 

components, polarization diversity, bandwidth, and so on. When the given 

electrical requirements are relaxed, a single-layer design will generally suffice. 

If all transmission lines and patch elements are etched on the same layer, it will 

be low in manufacturing cost. However, when extremely low sidelobe or cross-

pol radiation (e.g., less than –30 dB) is required, the double-layer design seems 

to be the better choice. With all transmission lines etched on the second layer 

behind the radiating patch layer, the ground plane in the middle will shield most 

of the leakage radiation of the lines from the patch radiation. This leakage 

radiation becomes more pronounced when discrete components, such as 

monolithic microwave integrated circuit (MMIC) T/R modules and phase 

shifters, are placed in the transmission line circuits. Thus, it is more desirable to 

place all discrete components behind the radiating layer in a multilayer 

configuration. When dual-linear or dual-circular polarization is required with 

high polarization isolation, it is often more desirable to design the feed circuits 

of the two polarizations on two separate layers, as shown in Fig. 1-24. When a 

radiating patch having a thick substrate is used to achieve wider bandwidth, it is 

best to design the transmission lines on a separate layer because the lines may 

become too wide to be practical if designed on the same thick layer as the 

radiating patches. In other cases, when an extremely wide bandwidth 

requirement can be met only by using multiple stacked patches [53], the 

multilayer design becomes the obvious choice. With the advancement of the 

Fig. 1-24.  Multilayer dual-polarized microstrip 

patch element.
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aperture-coupling technique that allows the transmission line to feed the patch, 

the multilayer design becomes much more feasible than those using many feed-

through pins. 

Other array configuration. When designing a microstrip array, various 

antenna parameters, such as substrate thickness, dielectric constant, and 

element spacing, can all play important roles in determining an array’s 

performance. Substrate thickness determines bandwidth, as well as the 

antenna’s power handling capability [61]. The thicker the substrate, the more 

power it can handle. For ground applications, a thicker microstrip antenna 

(>0.05 0 thick) can generally handle several hundred to a few thousand watts 

of peak power. For space applications, due to the effect of multipacting 

breakdown [62], only tens of watts are attainable. The dielectric constant of the 

substrate material also affects the bandwidth: the higher the dielectric constant, 

the narrower the bandwidth. Because of the loading effect, a higher dielectric 

constant reduces the patch resonant size and, hence, increases the element 

beamwidth. A wider element beamwidth is desirable for a large-angle-scanning 

phased array. Another important array design parameter is element spacing. It is 

often desirable to design a microstrip array with larger element spacing so that 

more real estate can be made available for transmission lines and discrete 

components. However, to avoid the formation of high grating lobes, element 

spacing is limited to less than 1 0 for broadside beam design and less than 

0.6 0 for a wide-angle scanned beam. In designing a wide-angle scanned 

microstrip phased array, substrate thickness, dielectric constant, and element 

spacing are all important parameters that need to be considered for reducing 

mutual coupling effects and avoiding scan blindness [84].  

1.4.3.2.2 Patch Element Design. Patch elements come in various shapes, such 

as rectangular, square, circular, annular ring, triangular, pentagonal, and square 

or circular with perturbed truncations. These different shapes can often be used 

to meet various challenging requirements. For example, the rectangular patch, 

used for linearly polarized applications, can achieve slightly wider bandwidth 

than the square or circular patch. However, the square or circular patch, unlike 

the rectangular patch, can be excited orthogonally by two feeds to achieve 

circular polarization. In addition, the circular patch can be designed to excite 

higher-order modes for generating different-shaped patterns [85,86]. The 

pentagonal patch, as well as the square or circular patch with a small 

perturbation, can be used to generate circular polarization with only a single 

feed [45], which is often a desirable feature when simplicity and low insertion 

loss are required. 

It should be noted that all of these patch shapes can be accurately analyzed 

and designed by the full-wave moment method discussed in Section 1.4.3.1.3. 

However, designing a patch using the moment method or any other rigorous 

technique requires a priori knowledge of the approximate size of the patch so 
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that appropriate dimensions, rather than random numbers, can be input to the 

analysis computer code. With a few iterations of the computer code, the 

designer should be able to determine the precise dimensions of the microstrip 

antenna. Once the dimensions are known, other parameters (e.g., input 

impedance, bandwidth, and radiation patterns) can be accurately computed by 

the full-wave moment method. The above-mentioned a priori knowledge of the 

approximate patch size can be acquired through experience, or derived by 

simple closed-form equations if available. Fortunately, the two most popular 

and often-used patch shapes, rectangular (or square) and circular, do have 

simple closed-form equations available. These equations, in predicting the 

resonant frequency, can generally achieve an accuracy of within 2 percent. For 

the fundamental-mode rectangular patch, the simple equation [44] is given by 

 f =
c

2(L + h) e

 (1.4-11) 

where 

 e = r +1
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 (1.4-12) 

f is the resonant frequency, c is the speed of light, L is the patch resonant 

length, h is the substrate height, r is the relative dielectric constant of the 

substrate, and w is the patch non-resonant width.  

For the circular patch with TMmn mode, the simple design equation is given 

by [44,85] 

 f = mnc
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 (1.4-13) 
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 (1.4-14) 

f, c, h, and r are as defined for the rectangular patch design equation, a is the 

patch’s physical radius, mn  is the mth zero of the derivative of Bessel’s 

function of order n, n represents the angular mode number, and m is the radial 

mode number. 

There is no significant difference in performance between the fundamental-

mode rectangular patch and a fundamental-mode circular patch. A circular 

patch does have the advantage of offering higher-order-mode performance with 
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different diameters and differently shaped radiation patterns [85,86]. These 

patterns can be either linearly or circularly polarized, depending on the 

configuration of the feed excitations. 

1.4.3.2.3 Power Division Transmission Line Design. One of the principal 

shortcomings of a microstrip array with a coplanar feed network is its relatively 

large insertion loss, especially when the array is electrically large or when it is 

operating at a higher frequency. Most of the losses occur in the power-division 

transmission line’s dielectric substrate at microwave frequencies. At 

millimeter-wave frequencies, the loss in the copper lines becomes significant. It 

is thus crucially important to minimize insertion loss when designing the power 

division transmission lines. In order to minimize insertion loss, the following 

principles should be observed: The impedances of the power-division lines 

should be matched throughout the circuit; low-loss material should be used for 

the substrate; at higher frequencies, the roughness of the metal surfaces that 

face the substrate should be minimized; and the array configuration should be 

designed to minimize line length (as described in Section 1.4.3.2.1). This 

section discusses the impedance-matching techniques for power division 

circuits. Every designer has a somewhat different approach to design a 

microstrip circuit, but they all require the knowledge of the fundamental circuit 

theory and basic equations presented in the following subsections. In a good 

design with well matched lines, the microstrip circuit will suffer less from 

mismatch losses and radiation leakage losses. Although most of the microstrip 

circuit components shown here are very fundamental and have been presented 

elsewhere in separate articles, they are collected here for microstrip array 

designs. 

A very important circuit component in most microstrip array design is the 

quarter-wave transformer (see Fig. 1-25), which transforms one impedance to 

another. The proper impedances for this transformation are given by the 

following equation: 

 Z2 = Z1 Z3 . (1.4-15) 

In Fig. 1-25, the symbol g  is the effective wavelength in the microstrip 

line, and its equation is given in [87]. This quarter-wave transformer is not only 

used to transform between two different impedances, but it also should be used 

where there is a possible impedance mismatch. For example, for the single-

patch circuit shown in Fig. 1-26, the quarter-wave section should be used at the 

coax input feed location and at the input to the patch. At both of these locations, 

there may be some residual mismatches. For instance, the 250-ohm input 

impedance of the patch may not be accurately predicted by a CAD due to 

inaccuracy in the model or inaccurate specification of the dielectric constant by 

the manufacturer, and the coax feed may not be perfectly matched to the 
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microstrip line due to possible air gap, fabrication tolerance, etc. The quarter-

wave transformer can be used to minimize such mismatches. This is because of 

the quarter-wave line’s round-trip phase delay (180 deg), and thus the reflected 

signal due to mismatch occurring at one location will cancel with that reflected 

from another location a quarter-wave distance away. 

In a microstrip line with a given substrate height and dielectric constant, the 

width of line governs the characteristic impedance. To determine the microstrip 

line width with a specified line impedance, simple closed-form equations are 

given in [87]. These equations are generally accurate enough without resort to a 

full-wave analysis or a CAD tool, unless there is a significant amount of mutual 

coupling between lines. 

Another important microstrip circuit component used quite often is the two-

way power divider illustrated in Fig. 1-27. In this figure, the input power P1 

with microstrip line width W1 and impedance Z1 is split into powers P2 and P3 

with line widths W2 and W3 and impedances Z2 and Z3, respectively. The 

fundamental equations for this simple power division are 

     
Z1 = Z2 Z3 ÷ Z2 + Z3( ), P2 = Z1 /Z2( ) P1, P3 = (Z1 /Z3) P1

angle A = arctan W3 /W1( )
 (1.4-16) 

Fig. 1-25.  Microstrip quarter-wave impedance transformer.
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Since there could be a small amount of impedance mismatch due to fabrication 

tolerance or other types of inaccuracies, it is more practical, as explained 

previously, to design the power divider with a quarter-wave transformer as 

shown in Fig. 1-28. 

A three-way power divider, illustrated in Fig. 1-29, can also be designed 

based on the equations of the two-way power divider. The design equations for 

this three-way divider are 
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  (1.4-17) 

With the above equations for the two-way and three-way power dividers, one 

should be able to derive the equations for any multiple power division with 

different combinations of power ratios. 

The above power dividers are named reactive power dividers because the 

power divisions are based on the reactive impedances of the lines. In addition to 

these reactive power dividers, two other types of power dividers are briefly 

presented here. One is the branch-line hybrid divider shown in Fig. 1-30, and 

the other is the Wilkinson power divider shown in Fig. 1-31. A reactive power 

divider does not provide isolation between the divided ports. Any mismatch at 

the end of a divided port will send portion of the returned power into other  

 

Fig. 1-27.  Microstrip two-way power divider.
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Fig. 1-28.  Microstrip two-way power divider with a 

quarter-wave transformer.
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ports, which can cause high radiated sidelobe and cross-pol levels. Both the 

branch-line hybrid and the Wilkinson dividers can generally provide more than 

20 dB of isolation between divided ports. The branch-line hybrid, in addition to 

its capability of providing 90-deg phase difference between its two output ports, 

can also achieve different power divisions. In Fig. 1-30, any mismatch-reflected 

power from port 2 or 3 will go into the loaded port 4 and not into the input 

= a ;       = b

Fig. 1-30.  Microstrip hybrid branch-line power divider.
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port 1. For the Wilkinson divider depicted in Fig. 1-31, mismatch-reflected 

power from the two divided ports will be mostly absorbed by the 100-ohm 

resistor. 

1.4.3.3 CAD Tools. In the previous section, design methodology, a typical 

microstrip antenna development process is depicted in a block diagram (see 

Fig. 1-20). Although all CAD tools available today can only provide analysis 

and not a design, they do assist significantly in achieving the final design. For 

example, an engineer generates an initial design and then inputs the design 

dimensions and configuration into a CAD to calculate a set of performance 

results, such as input return loss and radiation patterns. Generally, the initial 

results will not meet the given requirements, in particular, for a complicated 

design. The engineer, using his experience and knowledge, will perform 

corrections on the design and then input to the CAD again as indicated in 

Fig. 1-20. This iterative process may take several times until satisfactory results 

are achieved. Before CAD tools were available, the engineer could only 

perform hardware verification of the design and might have needed many 

iterations. This hardware verification step requires significantly longer time 

with higher cost than computer simulation. For a large array, the cost of 

iterative hardware verification soars with array size and complexity. Academic 

researchers have been prolific in generating analytical and numerical solutions 

for a wide variety of microstrip antennas and arrays, often with a high degree of 

accuracy and efficiency. But this area of work is generally performed primarily 

for graduate student theses or publications, and the software are seldom 

completely written, validated, or documented for other users. Researchers in 

industry may be more pragmatic when developing comparable solutions for 

specific antenna geometry, but such software is often considered proprietary. 

From the above discussion, there is a clear need for a CAD tool. The first 

commercial CAD tool for microstrip antennas became available in the early 

1990s, and in the past decade, the number of commercial tools has mushroomed 

with more than ten available in the world. Table 1-5 lists some commercial 

software packages that can be used for microstrip antenna analysis and design. 

Among the CAD tools, the Ensemble and IE3D, that use full-wave moment 

method, are the most popular. These two PC-based software were on the market 

much earlier than the other ones for microstrip antenna application. Through 

up-grades and modifications, they became more efficient, less prone to errors, 

and with more capabilities. Designs with multilayer, conductive via 

connections, finite ground plane, etc. can all be accurately analyzed. With a 

1-gigabyte (GB) random-access memory (RAM) capability, a current personal 

computer (PC), by using either Ensemble or IE3D, can handle a microstrip 

array with approximately 30 elements and some microstrip power-division 

lines. Some of the other softwares, which use finite difference time domain 

(FDTD) or finite element (FE) methods, take a three-dimensional approach by 
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modeling the entire antenna space, including dielectric, metal components, and 

some surrounding volume. This approach allows a high degree of versatility for 

treating arbitrary geometries, including inhomogeneous dielectrics and 

irregularly shaped structures, but the price paid is computer time. With a 

current PC, only a few patch elements can be calculated. Regardless of the 

method used, future advancement in CAD tools is vested in two areas: (1) PCs 

with high capacity and faster computation; and (2) more efficient mathematical 

algorithms. With these advancements, large microstrip arrays can be more 

effectively analyzed and designed. 

One important conclusion [88] should be made here for all CAD users that, 

while CAD software can be an invaluable analysis/design tool, it is not a 

substitute for design experience or a thorough understanding of the principles 

of operation of microstrip antennas and arrays. While microstrip antenna design 

is based on solid science, it also retains a strong component of intuitive 

understanding and a creative problem-solving approach that can only come 

from experience. It also can be concluded that, at least for the near future, CAD 

tools will continue to aid, rather than actually replace, the experienced 

designers. 

Table 1-5. Some commercially available microstrip antenna CAD tools. 

Software Name Theoretical Model Company 

Ensemble Moment method Ansoft 

IE3D Moment method Zeland 

Momentum Moment method HP 

EM Moment method Sonnet 

PiCasso Moment method/Genetic EMAG 

FEKO Moment method EMSS 

PCAAD Cavity model Antenna Design 

Associates, Inc 

Micropatch Segmentation Microstrip Designs, Inc. 

Microwave Studio 

(MAFIA) 

FDTD CST 

Fidelity FDTD Zeland 

HFSS Finite element Zeland 
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1.4.4 Spacecraft Applications 

1.4.4.1 Introduction. The demand for microstrip antenna application has been 

increasing rapidly in the past two decades. Initial applications have been 

primarily in the defense sector. Because of their extremely thin profiles and 

lightweight, printed microstrip antennas have found many applications for 

conformal mounting on military aircraft, missiles, rockets, etc. In the 

commercial sector, the adoption of microstrip antennas had not been as rapid 

during the 1980s, primarily due to their relatively higher material cost and the 

newness of the technology. During the earlier years, the costs of the microstrip 

antenna’s substrate material, design effort, and manufacturing processes were 

considered non-competitive when compared to monopole, helix, horn, or 

parabolic reflector antennas. In addition, at the time, the configuration and 

environment of most terrestrial communication systems did not warrant the use 

of microstrip antennas. During the past decade, however, the cost to develop 

and manufacture microstrip antennas has dropped significantly. This is because 

the maturity of the microstrip antenna technology, the reduction in cost of the 

substrate material and manufacturing processes, and the simplified design 

process using newly developed versatile CAD tools. Furthermore, modern 

communication systems, such as cellular phone and station antennas, benefit 

greatly from the small size and low profile features of the microstrip antenna. In 

the space sector, the demand for using microstrip antennas is also increasing, 

but rather gradually since spacecraft are not produced in large quantities. 

Because of the increasing demand for smaller spacecraft and high-capability 

large-aperture antennas, smaller antenna mass to save launch vehicle fuel, and 

smaller antenna stowage volume to save launch vehicle space, there is an 

increasing need for more applications of microstrip antennas.  

1.4.4.2 JPL/NASA Programs. Starting in the late 1970s, JPL/NASA began 

using microstrip antennas for space applications. For JPL-related programs, the 

following spacecraft have used or are using microstrip antennas: Seasat [89], 

Shuttle Imaging Radar (SIR) – A, B, C series [90,91], Mars Pathfinder, and 

Mars Exploration Rovers (MER). Among these programs, the antennas for 

Seasat and the SIR-A, -B, and -C series are all large-panel microstrip arrays 

(>10-m dimension) operated at L-band and/or C-band frequencies. These 

antennas are part of the synthetic-aperture radars (SARs) used to perform Earth 

remote sensing functions. These large arrays, except the SIR-C, are all designed 

with fixed main beams.  

The SIR-C/X-SAR antenna is the most massive piece of hardware 

(10,500 kg) ever assembled at JPL, and measures 12 m by 4 m. The SIR-C 

instrument was built by JPL and the Ball Communication Systems Division for 

NASA and provides the L-band and C-band measurements at different 

polarizations. The L-band and C-band antennas employ phased-array 
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technology, which allows the antenna beam pointing to be adjusted 

electronically. The X-SAR instrument was built by the Dornier and Alenia 

Spazio companies for the Deutsche Agentur für Raumfahrtgelenheiten (DARA, 

German Space Agency) and the Agenzia Spaziale Italiana (ASI, Italian space 

agency), and it operates at a single frequency, X-band. The X-SAR antenna is a 

slotted waveguide type (12 m  0.4 m at the top of Fig. 1-32), which uses a 

mechanical tilt to change the beam pointing direction. 

The SIR-C antenna, flew three times (1994, 1995, and 2000) on the Space 

Shuttle, has electronic beam scanning capability with solid-state 

transmit/receive (T/R) modules and phase shifters. The antenna, shown in 

Fig. 1-32, has separate L-band (12-m  3-m aperture size) and C-band (12 m  

0.75 m at bottom of Fig. 1-32) microstrip array panels developed by Ball 

Aerospace Corporation under a JPL contract. 

Fig. 1-32.  SIR-C antenna in laboratory configuration.  (The middle large L-band panels and 

the bottom small C-band panels are microstrip phased arrays with distributed T/R modules 

and phase shifters; the top slightly tilted panels are a fixed-beam X-band slotted 

waveguide array.)
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For the Mars Pathfinder program, a relatively small (25-cm diameter) 

X-band microstrip dipole array, developed by Ball under JPL contract, was 

used as a telecommunication high-gain antenna on the Mars Pathfinder 

spacecraft launched in 1996 for Mars exploration. This antenna provided 

circular polarization with a peak gain of 25 dB. It was constructed with a 

corporate feed power divider and electromagnetically coupled dipoles, which 

allowed the antenna to have wide bandwidth and operate at both the transmit 

frequency of 8.4 GHz and the receive frequency of 7.1 GHz. The divider and 

the dipoles were printed on multilayer honeycomb substrates with open vented 

cells for space application. A polarizing cover sheet was used to achieve 

circular polarization.  

Another Mars exploration program launched two MER spacecraft in 2003 

to send two rovers to further explore the Mars surface. The two spacecraft 

successfully landed in late 2003 and in early 2004. On each lander vehicle, 

there are four petals (protective shielding panels) that opened up after landing 

to allow the rover to exit. An X-band antenna is mounted on the outside of one 

of the petals. It sent an indicator signal to Earth to confirm that the lander had 

landed and was functioning on the Martian surface. This X-band antenna is a 

single-element square patch with two orthogonal input ports to provide circular 

polarization. The patch and its microstrip lines are gold plated to avoid 

moisture corrosion in Earth environment prior to its launch. It is mounted in a 

circular protective cavity with a protective radome cover. The cavity has a 7-cm 

diameter, and the complete antenna has a mass of only 20 g. This single-patch 

antenna provides a peak gain of 7 dB with a –3 dB beamwidth of 85 deg. The 

microstrip patch antenna was selected for this application because of its unique 

features of small size and very little mass. Pictures of the Mars Pathfinder and 

MER microstrip antennas can be found in Chapter 4. 

1.4.4.3 Areas of Attention for Space Application. In designing microstrip 

antennas for space applications, several critical areas need to be considered. In 

addition to the substrate material’s radiation, outgassing, and temperature 

characteristics (discussed in Section 1.4.2.3.1), there are three other critical 

areas to be briefly discussed here. One is that the antenna must be able to 

survive the violent vibration during launch from the Earth. Generally, a 

vibration shock on the order of 10 gs or more must be tolerated. The soldering 

points of the coax connectors, via-through-hole connectors, discrete component 

attachments, and laminating epoxy material between different layers of a 

multilayer design all need to be made strong enough to survive the vibration.  

The second area of attention is the large temperature variations that can 

occur in space. At an Earth-like distance from the Sun, the temperature can vary 

between 173 and 373 K (±100 K). At Venus the temperature can exceed 473 K, 

and at Jupiter it can get as low as 50 K. A spacecraft like Cassini that uses a 

gravity assist from Venus to get to Jupiter must be designed for both extremes. 
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The substrate material, as well as its laminating adhesive material, must survive 

physically and electrically throughout a wide temperature range over the 

lifetime of the spacecraft. In particular, the microstrip antenna is a narrow-band 

device. Its resonant frequency may shift out of the required operating 

bandwidth and lose its performance due to the temperature change.  

The third area of attention is the antenna’s RF power-handling capability. 

The power-handling capability of a microstrip antenna is generally an order of 

magnitude less in space than in Earth’s atmosphere. Due to the vacuum in 

space, a particular breakdown phenomenon known as multipacting [62] 

generally occurs at pressures lower than 10
-2

 torr (1.3 Pa). At this low gas 

pressure, the electrons are freer to leave an electrode and move across to the 

opposite electrode. For a microstrip antenna, the two electrodes are the patch 

and its ground plane. Thus, in order to handle higher power in space, the 

microstrip antenna or microstrip transmission line must be designed with the 

proper thickness. The thicker it is, the more power it can handle. For a patch 

with conventional thickness (<0.02 0), a few tens of watts or less may 

considered to be safe in space. For more than 50 watts of average power, one 

should perform theoretical power breakdown analyses [62] and actual high-

power-in-vacuum tests. 

1.4.5 Summary and Conclusion 

In this chapter, the design methodologies and various analysis techniques 

for microstrip antennas have been presented. In particular, the full-wave 

moment method is the most popular technique due to its computation accuracy 

and efficiency. Practical design techniques for the array configuration, radiating 

patch element, and power-division lines have been thoroughly discussed. 

Commercial available CAD tools were also presented. Space applications of 

microstrip antennas were highlighted. It is expected that, because of their small 

size and low mass, the demand for microstrip antennas in space applications 

will continue to increase. On the other hand, there is also an unabated demand 

for improving the performance of microstrip array antennas, such as widening 

of the bandwidth, reduction of the insertion loss, and improving the 

computation efficiency to handle large-size arrays. By utilizing the analysis 

techniques and design methods presented in this chapter, in conjunction with 

innovative ideas, the performance of microstrip antennas can be further 

enhanced to broaden their applications in the future. 

1.5 Antenna Measurements 
Mark S. Gatti 

One area where spacecraft and ground antennas differ significantly is in the 

methods used to verify antenna performance parameters. Because of the 

requirements for low mass and the need to fit into the launch vehicle, 
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spaceborne antennas are generally small and quite amenable to direct 

measurements of their antenna radiation patterns. There are even standards 

written that define such measurements [92]. Two basic techniques have been 

developed to measure spacecraft far-field antenna parameters. A direct 

measurement of the far-field pattern can be done if enough distance can be 

reached between a source antenna and the antenna under test (AUT). In this 

mode a transmitter can be connected to either antenna, but traditionally, the 

source antenna is connected to a transmitter that radiates a signal at the 

frequency or frequencies of interest, and the AUT is connected to a suitable 

receiver. If the separation distance between the two antennas is sufficient that 

spherical phase error is negligible, then accurate main-beam and sidelobe 

measurements of the AUT are possible. This type of measurement is referred to 

as a “far-field” antenna measurement. An alternate method of determining the 

far-field antenna performance makes use of the relationship between the field 

surrounding the antenna on a closed surface at any distance from the antenna 

and the field at a great distance. One could, for example, measure the entire 

field around an antenna and use a Fourier relationship to calculate the field at 

an infinite distance. Typically, the enclosing surface chosen is in the immediate 

vicinity of the antenna and measures the near-field power of the antenna. The 

far-field performance of an antenna is calculated using this indirect 

measurement and is referred to as a “near-field” measurement. Figure 1-33 

illustrates both the direct and indirect categories of antenna measurements. This 

section discusses both of these measurements and how they have been applied 

to several spacecraft antennas over the past 40 years. 

In deciding which technique to use, an antenna engineer must determine the 

shortest distance that defines the beginning of the far field. Other factors 

include the ruggedness of the AUT, its total size, compatibility with the 

environment (for outdoor measurements), deformation in the effects of gravity, 

etc. Some spacecraft antennas are susceptible to gravity such that they distort. 

Others can only be rotated around one axis to measure patterns. An example of 

an antenna that should be tested indoors is a fragile deployable antenna similar 

to the Galileo high-gain antenna (HGA) (see Chapter 5). The long “stick” 

antenna used on the NASA Scatterometer and SeaWinds is easily rotated about 

its long axis, whereas a special fixture is required to rotate about any other axis. 

Some antennas, such as the HGAs used on the Mariner, Viking, Voyager, 

Magellan, and Cassini spacecraft, are not only stiff, but are rugged and lend 

themselves to periodic cleaning of any dust that may accumulate due to being 

in the outdoors. More flexibility in choosing the type of measurement is 

allowed for such antennas. Finally, the symmetric properties of the AUT can 

also be used in determining which type of measurement to be done. Often, 

rotating the AUT about an axis of mechanical symmetry provides a smaller  
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total suspended moment and a smaller total size of the required measurement 

facility.  

1.5.1 Far-Field Measurements 

The far-field measurement of an antenna’s performance is the most 

straightforward technique as the quantity measured is exactly what is desired. 

The techniques described in this section are fully developed in great detail in 

[93] as well as most texts on antenna theory and design. The AUT and another 

source antenna, either of which can be connected to either a transmitter or 

receiver, are placed at a distance such that the measurements of the coupled 

power represent the far-field parameters of the AUT (see Fig. 1-34). This 

separation distance is somewhat arbitrary; however, it has been shown that the 

measured parameters very closely match the infinite distance far-field when the 

phase across the aperture of the antenna is less than 22.5 deg (equivalently 1/16 

of a wavelength). This minimum separation is at a distance defined by the 

largest antenna in the measurement (either the AUT or the source antenna), and 

is given by 2D
2
/  where  is the wavelength of the measurement and D is the 

diameter of the largest antenna in the measurement setup. For microwave 

antennas this can be quite far, ranging from 100–1000 meters. Finally, when 

making far-field measurements, one has to be aware that the reflection off 

objects between the source antenna and AUT will effect the measurement. The 

main error comes from the reflection off the ground between the antennas. 

Other reflections include the towers that the antennas are mounted on as well as 

other structures. Careful test-range design and characterization are required 

before an antenna should be calibrated on any far-field range. Typical 

difficulties with far-field antenna ranges are the huge real estate required, the 

uncontrolled environment (especially for fragile spacecraft antennas), the 

unbalanced gravitational forces, and the ground reflections. Nevertheless, for 

many spacecraft antennas a far-field range measurement is the most direct 

method to verify antenna performance. 

1.5.1.1 Antenna Pattern Measurements. For this discussion, assume that the 

source antenna is transmitting a signal at the frequency or frequencies of 

interest. Furthermore, assume that this source antenna is of the same 

polarization as the AUT. Alternatively, the source antenna can be of linear 

polarization regardless of the AUT’s polarization. The AUT is connected to an 

appropriate receiver and detector to measure the power received from the 

transmitter. To measure the patterns of the AUT, it is often mounted on a 

fixture such that it can be rotated about (or close to) the phase center. In doing 

so the measured power is directly proportional to the antenna pattern. 

Figure 1-34 shows such a configuration. For this measurement, one can either  
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eliminate reflections from the ground by using screens or by taking 

measurements at slightly different distances (separated by multiples of 
1

4
). 

Alternatively, one can use geography to advantage. By placing the source 

antenna and the AUT on the sides of a hill, one will be able to reduce the 

ground reflections by as much as 60 dB. 

Modern antenna ranges include the capability to rotate the AUT in the 

presence of the transmitted wave, detect the signal, and record the data in 

digital form. The antenna engineer will then display the data as the power 

versus direction in an appropriate coordinate system for the AUT. Throughout 

this book there will be examples of measured radiation patterns describing the 

performance of various antennas. 

Given that the antenna test range has been properly constructed and that 

any extraneous objects are not within the field of view of either the test antenna 

or the AUT, the “free-space” far-field patterns can be measured. The term free-

space refers to the performance of the AUT when not perturbed by any other 

object. After the antenna is characterized, the antenna engineer will often have 

to estimate the effects of the surrounding equipment, including the spacecraft 

body itself or booms, masts, and other antennas. 

Finally, a careful comparison of the measurements of a particular antenna 

before and after an event can be useful in identifying if the event affected the 

antenna. Typical events for a spacecraft antenna include thermal tests, vibration 

tests, acoustic tests, launch pressure profile tests, among others. Careful 

measurement of antenna patterns is required to properly qualify an antenna for 

space flight. 

1.5.1.2 Gain. Here we assume that the reader is familiar with the concept of 

antenna gain. There are two basic types of gain measurements. The first is an 

absolute gain measurement where no prior knowledge of the gain of any 

antenna in the measurement is required. The second is a gain transfer 

measurement requiring knowledge of the gain of at least one of the antennas, 

called a “standard gain antenna.” Sometimes this second method is referred to 

as a gain-comparison method. 

If two antennas having gains of Ga  and Gb , are separated by a distance R, 

then the power received at one antenna as transmitted by the other is given by 

Friis’ transmission formula as: 

 PrB = PtAGAGB 4 R

 

 
 

 

 
 

2

 (1.5-1) 

It is sometimes useful to express this equation in decibels (dB) by taking 

the appropriate logarithms. Then, Eq. (1.5-1) can be written as: 
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 prb = pta + ga + gb SL  (1.5-2) 

where the powers and gains are pr =10log10(Pr ) , pt =10log10(Pt ) , 

ga =10log10(GA ) , gb =10log10(GB ) , and the SL is the term that relates to the 

separation distance and is given by SL = 20log10(4 R / ) . Note that the SL 

term is the reciprocal of the factor in Eq. (1.5-1). The literature refers to this as 

the space loss, or the loss in signal due to the distance between the transmitter 

and receiver. Therefore, in Eq. (1.5-2) the negative sign for space loss is used to 

suggest a loss in power. 

By measuring the received power between a pair of antennas, one can use 

these equations to determine the gain of the antenna under test. In Eq. (1.5-1) it 

is assumed that the two antennas are perfectly matched to the transmission lines 

connecting their receiver and transmitter and that each is of exactly the same 

polarization. This equation and the subsequent development of gain 

measurement can be done with these factors included. The following describes 

the most commonly used gain measurement techniques used. 

1.5.1.2.1 Substitution (Two-Antenna Technique). There are two useful 

versions of the two-antenna technique. In one case, in which the AUT and the 

source antennas are the same, the gain is calculated from the direct 

measurements. In this case, no knowledge of the gain of either antenna is 

required. Another case is where one knows very accurately the gain of one of 

the antennas. This is often referred to as the “standard gain antenna” (SGA). 

Usually, some other method (see the three-antenna technique below) is used to 

determine the gain of the SGA.  

If the two antennas are identical, then GA  and GB  are equal. In this case 

Eq. (1.5-2) simplifies, and the gain of either antenna is given in decibels by: 

 ga = gb =
1

2
pr pt SL( ) (1.5-3) 

This technique is simple in principle; however, it can be difficult in practice 

to implement. Small differences in the antenna manufacture also reflect in gain-

measurement errors. As always, proper care should be given to the range and 

proper correction for errors. 

The two-antenna substitution method is nearly as simple as above, with the 

exception that the standard gain antenna must be calibrated by some other 

technique. A calculation (as opposed to measurement) of the gain is also 

possible if the antenna is simple in nature, for example that of a horn antenna. 

In this case, the gain of the AUT is measured directly and calculated by 

rearranging either Eq. (1.5-1) or Eq. (1.5-2) as appropriate. Here Eq. (1.5-2) is 

used to yield the gain of the AUT. 
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 gb = pr pt + ga SL( )  (1.5-4) 

1.5.1.2.2 Three-Antenna Technique. The measurement of gain using the 

three-antenna technique is similar to the two-antenna technique. However, in 

this technique no two antennas need be the same. The measured parameters are 

such that one can solve for the gain of all three antennas without the knowledge 

of any one antenna. A generalized three-antenna method has been described 

that even accounts for the finite separation distance between the antennas [94] 

allowing for measurements to be done at less than the requisite far-field 

distance. This method of measuring gain consists of three separate 

measurements similar to that of the two-antenna method. In particular, 

measurements are made with each possible pair of antennas. For each 

measurement, Eq. (1.5-2) can be written. Subsequently, a system of three 

equations and three unknowns is developed for which any one of many 

methods can be used to solve for the individual antenna gains. For this 

technique the measurements can be expressed in the following equations: 

 

ga + gb = prb pta + SL

ga + gc = prc pta + SL

gb + gc = prc ptb + SL

 (1.5-5) 

This set of equations can be cast in matrix form as: 

 

1 1 0

1 0 1
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 (1.5-6) 

1.5.1.2.3 Polarization. The polarization characteristics of an antenna are 

important to know prior to using it in a communications link. The coupling of 

an antenna with the free-space wave is at a maximum when each shares the 

same polarization. Polarization of an elliptical wave includes the sense and the 

tilt angle. For elliptically polarized antennas, both the sense of polarization and 

the axial ratio are important. Both sense and polarization can be measured in 

one of several ways. The simplest way to measure the polarization as a function 

of direction is to use a linearly polarized antenna that is spinning around the 

polarization axis. When such a signal is received by the AUT, the measured 

signal will describe an envelope of polarization. Several examples of this type 

of measurement are given elsewhere in the book. Other measures of 

polarization are possible and are described in [93]. 
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1.5.1.2.4 Input Impedance. Modern network analyzers make simple the 

measurement of impedance. Prior to that, other techniques were used including 

slotted lines and systems of couplers and power meters. 

1.5.2 Near-Field Measurements 

The basis of this technique is that the measured fields on a closed surface 

surrounding the antenna under test can be related to the far-field patterns, gain, 

and polarization by a Fourier transform-type relationship. See for example 

Fig. 1-35. If the tangential field is known on a closed surface S, then the field 

anywhere external to S is given by 
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where 

  

r 
E (
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R )  is the electric field at   

r 
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H (

r 
R )  is the magnetic field at   

r 
R  

ˆ n  is the unit normal 

  
G

r 
 R ,
r 
R ( )  is the Green’s function 

Theoretically, the far field of an antenna can be calculated from 

measurements over any arbitrary surface surrounding an antenna; however, it is 

advantageous to select a surface for which the relationship between the near 

field and the far field can be easily determined. Typically, measurements are  

Fig. 1-35.  Generalized Huygens theorem.
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made over either a planar, a cylindrical, or a spherical surface as illustrated in 

Fig. 1-36. Early development [95–98] of this indirect technique for planar 

measurements suggested that very accurate measurements could be made. By 

the mid 1980s, near-field measurements became popular due to the fact that 

Planar-Rectangular Cylindrical

Spherical

Fig. 1-36.  Conventional mechanical setups for near-field measurements.



76  Chapter 1 

most ranges were indoors, lending themselves to the measurement of delicate or 

even classified antennas. Many developments were made during this time 

[99,100] during which JPL made the first deep-space spacecraft antenna 

calibrations using a near-field range [101]. Also during this time, the collection 

of many of these techniques was published in a special issue of the IEEE 

Transactions on Antennas and Propagation [102]. Note that both a Cartesian 

and a polar coordinate system of measurement have been developed for the 

planar measurement system. Even the use of Cartesian formulations using data 

measured on plane-polar ranges was developed [103].  Also, while planar near-

field measurements were the most popular, being the most developed, there was 

a need for cylindrical near-field measurements as well. As a result JPL 

developed a cylindrical near-field range to augment its plane-polar facility 

[104] and measured the NASA Scatterometer and SeaWinds antenna 

performances [105,106]. Of these three types of surfaces, only the spherical 

surface can provide a complete near-field measurement. Measurements of the 

near field of an antenna on a planar or cylindrical surface are, by their very 

nature, truncated measurements of the entire antenna field. This truncation will 

cause some error in the calculation of the far field. Much work has been done to 

quantify the calculated far-field error due to this truncation as well as other 

effects, including the effects of the probe that is used to sense the fields, and the 

interaction of the probe with the antenna under test. Even in the early 

development of near-field measurements, experimenters knew that errors and 

corrections were necessary [107]. Since then, there has been much development 

in the analysis of these truncation errors, their causes, and mitigating steps to be 

taken in making such measurements [108–111]. It has been demonstrated that 

exceptionally accurate calculations of an antenna’s far-field performance can be 

made using near-field measurements. 

1.5.2.1 Calculation of Far-Field Patterns. The near-field measurement 

scheme normally consists of an AUT connected to a transmitter and a small 

probe antenna located in the near field of the AUT that samples the resulting 

electric and magnetic fields, E a and H a . Application of the Lorentz reciprocity 

theorem shows that the output voltage of this probe is proportional to these 

fields. Also, it can be shown that the relation between the motion of the probe 

and the antenna is a convolution expression of the probe fields and the antenna 

fields. Finally, for the case of an open-ended waveguide probe sensitive to the 

magnetic field, an expression can be written to relate the apparent induced 

current given by qm   ( ) = 2 ˆ n H aas defined in the scan plan to an integration 

integral, which is in the form of a Fourier transform as given in Eq. 1.5-7 

[99,103]. This radiation integral can be written in any of several coordinate 

systems depending on the scanning motion of the probe with respect to the 

AUT. Many spacecraft microwave antennas lend themselves to a planar 
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measurement system. There are two planar coordinate systems frequently used; 

the polar and Cartesian systems. The plane-polar geometry is shown in 

Fig. 1-37. The probe moves along the x-axis, and the antenna rotates on the z-

axis to measure a set of ring data at various radii from the center of the antenna.  

In the plane-polar system, the radiation integral can be written by: 

 T ( , ) = qm   ( )e
jk ˆ r •   ( )

 (1.5-8) 

Measurements

Over Circular

Area of Radius a

Measuring

Probe

Test 

Antenna

Rotated on

Z-Axis

θ        π−θ p = 

Zp

X (Xp)

Z

θ

Z0

Fig. 1-37.  Plane polar geometry.
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Given that the measured data are from a plane-polar measurement, the 

numerical solution to Eq. 1.5-8 can be most readily be solved using the Jacobi-

Bessel expansion of the integrand. The resulting expressions yield a set of 

coefficients for which the integrand is replaced by a summation given by: 

 

  

T ( , ) = 2 a2
r 
C nm cos n +

r 
D nm sinn[ ]

mn

2(n + 2m +1)
Jn+2m+1(ka sin )

ka sin

 (1.5-9) 

where J is the Bessel function and one chooses n and m such that the resulting 

summation converges in the angular region of interest. This simple summation 

is used for all angles , . This suggests that, once the coefficients are 

calculated, all pattern information can be rapidly calculated for many 

directions. The calculation of the coefficients is where the time-consuming 

computations occur. These coefficients are given by 
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where  is the Neumann factor (1 for n = 0, 2 otherwise) and  s  is   /a .  

1.5.2.2 Measurement of Gain. Measurement of gain using near-field 

techniques can be done in either of two ways. One technique uses a substitution 

method very similar to that described in the far-field gain measurement where a 

second antenna of known gain is also measured by near-field techniques, and a 

comparison of the peak fields is done. For this technique, no knowledge of the 

probe antenna characteristics is required. Another substitution technique uses 

the knowledge of the probe gain and the loss of the transmission line to make a 

direct measure of the gain. This is done by removing the transmission line 

between the transmitter and the probe and in the lab using a variable attenuator 

to duplicate power levels found in the near-field measurement. The gain is 

determined directly from the settings of the attenuator. These techniques have 

been described in detail for near-field measurements using any of the typical 

coordinate systems. 

1.5.2.3 The JPL Near-field Ranges 

1.5.2.3.1 The Plane-Polar Range. A plane-polar near-field range was 

developed in the early 1980s and first used for the Galileo project high-gain 
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antenna test program [99,101]. The plane-polar technique, together with the 

series expansion algorithm, has a number of important mechanical and 

computational features.  

The mechanical features can be readily inferred from the geometry shown 

in Fig. 1-37. The advantages of the plane-polar geometry are that both the 

probe and the antenna are gravitationally balanced and that the probe only 

moves in one direction. This allows for larger antennas for the same near-field 

facility than the planar-rectangular geometry. Also, the antennas always point 

in the same direction, which can be skyward. This is especially important for 

the measurement of gravitationally sensitive lightweight spacecraft antennas. 

Thus, this geometry is very suitable for high-gain reflector-type spacecraft 

antennas. 

From the use of the Jacobi-Bessel series expansion from the plane-polar 

geometry, the following computational features apply: 

1) Plane-polar data are used directly without interpolation in a rectangular 

grid. 

2) The Jacobi-Bessel series computations require numerical manipulations 

proportional to N for N data and N observation points. 

3) The numerical value of N that is required is determined only by the 

informational content of the measured field. No aliasing errors are 

introduced no matter how sparsely spaced the data points are located, and 

no zero fill is required. 

4) The value of N can be substantially reduced by taking full advantage of any 

rotational symmetry in the antenna patterns. 

5) The choice and number of observation points are not constrained. 

6) The integrations involved can be performed piecewise over the aperture 

plane with no added complexity. Thus, large quantities of data can be 

readily handled. 

7) Once the far field is computed at one observation point, it can be 

determined at any other observation point with relatively little effort. 

For the early use of near-field ranges, it was extremely important to verify 

that the computation of the far-field patterns from near-field data actually 

matched the data measured on a far-field range. The first verification of this 

with the JPL plane-polar range was made using the 1.47-m Viking high-gain 

antenna (HGA). The Viking antenna was first measured on a far-field range and 

then measured in the plane-polar near-field range (see Fig. 1-38). The 

comparison of the direct far-field measurement and the constructed far field 

from the near-field measurement is shown in Fig. 1-39. As can be seen in the 

figure, there is good agreement, validating the use of the near-field range. 

Subsequently, the Galileo HGA performance was verified by near-field 

measurements in the plane polar near-field facility [101]. 
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Fig. 1-38.  Viking spacecraft HGA in the near-field facility.
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1.5.2.3.2 Cylindrical Range. Several of JPL’s instrument antennas to be 

described in Chapter 7 (NSCAT, SeaWinds Radar Antenna, and Wide Swath 

Ocean Altimeter) have a very long slender footprint and are best measured in 

the near field using a cylindrical rather than a planar geometry. Consequently, a 

cylindrical near-field scanning range [104–106,110,111] was assembled at JPL 

and used in the measurement of these antennas. 

1.5.3 Conclusions 

Regardless of the method chosen to characterize an antenna, such 

characterization is paramount in validating the performance of the antenna. 

Telecommunications systems engineers develop their system with specific 

performance expectations and associated tolerances. Verification of the 

performance assures the telecommunications system engineer that adequate 

Fig. 1-39.  Far-field patterns of the circulary-polarized Viking HGA at X-band: 

(a) RHCP and (b) LHCP.
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margin will exist over the life of the mission. The accuracy with which the 

performance is known is sometimes even more important than the actual 

performance itself. Antennas in instrument systems often fall into this category. 

The gain defines the total sensitivity; however, the precision is often affected 

by the total accuracy in performance prediction. This chapter has exposed some 

of the methods available to the antenna engineer to provide this validation. The 

amount of literature available to support antenna measurements seems limitless, 

possibly because of the importance placed on the activity. Research into the 

available methods for antenna measurements, development of the test facility to 

support the measurements, validation of the test facility, and a thorough 

analysis of the potential errors is mandatory prior to the measurement of any 

antenna. Only then will the final results of a validation and verification program 

be full acceptable. 
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