Appendix G Derivation of Equations for Complex-Symbol Combining

G. 1 Derivation of Eq. (6.2-5)

Substituting Eq. (6.2-2) into Eq. (6.2-4), one obtains

$$
\begin{equation*}
\mathbf{v}_{k}=\sum_{i=1}^{L} \beta_{i}\left(\sqrt{P_{i}} C_{s c i} C_{s y i} d_{k} e^{j\left[\Delta \omega_{c} t_{k}+\Delta \phi_{i 1}\right]}+\mathbf{n}_{k i} e^{-j \hat{\theta}_{i 1}}\right) \tag{G-1}
\end{equation*}
$$

where $\Delta \phi_{i 1}=\theta_{i 1}-\hat{\theta}_{i 1}$ and all other symbols are defined in Eq. (6.2-1). The conditional combined power, denoted P^{\prime}, in Eq. (6.2-5) is found by deriving the conditional mean of \mathbf{v}_{k}, i.e.,

$$
\begin{align*}
P^{\prime} & =\mathrm{E}\left[\mathbf{v}_{k} \mid \phi_{s c_{i}}, \phi_{s y_{i}}, \Delta \phi_{i 1}\right] \mathrm{E}^{*}\left[\mathbf{v}_{k} \mid \phi_{s c_{j}}, \phi_{s y_{j}}, \Delta \phi_{j 1}\right] \\
& =\sum_{i=1}^{L} \sum_{j=1}^{L} \beta_{i} \beta_{j} \sqrt{P_{i}} \sqrt{P_{j}} C_{s c i} C_{s y i} C_{s c j} C_{s y} e^{j\left[\Delta \phi_{i 1}+\Delta \phi_{j 1}\right]} \tag{G-2}
\end{align*}
$$

which simplifies to Eq. (6.2-7). In addition, the phase θ_{v} in Eq. (6.2-5) is given as

$$
\begin{equation*}
\theta_{\mathbf{v}}=\tan ^{-1}\left[\frac{\mathfrak{J}\left[\sum_{i=1}^{L} \beta_{i} \sqrt{P_{i}} C_{s c i} C_{s y i} e^{j\left[\Delta \omega_{c} t_{k}+\Delta \phi_{i 1}\right]}\right]}{\Re\left[\sum_{i=1}^{L} \beta_{i} \sqrt{P_{i}} C_{s c i} C_{s y i} e^{j\left[\Delta \omega_{c} t_{k}+\Delta \phi_{i 1}\right]}\right]}\right] \tag{G-3}
\end{equation*}
$$

G. 2 Derivation of Eq. (6.2-11)

Let $C_{s y i}$ be the signal-reduction function due to symbol-timing errors in the i th symbol-synchronization loop. Then the i th matched-filter output in Eq. (6.2-2) can be rewritten as

$$
\begin{equation*}
\mathbf{v}_{k i}=\sqrt{P_{i}} C_{s c i} C_{s y i} d_{k} e^{j\left[\Delta \omega_{c} t_{k}+\theta_{i 1}\right]}+\mathbf{n}_{k i} \tag{G-4}
\end{equation*}
$$

The relative phase difference between antenna i and the reference antenna is estimated by performing the correlation operation shown in Fig. 6-8. Assuming perfect time alignment, the correlation output, \mathbf{v}, is given as

$$
\begin{equation*}
\mathbf{v}=\sum_{k=1}^{N} \mathbf{v}_{k i} \mathbf{v}_{k 1}^{*} \tag{G-5}
\end{equation*}
$$

where $N=T / T_{s}$ is the number of symbols used in the correlation. The correlation time and symbol time are denoted as T and T_{s}, respectively. Substituting the expressions for $\mathbf{v}_{k i}$ and $\mathbf{v}_{k 1}$ into Eq. (G-5) (the performance of the full-spectrum correlator) yields

$$
\begin{equation*}
\mathbf{v}=\sqrt{P_{1} P_{i}} C_{s c 1} C_{s y i} C_{s c 1} C_{s y i} e^{j \theta_{i 1}}+\mathbf{n}_{\mathbf{v}} \tag{G-6}
\end{equation*}
$$

where

$$
\begin{equation*}
\operatorname{Var}\left(\mathbf{n}_{\mathbf{v}}\right)=2 P_{1} \overline{C_{s c 1}^{2}} \overline{C_{s y 1}^{2}} \frac{N_{0 i}}{2 T}+2 P_{i} \overline{C_{s c i}^{2}} \overline{C_{s y i}^{2}} \frac{N_{01}}{2 T}+2 \frac{N_{01} N_{0 i}}{2 T_{s} T} \tag{G-7}
\end{equation*}
$$

Defining the SNR for complex signals as $\operatorname{SNR}=E(\mathbf{v}) E\left(\mathbf{v}^{*}\right) / \operatorname{Var}(\mathbf{v})$, the correlator SNR between antenna i and antenna 1 for CSC is given as

$$
\begin{equation*}
\operatorname{SNR}_{c s c i 1}=\frac{\sqrt{P_{1} P_{i}} \bar{C}_{s c 1} \bar{C}_{s c i} \bar{C}_{s y 1} \bar{C}_{s y i}}{P_{1} \overline{C_{s c 1}^{2}} \frac{N_{s y 1}^{2}}{N_{0 i}}+P_{i} \overline{C_{s c i}^{2}} \overline{C_{s y i}^{2}} \frac{N_{01}}{T}+\frac{N_{01} N_{0 i}}{T_{s} T}} \tag{G-8}
\end{equation*}
$$

and simplifying yields Eq. (6.2-11).

