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FOREWORD
 

The Deep Space Communications and Navigation Systems Center of Excellence 
(DESCANSO) was established in 1998 by the National Aeronautics and Space 
Administration (NASA) at the California Institute of Technology’s Jet Propulsion 
Laboratory (JPL). DESCANSO is chartered to harness and promote excellence and 
innovation to meet the communications and navigation needs of future deep-space 
exploration. 

DESCANSO’s vision is to achieve continuous communications and precise navi
gation—any time, anywhere. In support of that vision, DESCANSO aims to seek out 
and advocate new concepts, systems, and technologies; foster key technical talents; 
and sponsor seminars, workshops, and symposia to facilitate interaction and idea 
exchange. 

The Deep Space Communications and Navigation Series, authored by scientists 
and engineers with many years of experience in their respective fields, lays a foun
dation for innovation by communicating state-of-the-art knowledge in key technolo
gies. The series also captures fundamental principles and practices developed during 
decades of deep-space exploration at JPL. In addition, it celebrates successes and 
imparts lessons learned. Finally, the series will serve to guide a new generation of 
scientists and engineers. 

Joseph H. Yuen, DESCANSO Leader 
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PREFACE
 

The purpose of this book is to provide high-level information to mission managers 
and detailed information to mission designers about low-energy transfers between 
the Earth and the Moon. This book surveys thousands of trajectories that one can 
use to transfer spacecraft between the Earth and various locations near the Moon, 
including lunar libration orbits, low lunar orbits, and the lunar surface. These surveys 
include conventional, direct transfers that require 3–6 days as well as more efficient, 
low-energy transfers that require more transfer time but which require less fuel. 
Low-energy transfers have been shown to be very useful in many circumstances and 
have recently been used to send satellites to the Moon, including the two ARTEMIS 
spacecraft and the two GRAIL spacecraft. This book illuminates the trade space of 
low-energy transfers and illustrates the techniques that may be used to build them. 
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CHAPTER 1
 

INTRODUCTION AND EXECUTIVE 
SUMMARY 

1.1 PURPOSE 

This book provides sufficient information to answer high-level questions about the 
availability and performance of low-energy transfers between the Earth and Moon 
in any given month and year. Details are provided to assist in the construction of 
desirable low-energy transfers to various destinations on the Moon, including low 
lunar orbits, halo and other three-body orbits, and the lunar surface. Much of the 
book is devoted to surveys that characterize many examples of transfers to each of 
these destinations. 

1.2 ORGANIZATION 

This document is organized in the following manner. The remainder of this chapter 
first provides an executive summary of this book, presenting an overview of low-
energy lunar transfers and comparing them with various other modes of transportation 
from near the Earth to lunar orbit or the lunar surface. It then provides background 
information, placing low-energy lunar transfers within the context of historical lunar 

1 
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missions. The chapter describes very high-level costs and benefits of low-energy 
transfers compared with conventional transfers. 

Chapter 2 provides information about the methods, coordinate frames, models, 
and tools used to design low-energy lunar transfers. This information should be 
sufficient for designers to reconstruct any transfer presented in this book, as well as 
similar transfers with particular design parameters. 

Chapter 3 presents information about transfers from the Earth to high-altitude 
three-body orbits, focusing on halo orbits about the first and second Earth–Moon 
Lagrange points. The chapter includes surveys of the transfer types that exist and 
discussions about how to construct a particular, desirable transfer. 

Chapter 4 presents information about transfers from the Earth to low-altitude 
lunar orbits, focusing on polar mapping orbits. The techniques presented may be 
used to survey and construct conventional direct lunar transfers as well as low-energy 
transfers. 

Chapter 5 presents information about transfers from the Earth to the lunar surface, 
including discussions and surveys of transfers that intersect the lunar surface at a 
steep 90 degree (deg) angle, as well as transfers that target a shallow flight path angle. 
The techniques illustrated in Chapter 5 may be used to generate conventional direct 
transfers as well as low-energy transfers. 

Chapters 3–5 also include discussions about the variations of these transfers from 
one month to the next. The discussions are useful for mission designers and managers 
to predict what sorts of transfers exist in nearly any month and what sorts of transfers 
are particular to specific months. 

Chapter 6 discusses several important operational aspects of implementing a low-
energy lunar transfer. The section begins with a discussion of the capabilities of 
current launch vehicles to inject spacecraft onto low-energy trajectories. The section 
then describes how to design a robust launch period for a low-energy lunar trans
fer. Additional discussions are provided to address navigation, station-keeping, and 
spacecraft systems issues. 

1.3 EXECUTIVE SUMMARY 

This book characterizes low-energy transfers between the Earth and the Moon as 
a resource to mission managers and trajectory designers. This book surveys and 
illustrates transfers between the Earth and lunar libration orbits, low lunar mapping 
orbits, and the lunar surface, including transfers to the Moon and from the Moon to 
the Earth. 

There are many ways of transporting a spacecraft between the Earth and the 
Moon, including fast conventional transfers, spiraling low-thrust transfers, and low-
energy transfers. Table 1-1 summarizes several of these methods and a sample of the 
missions that have flown these transfers. 

The vast majority of lunar missions to date have taken quick, 3–6 day direct 
transfers from the Earth to the Moon. The Apollo missions took advantage of 
3–3.5 day transfers: transfers that were as quick as possible without dramatically 
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Table 1-1 A summary of several different methods used to transfer between the Earth 
and the Moon. 

Transfer Type Typical Duration Benefits Example Missionsa 

Direct, conventional 3–6 days Well known, quick Apollo, LRO, others 

Direct, staging 2–10 weeks Quick, many launch days Clementine, CH-1 

Direct to lunar L1 1–5 weeks Staging at L1 None to date 

Low-thrust Many months Low fuel, many launch days SMART-1 

Low-energy 2.5–4 months Low fuel, many launch days Hiten, GRAIL, ARTEMIS 
aMissions referred to include Lunar Reconnaissance Orbiter (LRO), Chandrayaan-1 (CH-1), 
Small Missions for Research in Technology 1 (SMART-1), and Mu Space Engineering Space
craft (MUSES 1, Hiten) 

increasing the transfers’ fuel requirements. The Lunar Reconnaissance Orbiter 
(LRO) followed a slightly more efficient 4.5-day transfer. The additional transfer 
duration saved fuel and relaxed the operational timeline of the mission. The Apollo 
missions and LRO had very limited launch opportunities: they had to launch within 
a short window each month. Clementine and Chandrayaan-1 implemented phasing 
orbits about the Earth to alleviate this design constraint and expand their launch 
periods. SMART-1 was also able to establish a wider launch period using low-
thrust propulsion. The low-thrust system requires less fuel mass than conventional 
propulsion systems, but the transfer required significantly more transfer time than 
any typical ballistic transfer. 

The Gravity Recovery and Interior Laboratory (GRAIL) mission was the first 
mission launched to the Moon directly on a low-energy transfer. GRAIL’s low-energy 
transfer required much less fuel than a conventional transfer, though it required a 
longer cruise that traveled farther from the Earth. The longer cruise (∼90–114 days) 
made it possible to establish a wide, 3-plus week long launch period and significantly 
relaxed the operational timeline. Furthermore, GRAIL launched two satellites on 
board a single launch vehicle and leveraged the longer cruise to separate their orbit 
insertion dates by more than a day. Finally, GRAIL’s low-energy transfer reduced the 
orbit insertion change in velocity (ΔV) for each vehicle, permitting each spacecraft 
to perform its lunar orbit insertion with a smaller engine and less fuel. 

In general, a low-energy transfer is a nearly ballistic transfer between the Earth 
and the Moon that takes advantage of the Sun’s gravity to reduce the spacecraft’s 
fuel requirements. The only maneuvers required are typical statistical maneuvers 
needed to clean up launch vehicle injection errors and small deterministic maneuvers 
to target specific mission features. A spacecraft launched on a low-energy lunar 
transfer travels beyond the orbit of the Moon, far enough from the Earth and Moon 
to permit the gravity of the Sun to significantly raise the spacecraft’s energy. The 
spacecraft remains beyond the Moon’s orbit for 2–4 months while its perigee radius 
rises. The spacecraft’s perigee radius typically rises as high as the Moon’s orbit, 
permitting the spacecraft to encounter the Moon on a nearly tangential trajectory. 
This trajectory has a very low velocity relative to the Moon: in some cases the 
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spacecraft’s two-body energy will even be negative as it approaches the Moon, 
without having performed any maneuver whatsoever. As the spacecraft approaches 
the Moon, it may target a trajectory to land on the Moon, to enter a low lunar orbit, 
or to enter any number of three-body orbit types, such as halo or Lissajous orbits. No 
matter what its destination, the spacecraft requires less fuel to reach it than it would 
following a conventional transfer. 

Low-energy transfers provide many benefits to missions when compared with 
conventional transfers. Six example benefits include the following: 

1. They require less fuel. A low-energy transfer to a lunar-libration orbit saves 
400 meters per second (m/s) of ΔV and often more. This is a significant 
savings, which is fully demonstrated in Chapter 3. A low-energy transfer to a 
100-kilometer (km) lunar orbit saves more than 120 m/s of ΔV for cases when 
a mission can use an optimized conventional transfer. The savings are far more 
dramatic for missions that cannot use an optimized conventional transfer. 

2. Low-energy transfers are more flexible than conventional transfers and may be 
used to transfer spacecraft to many more orbits on a given date. It is shown 
in Chapter 4 that low-energy transfers may be used to reach polar orbits with 
any node at any arrival date—conventional transfers may only target specific 
nodes at any given date. 

3. Low-energy transfers have extended launch periods. It requires very little fuel 
to establish a launch period of 21 days or more for a mission to the Moon 
that implements a low-energy transfer. Conventional transfers may be able to 
accomplish similar launch periods, but they require multiple passes through 
the Van Allen Belts, necessitating improved radiation protection. The low-ΔV 
costs of establishing a launch period for a low-energy transfer are discussed in 
Chapter 6. 

4. Low-energy transfers have a relaxed operational timeline.	 Modern launch 
vehicles, such as the Atlas V family with their Centaur upper stages, place 
spacecraft on their trajectories with small errors. Missions such as GRAIL, 
which launched aboard a Delta II launch vehicle, may be able to wait 6 days 
or more before performing a maneuver. In fact, GRAIL was able to cancel 
the first trajectory correction maneuver (TCM) for both spacecraft; the first 
TCM performed was executed 20 days after launch. In this way, a spacecraft 
operations team has a great deal more time to prepare the spacecraft before 
requiring a maneuver, when compared to conventional transfers that typically 
require a maneuver within a day or less. 

5. Low-energy transfers may place several vehicles into very different orbits at 
the Moon using a single launch vehicle. The GRAIL mission separated two 
lunar-orbit insertions by over a day using very little fuel. Chapter 3 illustrates 
how to place multiple spacecraft in many different orbit types using a single 
launch vehicle. This typically requires a large amount of fuel when using 
conventional transfers. 
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6. Low-energy transfers may be used to transfer a spacecraft from the Moon 
directly to any location on the surface of the Earth. Typical conventional 
transfers, for example, those used by the Apollo missions, return spacecraft 
to a near-equatorial landing site. Low-energy transfers may be used to target 
any location (such as the different hemispheres of the Utah Test and Training 
Range in North America and the Woomera Weapons Testing Range in South 
Australia) using relatively small quantities of fuel. 

The typical drawbacks of low-energy transfers between the Earth and the Moon 
are the longer transfer durations for missions that are very time-critical and the longer 
link-distances, as the spacecraft travels as far as 1.5–2 million kilometers away from 
the Earth. 

The next sections define direct and low-energy transfers to provide a clear under
standing of what trajectories are presented in this book. 

1.3.1 Direct, Conventional Transfers 

A direct lunar transfer is a trajectory between the Earth and the Moon that requires 
only the gravitational attraction of the Earth and Moon. A spacecraft typically begins 
from a low altitude above the surface of the Earth as a result of an injection by a 
launch vehicle, as a result of a maneuver performed by the spacecraft, or as a result 
of some intermediate orbit. The spacecraft then cruises to the Moon on a trajectory 
that typically remains within the orbit of the Moon about the Earth. It is a trajectory 
whose dynamics are dominated by the gravitational attraction of the Earth and Moon, 
and all other forces (such as the Sun or any spacecraft events) may be considered 
to be perturbations. The spacecraft then enters some orbit about the Moon via a 
maneuver. Direct transfers may be constructed from the Moon to the Earth in much 
the same way as they are constructed to the Moon. 

Figure 1-1 illustrates a 3-day transfer nearly identical to the one the Apollo 11 
astronauts used to go from the Earth to the Moon in 1969 [1]. The mission imple
mented a low-Earth parking orbit with an inclination of approximately 31.38 deg. 
From there, the launch vehicle was required to attain a trans-lunar injection energy 
(C3) of approximately −1.38 km2/s2 to reach the Moon in approximately 3.05 days. 
Upon arrival at the Moon, the vehicle injected into an elliptical orbit with a peri
apse altitude of approximately 110 km and an apoapse altitude of approximately 
310 km, followed soon after by a circularization maneuver [1]. In order to compare 
the Apollo 11 transfer with the transfers in the surveys presented here, the Apollo 11 
transfer would have a velocity of approximately 2.57 kilometers per second (km/s) 
at an altitude of 100 km above the mean lunar surface, requiring a hypothetical, 
impulsive ΔV of approximately 0.94 km/s to insert into a circular 100-km orbit. 

Direct transfers may be constructed between the Earth and the Moon with durations 
as short as hours or as long as a few weeks. In general, the most fuel-efficient direct 
transfers require about 4.5 days of transfer duration. Any longer duration typically 
sends the spacecraft beyond the orbit of the Moon before it falls back and encounters 
the Moon. 
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Figure 1-1 A modified version of the Apollo 11 Earth–Moon transfer, as if it had performed 
an impulsive lunar-orbit insertion (LOI) maneuver directly into a circular 100-km lunar orbit 
[2]. (Copyright c© 2011 by American Astronautical Society Publications Office, all rights 
reserved, reprinted with permission of the AAS.) 

Direct transfers may also be constructed between the Earth and lunar libration 
orbits for similar amounts of fuel as required to transfer directly to low lunar orbits. 
The launch energy requirement is very similar for missions to the Moon, to Lagrange 1 
(L1), and to Lagrange 2 (L2), and to a first order may be treated as equal. A direct 
transfer requires 400–600 m/s of ΔV to insert into a lunar libration orbit about either 
L1 or L2, though a powered lunar flyby en route to a libration orbit about L2 may be 
used to reduce the total transfer cost by 100–200 m/s. These transfers are examined 
in Chapter 3. 

Several missions have added Earth phasing orbits to their mission itineraries, such 
that they launch into a high-altitude, temporary Earth orbit and remain in that orbit 
for several orbits before arriving at the Moon. A mission designer may add these 
orbits to a flight plan for several reasons. First, they may be used to establish an 
extended launch period, since the mission planners can adjust the size of the phasing 
orbits to compensate for varying launch dates. Second, they may be used to reduce 
the operational risk of the mission by increasing the amount of time between each 
maneuver en route to the Moon. They may also be used if the launch vehicle is not 
powerful enough or accurate enough to send the spacecraft directly to the Moon, such 
as Chandrayaan-1 [3]. Drawbacks of Earth phasing orbits include additional passes 
through the Van Allen Belts and an extended transfer duration. 

1.3.2 Low-Energy Transfers 

Low-energy transfers take advantage of the Sun’s gravity to reduce the transfer fuel 
costs. They involve trajectories that take the spacecraft beyond the orbit of the Moon, 
where the Sun’s gravity becomes more influential. The Sun’s gravity works slowly 
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and steadily, gradually raising the spacecraft’s periapse altitude until it has risen to the 
altitude of the Moon’s orbit about the Earth. When the spacecraft falls back toward 
the Earth, it arrives at the Moon with a velocity that closely matches the Moon’s 
orbital velocity. The result is that the spacecraft’s lunar orbit insertion requires much 
less fuel than required by a conventional, direct lunar transfer. Figure 1-2 illustrates 
an example 84-day low-energy transfer that arrives at the Moon when the Moon is at 
its first quarter. More explanation of these transfers is provided in Section 1.7 and in 
later chapters. 

Low-energy transfers typically travel far beyond the orbit of the Moon; hence, they 
may be designed to take advantage of one or more lunar flybys on their outbound 
segment. The lunar flybys may be used to reduce the injection energy requirements, 
or to change the spacecraft’s orbital plane, similar to the flight of each of the two 
Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon’s Interac
tion with the Sun (ARTEMIS) spacecraft [4]. If a mission takes advantage of a lunar 
flyby immediately after launch, it may be useful to add one or more Earth phasing 
orbits into the design, as described above. 

1.3.3 Summary: Low-Energy Transfers to Lunar Libration Orbits 

Low-energy transfers may be used to save a great deal of fuel when a mission’s 
destination is a lunar libration orbit, such as a halo orbit, a Lissajous orbit, or 

Figure 1-2 An example 84-day low-energy lunar transfer to a low, polar lunar orbit [2]. 
(Copyright ©c  2011 by American Astronautical Society Publications Office, all rights reserved, 
reprinted with permission of the AAS.) 
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some other three-body orbit. Many studies have demonstrated practical applications 
of lunar libration orbits, including locations for communication satellites [5–7], 
navigation satellites [8–13], staging orbits [14–18], and science orbits [4, 19]. The 
ARTEMIS mission took advantage of the geometries of several orbits about both the 
lunar L1 and L2 points, and it used two different low-energy transfers to arrive at 
those orbits. 

Chapter 3 presents a full study of the characteristics and performance of low-
energy transfers to lunar libration orbits. The results demonstrate that a typical 
transfer requires 70–120 days to travel from Earth departure to an arrival state that is 
within 100 km of the target libration orbit. The transfers arrive asymptotically, such 
that they do not require any insertion maneuver. This is an extraordinary benefit: it 
saves a mission upwards of 500 m/s of ΔV when compared to conventional, direct 
transfers to lunar libration orbits. The typical transfers studied in Chapter 3 depart the 
Earth with a C3 of −0.7 to −0.3 km2/s2, which is higher than the conventional transfer 
that has a C3 of approximately −2.0 km2/s2, but the low-energy transfer requires 
only small TCMs after the Earth-departure maneuver. Studies show (Section 6.5) 
that two or three deterministic maneuvers with a total of only ∼70 m/s of ΔV may be 
used to depart the Earth from a specific inclination (such as 28.5 deg), and from any 
day within a 21-day launch period, and arrive at a particular location in a specified 
libration orbit. 

Figures 1-3 and 1-4 illustrate two example direct transfers and two example low-
energy transfers to lunar libration orbits, respectively. One can see that these transfers 
are ballistic in nature: they require a standard trans-lunar injection maneuver, a 
few TCMs, and an orbit insertion maneuver (which is essentially zero for the low-
energy transfers). One may also add Earth phasing orbits and/or lunar flybys to the 
trajectories, which change their performance characteristics. Figure 1-5 illustrates 
two transfers that a spacecraft may take to depart the libration orbit using minimal 
fuel and transfer to a low lunar orbit or to the lunar surface. 

1.3.4 Summary: Low-Energy Transfers to Low Lunar Orbits 

Robotic spacecraft may take advantage of the benefits of a low-energy transfer when 
transferring to a low lunar orbit, such as GRAIL’s target lunar orbit. The transfer 
duration is about the same as a low-energy transfer to a lunar libration orbit, namely, 
70–120 days. This duration is typically far too long for human occupants, unless 
the purpose of the mission is to demonstrate a long deep-space transfer. There 
are many benefits for robotic missions, including smaller orbit insertion maneuver 
requirements, the capability to establish an extended launch period, and a relaxed 
operational schedule. The GRAIL mission took advantage of these benefits, as well 
as the characteristic that it requires very little ΔV to separate the two spacecraft 
from their joint launch. GRAIL’s two spacecraft flew independently to the Moon and 
arrived 25 hours apart: a feat that requires a great deal more ΔV and/or operational 
complexity when implementing direct lunar transfers. Low-energy transfers may 
also access a much broader range of lunar orbits for a particular arrival date than 
direct transfers. 
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Figure 1-3 The profile for a simple, direct transfer from the Earth to a lunar libration orbit 
about either the Earth–Moon L1 or L2 point, viewed from above in the Earth–Moon rotating 
coordinate frame. 

Figure 1-4 The profile for a simple, low-energy transfer from the Earth to a lunar libration 
orbit about either the Earth–Moon L1 or L2 point, viewed from above in the Earth–Moon 
rotating coordinate frame. 

Chapter 4 presents a full study on the characteristics and performance of low-
energy transfers to low lunar, polar orbits. The examination uses 100-km circular, 
polar orbits as the target orbits to simplify the trade space. It remains relevant 
to practical mission design since many spacecraft missions have inserted into very 
similar orbits, including Lunar Prospector, Kaguya/ Selenological and Engineering 
Explorer (SELENE), Chang’e 1, LRO, and GRAIL, among others. The results of the 
study indicate that low-energy transfers typically depart the Earth with an injection 
C3 of –0.7 to –0.3 km2/s2, much like low-energy transfers to lunar libration orbits, 
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Figure 1-5 The profile for a simple, low-energy transfer from a libration orbit to either a 
low lunar orbit or the surface of the Moon, viewed from above in the Earth–Moon rotating 
coordinate frame. 

and require 70–120 days to reach the Moon. A spacecraft may implement a lunar 
flyby on the outbound segment to reduce the launch energy requirement, but such an 
event would increase the complexity and operational risk of the mission. When the 
spacecraft arrives at the Moon, it arrives traveling at a slower relative speed than if it 
had used a direct lunar transfer. The examination shows that the lunar-orbit insertion 
maneuver is at least 120 m/s smaller for any low-energy mission; the ΔV savings are 
often much greater. 

Low-energy transfers may also be used in such a way that a spacecraft transfers 
to a lunar libration orbit, or some other three-body orbit, before transferring to the 
target orbit. This strategy was used in the ARTEMIS mission and has been used in a 
number of spacecraft proposals. 

Figure 1-6 illustrates an example direct transfer and an example low-energy trans
fer to two low lunar orbits. The transfers are very similar to those presented in the 
previous section, except of course that these target low lunar orbits instead of lunar 
libration orbits. 

1.3.5 Summary: Low-Energy Transfers to the Lunar Surface 

Low-energy transfers from the Earth to the lunar surface may be constructed in much 
the same way as transfers to low lunar orbit. They have the same sorts of benefits 
and drawbacks as other low-energy transfers. 

Chapter 5 presents a full study on the characteristics and performance of low-
energy transfers to the lunar surface. There are two main classes of missions studied: 
those that arrive at the surface with a high impact angle and those that arrive at the 
surface with a shallow flight path angle. The shallow angles are useful for missions 
that aim to land on the surface, and then it is useful that the low-energy transfers 
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Figure 1-6 The profiles for both a direct and a low-energy transfer from the Earth to a low 
lunar orbit. 

yield trajectories that arrive at the surface with lower velocities. The steeper arrival 
conditions are useful for lunar impactors, such as the Lunar Crater Observatory and 
Sensing Satellite (LCROSS). In this case, higher velocities are typically preferred. 
Low-energy transfers may not result in the highest impact velocities achievable, but 
they do offer the capability of targeting any location on the surface of the Moon with 
ease. 

As with the low-energy transfers studied in Chapters 3 and 4, the typical transfers 
to the lunar surface require 70–120 days. They typically depart the Earth with C3 

values between –0.7 and –0.3 kilometers squared per square second (km2/s2) and 
only require small trajectory correction maneuvers after launch. The same sort of 
two- or three-burn strategies may be used to target a particular low-energy transfer 
from a specified low Earth parking orbit, and from any day within a 21-day launch 
period. 

The lunar surface may also be accessed from a lunar libration orbit or from a low 
lunar orbit. Hence, a mission may implement a low-energy transfer to either type of 
orbit studied in Chapters 3 or 4 and then follow a transfer to the lunar surface. This 
sort of trajectory design is also studied in Chapter 5. 

Figure 1-7 illustrates an example direct transfer and an example low-energy trans
fer to the lunar surface. Again, the transfers are very similar to those presented in the 
previous two sections, except (of course) that these target the lunar surface. 

1.4 BACKGROUND 

This section reviews historical lunar missions as a reference for the discussions about 
designing future lunar missions, including future missions that use direct transfers as 
well as low-energy transfers. Nearly one hundred spacecraft have flown conventional, 
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Figure 1-7 The profiles for both a direct and a low-energy transfer from the Earth to the 
lunar surface. Transfers may be constructed to arrive with a shallow or steep flight path angle. 

direct transfers between the Earth and the Moon, including the Union of Soviet 
Socialist Republics’ (USSR’s) Luna spacecraft, the USA’s Apollo spacecraft, and 
the most recent international missions. Only five spacecraft have flown low-energy 
lunar transfers, though several others have followed low-energy transfers to other 
destinations near the Earth. The complexity of lunar missions has gradually grown, 
as has the need to save money and collect a greater scientific return using less fuel. 
Modern flight operations, spacecraft hardware, and infrastructure have opened the 
door to low-energy techniques as a method to reduce costs. 

The first two missions to implement low-energy transfers—Hiten and ARTEMIS— 
demonstrated the technique as a method to extend their missions to the Moon, despite 
not having the fuel to reach lunar orbit using conventional techniques. The GRAIL 
mission, launched on September 10, 2011, was the first mission to implement a low-
energy lunar transfer as part of its primary mission. The GRAIL mission benefited 
from its low-energy route to the Moon in more ways than just saving fuel. It is 
fully expected that more missions will follow this lead, and low-energy transfers will 
become common among lunar missions. 

1.5 THE LUNAR TRANSFER PROBLEM 

Soon after the dawn of the Space Age, people were designing trajectories for space
craft to travel to the Moon [20, 21]. In fact, not even a full year had elapsed since 
the launch of Sputnik (October 4, 1957) before the United States attempted to launch 
the Pioneer 0 probe to the Moon (August 17, 1958). The first probes designed to 
explore the Moon were plagued with launch vehicle failures, including four Pioneer 
failures by the United States and three Luna failures by the Soviet Union. It was not 
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until 1959 that Luna 1 finally flew by the Moon. Later in 1959, Luna 2 became the 
first probe to impact the Moon. 

As technology improved, spacecraft were able to fly to the Moon using less 
fuel. Several general bounds exist that limit the movement of a spacecraft in the 
Earth–Moon system when other perturbations, such as the Sun’s gravity, are ignored. 
Research in the circular restricted three-body problem (examined in Section 2.6.2) 
reveal that a spacecraft with enough energy to reach the Earth–Moon L1 point has 
the minimum energy required to transfer to the Moon, without considering other 
perturbations. Sweetser computed that the theoretical minimum ΔV that a space
craft would require to travel from a 167-km altitude circular orbit at the Earth to a 
100-km altitude circular orbit at the Moon, just passing through L1, is approximately 
3.721 km/s [22]. Actual trajectories have since been computed that approach this 
theoretical minimum [23]. 

Early investigations concluded that it is impossible to launch from the Earth and 
arrive at the Moon such that the spacecraft becomes captured without performing 
a maneuver [21]; however, these analyses did not include the effects of the Sun’s 
gravity. As early as 1968, Charles Conley began using dynamical systems methods 
to explore the construction of a theoretical trajectory that could become temporarily 
captured by the Moon without performing a capture maneuver [24]. A spacecraft with 
the proper energy could target the neck region near one of the collinear libration points 
in the Earth–Moon system (see Section 2.6.2). A planar periodic orbit exists in each 
of those regions that acts as a separatrix, separating the interior of the Moon’s region 
from the rest of the Earth–Moon region. Conley’s method implemented dynamical 
systems techniques to construct the transfer by targeting the gateway periodic orbit. 
His transfers were restricted to the Moon’s orbital plane. 

In the late 1980s and early 1990s, Belbruno and Miller began developing a method 
to construct lunar transfers using a new technique, which they have referred to as 
the weak stability boundary (WSB) theory [25–27]. The method involves targeting 
the region of space that is in gravitational balance between the Sun, Earth, and 
Moon, without involving any three-body periodic orbits or other dynamical structures. 
Ballistic capture occurs when the spacecraft’s two-body energy becomes negative, 
as described by Yamakawa [28, 29]. In 1991, the Japanese mission Hiten/MUSES-A 
used the effects of the Earth, Moon, and Sun for its transfer to the Moon [30]. 

In the early 2000s, Ivashkin also developed a method to construct transfers between 
the Earth and Moon using the Sun’s gravitational influence [31–34]. His methods 
involve beginning from a low lunar orbit, or from the surface of the Moon, and 
numerically targeting trajectories that depart from the Moon in the direction of the 
Earth’s L1 or L2 points. A spacecraft on such a trajectory departs from the Moon 
with a negative two-body energy with respect to the Moon, but as it climbs away 
from the Moon, it gains energy from the effect of the Earth’s and Sun’s gravity. 
Eventually, it gains enough energy to escape the Moon’s vicinity. The trajectory is 
then targeted such that it lingers near the chosen Lagrange point long enough to allow 
the Sun to lower the perigee radius of the next perigee passage down to an altitude of 
approximately 50 km. 
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In the mid 1990s, other methods were developed to construct a lunar transfer 
that takes advantage of the chaos in the Earth–Moon three-body system. Bollt and 
Meiss constructed a trajectory that sent a spacecraft into an orbit without sufficient 
energy to immediately reach the Moon, but with enough to get close enough to 
become substantially perturbed by the Moon [35]. Using a series of four very small 
maneuvers, the spacecraft could then hop between nearby trajectories in the chaotic 
sea of possible trajectories to become captured by the Moon using far less energy 
than standard direct transfers. In 1997, Schroer and Ott reduced the time of transfer 
for the chaotic lunar transfer by targeting specific three-body orbits near the Earth 
[36]. The total cost remained approximately the same as the transfer constructed 
by Bollt and Meiss, but the transfer duration was reduced from approximately 2.05 
years to 0.8 years. 

In 2000, Koon et al. [37, 38] constructed a planar lunar transfer that was almost 
entirely ballistic using the techniques involved in Conley’s method [38]. Following 
Conley, Koon et al. [37] observed that the planar libration orbits act as a gateway 
between the interior and exterior regions of space about the Moon. Koon et al. [37, 38] 
constructed a trajectory that targets the interior of the stable invariant manifold of 
a planar libration orbit about the Earth–Moon L2 point. Once inside the interior 
of the stable manifold, the spacecraft ballistically arrives at a temporarily captured 
orbit about the Moon. Many authors have debated what it means to be temporarily 
captured at the Moon; Koon et al., define a similar term, “ballistically captured” to 
be a trajectory that comes within the sphere of influence of the Moon and revolves 
about the Moon at least once [38]. 

Further advances have been made since 2004 to apply dynamical systems theory 
to the generation of three-dimensional low-energy lunar transfers [39–44]. Parker 
mapped out numerous families of low-energy transfers, illuminating different ge
ometries that are available for spacecraft to travel to the Moon and arrive in lunar 
libration orbits without requiring any capture maneuver [2, 45–47]. Several authors 
have begun applying low-thrust techniques to further improve low-energy transfers, 
including transfers from the Earth to the Moon and transfers from one libration or
bit to another [48–55]. In 60 years, research has advanced the knowledge of lunar 
transfers from the early spacecraft missions that implemented direct lunar transfers 
to modern analyses that reveal maps of entire families of low-energy transfers to the 
Moon. 

1.6 HISTORICAL MISSIONS 

Many historical missions have taken direct transfers from the Earth to the Moon, 
including a large number of spacecraft in the Luna, Zond, Ranger, Surveyor, Lunar 
Orbiter, and Apollo programs. A few of these missions implemented direct transfers 
back to the Earth again: most notably Luna-16 and the nine Apollo missions that 
ventured to the Moon and returned. Several other missions have also flown direct 
transfers since the 1960s, and they are summarized below. 
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Low-energy lunar transfers are closely related to low-energy transfers in the Sun– 
Earth system, as is described later in this book. Since the 1970s, several spacecraft 
have been placed on three-body trajectories in the Sun–Earth system to conduct their 
scientific and technological missions, including International Sun–Earth Explorer-3 
(ISEE-3), Solar and Heliospheric Observatory (SOHO), Advanced Composition Ex
plorer (ACE), Wind, Wilkinson Microwave Anisotropy Probe (WMAP), and Genesis, 
among others. Three spacecraft are known to have followed three-body trajectories 
in the Earth–Moon system, including SMART-1 and the two ARTEMIS spacecraft. 
Between 1971 and 2011, five spacecraft have traversed low-energy transfers from the 
Earth to the Moon, including Hiten/MUSES-A in 1971, the two ARTEMIS spacecraft 
in 2010 and the two GRAIL spacecraft in 2011. A brief summary of each of these 
missions will be presented here. 

1.6.1 Missions Implementing Direct Lunar Transfers 

Table 1-2 summarizes many historical missions that have taken direct lunar transfers, 
noting their launch date and transfer duration, among other things. One notices that 
early missions implemented very quick transfers that required fewer than 1.5 days 
to reach the Moon. These involved lunar flybys or impacts, with no intention of 
inserting into orbit or landing softly. Indeed, their velocities at the Moon would be 
quite high. The first soft landing was performed by the Soviet Union’s Luna 9, which 
took a 79-hour transfer to the Moon. The first robotic sample return attempt was 
performed by the Soviet Union’s Luna 15, which took a 101.6-hour transfer to the 
Moon: longer to save fuel mass so that it would be capable of returning to the Earth. 
Luna 16 was the first successful robotic sample return, taking a 105.1-hour lunar 
transfer. The first human landing, and first successful sample return was performed 
earlier, by Apollo 11. The direct transfer that Apollo 11 took required about 73 hours, 
which was shorter in time and required more fuel, but required less total consumable 
mass than a longer transfer since the mission involved human occupants. 

1.6.2 Low-Energy Missions to the Sun–Earth Lagrange Points 

ISEE-3. On August 12, 1978, the International Sun–Earth Explorer 3 (ISEE-3) 
spacecraft was launched and placed in a halo orbit about the Sun–Earth L1 point. It 
was the first spacecraft to be inserted into an orbit about a Lagrange point. On June 
10, 1982, the spacecraft began performing 15 very small maneuvers to guide it on 
a series of lunar flybys. Its fifth and final lunar flyby was performed on December 
22, 1983, coming within 120 km of the lunar surface. The lunar flyby ejected the 
spacecraft from the Earth–Moon system and it entered a heliocentric orbit. The 
spacecraft was renamed the International Cometary Explorer (ICE) as it readied for 
its encounter with the comet Giacobini-Zinner. On June 5, 1985, ICE entered the 
comet’s tail and collected scientific information about the tail. ICE is expected to 
return to the vicinity of the Earth in 2014, when it may be captured and brought back 
to Earth, or repurposed for another comet observation mission. Figure 1-8 shows a 
plot of the trajectory of ISEE-3/ICE [60, 61]. 
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Table 1-2 The transfer durations, among other information, of several historical 
missions that have implemented direct lunar transfers [56–59]. 

Launch Date Spacecraft Nationa Transfer Duration Notes 

There were 24 successful Soviet Luna missions; examples include: 
2 Jan. 1959 Luna 1 USSR 34 hr (1.42 days) First lunar flyby (5995 km) 

12 Sept. 1959 Luna 2 USSR 33.5 hr (1.40 days) First lunar impact (29.10 N, 0.00 E) 
4 Oct. 1959 Luna 3 USSR 60 hr (2.50 days) Flyby (6200 km) 
2 Apr. 1963 Luna 4 USSR 77.3 hr (3.22 days) Flyby (8336.2 km) 
9 May 1965 Luna 5 USSR ∼83 hr (3.4 days) First soft-landing attempt; 

impact (31 S, 8 W) 
31 Jan. 1966 Luna 9 USSR 79 hr (3.29 days) First soft landing (7.08 N, 64.37 W) 

31 Mar. 1966 Luna 10 USSR 78.8 hr (3.29 days) First orbiter 
13 July 1969 Luna 15 USSR 101.6 hr (4.23 days) First sample return attempt 
12 Sep. 1970 Luna 16 USSR 105.1 hr (4.38 days) First sample return (101 grams) 
9 Aug. 1976 Luna 24 USSR 103.0 hr (4.29 days) Sample return, landing within 1 km 

of Luna 23 (170 grams returned) 

There were eight Soviet Zond missions; little accurate information is available. 
18 July 1965 Zond 3 USSR 33 hr (1.38 days) Flyby (9200 km) 

14 Sept. 1968 Zond 5 USSR ∼3.4 days First circumlunar return 

There were nine American Ranger missions; examples include: 

26 Jan. 1962 Ranger 3 USA 2–3 days Flyby (∼36,800 km) 
23 Apr. 1962 Ranger 4 USA 64 hr (2.67 days) Impact (15.5 S, 130.7 W) 
18 Oct. 1962 Ranger 5 USA 2–3 days Flyby (725 km) 
30 Jan. 1964 Ranger 6 USA 65.5 hr (2.73 days) Impact 
28 July 1964 Ranger 7 USA 68.6 hr (2.86 days) Impact (10.70 S, 20.67 W) 
17 Feb. 1965 Ranger 8 USA 64.9 hr (2.70 days) Impact (2.71 N, 24.81 E) 
21 Mar. 1965 Ranger 9 USA 64.5 hr (2.69 days) Impact (12.91 S, 2.38 W) 

There were seven American Surveyor missions, including: 
30 May 1966 Surveyor 1 USA 63 hr (2.63 days) Landed (2.45 S, 43.21 W) 

20 Sept. 1966 Surveyor 2 USA ∼1.9 days Impact (5.5 N, 12 W) 
17 Apr. 1967 Surveyor 3 USA 64.5 hr (2.69 days) Landed (3.01 S, 23.34 W) 
14 July 1967 Surveyor 4 USA ∼2.6 days Impact (0.4 N, 1.33 W) 
8 Sept. 1967 Surveyor 5 USA 64.8 hr (2.70 days) Landed (1.41 N, 23.18 E) 
7 Nov. 1967 Surveyor 6 USA 65.0 hr (2.71 days) Landed (0.49 N, 1.4 W); 

First powered take-off 
7 Jan. 1968 Surveyor 7 USA 66.0 hr (2.75 days) Landed (40.86 S, 11.47 W) 

There were five American Lunar Orbiter missions; examples include: 
10 Aug. 1966 Lunar Orbiter 1 USA 91.6 hr (3.82 days) Orbiter 

6 Nov. 1966 Lunar Orbiter 2 USA 92.5 hr (3.85 days) Orbiter 
5 Feb. 1967 Lunar Orbiter 3 USA 92.6 hr (3.86 days) Orbiter 

There were 9 American Apollo missions that orbited or orbited and 
landed on the Moon; examples include: 

21 Dec. 1968 Apollo 8 USA 66.3 hr (2.76 days) First manned lunar orbiter 
18 May 1969 Apollo 10 USA 73.3 hr (3.05 days) Orbit and return 
16 July 1969 Apollo 11 USA 73.1 hr (3.04 days) First manned landing 
7 Dec. 1972 Apollo 17 USA 83.0 hr (3.46 days) Final manned landing 

35-km traverse, 
110.5 kg returned 

a Union of Soviet Socialist Republic (USSR) and United States of America (USA) 



HISTORICAL MISSIONS 17 

Table 1-2 Continued. 
Launch Date Spacecraft Nation Transfer Duration Notes 

Additional missions that have implemented direct transfers include: 
3 Mar. 1959 Pioneer 4 USA 29.3 hr (1.22 days)	 Flyby, first USA 

spacecraft to reach 
escape velocity 

19 July 1967 Explorer 35 USA ∼2 days Orbiter
 
10 June 1973 Explorer 49 USA 113.1 hr (4.71 days) Orbiter
 
25 Jan. 1994 Clementine USA ∼4 days Orbiter
 

+ 12 days phasing 
24 Dec. 1997 Asiasat 3 / HGS-1 China ∼4.5 days 2 lunar flybys en 

route to GEO 
7 Jan. 1998 Lunar Prospector USA 105 hr (4.38 days) Orbiter
 

26 Oct. 2006 STEREO Ahead USA 85 hr (3.54 days) 1 lunar flyby
 
+ 47 days phasing
 

26 Oct. 2006 STEREO Behind USA 83 hr (3.46 days) 2 lunar flybys
 
+ 47 days phasing 

14 Sept. 2007	 Kaguya/Selene Japan 127 hr (5.29 days) Orbiter 
24 Oct. 2007 Chang’e 1 China ∼120 hr (∼5 days) Orbiter 

+ 7 days phasing
 
22 Oct. 2008 Chandrayaan-1 India 107.9 hr (4.50 days) Orbiter/impactor
 

+ 13 days phasing 
18 June 2009	 LRO/LCROSS USA 108 hr (4.5 days) Orbiter/impactor
 

1 Oct. 2010 Chang’e 2 China 112.1 hr (4.7 days) Orbiter
 

Figure 1-8 The trajectory of ISEE-3 / ICE [62]. (See color insert.) 
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Wind. The Wind mission was launched on November 1, 1994, and placed in a halo 
orbit about the Sun–Earth L1 point. Its scientific objectives were to characterize 
the solar wind using a variety of particle and field measurements, all of which 
complemented several other spacecraft in a variety of other orbits, including the 
Polar and Geotail satellites, as part of the International Solar-Terrestrial Physics 
(ISTP) Science Initiative. After several years of measurements from the Sun–Earth 
L1 environment, Wind’s orbit was altered to give it access to new areas in the near-
Earth environment, including a campaign of “petal orbits” to send it out of the ecliptic 
plane (1998–1999), a lunar backflip (April, 1999), several revolutions about a distant 
prograde orbit (2001–2003), and a complex orbit that involved repeated lunar flybys 
and excursions out beyond the Sun–Earth L1 and L2 points (2003–2006). The first 
part of Wind’s trajectory resembles the first part of ISEE-3’s trajectory shown in 
Fig. 1-8. Figure 1-9 illustrates Wind’s orbits in the Sun–Earth system from 2003 
through 2006 [63], illustrating a unique aspect of its low-energy mission design. 

Figure 1-9 The trajectory of Wind from 2003 through 2006, viewed from above in the 
Sun–Earth rotating frame [63]. 
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SOHO. The Solar and Heliospheric Observatory (SOHO) was launched on Decem
ber 2, 1995, on a path taking it directly toward a libration orbit about the Sun–Earth 
L1 point. On March 17, 1996, SOHO performed a small orbit insertion maneuver to 
formally enter the quasi-halo L1 orbit 1.5 million kilometers away from the Earth. 
The L1 halo orbit is ideal for the observatory because it provides an unobstructed 
view of the Sun on one side and a near-constant view of the Earth on the other side. 
Hence, it can collect scientific data about the Sun continuously, while being able to 
communicate with the Earth at any time. Figure 1-10 shows a plot of the trajectory 
that SOHO used to transfer to its halo orbit [64–67]. 

ACE. In 1997, the Advanced Composition Explorer (ACE) was launched and placed 
in a Lissajous orbit about the Sun–Earth L1 point. Its mission, much like SOHO’s, 
is dedicated to collecting energetic particles to study the solar corona, interplanetary 
medium, solar wind, and cosmic rays. Its transfer appears very similar to SOHO’s 
transfer, shown in Fig. 1-10 [68, 69]. 

WMAP. Launched on June 30, 2001, the Wilkinson Microwave Anisotropy Probe 
(WMAP) is currently residing in a small-amplitude Lissajous orbit about the Sun– 
Earth L2 point. From this orbit, WMAP continues to measure cosmic background 
radiation, unobstructed by the radiation originating from the Sun, Earth, or Moon. 
Figure 1-11 shows a plot of the trajectory that WMAP used to reach its libration orbit 
about L2 [70]. 

Figure 1-10 The transfer trajectories and mission phases of SOHO [68], used with permission 
of ESA. 
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Figure 1-11 The transfer trajectory of WMAP [76]. 

Genesis. On August 8, 2001, Genesis launched and was quickly injected into a 
halo orbit about the Sun–Earth L1 point. It traversed the halo orbit approximately five 
times, spending more than 2 years in the libration orbit collecting solar wind samples 
before turning back toward the Earth. Before returning to the Earth, however, it made 
a 3-million-mile (4.8 × 106 km) detour to visit the Sun–Earth L2 point. The detour 
allowed it to deposit its science payload on the sunlit-side of the Earth. Figure 1-12 
shows a plot of the trajectory that Genesis followed during its primary mission 
[71, 72]. 

Herschel and Planck. The Herschel and Planck space observatories were launched 
together on May 14, 2009 [73–75]. The two spacecraft separated soon after launch 
and traveled separately to Lissajous orbits about the Sun–Earth L2 point. Their orbit 
transfers were heuristically similar to WMAP’s transfer to L2, illustrated in Fig. 1-11. 

Future Missions. There are plans to place the proposed James Webb Space Tele
scope [78] and the proposed Terrestrial Planet Finder [79] missions, among others, at 
the Sun–Earth L2 point. Low-energy trajectories to the Sun–Earth Lagrange points 
have been shown to be very useful for solar observatories (L1) and astrophysics 
observatories (L2), and they frequently appear in spacecraft proposals. 

1.6.3 Missions Implementing Low-Energy Lunar Transfers 

Hiten/MUSES-A. In 1991, the Japanese spacecraft Hiten was the first spacecraft 
to transfer to the Moon using a low-energy lunar transfer. The spacecraft was not 
designed to go to the Moon, but rather to send a probe to the Moon. After the probe’s 
communication system failed, mission designers scrambled to find a new mission 
for Hiten. Edward Belbruno and James Miller constructed a new trajectory—a 
“WSB transfer”—that required less fuel than traditional lunar transfers [80, 81]. The 
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Figure 1-12 The low-energy trajectory that the Genesis spacecraft followed [77], viewed 
from above in the Sun–Earth rotating frame. 

spacecraft Hiten did not have the fuel required for a conventional lunar transfer, but 
had the fuel to use this new lunar transfer to reach the Moon. Hiten became Japan’s 
first lunar mission. 

SMART-1. On September 27, 2003, the European Space Agency’s SMART-1 space
craft followed a low-thrust 2-year trajectory to reach the Moon, becoming the first 
low-thrust spacecraft to transfer to the Moon [82]. 

ARTEMIS. The Time History of Events and Macroscale Interactions during Sub-
storms (THEMIS) constellation was launched on February 17, 2007, to monitor the 
Earth’s magnetic field from five different vantage points in high-altitude orbits, track
ing the large-scale evolution of substorms. In 2009, two of those spacecraft were 
maneuvered to begin an extended mission called ARTEMIS [4]. The two spacecraft 
performed numerous maneuvers near their orbital perigees to gradually raise their 
orbits until they could take advantage of several lunar flybys to propel them onto 
two low-energy transfers. Both ARTEMIS spacecraft arrived at the Moon near the 
Earth–Moon L2 point; one of them remained there and one immediately transferred 
to a libration orbit about the Earth–Moon L1 point. After several months, the second 
spacecraft made the transfer and both orbited the L1 point. After several more months, 
the two spacecraft departed their respective L1 orbits, descended to the Moon, and 
entered smaller Keplerian orbits about the Moon. The two ARTEMIS spacecraft are 
the first two spacecraft to orbit either LL1 or LL2, and they each orbited both points. 
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GRAIL. The GRAIL mission (Fig. 1-13) [83–85] was launched on September 10, 
2011, aboard a Delta II Heavy launch vehicle. Two vehicles, GRAIL-A (Ebb) and 
GRAIL-B (Flow), were separated soon after launch and flew independently to the 
Moon via two similar low-energy transfers. The two spacecraft arrived at the Moon 
approximately 25 hours apart, on December 31, 2011 and January 1, 2012. After a 
few months of orbit reductions and adjustments, the two spacecraft inserted into a 
formation, such that one spacecraft trailed the other in almost identical orbits about 
the Moon. By tracking each other, the two spacecraft were able to recover the Moon’s 
gravity field to unprecedented precision and map the interior structure of the Moon. 
The two GRAIL spacecraft were the first ever to fly low-energy lunar transfers as 
part of their primary mission, and they were the first ever to arrive at the Moon and 
perform lunar orbit insertions directly from low-energy transfers. 

GRAIL’s trajectory design is illustrated in Fig. 1-13, including the first and last 
launch opportunity in a 26-day launch period. This is the launch period published in 
Ref. [83], however, it was actually extended by many days as the mission developed. 
As one can see in Fig. 1-13, GRAIL’s mission design includes two significant deter
ministic maneuvers executed per spacecraft during the cruise, performed primarily 
to separate their lunar orbit insertion dates. 

Figure 1-13 GRAIL’s mission design, including a 26-day launch period and two deterministic 
maneuvers for both GRAIL-A and GRAIL-B, designed to separate their lunar orbit insertion 
times by 25 hours (Ref. [83], originally published by AAS). 
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1.7 LOW-ENERGY LUNAR TRANSFERS 

Low-energy transfers between the Earth and the Moon are the focus of this book; this 
section heuristically describes these transfers and how they are used. 

A low-energy lunar transfer includes several segments and a wide variety of 
possible itineraries. The transfer may begin from a direct launch, a parking orbit, 
or some previous mission orbit. From the initial state, the spacecraft may depart 
immediately toward the low-energy transfer, or it may target an outbound lunar flyby. 
If the trajectory employs a lunar flyby, the mission may benefit by incorporating one 
or more Earth phasing orbits to target that flyby. The lunar transfer then spends 
3–4 months before returning to the Moon. Upon arriving at the Moon, the spacecraft 
may immediately inject into a libration orbit or some other three-body orbit, a low 
lunar orbit, or it may immediately descend to the surface for a soft landing or a targeted 
impact. If the mission inserts into an orbit, it may later transfer to a different orbit 
and/or transfer to the surface. These itinerary choices and approximate performance 
parameters are illustrated in the flowchart shown in Fig. 1-14. This section describes 
each of these options in more detail. 

Figure 1-14 A flowchart illustrating different low-energy lunar transfer itineraries, with 
approximate C3 values, transfer times, and ΔV values shown. For instance, a mission could 
use this flowchart to determine the approximate C3 of taking a direct injection to a low-energy 
transfer (upper half), followed by the transfer duration and ΔV cost needed to transfer to a low 
lunar orbit (lower half). From there, one could transfer to the lunar surface, if desired (lower 
right). 
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Earth Parking Orbit. Low-energy lunar transfers may begin in any Earth parking 
orbit, including those compatible with a launch from any launch site around the 
world; they may also begin from nearly any preexisting mission orbit, which was the 
case for the Hiten and ARTEMIS missions [4, 81]. It is typically easier to tailor a 
mission to launch into a parking orbit and then depart that orbit onto a low-energy 
transfer than it is to adjust the orbit of a preexisting spacecraft to achieve a particular 
low-energy transfer. The surveys in this book assume that the mission begins in a 
185-km circular low-Earth parking orbit, unless otherwise noted. 

It will be shown that a given low-energy transfer has a natural Earth departure 
geometry—one that does not necessarily align with a desirable Earth parking orbit. 
Section 6.5 provides targeting procedures to connect a desirable Earth parking orbit, 
for example, one with an inclination of 28.5 deg, with a given low-energy transfer 
using 1–3 maneuvers and a minimal amount of fuel. 

Trans-Lunar Injection. The trans-lunar injection (TLI) is modeled in this book as 
an impulsive ΔV tangent to the parking orbit. This maneuver is typically performed 
by the launch vehicle’s upper stage. The launch vehicle’s target C3 value is typically 
in the range of –0.7 to –0.4 km2/s2, where C3 is a parameter equal to twice the target 
specific energy. Since this target is negative, the resulting orbit is still captured by the 
Earth. If the trajectory is designed to implement a lunar gravity assist on the way out 
to the long cruise, then the launch target may be reduced to a C3 of approximately 
–2 km2/s2 . Launch vehicles typically target the right ascension and declination of 
the outbound asymptote for interplanetary missions to other planets. Since a low-
energy lunar transfer is still captured by the Earth there is no outbound asymptote. 
The GRAIL targets included the right ascension and declination of the instantaneous 
apogee vector at the target interface time, referred to as RAV and DAV [83]. 

Trans-Lunar Cruise. A spacecraft’s trans-lunar cruise on its low-energy lunar 
transfer takes it beyond the orbit of the Moon and typically in a direction toward 
either the second or fourth quadrant in the Sun–Earth synodic coordinate system [86]. 
The spacecraft typically ventures 1–2 million kilometers away from the Earth, where 
the Sun’s gravity becomes very influential. As the spacecraft traverses its apogee the 
Sun’s gravity constantly pulls on it, raising the spacecraft’s perigee altitude. By the 
time the spacecraft begins to return to the Earth its perigee has risen high enough that 
it encounters the Moon. Further, the trajectory is designed to place the spacecraft on 
a lunar encounter trajectory. The GRAIL mission design involves two deterministic 
maneuvers and three statistical maneuvers for each spacecraft to navigate its trans-
lunar cruise [84]. The transfers in this book may include up to two deterministic 
maneuvers performed during the trans-lunar cruise, and it is reasonable to assume that 
two or three statistical maneuvers are sufficient to implement a low-energy transfer 
unless a spacecraft has particularly challenging characteristics. 

During this transfer, the spacecraft requires station-keeping to remain on its proper 
trajectory. The station-keeping cost is minimal and may be accounted for by trajectory 
correction maneuvers; the Genesis spacecraft followed a similar low-energy transfer 
and required only approximately 8.87 m/s of ΔV per year [71, 72, 87]. 
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The low-energy transfer may include one or more Earth phasing orbits and/or one 
or more lunar flybys. These add complexity to the mission and may increase the 
number of maneuvers required to perform the mission, but may reduce the injection 
energy requirements or orbit insertion requirements upon arriving at the Moon. 

Lunar Arrival. As the spacecraft approaches the Moon, it arrives on a trajectory 
that leads it to its initial lunar destination, be it a high-altitude three-body orbit, a low 
lunar orbit, or the surface of the Moon. If the spacecraft’s destination is a three-body 
orbit, then the spacecraft often does not require any significant maneuver to enter the 
orbit (studied in Chapter 3); if the spacecraft’s destination is a low lunar orbit, then the 
trajectory guides the spacecraft to its lunar orbit insertion state (studied in Chapter 4); 
finally, if the spacecraft’s destination is the lunar surface, then the trajectory guides 
the spacecraft there at the designed flight path angle (studied in Chapter 5). 





CHAPTER 2
 

METHODOLOGY
 

2.1 METHODOLOGY INTRODUCTION 

This chapter introduces all of the models, coordinate frames, and methodology used 
in the analysis and construction of lunar transfers. The chapter begins by simply 
defining the physical constants used in these analyses, including the masses and 
radii of the Sun, the Moon, and the planets. It then defines the time systems used, 
coordinate frames, and models, including the circular restricted three-body problem 
and the Jet Propulsion Laboratory (JPL) developmental ephemerides used to model 
the motion of the planets and the Moon. A large portion of this chapter is then devoted 
to describing the dynamical systems methods employed in this work for the analysis 
and design of low-energy transfers in the Solar System. These methods may be used 
to design low-energy transfers from one orbit to another and/or one celestial body to 
another, such as low-energy transfers between the Earth and the Moon. Finally, this 
chapter discusses the tools used to generate the trajectories in this work. 
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2.2 PHYSICAL DATA 

The trajectories generated in this work have been propagated using point masses for 
the Sun, the Moon, and the planets. Early analyses include just the Sun, Earth, and 
Moon, often in circular orbits that approximate the real orbits. Once early analyses are 
complete, high-fidelity trajectories are generated that include all of the planets, such 
that their positions are determined at each moment in time using accurate planetary 
ephemerides. Table 2-1 presents the masses, gravitational parameters, and average 
radii used to generate each trajectory, where it is assumed that the gravitational 
constant, G is equal to 6.673 × 10−20 cubic kilometers per second squared per 
kilogram (km3/s2/kg). 

The values of gravitational constant times mass (GM) shown in cubic kilometers 
per second squared (km3/s2) in Table 2-1 are the best estimates of those values 
when modeling the entire Solar System as point masses. However, other GM values 
represent the best estimate for different cases, such as when one is modeling the 
gravity of the Moon using the spherical harmonic expansion. For instance, the 
LP150Q gravity field estimates the GM of the Moon to be approximately 4902.801076 
km3/s2: slightly different than the value in the table [88]. 

Table 2-1 The masses, gravitational parameters, and average radii of the Sun, Moon, 
and planets used in this work [89, 90]. If the planet has natural satellites, the mass and 
gravitational parameter of the barycenter of the planetary system have been used. 

Body Mass (kg) GM (km3/s2) Radius (km) 

Sun 1.98879724 × 1030 1.32712440 × 1011 696000. 
Earth 5.97333183 × 1024 3.98600433 × 105 6378.14 
Moon 7.34722101 × 1022 4.90280058 × 103 1737.4 
Earth Barycenter 6.04680404 × 1024 4.03503233 × 105 – 

Mercury 
Venus 

3.30167548 × 1023 

4.86825414 × 1024 
2.20320805 × 104 

3.24858599 × 105 
2439.7 
6051.8 

Mars 6.41814926 × 1023 4.28283100 × 104 3396.19 
Mars Barycenter 6.41814990 × 1023 4.28283143 × 104 – 

Jupiter 
Jupiter Barycenter 
Saturn 

1.89849445 × 1027 

1.89888757 × 1027 

5.68552375 × 1026 

1.26686534 × 108 

1.26712768 × 108 

3.79395000 × 107 

71492. 
– 

60268. 
Saturn Barycenter 
Uranus 

5.68569250 × 1026 

8.68269993 × 1025 
3.79406261 × 107 

5.79396566 × 106 
– 

25559. 
Uranus Barycenter 
Neptune 
Neptune Barycenter 
Pluto 

8.68357412 × 1025 

1.02429180 × 1026 

1.02450683 × 1026 

1.32300764 × 1022 

5.79454901 × 106 

6.83509920 × 106 

6.83653406 × 106 

8.82843000 × 102 

– 
24764. 

– 
1195. 

Pluto Barycenter 1.47100388 × 1022 9.81600888 × 102 – 
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The radius of the Earth at the Equator is equal to approximately 6378.14 km, ac
cording to the International Astronomical Union/International Association of Geodesy 
(IAU/IAG) 2000 Report [89]. The distance from the Earth’s center to either pole is ap
proximately 6356.75 km, shorter than at the Equator since the Earth has a significant 
oblateness about the Equator [89]. The radius that defines the atmospheric bound
ary at the Earth for sample return missions is equal to approximately 6503.14 km, 
approximately 125 km above the Earth’s Equator [91]. 

2.3 TIME SYSTEMS 

The passage of time may be represented in countless ways. One may define broad 
definitions of four types of time systems that are in common use in physics and astron
omy. To varying degrees, each of these types of time systems, and the relationships 
between them, is important to the mission analyst [91, 92]. 

1. Dynamical time, in which the unit of duration is based on the orbital motion 
of the Earth, Moon, and planets. 

2. Atomic time, in which the unit of duration corresponds to a defined number of 
wavelengths of radiation of a specified atomic transition of a chosen isotope. 

3. Universal time, in which the unit of duration represents the solar day, defined 
to be as uniform as possible, despite variations in the rotation of the Earth. 

4. Sidereal time, in which the unit of duration is the period of the Earth’s rotation 
with respect to a point nearly fixed with respect to the stars. 

It is very difficult to be both succinct and technically correct when defining the 
different types of time systems that exist. See Seidelmann, 1992, for more details 
[92]. 

2.3.1 Dynamical Time, ET 

To a mission analyst, “ephemeris time” or “ET” refers to the independent variable in 
the equations of motion governing the motion of bodies in the Solar System. The time 
scale represents a smooth-flowing time coordinate that is used in the development of 
the numerically integrated Solar System ephemerides produced at JPL and distributed 
worldwide [91], as well as barycentric dynamical time (TDB). This time scale has 
also been referred to as Teph in other studies [93]. Unfortunately, the label “ET” has 
a history of referring to a variety of slightly different time scales in previous studies. 

2.3.2 International Atomic Time, TAI 

As of 2012, the fundamental time period of a second is defined in the Syst ̀eme 
International (SI) system to be a specific number of oscillations of an undisturbed 



30 METHODOLOGY 

cesium atom. Specifically, the second is defined as the duration of time required for 
9,192,631,770 periods of the radiation corresponding to the transition between the 
two hyperfine levels of the ground state of the cesium 133 atom. The Temps Atomique 
International (TAI), or international atomic time, is defined as a continuous time scale 
resulting from the statistical analysis of a large number of atomic clocks operating 
around the world, performed by the Bureau International des Poids et Mesures 
(BIPM). The difference between Terrestrial Time (TT) and TAI is approximately 
32.184 seconds (s); that is, TT − TAI = 32.184 s. The difference between TAI 
and ET is: ET − TAI = 32.184 s + relativistic terms, where the relativistic terms 
contribute less than 2 milliseconds (ms) of variation [91]. 

2.3.3 Universal Time, UT 

Universal Time (UT) is a time scale that is based upon the mean solar day. The 
time scale “UT1” represents the daily rotation of the Earth and is independent of the 
observing location, that is, it is independent of corrections for polar motion on the 
longitude of the observing site. The Earth’s rotation rate changes continuously as its 
shape and mass distribution shifts; hence, this time scale is unpredictable. UT1 is 
computed using a combination of a variety of different types of observations, includ
ing very long baseline interferometry (VLBI) measurements of extragalactic radio 
sources (quasars), lunar laser ranging, satellite laser ranging, and Global Positioning 
System (GPS) measurements, to name a few. 

2.3.4 Coordinated Universal Time, UTC 

The Coordinated Universal Time (UTC) is the time scale that is used as the basis 
for the worldwide system of civil timekeeping and is available from radio broadcast 
signals. It is the time system used by flight operations teams and tracking stations. 
UTC was set equal to TAI in 1958; it was reset in 1972 such that the TAI time scale 
was 10 s ahead of UTC, corresponding to the approximate accumulation of drift by 
1972. From then on it has been adjusted using leap seconds so that it remains within 
0.9 s of UT1. As of early 2012, a total of 24 leap seconds had been added, such that 
the TAI time scale was 34 s ahead of UTC, that is, TAI − UTC = 34 leap seconds. 
The “ET” time scale was 66.184 s (excluding periodic relativistic terms) ahead of 
UTC, as it had been since January 1, 2009 [91]. 

2.3.5 Lunar Time 

A “day” on the Moon is typically associated with a mean solar day, namely, the 
duration of time between sunrises and sunsets at a particular location on the surface. 
Put another way, a day on the Moon is equal to the mean interval of time between 
successive crossings of the Sun on a particular lunar longitude, that is, the lunar 
prime meridian. As a result, the period of one mean lunar day is equal to the period 
of a mean synodic lunar month, namely, approximately 29.53059 Earth days. The 
actual lunar month may vary from this mean value by nearly ± 2 hours due to the 
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eccentricity of the Earth’s orbit and small periodic variations in the Moon’s rotation 
rate. 

A lunar month may be defined in a variety of ways. Table 2-2 summarizes five 
ways that one may define a lunar month and their corresponding durations of time 
[92]. 

2.3.6 Local True Solar Time, LTST 

The Local True Solar Time (LTST) represents the instantaneous time of day of an 
observer at a site on the Moon. It is a time system that does not flow constantly, but 
it is useful to the mission planner when measuring time for a lunar lander. The LTST 
on the Moon is defined as follows 

24 hr
LTST = (λp − λT S deg) + 12 hr 

360 deg 

where λp is the east longitude of a point on the surface of the Moon and λT S is the 
east longitude of the true Sun. Using this relationship, 12 lunar hours corresponds 
to the time when the Sun is crossing the local meridian of the reference site, for 
example, local noon, and the lunar day includes 24 lunar hours. 

2.3.7 Orbit Local Solar Time, OLST 

During the development and operations of nearly all planetary and satellite orbiting 
missions, understanding how the geometry of the orbit plane changes relative to 
the Sun over time is extremely important, both from an engineering and a science 
perspective. A useful way to characterize the orbit geometry, particularly for high-
inclination orbiters, is to report the local solar time of the ascending or descending 
node of the orbit, namely, the Orbit Local Solar Time (OLST). To be clear, this 
measurement describes the orientation of the orbit relative to the Moon’s surface. 
The convention generally adopted is to report the local time of the orbit node relative 
to the true Sun. The Moon’s gravity field will have an effect on the orbit’s OLST 

Table 2-2 Five ways to define a lunar month and their corresponding durations of 
Earth time [92]. 

Month Duration 
(Earth days) days 

Duration 
hr min s 

Synodic (new moon to new moon) 29.53059 29 12 44 03 
Anomalistic (perigee to perigee) 27.55455 27 13 18 33 
Sidereal (fixed star to fixed star) 27.32166 27 07 43 12 
Tropical (equinox to equinox) 27.32158 27 07 43 05 
Nodical / Draconic (node to node) 27.21222 27 05 05 36 
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over time, but to first order the orbit remains essentially fixed in inertial space. The 
main reason that the orbit’s OLST will change over time is due to the motion of the 
Earth–Moon system about the Sun. Thus, the following relationship describes the 
gross change in the OLST over time, derived from the mean synodic and sidereal 
periods of the Moon’s orbit. 

minutes minutes hours
OLSTin LTST changes by −3.94 = −27.60 = −1.94 

Earth day week mean lunar day 

Since the change in OLST over time is primarily a function of the rate at which 
the Earth–Moon system moves about the Sun, the partial will change slightly as a 
function of time due to the eccentricity of the Earth’s orbit. For example, the partial 
will vary roughly within the following range each year during the 3-year period from 
2009–2012 

minutes minutes
OLSTin LTST changes by −4.1 to −3.8 within 2009–2012 

Earth day Earth day 

2.4 COORDINATE FRAMES 

This section describes several coordinate frames that are frequently used in lunar 
mission analysis. Each coordinate frame has its use: some are useful to describe 
states on the surface of the Earth, Moon, or other body; others are useful to describe 
the relative geometry between the Sun, Earth, and/or Moon. 

Coordinate systems include a reference frame and an origin, and are often rotating 
or translating relative to other bodies. A coordinate system is inertial only when 
it is not accelerating. When referencing motion in the Solar System, the only truly 
“inertial” coordinate system is one that is not rotating and centered at the Solar System 
barycenter. Strictly speaking, no Earth-centered coordinate system can be inertial, 
even one that is not rotating, since the Earth is accelerating in its orbit as it revolves 
about the Sun. Although it is inaccurate, coordinate systems may be referred to in 
this book as “inertial” when they are merely nonrotating. 

2.4.1 EME2000 

The Earth Mean Equator and Equinox of J2000 (EME2000) coordinate frame is a 
nonrotating coordinate frame that is approximately aligned with the Earth’s Equator. 
It is almost identical to the International Celestial Reference Frame (ICRF) [94]. The 
ICRF is defined by the IAU and is tied to the observations of a selection of quasars 
and other distant bright radio objects. It is a reference frame that is fixed as well as 
possible to the observable universe. Each of the quasars moves relative to the others, 
but very slowly; the motion of each of the quasars is averaged out in order to best 
approximate inertial space relative to the Earth’s position in the universe. According 
to Feissel and Mignard [95], the pole of the EME2000 frame differs from the ICRF 
pole by ∼18 milliarcseconds and the right ascension of the EME2000 x-axis differs 
from the right ascension of the ICRF x-axis by 78 milliarcseconds. 
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The coordinate axes are defined as follows: 

•	 The z-axis of the EME2000 is defined as the pole vector of the Earth Mean 
Equator at the J2000 epoch, namely, at 1 January 2000 12:00:00 ET, or at 
Julian date 2451545.0 ET. 

•	 The x-axis of the EME2000 is defined as the cross product of the z-axis and 
the Earth Mean Orbit pole of J2000, that is, the ecliptic pole of J2000. This 
axis defines the vernal equinox of J2000. 

•	 The y-axis completes the right-handed coordinate frame. 

This coordinate frame provides the fundamental reference for the definitions of other 
coordinate frames. 

2.4.2 EMO2000 

The Earth Mean Orbit of J2000 (EMO2000) coordinate frame is a nonrotating coordi
nate frame that is approximately aligned with the ecliptic. The frame shares the same 
x-axis as the EME2000 frame, but is rotated about that axis such that the EMO2000 
z-axis is aligned with the mean ecliptic pole of J2000. This involves a rotation 
of approximately 23.4393 degrees (deg). The y-axis completes the right-handed 
coordinate frame. 

2.4.3 Principal Axis Frame 

The principal axis frame of a body is a body-fixed coordinate frame, that is, rotating 
frame, aligned with the principal axes of the body. 

The coordinate axes are defined as follows: 

•	 The z-axis points in the direction of the maximum moment of inertia; for the 
Earth and the Moon, this is the North Pole principal axis. 

•	 The x-axis points in the direction of the minimum moment of inertial, that is, 
the prime meridian principal axis. 

•	 The y-axis completes the right-handed coordinate frame. 

It is common practice to define lunar gravity fields in the lunar principal-axis body-
fixed frame (LPABF). 

2.4.4 IAU Frames 

The International Astronomical Union has developed definitions for coordinate 
frames that are tied to the surface of each planet, many satellites, and some other 
bodies in the Solar System. There are typically two variations of each coordinate 
frame: a fixed frame that rotates with the motion of the body about its primary spin 
axis and an “inertial” frame that shares the same z-axis but which does not rotate. 
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Detailed definitions of the IAU frames are described by Archinal et al. [96], and an 
overview of these frames is given here. The z-axis of the IAU body-fixed frame for 
a given body is aligned with the direction of the spin-axis of that body. The positive 
direction of the North Pole is defined to be on the north side of the invariable plane 
of the Solar System (defined by the angular momentum of the Solar System), and 
the pole’s orientation is defined using measured values for the right ascension and 
declination [96]. Relatively simple low-degree polynomial approximations are used 
to compute the direction of this pole vector for most of the planets. Longitude is 
typically defined relative to a fixed surface feature for rigid bodies. In each case these 
quantities are specified relative to the ICRF, which varies slightly from the EME2000 
coordinate frame as described above. 

To give some idea for the variations between the Earth’s IAU frame and EME2000, 
Fig. 2-1 illustrates the mapping of Greenwich, England, from the inertial IAU Earth 
frame to EME2000, where Greenwich has been defined in the IAU Earth frame to be 
at a latitude of 51.48 deg North and a longitude of 0.0 deg at the J2000 epoch. 

2.4.5 Synodic Frames 

It is often useful to describe a synodic frame that rotates with the motion of two mas
sive bodies about their barycenter. Two synodic reference frames that are frequently 
used in this work are the Earth–Moon synodic frame, which rotates with the motion 
of the Earth and the Moon about their barycenter, and the Sun–Earth synodic frame, 
which rotates with the motion of the Earth–Moon barycenter about the Sun. The 

Figure 2-1 The latitude and longitude of Greenwich, England, in EME2000, where 
Greenwich has been defined in the inertial IAU Earth frame to be at a latitude of 51.48 deg 
North and a longitude of 0.0 deg at the J2000 epoch. 
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synodic frame may be constructed to rotate at a constant rate or at a rate that varies 
with the instantaneous motion of the bodies. In this book, the frames are always 
constructed such that the x-axis points from the larger body to the smaller body at 
each instant in time, the z-axis points in the direction of the angular momentum of the 
system, and the y-axis completes the right-handed coordinate system. This definition 
defines a frame that rotates at a rate that varies with the motion of the bodies in their 
orbits. Of course, if the bodies orbit their barycenter in circular orbits, then this frame 
rotates at a constant rate. 

2.5 MODELS 

This section describes the different models that have been used in this work to 
approximate the motion of spacecraft in the Solar System. Each model has a use in 
the analyses provided here. 

The most basic model is the two-body model, which is used to approximate the 
motion of a spacecraft about a simple massive body without any other perturbations. 
This model is useful because one can use conic sections to approximate the space
craft’s motion, which are predictable and very quick to generate. This model is very 
well-known [97] and will not be further described here. 

The next step up in complexity is a model that includes the gravitational attraction 
of two large bodies, namely, the model formulated by the circular restricted three-
body problem (CRTBP). The CRTBP more closely approximates the motion of a 
spacecraft in the Earth–Moon and Sun–Earth three-body systems than the two-body 
model. Working within the CRTBP allows a mission designer to bring a wealth of 
techniques that have been developed over hundreds of years to a design problem. 
These techniques provide many qualitative insights that assist in the design of useful 
low-energy orbit transfers. 

The patched three-body model gracefully introduces a fourth body into the design 
problem. The patched three-body model approximates the motion of a spacecraft 
using the Sun–Earth three-body model for all times, except when the spacecraft is 
within close proximity to the Moon, at which point the model approximates the 
motion of the spacecraft using the Earth–Moon three-body model. These features 
permit the design of four-body trajectories, such as low-energy lunar transfers, while 
retaining much of the useful structure found in the CRTBP. 

Finally, the fourth and most complex model frequently used in this work is the JPL 
developmental ephemerides model, which approximates the motion of a spacecraft 
under the influence of the gravitational attraction of any or all of the planets and the 
Moon, using accurate ephemerides to model the motion of the planets and the Moon 
relative to the Sun. 

Each of these models is described in detail in this section. 
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2.5.1 CRTBP 

The CRTBP describes a dynamical model that is used to characterize the motion of 
a massless particle, for example, a spacecraft, in the presence of two massive bodies, 
such as the Earth and the Moon [86]. The model assumes the two massive bodies 
orbit their barycenter in circular orbits. 

2.5.1.1 Equations of Motion It is convenient to characterize the motion of the 
third body, that is, the spacecraft, in a synodic reference frame that rotates at the same 
rate as the orbital motion of the two primary masses. The coordinate frame is centered 
at the barycenter of the system and oriented such that the x-axis extends from the 
barycenter toward the smaller primary, the z-axis extends toward the primary bodies’ 
orbit normal, and the y-axis completes the right-handed coordinate frame. In that 
synodic frame, the two massive bodies are stationary, and the spacecraft moves about 
the system in non-Keplerian motion [46, 86]. It is convenient to normalize the units 
in the system such that the following measurements are equal to one: the distance 
between the two primaries, the sum of the mass of the two primaries, the rotation rate 
of the system, and the gravitational parameter. The three-body constant, µ, relates 
all of these normalized measurements and is easily computed by dividing the mass 
of the smaller primary by the total mass in the system. The equations of motion for 
the third body in the normalized rotating frame are equal to [86] 

x + µ x − 1 + µ 
ẍ = 2 ̇y + x − (1 − µ) − µ (2.1)3 3r r1 2 

ÿ = −2 ̇x + y − (1 − µ) 
y − µ 

y 
(2.2)3 3r r1 2 

z z 
z̈ = − (1 − µ) − µ (2.3)3 3r r1 2 

where r1 and r2 are equal to the distance from the third body to the larger and smaller 
primary, respectively 

2 2 2 2 r = (x + µ) + y + z (2.4)1 
2 2 2 2 r = (x − 1 + µ) + y + z (2.5)2 

The dynamics in the circular restricted three-body system depend only on the three-
body constant, µ. Furthermore, as µ goes to zero, the dynamics approach two-body 
dynamics, although represented in a rotating frame. 

2.5.1.2 Lagrange Points There are five well-known equilibrium solutions to 
the CRTBP, known as the five Lagrange points [86], or the five libration points. These 
points are referred to as L1–L5; this book adopts the nomenclature that L1 lies between 
the two primary masses and L2 lies on the far side of the smaller primary, relative 
to the barycenter of the system. The Lagrange points in the Earth–Moon system 
are abbreviated using the nomenclature LL1–LL5; the Sun–Earth Lagrange points 
are abbreviated EL1–EL5. The seven Lagrange points near the Earth are depicted 
in Fig. 2-2. More discussion about their locations and dynamics are provided in 
Sections 2.6.2 and 2.6.10. 
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Figure 2-2 A plot depicting the relative proximity of the five Earth–Moon Lagrange points 
and the two nearby Sun–Earth points (first published in Ref. [97]; reproduced with kind 
permission from Springer Science+Business Media B.V.). 

2.5.1.3 Jacobi Constant The dynamics of the CRTBP permit an integral of 
motion to exist in the synodic reference frame, known as the Jacobi integral or Jacobi 
constant [46, 97, 98]. The Jacobi constant of a spacecraft in the three-body system 
may be written simply as 

C = 2U − V 2 , where (2.6) 
1   1 − µ µ2 2U = x + y + + (2.7)
2 r1 r2 

2V 2 = ẋ2 + ẏ 2 + ż (2.8) 

The spacecraft’s position and velocity coordinates in Equations 2.1–2.8 are given 
in nondimensional normalized synodic coordinates, relative to the barycenter of the 
three-body system. The Jacobi constant of a spacecraft moving in the CRTBP may not 
change unless the spacecraft is perturbed in some way other than by the gravitational 
attraction of the two primary bodies. 

It is useful to consider the Jacobi constant of spacecraft in different practical orbits 
in order to place the value of the Jacobi constant in context. From two-body analyses, 
we know that spacecraft in orbits about the Earth below the geosynchronous Earth 
orbit (GEO) belt are only slightly perturbed by the gravity of the Moon. A spacecraft 
in a 185-km near-circular orbit about the Earth has a Jacobi constant of approximately 
58.0, though there is some variation depending on the location of the Moon, the time 
of year, and the inclination of the orbit. If the spacecraft’s orbital altitude is increased, 
its Jacobi constant decreases. A spacecraft in a 1000-km near-circular orbit has a 
Jacobi constant near 51.5, a GPS satellite has a Jacobi constant near 14.6, a GEO 
satellite has a Jacobi constant near 9.6, and so forth. The same trend exists for orbits 
about the Moon. A spacecraft in a near-circular lunar orbit at an altitude near 100 km 
has a Jacobi constant near 5.5, and a satellite in a lunar orbit at an altitude near 
1000 km has a Jacobi constant near 4.7, and so forth. A spacecraft on a direct transfer 
to the Moon has a Jacobi constant in the vicinity of 2.3, depending on the particulars 



38 METHODOLOGY 

of the transfer. Likewise, a spacecraft on a low-energy transfer to the Moon departs 
with a Jacobi constant of about 0.8, though it changes significantly before it arrives 
at the Moon due to the gravity of the Sun. 

One observes that a spacecraft with a smaller Jacobi constant can traverse further 
from either central body. A useful analysis is to identify the boundary of possible 
motion for a spacecraft with a particular Jacobi constant. These boundaries are 
computed by setting the velocity of the spacecraft equal to zero in Eq. (2.6); they are 
hence known as zero-velocity curves. Figure 2-3 illustrates the zero-velocity curves 
for several Jacobi constants for motion in the x–y plane in the Earth–Moon system. 

2.5.1.4 Forbidden Regions A spacecraft traversing the Earth–Moon system 
with a Jacobi constant less than 2.988 (the approximate Jacobi constant of the L4 and 
L5 points) can theoretically reach any point in the entire system. Its velocity in the 
rotating frame will decrease to a minimum if it traverses through the L4 or L5 points, 
but no region is inaccessible. Any spacecraft that has a Jacobi constant greater than 
about 2.988 cannot physically reach all regions, but is bounded by the zero-velocity 
curves to regions of space that permit its Jacobi constant value. Those regions in 
space that the spacecraft cannot reach are known as forbidden regions. 

Figure 2-3 An illustration of zero-velocity curves for several Jacobi constant values in the 
planar Earth–Moon system. 
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Consider a spacecraft with a Jacobi constant of 3.18 in the Earth–Moon system 
(see Fig. 2-3). Its forbidden region encircles the Earth–Moon system, including the 
L2–L5 points. If the spacecraft begins at a point near the Earth or Moon, it can traverse 
anywhere between the Earth and Moon within the corresponding zero-velocity curve, 
including transferring through the gap at the L1 point. If the spacecraft begins well 
outside of the system, then it must remain beyond the zero-velocity curve. It cannot 
match the angular velocity of the rotating frame any nearer than its zero-velocity 
curve. 

2.5.1.5 Symmetries The existence of symmetries in the CRTBP is of particular 
interest for some of the analyses encountered in this book. One symmetry that is 
quite useful was demonstrated by Miele in his examination of image trajectories 
in the Earth–Moon space [99]. He showed that if (x, y, z, ˙ y, ˙x, ˙ z, t) is a solution 
in the CRTBP, then (x, −y, z, −x,˙ y, ˙ −z, ˙ −t) is also a solution. In other words, 
if a trajectory is reflected about the xz plane, a valid trajectory is obtained by 
traveling along the reflected trajectory in reverse. This property eliminates the need 
to compute approach and departure trajectories separately in the CRTBP. Another 
useful symmetry that exists in the CRTBP is that if (x, y, z, x,˙ ˙ z, t) is a solution in y, ˙
the CRTBP, then (x, y, −z, x,˙ ˙ z, t) is also a solution. This permits trajectories y, − ̇
to have a Northern and a Southern variety. Since the CRTBP approximates many 
aspects of the real Solar System, one may also frequently use CRTBP reflections as 
approximations for trajectories in the real Solar System. 

2.5.2 Patched Three-Body Model 

The patched three-body model [38–40, 45, 46] uses purely three-body dynamics 
to model the motion of a spacecraft in the presence of the Sun, Earth, and Moon. 
It retains many of the desirable characteristics of the CRTBP, while permitting a 
spacecraft in the near-Earth environment to be affected by all three massive bodies, 
albeit only two massive bodies at any given moment. When the spacecraft is near the 
Moon, the spacecraft’s motion is modeled by the Earth–Moon three-body system. 
Otherwise, the spacecraft’s motion is modeled by the Sun–Earth three-body system, 
where the secondary body is the barycenter of the Earth and Moon. For simplicity it 
is assumed that the Earth–Moon system is coplanar with the Sun–Earth system. The 
boundary of these two systems is referred to as the three-body sphere of influence 
(3BSOI); it is analogous to the two-body sphere of influence used in the patched 
conic method of interplanetary mission design. 

Parker describes the 3BSOI as the boundary of a sphere centered at the Moon with 
a radius rSOI computed using the following relationship [46]   2/5 

mMoon 
rSOI = a (2.9) 

mSun

where mMoon and mSun are the masses of the Moon and Sun, respectively, and a is the 
average distance between the Sun and Moon, equal to approximately 1 astronomical 
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unit (AU). Thus, the 3BSOI has a radius of approximately 159, 200 km, which is 
large enough to include LL1 and LL2. 

2.5.3 JPL Ephemeris 

The Jet Propulsion Laboratory and the California Institute of Technology have de
veloped the DE421 Planetary and Lunar Ephemerides, which is the most accurate 
model of the Solar System used in this work. The model includes ephemerides of 
the positions and velocities of the Sun, the four terrestrial planets, the four gas-giant 
planets, the Pluto/Charon system, and the Moon [100]. The lunar orbit is accurate to 
within a meter; the orbits of Earth, Mars, and Venus are accurate to within a kilometer 
[100]. 

Low-energy lunar transfers modeled in the patched three-body model repeat per
fectly from one synodic month to the next, since the dynamics and the Sun–Earth– 
Moon geometry are perfectly symmetric. It is often possible to build a very similar 
low-energy lunar transfer from one month to the next in the DE421 model of the 
Solar System, but its characteristics will vary in each month. This will be further 
discussed in later chapters. 

2.5.3.1 Earth Orbit The Earth–Moon system orbits the Sun in a nearly circular 
orbit, but its nonzero eccentricity has an impact on the performance of a particular 
low-energy lunar transfer from one month to the next. Furthermore, its orbit changes 
over time due to the influence of Jupiter and the other planets. Figure 2-4 illustrates 
the Earth’s osculating eccentricity, semi-major axis, and inclination over time in the 
DE421 model of the Solar System, relative to the Sun. One notices a nearly annual 
signal in the eccentricity and a bi-annual signal in the semi-major axis. This is 
predominantly due to the influence of Jupiter’s gravity, which has a synodic period 
of about 399 days. 

2.5.3.2 Lunar Orbit For the purposes of mission planning, the Moon’s orbit 
about the Earth may be modeled as circular and coplanar with Earth’s orbit about the 
Sun. In reality, the Moon’s orbit about the Earth is inclined by about 5.15 deg relative 
to the ecliptic, and it has an average eccentricity of about 0.05490—quite a bit higher 
than the Earth’s orbital eccentricity. Figure 2-5 illustrates the Moon’s osculating 
eccentricity, semi-major axis, and inclination over time in the DE421 model of the 
Solar System, relative to the Earth. The Moon’s orbit is strongly perturbed by the 
gravity of the Sun on several time scales. First, one can see a very clear signal in the 
time series of the Moon’s orbital parameters that has a frequency of about 29.53 days, 
corresponding to the length of an average synodic month. Another very strong signal 
in the time series of the Moon’s orbital parameters has a frequency of about 6 months, 
corresponding to the bi-annual impact of the Earth’s orbit about the Sun. The relative 
orientation of the Moon’s orbit to the Sun cycles over the course of a year, as well as 
the distance to the Sun. Both the orientation and the distance have a direct effect on 
the orbit. In addition to the solar perturbation, the planets Venus and Jupiter impact 
the lunar orbit, as does the Earth’s asymmetric gravity field. 
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Figure 2-4 The instantaneous eccentricity (top), semi-major axis (middle), and inclination 
(bottom) of the Earth–Moon barycenter over time relative to the Sun in the EMO2000 
coordinate frame. 

In addition to the three orbital parameters illustrated in Fig. 2-5, the orientation 
of the Moon’s orbit about the Earth undergoes both secular and periodic variations. 
Most notably, the Moon’s orbit precesses about the ecliptic North Pole. The period 
of regression of the longitude of the lunar orbit’s ascending node (Ω) is equal to about 
18.6 years. The period of precession of the lunar orbit’s argument of periapse (ω) is 
equal to about 6.0 years. Finally, the period of precession of the longitude of periapse 
(Ω + ω) is equal to about 8.85 years. 

2.6 LOW-ENERGY MISSION DESIGN 

The field of low-energy mission design relates to the study of trajectories that traverse 
unstable three-body orbits and take advantage of the dynamics to perform orbit trans
fers using very little fuel. This section will describe three-body orbits, their unstable 
manifolds, and how to construct low-energy transfers between them. Indeed, an ex
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Figure 2-5 The instantaneous eccentricity (top), semi-major axis (middle), and inclination 
(bottom) of the Moon over time relative to the Earth in the EMO2000 coordinate frame. 

ample low-energy lunar transfer is described later in dynamical systems terminology 
as a trajectory that first departs the Earth on the stable manifold of a Sun–Earth orbit, 
transfers from the stable manifold to an unstable manifold, and traverses that until 
it intersects the stable manifold of an orbit in the Earth–Moon system. This section 
describes dynamical systems analyses and how those methods may be applied to 
practical spacecraft mission design. 

2.6.1 Dynamical Systems Theory 

A dynamical system may be described as a state space with a set of rules, where the 
rules govern the evolution of objects’ states through time within the system. The 
rules are deterministic; that is, the evolution of a state through a particular amount of 
time yields only one future state. 

There are different types of dynamical systems depending on the mathematics 
involved and the allowable values of time. If time is continuous, capable of taking 



LOW-ENERGY MISSION DESIGN 43 

any value in the set of real numbers, then the dynamical system is smooth and is 
called a flow. If time may only take discrete values, then the dynamical system is a 
map. Models of the Solar System are generally described by flows. A spacecraft’s 
trajectory in such dynamical systems is the set of states that the spacecraft will take 
as it moves through time, given its initial state. When integrating the equations of 
motion for a spacecraft through time using a machine, time cannot truly take on any 
value in the set of real numbers. The process of integration is a mapping of the 
spacecraft’s state from one point in the state space to another point. A spacecraft’s 
mapped trajectory is therefore only an approximation of the true trajectory. 

There are many techniques that are commonly used to analyze dynamical systems. 
In this work, we begin our analysis of the CRTBP by identifying fixed points and 
periodic orbits that exist in the system. We continue by studying the stability of those 
solutions. These techniques provide an understanding of the motion of trajectories 
near those solutions. Further analysis gradually provides more information about the 
motion of trajectories throughout the dynamical system. 

2.6.2 Solutions to the CRTBP 

The CRTBP is a good example of a system in which dynamical systems methods of 
analysis work well. The CRTBP contains five fixed-point solutions and an infinite 
number of periodic orbit solutions. The characterization of these solutions helps to 
understand the flow of particles and spacecraft in the system. Useful trajectories may 
then be constructed that take advantage of the flow in the system, rather than forcing 
their way through the system. The following sections describe some of the simplest 
solutions to the CRTBP. 

2.6.2.1 Fixed-Point Solutions: Five Lagrange Points The most basic so
lutions to the CRTBP are fixed-point solutions, that is, the trajectories in the CRTBP 
that particles may follow such that they stay at rest in the system indefinitely. There 
are five such fixed-point solutions in the CRTBP, namely, the five Lagrange points. 
These points were introduced in Section 2.5.1 and are displayed again in Fig. 2-6 for 
the case of the Earth–Moon CRTBP. 

The locations of the five Lagrange points in the Sun–Earth and Earth–Moon 
circular three-body systems are given in Table 2-3, using the planetary masses and 
distances provided in the Constants, page 382. Appendix A provides an analytical 
derivation for the locations of the five Lagrange points for any three-body system, 
as well as algorithms to determine their locations. Table 2-4 summarizes the Jacobi 
constant of each of the five Lagrange points for both three-body systems. 

2.6.2.2 Periodic and Quasiperiodic Orbit Solutions The CRTBP permits 
the existence of numerous families of periodic and quasiperiodic orbits. Authors have 
been studying such orbits since the late 1800s, though the introduction of modern 
computing capability dramatically improved the quantity and complexity of orbits 
that could be generated. 

A periodic orbit in the three-body system may just be a two-body orbit about one 
of the bodies that is slightly perturbed by the other massive body and is in resonance 
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Figure 2-6 The locations of the five Lagrange points in the Earth–Moon CRTBP. 

Table 2-3 The locations of the five Lagrange points in the Sun–Earth and 
Earth–Moon circular three-body systems. The positions are given in nondimensional 
normalized units and kilometers with respect to the barycenter of the system, assuming 
the masses and distances given in the Methodology Introduction in Section 2.1. 

Lagrange Position in normalized units Position in kilometers 
Point 

x y z x y z 

L1 0.9899859823 0 0 148, 099, 795.0 0 0 
Sun– L2 1.0100752000 0 0 151, 105, 099.2 0 0 
Earth L3 −1.0000012670 0 0 −149, 598, 060.2 0 0 

L4 0.4999969596 08660254038 0 74, 798, 480.5 129, 555, 556.4 0 
L5 0.4999969596 −08660254038 0 74, 798, 480.5 −129, 555, 556.4 0 

L1 0.8369151324 0 0 321, 710.177 0 0 
Earth– L2 1.1556821603 0 0 444, 244.222 0 0 
Moon L3 −1.0050626453 0 0 −386, 346.081 0 0 

L4 0.4878494157 08660254038 0 187, 529.315 332, 900.165 0 
L5 0.4878494157 −08660254038 0 187, 529.315 −332, 900.165 0 

with the motion of the primaries, that is, a low Earth orbit with a period that is 
perfectly resonant with a sidereal month. Such an orbit has characteristics not unlike 
any other low Earth orbit, except that its orbital elements were carefully selected to 
be periodic with the Moon in the presence of the Moon’s perturbations. Further, such 
a low Earth orbit is not quite periodic from one revolution to the next about the Earth, 
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Table 2-4 The Jacobi constant of each Lagrange point in the Earth–Moon and the 
Sun–Earth three-body systems, given in normalized coordinates. 

Lagrange Point Earth–Moon C Sun–Earth C 

L1 3.18834129 3.00089794 
L2 3.17216060 3.00089388 
L3 3.01214717 3.00000304 
L4 2.98799703 2.99999696 
L5 2.98799703 2.99999696 

due to the Moon’s perturbations; it is only perfectly periodic over the course of its 
resonant cycle with the Moon. 

Alternatively, one can construct a trajectory that carefully balances the three-body 
dynamics and can only exist in any form under the gravitational attraction of both 
bodies. Examples of three families of such periodic orbits are illustrated in Fig. 2-7. 
These orbits include libration orbits about the Earth–Moon L1 and L2 points and 
distant prograde orbits about the Moon. It should be noted that the smallest distant 
prograde orbits are very similar to two-body orbits about the Moon in resonance 
with the orbital motion of the Earth and Moon. Clearly the libration orbits about the 
Lagrange points only exist within a three-body system. 

Between the 1890s and the 1930s, George Darwin [102, 103], George Hill [104], 
Henry Plummer [105], Forest Moulton [106], Elis Str ̈omgren [107], and their col-

Figure 2-7 Several example orbits from three families of unstable periodic Earth–Moon 
three-body orbits, viewed from above in the Earth–Moon synodic reference frame. The 
orbits shown are from the family of Lyapunov orbits about L1 (left), the family of distant 
prograde orbits about the Moon (center), and the family of Lyapunov orbits about L2 (right). 
The arrows indicate the motion of objects traversing these orbits; the Moon’s orbital radius 
about the Earth–Moon barycenter is shown in gray for reference [101] (Acta Astronautica by 
International Academy of Astronautics, reproduced with permission of Pergamon in the format 
reuse in a book/textbook via Copyright Clearance Center). 
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leagues contributed to the discovery of the first known periodic orbits in the circular 
restricted three-body problem. Over the course of 40 years, it is unlikely that more 
than 150 orbits were ever computed [108]; however, the general aspects of orbits in 
the three-body problem became well-understood. 

In the 1960s, modern computers became accessible, and numerical techniques 
could be used to swiftly identify and compute periodic orbits. In 1968, Roger 
Broucke published a large catalog of families of planar periodic orbits that exist in 
the CRTBP with Earth–Moon masses [108]. Also in the 1960s, researchers computed 
and cataloged a large number of three-dimensional periodic orbits; significant con
tributors include Michel H ́enon [109–113], Arenstorf [114], Goudas [115], Bray and 
Goudas [116, 117], and Kolenkiewicz and Carpenter [118], among others. Halo and 
quasi-halo orbits were discovered and analyzed beginning in the late 1960s (see, for 
example, Farquhar [119], Farquhar and Kamel [120], Breakwell and Brown [121], 
and Howell [122]). In 1980, David Richardson used the Lindstedt–Poincaré method 
to analytically produce periodic orbits, such as halo orbits, about the collinear libra
tion points [123]. Additional work was accomplished toward the end of the 20th 
Century studying Lissajous and other quasi-halo orbits (see, for example, Farquhar 
and Kamel [120], Howell and Pernicka [124], and G ́omez et al. [67, 125]). Many 
authors have studied how to take advantage of libration orbits for practical spacecraft 
missions, including scientific missions such as WMAP and SOHO, communication 
relays [5–7, 11], transportation nodes [14, 126], and navigation services [8, 10– 
13, 127, 128]. 

In this section, we demonstrate how to analytically construct one set of periodic 
and quasiperiodic orbits that exist about each of the collinear Lagrange points. This 
demonstration sheds light on why many periodic orbits exist [106, 123, 124]. 

We begin by translating the origin of the synodic frame to one of the collinear 
libration points, Li. The parameter γ is defined to be equal to the distance from Li 

to the smaller primary. The value of γ is positive when referring to L2 and negative 
'when referring to L1 and L3. The new position coordinates x , y', and z' are thus 

defined by the following 

'x = x − (1 − µ + γ) 
'y = y 
'z = z 

If we now linearize the equations of motion of the CRTBP given in Eqs. (2.1)–(2.3) 
under this transformation, we find the following 

ẍ' − 2 ̇y' − (1 + 2c)x' = 0 
'ÿ' + 2 ̇x' + (c − 1)y = 0 (2.10) 

' 'z̈ + cz = 0 

where c is a constant coefficient. The analytical solution to the out-of-plane z motion 
describes simple harmonic motion. The solution for the in-plane x–y motion involves 
a characteristic equation that has two real roots and two imaginary roots. The roots 
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represent modes of motion, one divergent and one nondivergent. If the nondivergent 
mode is excited, then the solution is bounded and may be written as 

' x = −kAy cos (λt + φ) 
' y = Ay sin (λt + φ) (2.11) 
' z = Az sin (ν t + ψ) 

This motion is described by six variables: the amplitudes of the in-plane and out-
of-plane motion (Ay and Az), the frequency of oscillation in the in-plane and out-
of-plane motion (λ and ν), and the phase angles for the in-plane and out-of-plane 
motion (φ and ψ). The linearized approximation to the analytical solution for periodic 
motion about a Lagrange point may thus be characterized by oscillatory motion. If 
the two frequencies λ and ν are equal or otherwise commensurate, the resulting 
motion will be periodic; if the frequencies are incommensurate, the resulting motion 
will be quasiperiodic. The periodic orbits whose frequencies are equal are known as 
halo orbits, the more general quasiperiodic trajectories are known as Lissajous orbits 
or quasi-halo orbits. A portion of the family of halo orbits about the Earth–Moon L2 

is shown in Fig. 2-8, and characteristic views of several types of Lissajous orbits are 
shown in Fig. 2-9. 

It should also be noted that there is a symmetry that exists in the CRTBP, as 
described in Section 2.5.1. If the CRTBP permits an orbit to exist, then it also 
permits a symmetric orbit to exist that is a reflection across the y = 0 plane. Hence, 
there are two families of halo orbits, a northern and a southern. By convention, if a 
spacecraft spends more than half of its time above the y = 0 plane in a halo orbit, 
then the spacecraft is following a northern halo orbit. 

If Az is set to zero in Eq. (2.11) the resulting orbits are planar and are known as 
Lyapunov orbits. Figure 2-7 shows a portion of the families of Lyapunov orbits about 
L1 and L2 in the Earth–Moon system. 

These orbits may be constructed analytically since the linearization process near 
one of the Lagrange points produces a good approximation of the true dynamics 
found in the system. Other orbits do not have well-described linear approximations 
and must be constructed numerically. The process of numerically constructing simple 
periodic orbits is discussed in Section 2.6.6. 

Periodic orbits in the three-body system exist that revolve about all five Lagrange 
points, the primary, the secondary, and also about the entire system. Periodic orbits 
exist that revolve about either body in a prograde sense and a retrograde sense. 
One may construct simple symmetric periodic orbits, such as those illustrated in 
this section, and one may construct asymmetric, complex orbits. A wide variety of 
periodic orbits exist that may be useful to the mission planner. 

2.6.2.3 Orbit Parameters An orbit and a position in that orbit may be uniquely 
specified in the two-body problem using six parameters. Typical sets of two-body 
parameters include the Cartesian and Keplerian sets. Parameterization of orbits in 
the three-body problem has proven to be much more difficult, since there are no 
general analytical solutions to the system. Dynamical systems theory is very useful 



48 METHODOLOGY 

Figure 2-8 A portion of the family of halo orbits about L2 in the Earth–Moon system, shown 
from four perspectives. 

in this regard because the methodology lends itself to many useful parameters. One 
such parameter, τ , is useful when describing periodic orbit solutions to the CRTBP. 
This parameter is described here; others are introduced in later chapters as their uses 
become apparent. 

The parameter τ mimics the two-body mean anomaly. For the case of halo orbits, 
and other symmetric periodic orbits in the CRTBP, τ advances at a steady rate over 
time, beginning at one landmark (typically where the orbit pierces the y = 0 plane) 
and resetting when it completes an entire period. In some studies, τ takes on values 
in the range of 0–360 deg, much like the mean anomaly [11]. In other studies, τ 
is defined to take on values in the range of 0–1, indicating the periodic revolution 
number [46]. Most libration orbits, for example, halo and Lyapunov orbits, have a 
shape that resembles a conic section; in those cases it is intuitive to use an angular 
unit of measurement for τ . However, there are many classes of periodic orbits that 
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Figure 2-9 A sample of Lissajous curves representing the view of Lissajous orbits in 
the Earth–Moon system as viewed from an observer at the Earth looking toward the Moon; 
ωin-plane and ωout are multiples of some base frequency ωbase. The curves on the left are 
perfectly periodic; the curves on the right have incommensurate frequencies and have only 
been propagated for a short amount of time (first published in Ref. [97]; reproduced with kind 
permission from Springer Science+Business Media B.V.). 

do not resemble any sort of conic section, and it may be confusing to refer to τ in 
angular units. Figure 2-10 shows two orbits, demonstrating how τ advances along 
each orbit, where τ has been represented as a revolution number for a complex orbit 
and as an angle for an L2 libration orbit. 

2.6.3 Poincar ́e Maps 

A Poincar ́e map is a useful tool for analyzing dynamical systems and is often used to 
identify orbits and orbit transfers in a complex system. A Poincar ́e map is created by 
intersecting a trajectory in the n-dimensional flow ẋ= f(x) by an (n−1)-dimensional 
surface of section Σ. Thus, the Poincaré mapping replaces the flow of an nth order 
system with a discrete system of order (n − 1) [129]. A Poincaré mapping, P , may 
be described as a function that maps the state of a trajectory at the kth intersection 
with the surface of section, xk, to the next intersection, xk+1 

xk+1 = P (xk) (2.12) 

If a trajectory pierces Σ at the state x ∗ at time t and then returns to x ∗ at time t + T , 
then one may conclude that the trajectory is a periodic orbit with a period T [130]. 

There are three different types of Poincar ́e maps considered in this research, 
defined as follows [130]: 
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Figure 2-10 The two orbits shown demonstrate how the parameter τ advances from 0 to 1 
about a complex orbit (left) or from 0 deg to 360 deg about a libration orbit (right). Both orbits 
are viewed from above in the Earth–Moon CRTBP synodic frame. 

• P+: The Poincar ́e map created from only the positive intersections of the 
trajectory with the surface of section. For instance, in the CRTBP, Σ may 
be defined as a y–z plane set to some x-value and P+ includes only those 
intersections that have positive values of ẋ. 

• P−: The Poincar ́e map created from only the negative intersections of the 
trajectory with the surface of section. 

• P±: The Poincar ́e map created from all intersections of the trajectory with the 
surface of section. 

The maps P+ and P− are called one-sided maps, while P± is called a two-sided map 
[130]. Figure 2-11 provides a simple illustration of a one-sided Poincaré mapping of 
two orbits, where one is periodic and one is not immediately periodic. 

2.6.4 The State Transition and Monodromy Matrices 

The state transition matrix Φ(t, t0) monitors the divergent dynamics along a trajectory. 
Essentially, it approximates how a slight deviation in any of the state variables 
propagates along the trajectory. Its practical uses are twofold in this study: 

1. to provide a means of adjusting the initial conditions of a trajectory to correct 
for unwanted motion, and 

2. to provide information about the stability of an orbit, including the orientation 
of the eigenvectors along the orbit. 
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Figure 2-11 An illustration of a one-sided Poincar ́e mapping of two trajectories. The 
point x ∗ indicates a fixed point on the surface, corresponding to a periodic trajectory [101] 
(Acta Astronautica by International Academy of Astronautics, reproduced with permission of 
Pergamon in the format reuse in a book/textbook via Copyright Clearance Center). 

The second use involves the monodromy matrix, a special case of the state transition 
matrix. We explore (1) in Sections 2.6.5 and 2.6.6 and (2) in Sections 2.6.8 and 2.6.10. 
This section discusses how to construct the state transition matrix and the monodromy 
matrix. 

Let us define the state vector X to be a column vector that contains all of the state 
variables of interest in the system. In most cases, one is usually only interested in 
computing the six state variables of a particle or spacecraft in a system. Hence, X is 
defined as 

T
X = [x y z ẋ ẏ ż]

Then the state transition matrix is a 6 × 6 matrix composed of the partial derivatives 
of the state 

∂X(t)
Φ(t, t0) = (2.13)

∂X(t0) 

with initial conditions Φ(t0, t0) = I . The state transition matrix is propagated using 
the following relationship 

Φ̇(t, t0) = A(t)Φ(t, t0) (2.14) 

where the matrix A(t) is equal to 

∂Ẋ(t)
A(t) = (2.15)

∂X(t) 
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In the CRTBP, A(t) is equal to ⎤⎡   0 1 0 
0 I 

, where ⎣ ⎦ (2.16)−1 0 0A(t) = Ω = 
2ΩUX X 0 0 0 

and UX X is the symmetric matrix composed of second partial derivatives of U with 
respect to the third body’s position evaluated along the orbit ⎤⎡ 

∂ẍ

UX X = 

⎢⎢⎢⎢⎢⎢⎢⎣ 

∂ x 

∂ÿ

∂ẍ

∂ y 

∂ÿ

∂ẍ

∂ z 

∂ÿ

⎥⎥⎥⎥⎥⎥⎥⎦ 

(2.17)
∂ x ∂ y ∂ z 

∂z̈ ∂z̈ ∂z̈ 
∂ x ∂ y ∂ z 

The monodromy matrix, M , exists for periodic orbits and is computed by propa
gating the state transition matrix one entire orbit: M = Φ(t0 + P, t0) [131]. After 
being propagated for a full orbit, the matrix contains information about every region 
that a spacecraft would pass through along that orbit. This matrix’s use is further 
explored in Sections 2.6.8 and 2.6.10. 

2.6.5 Differential Correction 

Differential correction, as it is implemented here, is a process by which the state 
transition matrix is used to change a set of initial conditions in order to better satisfy 
a set of criteria. It is a targeting scheme that converges on its constraints very swiftly 
within the basin of convergence. Two types of differential correction routines are 
used in this work: single-shooting and multiple-shooting correction routines. 

2.6.5.1 Single-Shooting Differential Correction In the standard single-
shooting differential correction routine used in this work, a spacecraft begins at 
some state X0, following a nominal trajectory T (t), where X0 is composed of a po
sition vector R0 and a velocity vector V0. It is desired that the spacecraft’s trajectory 
be shifted such that at a later time, tf , the trajectory encounters a desired state X̂f 

(including a desired position vector R̂f and a velocity vector V̂f ). There are usually 
two constraints to the problem: (1) the spacecraft’s initial position may not change; 
and (2) the spacecraft’s new trajectory leads it to a final specified position vector 
R̂f . The routine is allowed to vary the initial velocity of the spacecraft (simulating 
a change in velocity (ΔV) in the mission design), and is oftentimes allowed to vary 
the time at which the spacecraft arrives at its final desired position. The velocity of 
the spacecraft at the final position is usually a free variable, and mission designers 
typically plan to perform an additional ΔV at that time. If the routine converges, a 
new ballistic trajectory is constructed, T̂ (t), that satisfies the two conditions 

T̂ (t̂0) = X̂0 with t̂0 = t0, R̂0 = R0, and V̂0 free 

T̂ (t̂f ) = X̂f with t̂f constrained or fixed, R̂f constrained, and V̂f free 
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This routine is diagrammed in Fig. 2-12. 
The single-shooting method uses the state transition matrix Φ(tf , t0) to estimate 

what change to make in the initial velocity of the state, ΔV0, in order to eliminate 
the deviation in position at the end of the trajectory δRf . The state transition matrix 
maps perturbations in the state over time using the following linearized equations 

δXf = Φ(tf , t0)ΔX0 or 

δRf ΦRR (tf , t0) ΦRV (tf , t0) ΔR0 = (2.18)
δVf ΦV R (tf , t0) ΦV V (tf , t0) ΔV0 

Since ΔR0 = 0 and δVf is unconstrained, we may simplify Eq. (2.18) and solve for 
ΔV0 to find 

−1
ΔV0 = [ΦRV (tf , t0)] δRf (2.19) 

Since the state transition matrix is propagated with linearized equations, the al
gorithm must be iterated until convergence. When the algorithm is converging, each 
iteration typically improves the solution by a factor of 10, although factors anywhere 
between 2 and 100 have been observed [46]. 

2.6.5.2 Multiple-Shooting Differential Correction Multiple-shooting dif
ferential correction takes a series of states and adjusts them all simultaneously to 
construct a complicated trajectory that satisfies a set of constraints. It is very useful 
when mission designers wish to construct a long trajectory in an unstable environment 
in the presence of machine precision. For example, the Genesis spacecraft departed 
the Earth, traversed a quasi-halo orbit about the Sun–Earth L1 point several times, 
transferred to the vicinity of the Sun–Earth L2 point, and then returned to Earth. This 
entire trajectory may in theory be constructed without a single maneuver. However, 
in this unstable environment, deviations even as small as round-off errors due to ma
chine precision grow exponentially. A computer using finite-precision mathematics 

Figure 2-12 The single-shooting differential-correction routine. The solid-line trajectory, 
T (t), is the initial trajectory; the dashed-line trajectory, T̂ (t), is the corrected trajectory that 
encounters the target position, indicated by a bull’s eye, at the target time. 
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does not normally have the precision required to propagate the spacecraft through its 
entire trajectory before the round-off errors grow large enough to create a large-scale 
deviation in the spacecraft’s trajectory. To get around this numerical problem, mission 
designers break the trajectory into many segments and patch the segments together 
with very small maneuvers. The maneuvers counteract the build-up of propagated 
round-off errors. They may be as small as desired, depending on the length of each 
patched segment, and are typically much smaller than any expected station-keeping 
maneuver. Hence, they are not normally considered to be deterministic maneuvers 
in the mission. 

The multiple-shooting differential correction method is described in detail by 
Pernicka [132, 133] and by Wilson [134, 135], among other authors [136–138]. 
This section provides a summary of the process. Section 2.6.5.3 then returns to the 
details and derives the tools needed to implement the multiple-shooting differential 
correction technique. The derivation follows that presented by Wilson [134]. 

The first step in the process of differentially correcting a complex trajectory is to 
define a series of patchpoints. Several things must be considered when setting up the 
patchpoints; a discussion of these considerations is given below. From then on, a two-
level process is iterated until either the differential corrector fails or each constraint in 
the system is satisfied. The first level of the process adjusts the patchpoints’ velocities; 
the second level of the process adjusts the patchpoints’ positions and epochs. If the 
patchpoints fall into some basin of convergence for the differential corrector, then 
the process converges on a continuous trajectory swiftly. The following paragraphs 
provide more details about the two-level process: 

Level 1. The velocities of every patchpoint along the trajectory except the last one 
are adjusted using the single-shooting differential corrector given in Sec
tion 2.6.5.1. The velocities are set such that the position of each segment 
ends at the following patchpoint. When this step has been completed, the 
trajectory is continuous, although a spacecraft must perform a ΔV at each 
patchpoint in order to follow the trajectory. 

Level 2. The positions and epochs of every patchpoint, including the last patchpoint, 
are adjusted using a least-squares method that is designed to reduce the total 
ΔV cost of the trajectory. The result is a discontinuous trajectory that should 
require less total ΔV after the following iteration of Level 1. 

This iteration process is repeated until the discontinuity at each patchpoint in position 
and velocity is below some tolerance. 

The choice of patchpoints has a strong effect on the differential corrector’s perfor
mance. First of all, since the single-shooting method is invoked between every adja
cent patchpoint, the patchpoints must be close enough to permit the single-shooting 
method to converge within the desirable tolerance given the numerical precision of 
the machine. That is, if the patchpoints are too far apart, Level 1 will not converge. 
Secondly, Level 2 of the two-level process is generally designed with the assumption 
that each patchpoint is evenly spaced in time. If the patchpoints are not evenly spaced 
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in time, then the time system should be normalized in some way. This improves the 
convergence characteristics of the algorithm, but it certainly does not guarantee that 
the system will converge on a desirable solution. Finally, it has been observed that 
the differential corrector converges more readily if there are more patchpoints where 
the dynamics become more unstable, for example, near massive bodies, though the 
time system often must be normalized for this to benefit the stability of the algorithm. 

Section 2.6.5.1 provides the details of Level 1. In order to shed some light onto 
the functionality of Level 2, let us assume that we have a trajectory built from three 
patchpoints. The two segments meet in the middle at the second patchpoint, but are 
not continuous in velocity, that is, there is some velocity deviation ΔV2. Let us 
assume that it is desirable to remove that discontinuity, and to do so we allow the 
positions and epochs of all three patchpoints to be adjusted. Section 2.6.5.3 provides 
details about how to numerically compute the variations of the target (ΔV2) to the 
controls (R1, t1, R2, t2, R3, t3). In this way, one can construct the following partial 
derivatives 

∂ΔV2 ∂ΔV2 ∂ΔV2 

∂R1 
, 

∂R2 
, 

∂R3 
, 

∂ΔV2 ∂ΔV2 ∂ΔV2 

∂ t1 
, 

∂ t2 
, 

∂t3 

With these partial derivatives, one can build an approximation of the change in ΔV2 

when each of the control parameters are perturbed ⎡ ⎤
δR1 
δt1 
δR2 
δt2 

⎢⎢⎢⎣ 

⎥⎥⎥⎦ 
∂ΔV2 ∂ΔV2 ∂ΔV2 ∂ΔV2 ∂ΔV2 ∂ΔV2

[δΔV2] = 
∂R1 ∂ t1 ∂R2 ∂ t2 ∂R3 ∂t3  δR3 

δt3[M ] 
(2.20) 

In general, we wish to determine the appropriate changes to make to each of the 
control variables in order to reduce the value of ΔV2 to zero. The linear system given 
in Eq. (2.20) is underdetermined; it is common practice to use the smallest Euclidean 
norm to produce a good solution [134] ⎤⎡ ⎢⎢⎢⎢⎢⎢⎣ 

δR1 

δt1 

δR2 

δt2 

δR3 

δt3 

⎥⎥⎥⎥⎥⎥⎦ 

−1 
= MT M M T [δΔV2] (2.21) 

These deviations in position and epoch are then added to the patchpoints’ states 
to complete the Level 2 iteration. This example includes only three patchpoints; 
additional patchpoints may be added on indefinitely. With many patchpoints in 
the system, the majority of the matrix M is filled with zeros, since each velocity 



56 METHODOLOGY 

discontinuity is only dependent on the positions and epochs of the three nearest 
patchpoints. 

In its simplest form, the Level 2 corrections are only constrained by the velocity 
discontinuities at each patchpoint. Wilson describes how to add many other types 
of constraints to the differential corrector [134]. Some examples of constraints that 
may be added include: 

•	 Desirable Position Vector. One may target a particular position vector or 
position magnitude for any patchpoint in the trajectory. This may be with 
respect to a point in the coordinate axes or with respect to another body. 

•	 Desirable Inclination. One may target many different orbital parameters, such 
as the inclination of one or more specified patchpoints. 

•	 Maximum Change in Position. One may limit the differential corrector’s 
capability to change one or more patchpoints’ positions during each iteration 
of Level 2. This helps to keep a trajectory near some initial guess. 

Many other types of constraints may be placed on the system. The inclusion of 
additional constraints is very useful for practical spacecraft missions, where the 
trajectory must be designed to begin from a particular state or to end at a particular 
state; however, it does often make it more difficult for the differential corrector to 
converge. 

There are many practical applications of the multiple-shooting differential cor
rector. To demonstrate its use, we will examine its performance as it is used to 
differentially correct a periodic halo orbit from the CRTBP into a quasi-halo orbit in 
the DE421 model of the Solar System. Figure 2-13 provides several representative 
plots of the differential corrector in action. The plots are exaggerated to demonstrate 
the procedure clearly. The plot shown in (a) depicts the initial periodic halo orbit in 
the CRTBP. The trajectory is broken into four segments, separated by five patchpoints 
as shown in (b), where the fifth patchpoint is coincident with the first in the synodic 
frame. The first iteration of Level 1, shown in (c), forces the new trajectory to be 
continuous in position and time in the DE421 model, but permits velocity discontinu
ities at each interior patchpoint. The five patchpoints’ positions and epochs are then 
adjusted in the first iteration of Level 2 as shown in (d). The plots shown in (e) and 
(f) give an exaggerated representation of the second iteration of Levels 1 and 2. The 
plot shown in (g) depicts the trajectory after the third iteration of Level 1; one can 
see that the trajectory is approaching a continuous trajectory. The plot shown in (h) 
depicts the final, converged trajectory that is continuous in the DE421 model within 
some tolerance limits. 

Studying Figure 2-13, one can see that the differential corrector permits the ends 
of the trajectory to be altered substantially since there are no boundary conditions. If 
more revolutions of the halo orbit were originally sent into the differential corrector, 
then the final trajectory would resemble the original halo orbit more closely. This 
process is shown in more detail in Section 2.6.6.3. 

The multiple-shooting differential corrector typically operates on a set of patch-
points that define a single trajectory, presumably to be followed by a single spacecraft. 
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Figure 2-13 An exaggerated demonstration of the implementation of the multiple-shooting 
differential corrector used to convert a halo orbit from the CRTBP into the DE421 model. 

(a)	 The initial CRTBP halo orbit. 
(b)	 The initial placement of patchpoints in the DE421 model. 
(c)	 Level 1: Differential correction to determine the ΔVs necessary to make the trajectory continuous 

in the DE421 model. 
(d)	 Level 2: The adjustments of the patchpoints’ positions and epochs to reduce the total ΔV. 
(e)	 Level 1: The second adjustments of the patchpoints’ velocities to make the trajectory continuous. 
(f)	 Level 2: The second adjustments of the patchpoints’ positions and epochs to reduce the total ΔV. 
(g)	 Level 1: The third adjustments of the patchpoints’ velocities to make the trajectory continuous. 
(h)	 The final converged trajectory in the DE421 model after several additional iterations. 
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However, the differential corrector may certainly be designed to operate on segments 
that represent more than one spacecraft, including segments that branch, segments 
that rendezvous, and/or segments that define a formation. 

2.6.5.3 Multiple-Shooting Implementation The multiple-shooting differen
tial corrector is such a useful tool in the design of low-energy trajectories that further 
attention is given here to derive the algorithms needed to implement it. As described 
earlier, the multiple-shooting differential corrector involves a process that repeats 
two steps until a trajectory is generated that satisfies all given constraints. Level 1 is 
fully described in Section 2.6.5.1, including everything needed to generate software 
to implement it. Level 2 is introduced in Section 2.6.5.2, but the details have been 
omitted in order to demonstrate its operation. Those details are provided here. 

The engine of the most basic implementation of Level 2 is given by Eq. (2.21), 
which computes a linear approximation of the changes that must be made to the 
positions and/or times of the three patchpoints in the scenario in order to reduce 
the ΔV at the interior patchpoint. The multiple-shooting differential corrector may 
certainly be extended to include many trajectory segments and a wide variety of 
constraints. Further, the trajectory segments are not restricted to a single trajectory, 
but may define multiple trajectories that are simultaneously optimized. 

This section begins by describing a basic formulation of Level 2 that involves a 
single trajectory defined by at least three patchpoints such that the only goal is to 
reduce the total ΔV required to traverse that trajectory. Next, the section describes the 
algorithms required to add constraints to the patchpoints in the trajectory. Finally, the 
section includes a discussion about how to implement the multiple-shooting technique 
such that it operates on several codependent trajectories simultaneously. In each case, 
it is always assumed that a ΔV or constraint applied to a particular patchpoint is only 
affected by the position and/or time of that patchpoint and its neighbors, which is an 
important feature in the formulation of Level 2. 

Basic Level 2. The basic Level 2 formulation is one that operates on a single 
trajectory and works only to reduce the ΔV of each interior patchpoint. It is assumed 
that the position and/or time of each patchpoint may be changed to accomplish this 
goal. Hence, the ΔV at the second patchpoint, ΔV2, may be reduced by changing 
the position, the time, or both of the first, second, and third patchpoints. Any other 
patchpoints do not directly influence ΔV2, though their influences are transmitted 
through the connecting patchpoints. 

Equation (2.21) captures the linear estimate of the change in the positions and 
times of three patchpoints needed to reduce ΔV2, the velocity discontinuity at the 
interior patchpoint. This expression may be extended to include multiple patchpoints 
as follows 
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⎤⎡ ⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

δR1 

δt1 

δR2 

δt2 

δR3 

δt3 

. . . 

δRn 

δtn 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

⎤⎡ 
δΔV2 

δΔV3 

. . . 

⎢⎢⎢⎢⎢⎢⎣ 

⎥⎥⎥⎥⎥⎥⎦ 

= MT M M T −1 
(2.22) 

δΔVn−1 

where the matrix M is constructed using the relationship 

⎤⎡ 

= M 

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

δR1 

δt1 

δR2 

δt2 

δR3 

δt3 
. . . 

δRn 

δtn 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

⎤⎡ 
δΔV2 ⎢⎢⎢⎣ 

δΔV3 
. . . 

⎥⎥⎥⎦ (2.23) 

δΔVn−1 

Thus, M is equal to 
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⎤⎡ 
∂ΔV2 ∂ΔV2 ∂ΔV2 ∂ΔV2 ∂ΔV2 ∂ΔV2 0 0 . . . 0 0
∂R1 ∂ t1 ∂R2 ∂ t2 ∂R3 ∂ t3⎢⎢⎢⎢⎢⎢⎢⎣
 

∂ΔV3 ∂ΔV3 ∂ΔV3 ∂ΔV3 ∂ΔV3 ∂ΔV30 0 . . . 0 0
∂R2 ∂ t2 ∂R3 ∂ t3 ∂R4 ∂ t4 

. . . . . . . . . . . . . . . 

∂ΔVn−1 ∂ΔVn−1 ∂ΔVn−1 ∂ΔVn−1 ∂ΔVn−1 ∂ΔVn−10 0 0 0 . . . 
∂Rn−2 ∂ tn−2 ∂Rn−1 ∂ tn−1 ∂Rn ∂ tn 

[M ]
 
(2.24) 

In order to generate M , one requires knowledge of each of the partials given in 
Eq. (2.24). Fortunately, each of these partials may be constructed using the state 
transition matrix, provided that the linear approximations are acceptable. In order to 
derive the formulae needed to represent each of these partials, we must examine the 
problem definition more closely. 

We again consider the first two segments, defined by the first three patchpoints: 
P1, P2, and P3. Each of these patchpoints is characterized by its position R, velocity 
V, and time t. After the application of the Level 1 correction, Segment 1 traverses 
from P1 to P2 and Segment 2 traverses from P2 to P3. The resulting trajectory is 
continuous in position over time (within some small tolerance at P2) and continuous 
in velocity over time except at P2, where ΔV2 defines the difference between V+ 

2 
(the velocity at the start of Segment 2) and V− 

2 (the velocity at the end of Segment 1) 

= V+ − VΔV2 2 
− 
2 

The superscripts “−” and “+” differentiate between the incoming and outgoing 
parameters, respectively, at a particular patchpoint. The position, velocity, and time 

− 
2 , V

the position, velocity, and time of the initial state of Segment 2 are indicated as R+ 
2 , 

− −of the end of Segment 1 are indicated as R , and t , respectively. Likewise, 2 2 

, respectively. After applying Level 1 to P1, R− 
2 = R+ 

2 and t−+V+, and t2 
+ = t2 .2 2 

These are fixed constraints and assumed in the formulation of Level 2.
 
The state transition matrix, Φ, may be mapped from P1 to P2 and from P3 to P2 to
 

approximate the response of V− 
2 and V2 

+, respectively, given a change in the states 
of P1 and P3. The basic Level 2 formulation defines the state transition matrix to be 
a 6 × 6 matrix as given in Eq. (2.18) 

δRf 

δVf 
= Φ 

ΔR0 

ΔV0 

where we indicate a change in parameters performed by the user by a “Δ” and the 
response by a “δ”. The 6 × 6 state transition matrix may be broken up into four 3 × 3 
submatrices as illustrated previously in Eq. (2.18) and repeated here 

⎥⎥⎥⎥⎥⎥⎥⎦
 

δRf ΦRR (tf , t0) ΦRV (tf , t0) ΔR0 = (2.25)
δVf ΦV R (tf , t0) ΦV V (tf , t0) ΔV0 
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In order to simplify the nomenclature, we abbreviate the pieces of Eq. (2.25) as 
follows, where the state transition matrix is now demonstrating a mapping of the 
deviations from patchpoint P1 to patchpoint P2 

δR− 
2 A21 B21 ΔR+ 

1= 
δV− 

2 ΔV+C21 D21 1 
(2.26) 

This simplified notation is commonly found in literature [134]. Using this simplifi
cation, the matrix C23 would describe the change in V+ caused by a perturbation in 2 
the position of P3, namely, R− 

3 . 
The Level 1 differential corrector process given in Eq. (2.19) may be written using 

this simplified notation as follows, where we have again applied it to describe the 
linear approximation of the change in velocity of P1 needed to achieve a position 
difference at the time t2 

ΔV+ = B−1δR1 21 
− 
2 

The following two linear systems represent approximations of the changes in P2 

that are caused by deviations in the patchpoints P1 and P3 [134], where it is assumed 
that the deviations are all small enough to be in the linear regime of the dynamics 
along each trajectory 

δR− 
2 − V− 

2 δt
− 
2 

+ΔR+ 
1 − V1 

+ΔtA21 B21 1 
+ (2.27)= 

δV− 
2 − a − 

2 δt
− 
2 

+ΔV1 
+ − aC21 D21 Δt1 1 

A23 B23 ΔR− 
3 − V− 

3 
−δR+ − V+δt+ 

2 2 2 Δt3 (2.28)= 
ΔV− 

3 − a − 
3 Δt

−+δV+ − a δt+ 
2 2 2 C23 D23 3 

The formulation for this particular Level 2 differential corrector includes the 
fixed constraints that the trajectory be continuous in position and time across each 

− 
2 

− = R+ 
2 

+patchpoint. Hence, R = R2 and t = t2. For most applications, this = t2 2 
− +also implies that a a2, though that may not be the case in the presence = a = 2 2 

of dynamics that are velocity-dependent, such as atmospheric drag. These fixed 
constraints will be applied to each and every patchpoint in turn as the matrix M is 
constructed. 

The targets for this Level 2 are that V− 
2 = V+ 

2 in order that the trajectory require 
no ΔV. The formulation is nearly identical for the case when a mission designer 
wishes to specify that a particular ΔV be performed at a patchpoint. Hence, the more 
general target is given by 

Δˆ V+V2 − 2 − V− 
2 = 0 (2.29) 

where the vector ΔV̂2 is specified by the designer. 
As described earlier, the controls available to achieve the target ΔV̂2 include the 

position vectors and times of P1, P2, and P3. The controls and constraints applied to 
achieve the target ΔV̂2 permit V+ and V1 

− 
3 to be free variables, though those may 

be targeted by neighboring constraints as the matrix M is constructed. 
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In summary, there are 28 parameters involved with the goal of achieving a desirable 
ΔV across P2, including the position, velocity, and time at the beginning and end of 
each trajectory segment, organized as follows 

Fixed Constraints: R− 
2 = R+ 

2 = R2, t− + = t = t22 2 
Controls: ΔR1, Δt1, ΔR2, Δt2, ΔR3, Δt3 

− 
3Free Variables: ΔV1 

+ , ΔV

Targets: δV+ 
2 − δV− 

2 V+ 
2 − V− 

2= ΔV̂2 − 

A similar set of parameters is defined for each patchpoint that is included in the 
differential correction process. 

The first row of the M matrix requires six partial derivatives. These in turn require 
other partial derivatives, as follows 

− 
2 ∂V− 

2∂V+ 
2 ∂V+ 

2∂ΔV2 ∂V ∂ΔV2 ∂ΔV2 
= − −= = − ∂R− 

3∂R+ 
1 ∂R+ 

2∂R1 ∂R2 ∂R3∂R2 
− 
2 ∂V− 

2∂V+ 
2 ∂V+ 

2∂ΔV2 ∂V ∂ΔV2 ∂ΔV2 
= − −= = − ∂ t− 

3∂ t+ 
1 ∂ t+ 

2∂ t1 ∂t2 ∂ t3∂ t2 

Wilson provides details to construct each of these partials [134]; we will demon
−∂Vstrate the process and illustrate the construction of + 
1

2 

in the same manner to construct each of these partials. 
; the process may be applied 

∂R

∂R

−∂VIn order to construct + 
1 

control to zero, namely 

2 , we first set the perturbation of every other independent 

δR2 = δR3 = 0 
δt1 = δt2 = δt3 = 0 

These values may then be inserted into Eqs. (2.27) and (2.28) or their inverses, 
whichever generates the most practical result. There are often many ways to describe 
the partials, and we are interested in the simplest relationships. For this particular 
case, the simplest relationship comes from substituting these values into the inverse 
of Eq. (2.27) 

− 
2 − V− 

2 
−δR+ − V+δt+ 

1 1 1 A12 B12 δR δt2 (2.30)= − 
2 − a − 

2 δt
−+δV+ − a δt+ 

1 1 1 C12 D12 δV 2 

δR+ 
1 A12 B12 0 

(2.31)= 
δV1 

+ C12 D12 δV− 
2 

This yields a system of two equations 

δR+ 
1 

− 
2 and (2.32)= B12δV

δV+ 
1 

− 
2 (2.33)= D12δV
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The first equation provides the relationship we are interested in, namely 

δV− 
2 = B−1 (2.34)

δR+ 12 
1 

Φ−1Be aware that although Φ21 = , the submatrices do not typically follow such 12 
inverse relationships; that is, B−1  12 = B21. 

This procedure may be followed to generate relationships for each partial required 
for the production of the matrix M . The result is the following 

∂ΔV2 ∂V− 
2 −B−1 = − = 12∂R1 ∂R+ 
1 

∂ΔV2 ∂V2 
− 

B−1V+ = − = 12 1∂ t1 ∂t+ 
1 

∂ΔV2 ∂V+ ∂V− 
2 2 −B−1 = − = 32 A32 + B−1 

12 A12
∂R2 ∂R− ∂R+ 

2 2 

∂ΔV2 ∂V+ ∂V−     
2 2 + − B−1 − B−1− a= − = a2 2 + 32 A32V

+ 
12 A12V2

− 
2∂ t2 ∂ t− ∂t+ 

2 2 

∂ΔV2 ∂V+ 
2 B−1 = = 32∂R3 ∂R− 
3 

∂ΔV2 ∂V+ 
2 −B−1V− = = 32 3∂ t3 ∂ t− 
3 

Finally, we have all of the pieces to use Eq. (2.22) to determine an approximation 
of the adjustments that must be made in the positions and times of each patchpoint 
as a function of the unwanted velocity changes in each patchpoint. 

Level 2 with Constraints. The Level 2 differential corrector can be modified to 
place a wide variety of constraints on the patchpoints in the system. For instance, 
we already observed in the derivation of the partials above that it is quite arbitrary 
to enforce the ΔV at each patchpoint to zero; rather, one can specify a list of ΔV 
values to perform at particular times and drive the trajectory to that solution instead. 
Before doing that, we must have a way of preventing the Level 2 corrector from 
adjusting a patchpoint’s time. This is one example of a constraint that may be 
placed on the system. Other examples include constraining a patchpoint to have a 
particular inclination relative to some body, or to be located at a particular position 
or distance relative to a body. These constraints are very important when designing 
a practical trajectory for a spacecraft mission. For instance, the trajectory being 
designed may be an extension to a spacecraft’s mission that is already in orbit, such 
that the trajectory must originate from the spacecraft’s current trajectory. Or perhaps 
the trajectory being designed must land on the Moon at a particular landing site. The 
multiple-shooting differential corrector can accommodate any of these scenarios. 
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Any constraint may be added to the Level 2 architecture as long as it may be 
described in the form 

αij = f(Ri, Vi, ti) (2.35) 

where the subscript i represents the patchpoint that the constraint is placed upon 
and the subscript j indicates the constraint number applied to that patchpoint. This 
nomenclature is consistent with that used by previous authors [134]. In this form, 
a constraint may be treated precisely the same as the ΔV targets described in the 
previous section. The constraint will be added to the list of targets for the differential 
corrector. It will be assumed, once again, that the only controls that may influence 
the constraint are the position and time of the patchpoint that the constraint is applied 
to as well as the positions and times of the two neighboring patchpoints (or the 
single neighboring patchpoint in the case of a constraint placed on the first or last 
patchpoint of a trajectory). The differential corrector may certainly be re-derived to 
operate with constraints that act upon many patchpoints, but this discussion is limited 
to constraints that act upon a single patchpoint. 

It is straightforward to add a constraint to the list of targets in the differential 
corrector. The relationship given in Eq. (2.23) is augmented as follows ⎤⎡ 

δΔVi 

δαij 
= 

⎢⎢⎢⎣ 

∂ΔVi ∂ΔVi 

∂Rk ∂tk 

∂αij ∂ αij 

∂Rk ∂tk 

[P ] 

⎥⎥⎥⎦ 
δRk 

δtk 
(2.36) 

where the matrix P is known as the augmented state relationship matrix (SRM). 
Equation (2.36) is highly compressed: P is typically sparsely populated roughly 
along the diagonal, such that each constraint and each ΔV may only be influenced 
by the patchpoint it is assigned to and that patchpoint’s nearest neighbors. Much 
like the ΔV constraints described in the previous section, each constraint requires the 
definition of the following six partials 

∂ αij ∂ αij ∂ αij 

∂Ri−1 

∂ αij 

∂Ri 

∂ αij 

∂Ri+1 

∂ αij 
(2.37) 

∂ti−1 ∂ti ∂ ti+1 

A quick observation shows that the ΔV constraints described in the previous section 
are a specific case of a constraint, where αij = ΔVi. 

Any constraint that is a function of the position and/or time of one of the control 
patchpoints, and not a direct function of the velocity of any patchpoint, may be easily 
defined. For instance, if one wishes to constrain the time of patchpoint Pi, one simply 
characterizes that constraint as 

αij = ti − t̂i 
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where t̂i is the desired time. One then computes the partials given in Eq. (2.37) and 
finds that the only non-zero partial is 

∂αij 
= 1 

∂ti 

Similarly, if one wishes to constrain the position vector of patchpoint Pi, one 
characterizes that constraint as 

αij = Ri − R̂i 

where R̂i is the desired position vector. One then finds that the only non-zero partial 
is 

∂ αij 
= I3×3

∂Ri 

Constraints that depend on velocity are more complex, as demonstrated by the ΔV 
constraints given above. In order to compute the partials given in Eq. (2.37), one must 
perform the chain rule and compute additional partial derivatives. Fortunately, many 
of these were computed in the previous section, and many go to zero for numerous 
constraint formulations. The relationships are 

∂ αij ∂αij ∂αij ∂V
− 
i 

∂Ri−1 
= 

∂Ri−1 
+ 
∂V− ∂Ri−1i 

∂ αij ∂αij ∂ αij ∂V
− 
i 

∂ ti−1 
= 

∂ ti−1 
+ 
∂V− ∂ ti−1i 

∂ αij ∂ αij ∂ αij ∂V
− ∂ αij ∂V

+ 
i i = + + 

∂Ri ∂Ri ∂V− ∂Ri ∂V+ ∂Rii i 

∂ αij ∂ αij ∂ αij ∂V
− ∂ αij ∂V

+ 
i i = + + 

∂ ti ∂ ti ∂V− ∂ ti ∂V+ ∂ tii i 

∂αij ∂ αij ∂ αij ∂V
+ 
i = + 

∂Ri+1 ∂Ri+1 ∂Vi 
+ ∂Ri+1 

∂ αij ∂ αij ∂αij ∂V
+ 
i = + 

∂ ti+1 ∂ ti+1 ∂V+ ∂ ti+1i 

Wilson derives the formulae that may be used to constrain a patchpoint’s velocity, 
velocity magnitude, inclination, apse location, flight path angle, declination, right 
ascension, and conic energy [134]. For example, the conic energy relative to a 
massive body may be described as 

|Vi|2 µ
αij = − 

2 |Ri|
Vi · Vi µ 

= − 
2 (Ri · Ri)1/2 



66 METHODOLOGY 

where µ is the gravitational parameter for the central body. The majority of the 
partials given above are either zero or already known. The remaining partials may 
be computed as follows 

∂ αij 
= 

µRT 
i 

∂Ri 

∂ αij 

∂V± 
i 

= 

|Ri|3 

V±T 
i 

∂ αij 
= 0 

∂ ti 

The implementation of additional constraints is left to the designer. 

A practical constraint that is not formulated in the same way is to restrict the size 
of the steps that the Level 2 differential corrector may take between iterations. The 
differential corrector estimates the change in each patchpoint’s position, time, or both 
in order to achieve the given targets, and it does so using a large system of linearized 
equations. It is often the case that small perturbations drive the realized deviations in 
the trajectory into highly nonlinear regimes. In practice, it is often the case that the 
application of a full adjustment in the controls will push the trajectory further from 
the desired solution than it started. If a designer observes the trajectory diverging 
from the desired target, one common solution is to limit the maximum deviation that 
the patchpoints may shift in position or time per iteration of the differential corrector. 
If implemented properly, the smaller steps should keep the trajectory within the basin 
of convergence of the solution. 

Level 2 with Multiple Trajectories. The Level 2 differential corrector formulated 
here operates on a large system of controls, targets, and constraints, where ultimately 
each patchpoint in the system contributes to the satisfaction of all goals, though each 
patchpoint is only directly influenced by its neighboring patchpoints at any given 
iteration. This system may be applied to multiple trajectories simultaneously in 
much the same way as it is applied to a single trajectory. This has clear practical 
applications for many spacecraft missions that involve deployments, separations, 
and/or formation-flying activities. 

One may formulate the Level 2 differential corrector with multiple trajectories by 
augmenting the SRM, P , once again, such that it includes the patchpoints, targets, 
and constraints of every trajectory. One must be sure to permit the system some ΔV 
leverage to allow any given pair of trajectories to separate (either forward in time or 
backward in time, as appropriate). 

For example, let us assume we have a scenario that involves one spacecraft de
ploying a secondary payload via a spring mechanism, which imparts a specified ΔV 
between the two spacecraft. Let us also assume that the differential corrector is 
permitted to vary the trajectory of the joined system prior to the deployment, as well 
as both trajectories after the deployment, and the deployment ΔV may occur in any 
direction. One way to model this scenario is to set up two series of patchpoints that 
define each spacecraft and then carefully lock the two spacecraft together. A practical 
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way to lock the two trajectories together is to define the first patchpoint of the de
ployed payload to be prior to the deployment, such that its position, velocity, and time 
are all constrained to be equal to the relevant parameters of the host spacecraft. That 
is, it is entirely constrained to match the corresponding patchpoint on the host space
craft’s trajectory. The second patchpoint in the deployed payload’s trajectory is then 
defined to be the deployment event, such that its position and time are constrained 
to be equal to the position and time of the host spacecraft at the deployment, and 
its outgoing velocity is constrained to have the appropriate ΔV magnitude applied. 
From there the trajectory departs in the same way as any other trajectory. In this 
scenario, one would also have to take care to model the appropriate reaction to the 
host spacecraft’s trajectory via constraints. 

The augmented SRM for the case of multiple trajectories is very sparse, and it 
may be beneficial to implement numerical algorithms that take advantage of this 
feature. The simple Step 2 SRM includes nonzero elements only on a diagonal 
swath six elements wide. The SRM shifts further away from diagonal each time it is 
augmented by an additional constraint or an additional trajectory, though it remains 
approximately diagonal. 

2.6.6 Constructing Periodic Orbits 

Periodic orbits are important when analyzing and constructing trajectories using 
dynamical systems methods, since they help to characterize the flow in the system. 
There are many methods that are frequently used to identify and construct periodic 
orbits. Three categories of methods are described here: 

1. Analytical Expansion Techniques.	 The discussion given in Section 2.6.2.2 
demonstrates how to use basic analytical techniques to identify planar and 
three-dimensional periodic orbits in the CRTBP. Many authors have constructed 
analytical expansions that may be used to approximate periodic orbits in the 
CRTBP or in more complex systems [67, 123, 139]. 

2. Shooting Techniques.	 One may numerically construct a periodic orbit by 
targeting a single state as both the initial and final states in a trajectory using 
either a single- or multiple-shooting technique. This technique is difficult 
without any constraints, but it has proven to be very useful when numerically 
constructing certain types of periodic orbits, such as simple symmetric periodic 
orbits [46, 107, 108, 122]. 

3. The Poincar e Method. ´ The Poincar ́e Method is a notable method that has 
proven to be very successful at identifying periodic and quasiperiodic orbits, 
especially stable orbits. Poincaré’s technique involves numerically integrating 
many trajectories for a large amount of time. Trajectories that are close to 
periodic tend to linger near the same regions of the state space. One can 
readily identify stable periodic orbits or trajectories near such orbits if one 
places a plane in the state space, that is, a Poincar ́ Then e Surface of Section. 
one records the state of each trajectory as the trajectory pierces the plane. 



  

68 METHODOLOGY 

A periodic orbit appears as a fixed-point in the plane; a quasiperiodic orbit 
appears as a closed loop in the plane. Regions that are unstable in the state 
space appear as a chaotic sea of points, since unstable trajectories are very 
sensitive to their initial conditions. 

Many other types of methods certainly exist, but these three categories provide a 
good overview of the variety of methods that are frequently used. 

2.6.6.1 Periodic Orbits in the CRTBP If the Lagrange points represent the 
five simplest solutions to the CRTBP, it may be argued that the next set of solutions 
to introduce is the set of simple periodic symmetric orbits in the CRTBP. Simple 
periodic symmetric orbits are orbits that are symmetric about the y = 0 plane, pierce 
the y = 0 plane exactly twice per orbit, and pierce the plane orthogonally each time. 
Libration orbits, such as halo and Lyapunov orbits, are good examples of such orbits. 
A simple single-shooting differential correction scheme may be used to construct 
these orbits by taking advantage of their well-defined structure. Section 2.6.6.2 
provides more information about this differential correction scheme. It should be 
noted that although this class of orbits does include what might be argued to be the 
simplest periodic orbits in the CRTBP, this class of orbits also includes families of 
very complex orbits. 

Many other types of periodic orbits exist in the CRTBP, including orbits that 
pierce the y = 0 plane multiple times per orbit and orbits that are not symmetric, 
such as orbits about the triangular Lagrange points. One may also construct arbitrarily 
complex periodic orbits by chaining simple unstable orbits together, as is discussed 
in Section 2.6.11. 

2.6.6.2 Single-Shooting Method for Constructing Simple Periodic Sym
metric Orbits in the CRTBP One may formulate many types of shooting tech
niques to identify periodic orbits using the techniques introduced in Section 2.6.5. 
Howell identified a simple procedure that has been used by many researchers in the 
field [122]. The technique is easily applied to the families of halo orbits, Lyapunov 
orbits, distant prograde orbits, distant retrograde orbits, symmetric resonant orbits, 
and a variety of other classes of symmetric periodic orbits [46]. Since it is a very 
common and straightforward procedure, and since it has been used repeatedly in 
relevant research to construct halo orbits and other similar orbits, it is reviewed here. 

As mentioned earlier, simple periodic symmetric orbits are orbits that are symmet
ric about the y = 0 plane, pierce the y = 0 plane exactly twice per orbit, and pierce 
the plane orthogonally each time. Let us define X(t0) to be the state of a simple 
periodic symmetric orbit at the y = 0 plane-crossing with a positive ẏ and X(tT /2) 
to be the state of the orbit half of its orbital period later at the y = 0 plane-crossing 
with a negative ẏ. For this orbit to be periodic and symmetric, these states must have 
the following form 

T
X(t0) = [ x0 0 z0 0 ẏ0 0 ] (2.38) 

T 
X(tT /2) = xT /2 0 zT /2 0 ẏT /2 0 
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Let us assume that we have an initial guess, X̂(t0), that is near the initial state of a 
desirable orbit. When we integrate this state forward in time until the next y = 0 
plane, we obtain the state X̂(t ̂ )T /2  

X̂(t ̂ ) = x ̂ 0 z ̂ ẋ ˆ ẏ ˆ ż ˆT /2 T /2 T /2 T /2 T /2 T /2

T 

We now wish to adjust the initial state of the trajectory in such a way as to drive the 
values of ẋ ˆ and ż ˆ to zero. One notices that by adjusting the initial state, not T /2 T /2 

only do the values of ẋ and ˙ T /2, needed to pierce z change, but the propagation time, ˆ
the y = 0 plane also changes. In order to target a proper state X(tT /2), one may vary 
the initial values of x, z, and/or ẏ. 

The linearized system of equations relating the final state to the initial state may 
be written as 

r

∂X 
δX(tT /2) ≈ Φ tT /2, t0 δX(t0) + δ(T /2) (2.39)

∂ t 
where δX(tT /2) is the deviation in the final state due to a deviation in the initial 
state, δX(t0), and a corresponding deviation in the orbit’s period, δ(T /2). The 
time-derivative of the state, ∂X/∂t, may be computed at the second plane-crossing, 
namely, at time t = T /2. Equation (2.39) may be used as the driver for a differential 
corrector by setting δX(tT /2) to be the desired change in the final state’s components 
and solving for δX(t0), the approximate correction to the initial state needed to 
produce such a change. 

We now consider what the desired change in the final state’s components should 
be. For our purposes, the only desired change in the final state is a change in the 
values of ẋ and ż, but it is not important if the other components of the final state 
change. However, we know that the deviation in the final value of y will always be 
equal to zero since the trajectory is always propagated to that point. Thus we set 
δX(tT /2) to 

T 
δX(tT /2) = δxT /2 0 δzT /2 −ẋT /2 δẏT /2 −żT /2 

Furthermore, in order to restrict our search to simple periodic symmetrical orbits, we 
restrict the allowed correction in the initial conditions to 

T 
δX(t0) = δx0 0 δz0 0 δẏ0 0 

Now Eq. (2.39) simplifies to ⎤⎡ ⎤⎡⎤⎡⎤δxT /2 φ12 φ13 φ14 φ15 φ16 δx0 ẋ
0⎢⎢⎢⎢⎣ 

φ22 φ23 φ24 φ25 φ26 0 
δz0 
0 

⎥⎥⎥⎦ 
+ 

⎢⎢⎢⎣ 

ẏ
ż
¨

⎥⎥⎥⎦ 
tT /2, t0 

⎢⎢⎢⎣ 
δzT /2 φ32 φ33 φ34 φ35 φ36 
−ẋT /2 φ42 φ43 φ44 φ45 φ46 x 

⎥⎥⎥⎦ 

⎡ ⎢⎢⎢⎣ 

⎥⎥⎥⎥⎦ 

φ11 
φ21 
φ31≈ δ(T /2) (2.40)φ41
 

yT /2
 
−żT /2 φ61 φ62 φ63 φ64 φ65 φ66 0 z̈ 


The value of δ(T /2) may be determined from the second line of Eq. (2.40) to be 

−φ21δx0 − φ23δz0 − φ25δẏ0
δ(T /2) = (2.41) 

ẏ

δ ˙ φ51 φ52 φ53 φ54 φ55 φ56 δẏ0 ÿ 
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Substituting this value into the fourth and sixth lines of Eq. (2.40) yields 

ẍ ẍ ẍ−ẋT /2 ≈ φ41 − φ21 δx0 + φ43 − φ23 δz0 + φ45 − φ25 δẏ0 (2.42) 
ẏ ẏ ẏ

z̈ z̈ z̈−żT /2 ≈ φ61 − φ21 δx0 + φ63 − φ23 δz0 + φ65 − φ25 δẏ0 (2.43) 
ẏ ẏ ẏ

Equations (2.42) and (2.43) give expressions for the approximate deviation in the 
final x- and z-velocities as functions of the deviation in all three initial conditions 
x0, z0, and ẏ0. It is sufficient to change only two of the initial conditions, if that is 
desirable, or a combination of all three. For the purpose of this description, the value 
of x0 will be kept constant, and the values of z0 and ẏ0 will be permitted to vary. The 
following expression summarizes the approximate changes that must be made to z0 

and ẏ0 to produce a desirable change in the final state (while keeping the other initial 
conditions constant) � �−1 

ẍ ẍ
δz0 φ43 − φ23 ẏ φ45 − φ25 ẏ −ẋT /2≈ (2.44)z̈ z̈δẏ0 φ63 − φ23 ẏ φ65 − φ25 ẏ −żT /2 

Since the system was linearized in order to produce this procedure, the adjustments 
will not correct the unwanted motion perfectly; this procedure must be iterated until 
it converges on an orbit. 

When all is said and done, a simple, symmetric periodic orbit has three nonzero 
states at its orthogonal y = 0 plane crossing: x0, z0, and ẏ (see Eq. (2.38)). The 
procedure outlined here is used to generate the periodic orbit given one of those 
parameters and estimates of the other two. Because of this, a family of periodic 
orbits may be well represented by plotting its initial ẏ values or its Jacobi constant 
values as a function of its initial x values. Figure 2-14 illustrates these curves using 
the family of Lyapunov orbits about LL1 as an example. 

2.6.6.3 Differentially Correcting Orbits into the DE421 Model An orbit 
that is perfectly periodic in the CRTBP is not perfectly periodic in the real Solar 
System since the planets and moons in the real Solar System do not move in circular, 
coplanar orbits. Various perturbations lead the orbit to diverge from being periodic; 
the most notable of which is the nonzero eccentricity of the orbits of the primary 
bodies in the system [100]. 

To produce a quasiperiodic orbit in the real Solar System, one can use a multiple-
shooting differential corrector with the periodic CRTBP orbit as the initial guess of the 
real trajectory. This technique was demonstrated in Section 2.6.5.2. The differential 
corrector takes the CRTBP orbit and perturbs it to keep it near its initial guess while 
eliminating the need to perform large maneuvers. In the case of generating a quasi-
periodic halo or Lissajous orbit in the DE421 model of the Solar System, one may 
use an analytical approximation of the orbit as the initial guess to the differential 
corrector [123, 139]. This has been demonstrated on many occasions and has been 
shown to work well [47]. 
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Figure 2-14 Plots of x0 vs. ẏ0 (top) and x0 vs. C (bottom) for the family of Lyapunov 
orbits about the Earth–Moon L1 point. The initial values of the other Cartesian coordinates 
in the Earth–Moon synodic frame are all equal to zero for each orbit in this family [101] 
(Acta Astronautica by International Academy of Astronautics, reproduced with permission of 
Pergamon in the format reuse in a book/textbook via Copyright Clearance Center). 

Figure 2-15 shows the difference between a halo orbit about the lunar L2 point 
produced in the CRTBP compared with the same halo orbit differentially corrected 
into the DE421 model of the real Solar System. One can see that the real halo 
orbit is quasiperiodic, tracing out the same vicinity of space on each orbit, but never 
truly retracing itself. For this illustration, the realistic quasi-halo orbit is plotted in 
a coordinate frame that is normalized over time based on the instantaneous distance 
between the Earth and the Moon, and then re-scaled to the average distance between 
the Earth and the Moon. 
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Figure 2-15 A comparison between a halo orbit produced in the CRTBP and a quasi-halo 
orbit produced in the DE421 model of the real Solar System. The orbits are shown in the 
Earth–Moon synodic reference frame [44, 46]. 

The perfectly periodic CRTBP orbit is typically a very close approximation of the 
real quasiperiodic orbit, enough so that the early mission design may be developed 
in the CRTBP. This is convenient because the motion of a spacecraft in a perfectly 
periodic orbit is more predictable than the motion of a spacecraft in a quasiperiodic 
orbit. 

On several occasions, it has been observed that some of the structure of a periodic 
orbit in the CRTBP becomes lost or significantly altered as the orbit is differentially 
corrected into the DE421 model. This is often seen when a single revolution of a 
periodic orbit is sent into the differential corrector. Ordinarily, a differential corrector 
converges on a continuous trajectory more readily if the trajectory’s endpoints are 
not constrained. Without the boundary values constrained, it is often the case that the 
differential corrector significantly alters the states of the trajectory’s endpoints. The 
resulting trajectory, although continuous, may not resemble the original orbit much 
at all. This effect may be observed in Fig. 2-16. 

One way to combat this effect is to differentially correct several orbits of the 
periodic orbit together. For the purpose of this discussion, let us say that four periodic 
orbits are differentially corrected together. Then, two of the orbits are “outer” orbits 
(the first and last orbits) that are vulnerable to substantial changes in the differential 
correction process, and two of the orbits are “inner” orbits (the second and third 
orbits) that are more protected from significant alteration in the process. Normally, 
the differential corrector converges on a continuous trajectory before the inner orbits 
are substantially altered. Once the differential corrector has converged on the final 
trajectory, then the outer orbits may be pruned off in order to observe the structure of 
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Figure 2-16 A single L2 halo orbit in the Earth–Moon CRTBP (left) is differentially-
corrected into the DE421 model (right) [46]. 

the resulting quasiperiodic orbit. Ordinarily, this procedure results in quasiperiodic 
orbits that exist in the DE421 model that retain the same structure as the periodic 
orbits that exist in the CRTBP. Figure 2-17 shows an example of this process. 

Since halo orbits are used frequently in later chapters of this book, some discus
sion is given here regarding the largest observable deviations between the perfectly 
periodic halo orbit in the CRTBP and the quasi-halo orbit in the real Solar System. 
Arguably the most substantial deviation between the CRTBP and the real Solar Sys-

Figure 2-17 An example of the process of differentially correcting and pruning a halo orbit 
from the Earth–Moon CRTBP into the DE421 model. Left: the nominal periodic halo orbit in 
the Earth–Moon CRTBP; center: the differentially corrected trajectory in the DE421 model; 
right: the pruned quasiperiodic halo trajectory in the DE421 model [44, 46]. 
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tem, at least in the case of the Sun–Earth and Earth–Moon three-body systems, is 
the nonzero eccentricity of the orbits of the primary bodies in the system. The real, 
eccentric orbit of the primaries imparts a deviation in the quasi-halo orbits that has 
a period equal to the orbital period of the primaries. Since most halo orbits have a 
period equal to approximately half of the orbital period of the primaries, this dynamic 
perturbation tends to appear as a resonant pulsation. One quasi-halo revolution tends 
to deviate from the perfectly periodic halo orbit in one direction, and the next rev
olution tends to deviate in the opposite direction. The result is that a spacecraft on 
a quasi-halo orbit tends to retrace its path very closely every other revolution. This 
effect is less visible when the reference frame is centered on a Lagrange point rather 
than the barycenter, since the Lagrange point pulses in and out as the primary bodies 
follow their noncircular orbits. 

Figure 2-18 illustrates the pulsation that exists in the Earth–Moon system by 
showing a plot of the distance between the Moon and a spacecraft traversing an orbit 
much like that one shown in Figs. 2-16 and 2-17. One can see that every other 
revolution retraces a similar path. The moments in time when the Moon reaches 
its perigee and apogee are indicated for reference. Figure 2-19 illustrates how this 
same quasi-halo orbit appears in the DE421 ephemeris when viewed in different 
synodic coordinate systems, including an Earth-centered synodic frame, out to an 
LL2-centered synodic frame. 

2.6.7 The Continuation Method 

Periodic orbits in the CRTBP may be grouped into families, where a family consists 
of an infinite number of periodic orbits whose properties vary continuously from 
one end of the family to the other. All orbits in the same family may be uniquely 
identified by a single parameter of that family, for example, their position on a 
perpendicular y = 0 plane crossing, their velocity at that crossing, or some other 
specified parameter. This property of the CRTBP is due to the existence of the Jacobi 

Figure 2-18 The distance between the orbit and the Moon over time for a realistic quasi-halo 
orbit. The moments in time when the Moon reaches its perigee and apogee are indicated by 
the symbols “p” and “a”, respectively. 
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Figure 2-19 An illustration of how the same quasi-halo orbit appears in different synodic 
coordinate systems. From left to right, the systems include an Earth-centered synodic frame, 
an L1-centered frame, a Moon-centered frame, and an L2-centered frame. 

constant, the CRTBP’s unique integral of motion. H ́enon provides more discussion 
about the existence of families of solutions in the CRTBP [113]. 

Once a single periodic orbit is known in the CRTBP, then the continuation method 
may be used to traverse that orbit’s family. The method starts by perturbing some 
parameter of the known periodic orbit and then differentially correcting the new con
ditions to find that periodic orbit’s neighbor in its family. The differential corrector 
presented in Section 2.6.6 is well-suited to this method for simple periodic symmetri
cal orbits because one may vary the initial position and correct for the initial velocity 
that corresponds to the next periodic orbit in the family (or vice versa, if desired). 

To demonstrate this method, the continuation method has been applied to the 
family of Lyapunov orbits that exist about the Earth–Moon L2 point. First, a single 
Lyapunov orbit is identified, for example, the gray orbit in Figs. 2-20 and 2-21. The 
orbit’s initial position, x0, is then systematically varied while a differential corrector 
fills out the curve shown in Fig. 2-20. The initial conditions in the curve correspond 
to the family of orbits shown in Fig. 2-21. 

The continuation method works well when the perturbations are small; in practice 
it is beneficial to predict the differential corrector’s adjustment to the perturbation 
because this allows larger jumps in the varying parameter. Furthermore, if the 
perturbations are too large, the differential corrector may converge on a solution of a 
different family. Thus smaller steps or better prediction methods may be required to 
make the continuation method more reliable. The work for this study has implemented 
a quadratic prediction method that uses the three previous data points of the family to 
predict the next data point. This has been sufficient to allow the differential corrector 
to converge quickly while allowing the curve of the family to evolve naturally over 
the state space. Two-dimensional curve tracking algorithms may also work well since 
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Figure 2-20 A plot of the initial conditions of the family of Lyapunov orbits about the 
Earth–Moon L2 point (LL2) [140] (Copyright ©2006 by American Astronautical Society c
Publications Office, San Diego, California [website http://www.univelt.com], all rights 
reserved; reprinted with permission of the AAS). 

Figure 2-21 Plots of the orbits in the family of LL2 Lyapunov orbits corresponding to those 
initial conditions shown in Fig. 2-20 [140] (Copyright ©2006 by American Astronautical c
Society Publications Office, San Diego, California [website http://www.univelt.com], all rights 
reserved; reprinted with permission of the AAS). 

http:http://www.univelt.com
http:http://www.univelt.com
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state space curves are not necessarily well-modeled by polynomials. For instance, 
one may extrapolate curves using a constant arc-length of two parameters [141]. 

2.6.8 Orbit Stability 

The stability of a periodic orbit may be determined by analyzing the eigenvalues of 
the orbit’s monodromy matrix. A random perturbation in the state of a spacecraft on 
an unstable orbit will cause the spacecraft’s state to exponentially diverge from that 
of the original orbit over time; hence, the monodromy matrix of an unstable orbit 
includes at least one eigenvalue for which the real component is outside of the unit 
circle. This section explores the stability characteristics of periodic orbits via the 
eigenvalues of their monodromy matrices. 

2.6.8.1 Eigenvalues of an Orbit’s Monodromy Matrix The monodromy 
matrices of orbits in the CRTBP have six eigenvalues, λi for i = 1, 2, . . . , 6, corre
sponding to the eigenvectors vi. The eigenvalues of the monodromy matrix occur in 
reciprocal pairs [142], which is a direct consequence of the symplectic nature of the 
monodromy matrix, and of the state transition matrix in the CRTBP in general [143]. 
Additionally, a pair of eigenvalues of the monodromy matrix will be equal to unity 
because of the Jacobi integral of motion in the CRTBP [131, 142]. The eigenvalues 
are thus related in the following way 

1 1 
λ2 = λ4 = λ5 = λ6 = 1 (2.45)

λ1 λ3 

The monodromy matrices of periodic orbits in the planar CRTBP only have four 
eigenvalues: (λ1, 1/λ1, 1, 1). Since those orbits may be computed in the spatial 
CRTBP by setting their z- and ż-components to zero, the remainder of this section 
only considers orbits in the full three-dimensional system. 

The eigenvalues of the monodromy matrix of a periodic orbit in the CRTBP are the 
roots of a characteristic equation; furthermore, each has a characteristic exponent, 

αTα, where λ = e and T is the period of the orbit. Then, the reciprocal of that 
−αTeigenvalue is equal to: 1/λ = e . The characteristic exponents are sometimes 

referred to as Lyapunov characteristic exponents [144]. 
The monodromy matrices of Keplerian orbits, such as low Earth orbits (LEOs), 

have three pairs of eigenvalues that are all equal to 1, indicating that after a full orbit 
any given perturbation neither grows nor decays exponentially. The monodromy 
matrices of periodic orbits in the CRTBP may have other eigenvalue pairs, including 
real values not equal to 1 and pairs of complex numbers. Table 2-5 provides a 
summary of the resulting motion of a spacecraft in a periodic orbit, whose state is 
perturbed along the eigenvector corresponding to any type of given eigenvalue. 

The stability of a periodic orbit may be identified by observing the resulting motion 
of a perturbed particle in that orbit or by computing the eigenvalues of the orbit’s 
monodromy matrix and comparing those eigenvalues to the results given in Table 2-5. 
The following classification scheme for an orbit’s stability is used in this work: 
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Table 2-5 A summary of the resulting motion of a spacecraft in a periodic orbit, 
whose state is perturbed along the eigenvector corresponding to a given eigenvalue. The 
result of a perturbation along the eigenvector corresponding to a complex eigenvalue 
includes a combination of the imaginary result and one of the real results listed. 

Eigenvalue Result of the perturbation 

Real, within the range [−1,1] 
Real, equal to 1 or −1 

Real, outside of the range [−1,1] 

The perturbation exponentially decays. 
The perturbation neither exponentially 
decays nor grows. 
The perturbation exponentially grows. 

Imaginary After each orbital period, the perturbation 
oscillates about the spacecraft’s original 
state. 

•	 If an eigenvalue exists whose real component is outside of the range [−1,1], 
then the periodic orbit is asymptotically unstable, referred to here as unstable, 
along the corresponding eigenvector. 

•	 If the real component of each and every eigenvalue of the monodromy matrix is 
between −1 and 1, then the orbit is stable. Given the relationships in Eq. (2.45), 
an orbit may only be stable in the CRTBP if each and every eigenvalue pair is 
complex with real components in the range [−1,1]. 

•	 If the orbit is not unstable and there is at least one eigenvalue pair whose real 
component is equal to 1, then the periodic orbit is neutrally stable, or a center 
[130]. 

Since every periodic orbit in the CRTBP has at least one pair of eigenvalues with 
values are equal to unity, then it is customary to ignore that pair of eigenvalues when 
classifying the stability of the orbit [108, 145]. 

To determine the eigenvalues of the monodromy matrix, it is useful to consider the 
characteristic equation, since many of the roots of this equation are already known 

det (M − λI)	=(λ − λ1)(λ − λ2)(λ − λ3)(λ − λ4)(λ − λ5)(λ − λ6) = 0 

=(λ − 1)2(λ − λ1)(λ − 1/λ1)(λ − λ3)(λ − 1/λ3) = 0 (2.46) 

The relationship given in Eq. (2.46) may be re-written in terms of the new parameters 
p and q, keeping consistent with the nomenclature found in the literature [116] 

(λ − 1)2 λ2 + pλ + 1 λ2 + qλ + 1 = 0 (2.47) 

Thus, p = −(λ1 + 1/λ1) and q = −(λ3 + 1/λ3). Equation (2.47) may also be 
factored in the following manner 

(λ − 1)2 λ4 + (p + q)λ3 + (pq + 2)λ2 + (p + q)λ + 1 = 0 (2.48) 
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Equation (2.48) may be re-written using the new parameters α, β, and γ, once again 
to keep consistent with the nomenclature found in the literature [116] (where α should 
not be confused with the characteristic exponent that corresponds to each eigenvalue) 

(λ − 1)2 λ4 + αλ3 + β λ2 + αλ + γ = 0 (2.49) 

In this form it is clear that α = p + q, β = pq + 2, and γ = 1. The benefits of 
factoring the characteristic equation into the parameters α, β, and γ arises at this 
point. Bray and Goudas derive a fast and simple method to compute α and β using 
the monodromy matrix [116, 145] 

α = 2 − trace(M) (2.50) 
α2 − trace(M2)

β = + 1 (2.51)
2 

It is then simple to determine the parameters p and q using knowledge of α and β   
p α ± α2 − 4β + 8 

= (2.52)
q 2 

It then follows that with knowledge of p and q one may determine the corresponding 
eigenvalues   

λ1 −p ± p2 − 4 
= (2.53)

1/λ1 2   
λ3 −q ± q2 − 4 

= (2.54)
1/λ3 2 

The final two eigenvalues have already been predetermined and are given in Eq. (2.45) 
as λ5 = λ6 = 1. Thus, Eqs. (2.50)–(2.54) provide a fast and simple method to com
pute the six eigenvalues of the monodromy matrix. The corresponding eigenvectors 
may be computed in any standard way using the equation Mvi = λivi. It should be 
noted that the stable and unstable eigenvalues, λS and λU , of an orbit’s monodromy 
matrix, are equal to the pair of real eigenvalues with the smallest and largest values, 
respectively, if they exist. 

2.6.8.2 The Stability Index An orbit’s stability index is defined in various ways 
in the literature depending on the author. Several authors, for example, Broucke [108], 
define the stability of a periodic orbit on the value of k, where k is equal to the sum 
of the real eigenvalues of the orbit. If |k| > n, where n is equal to the number of real 
eigenvalues in the orbit’s monodromy matrix, then the orbit is unstable; if |k| < n, 
the orbit is stable; otherwise |k| = n and the orbit is neutrally stable. One problem 
with such a definition is that the value of n may change depending on the orbit. 

Another definition of the stability index is defined by Howell, among others, as 
follows [122]. If one considers the definition ki = λi + 1/λi, one notices several 
things. First, the values of ki may be easily computed using the parameters p and 

http:2.50)�(2.54


80 METHODOLOGY 

q that were introduced above, namely: k1 = −p, k2 = −q, and k3 = 2. Next, 
the value of ki is always real and in the range −2 ≤ k ≤ 2 for stable orbits since 
the sum of a real pair is real and the sum of a complex conjugate pair is also real. 
Furthermore, if |ki| > 2, then the real component of at least one of the eigenvalues 
summed is greater than 1 and the orbit is unstable. Since two of the eigenvalues 
of the orbit’s monodromy matrix are equal to unity and it is conventional to ignore 
them, the stability index, k, may then be given by 

k = sup{|Re(k1)|, |Re(k2)|} (2.55) 

where the operator Re() only observes the real component of the operand. We have 
the final test: if k > 2 the orbit is unstable, if k = 2 the orbit is neutrally stable, and 
if k < 2 the orbit is stable. 

2.6.8.3 The Perturbation Doubling Time The stability index defined in 
Eq. (2.55) certainly provides information about the stability of the orbit in ques
tion. However, it only provides limited information about the relative stability of 
different orbits. A highly unstable orbit may appear to be more stable than a weakly 
unstable orbit if the weakly unstable orbit’s period is much greater than the highly 
unstable orbit’s period. It is now of interest to find a parameter that may be used to 
directly compare the stability of two orbits regardless of their relative orbital periods. 

The eigenvalues of the monodromy matrix of a periodic orbit are a function of the 
orbit’s period, T , and a characteristic exponent, α, as follows 

αTλ = e (2.56) 

To compare the stability of several orbits directly, one may either normalize the 
eigenvalues of the monodromy matrices or, equivalently, compare the characteristic 
exponents in some way. 

An intuitive measure for comparison is the orbit’s perturbation doubling time (for 
unstable orbits) or the orbit’s perturbation half-life (for stable orbits). In this work, 
we refer to this time measurement as τ̂ for two reasons: first, to indicate that it is 
a normalized measurement and second, to distinguish it from the parameter τ that 
is used to identify points along an orbit (see Section 2.6.2.3). Given a spacecraft 
in an unstable orbit, the perturbation doubling time characterizes the length of time 
that is required for a perturbation in the spacecraft’s state to double in magnitude. 
Similarly, given a spacecraft in a stable orbit, the perturbation half-life characterizes 
the length of time that is required for a perturbation in the spacecraft’s state to be 
reduced by one half. For simplicity, we refer to this time measurement only as the 
perturbation doubling time, since it is generally more useful when designing real 
missions to compare this time measurement for unstable orbits. 

After determining the eigenvalues of the orbit’s monodromy matrix, one may use 
Eq. (2.56) to determine the corresponding characteristic exponents. If a spacecraft’s 
state is perturbed at time t = t0 from its nominal state by a perturbation with 
magnitude δ(t0) along the eigendirection corresponding to the characteristic exponent 
α, the perturbation magnitude grows over time by the following expression 

α(t−t0)δ(t) = δ(t0)e (2.57) 
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Given a random perturbation in the spacecraft’s state, the spacecraft’s deviation over 
time is dominated by the component of that deviation that exists in the most unstable 
eigendirection, namely, by the direction indicated by the unstable eigenvalue λU . The 
perturbation doubling time may be computed by identifying the time, t = t0+ ̂τ , when 
the spacecraft’s perturbed state is twice as far from its nominal position compared to 
its perturbed state at time t = t0. One can find the perturbation doubling time by 
solving for τ̂ in Eq. (2.58), derived as follows 

δ(t) = δ(t0)e 
α(t−t0) 

2δ(t0) = δ(t0)e 
ατ̂ 

2 = e ατ̂ (2.58) 

where α is the characteristic exponent that corresponds to the unstable eigenvalue, 
λU , of the orbit’s monodromy matrix. The value of α may be computed using the 
simple relationship αT = ln λU , derived from Eq. (2.56). Hence, the time duration 
τ̂ may be computed using the expression 

ln 2 
τ̂ = T (2.59)

ln λU 

2.6.9 Examples of Practical Three-Body Orbits 

The three-body problem contains a wide variety of interesting and potentially useful 
periodic and quasiperiodic orbits. Numerous authors have catalogued families of 
orbits and a brief history of these efforts is given in Section 2.6.2.2. This section il
lustrates several example families of three-body orbits, all of which appear frequently 
in the literature, and often in spacecraft mission proposals. 

2.6.9.1 Lyapunov Orbits Lyapunov orbits were introduced in Section 2.6.2.2; 
they are two-dimensional periodic solutions to the circular restricted three-body 
problem. Lyapunov orbits exist about all three of the collinear Lagrange points, 
as illustrated in Fig. 2-22. The LL1 and LL2 families include orbits with orbital 
periods between two and four weeks—closer to two weeks for orbits closer to the 
Lagrange point; the LL3 family includes orbits with orbital periods of approximately 
four weeks [140]. These orbits are all unstable. 

2.6.9.2 Distant Prograde Orbits Periodic three-body orbits certainly exist 
about the Earth and the Moon as well as the Lagrange points. Figure 2-23 illustrates 
the family of planar distant prograde orbits and shows how that family of orbits fits 
in between the family of L1 and L2 Lyapunov orbits. A spacecraft only needs to 
adjust its state slightly to transfer from a Lyapunov orbit to a distant prograde orbit 
and vice versa. This is explored in Section 2.6.11.3. Most distant prograde orbits 
are unstable; their orbital periods vary from two weeks to four weeks, much like the 
Lyapunov orbits. 
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Figure 2-22 Example orbits in the families of Lyapunov orbits about the Earth–Moon 
L3 point (left), L1 point (middle), and L2 point (right), viewed in the Earth–Moon rotating 
frame from above [46]. 

Figure 2-23 Example orbits in the families of Lyapunov orbits about the Earth–Moon L1 

point (left), distant prograde orbits about the Moon (middle), and Lyapunov orbits about the 
Earth–Moon L2 point (right), viewed in the Earth–Moon rotating frame from above [46]. 

2.6.9.3 Distant Retrograde Orbits Distant retrograde orbits (DROs) are pe
riodic three-body orbits that exist about the smaller primary, for example, the Moon 
in the Earth–Moon system, such that a spacecraft revolves about the body in a retro
grade fashion. They are commonly found in the literature and in proposed spacecraft 
missions because they are frequently stable. They behave just like a normal two-body 
orbit, but occur in resonance with the motion of the three-body system. Figure 2-24 
illustrates several examples of Earth–Moon DROs of varying radii from the Moon. 

2.6.9.4 Halo Orbits Halo orbits are very well-known three-dimensional peri
odic solutions [119, 121, 122] to the circular restricted three-body problem. Fig
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Figure 2-24 Example orbits in the family of distant retrograde orbits about the Moon, viewed 
in the Earth–Moon rotating frame from above. 

ure 2-25 shows a plot of several example halo orbits about the lunar L1 and L2 points. 
Many authors have studied how to take advantage of halo orbits for practical missions 
to the Moon [5–7]. Halo orbits are of particular use for lunar communication and 
navigation satellites [11]: a satellite in a halo orbit has an unimpeded view of both 
the Earth and either the near-side of the Moon or the far-side of the Moon, for lunar 
L1 and L2 halo orbits, respectively. Furthermore, a satellite may be placed in a halo 
orbit such that its view of the Sun is also never impeded, simplifying the satellite’s 
power and thermal systems. 

Since the force field in the CRTBP is symmetric about the xy plane (see Sec
tion 2.5.1), and since halo orbits are assymetric about this plane, each halo orbit 
solution to the CRTBP comes in a symmetric pair with a northern and a southern 
variety [121]. As one can see in Fig. 2-25, a satellite in a southern orbit spends more 
than half of its time below the Moon’s orbital plane, which gives that satellite benefits 
for communicating with objects in the southern hemisphere of the Moon. 

It is convenient to specify a halo orbit by its z-axis amplitude, Az , since one may 
formulate an analytical approximation to a halo orbit using that parameter as an input 
[106, 123, 124]. Other studies have specified a halo orbit using its Jacobi constant or 
its x0-value, namely, the x-value of the location where the orbit has a y-position of 
0 km and a positive y-velocity in the synodic reference frame [46, 122]. Figure 2-26 
shows several northern LL1 and LL2 halo orbits from the side in the synodic frame 
to illustrate the relationship between a halo orbit’s shape and its z-axis amplitude. 
Figure 2-27 shows the relationship between a halo orbit’s z-axis amplitude and its 
period for reference. 
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Figure 2-25 An illustration of four example halo orbits about the lunar L1 and L2 points. 
The halo orbits are viewed from above (left) and from the side (right) in the Earth–Moon 
synodic reference frame [47] (first published by the American Astronautical Society). 

Figure 2-26 Northern Earth–Moon halo 
(Copyright © 

American Astronautical Society Publications periods [44] (Copyright c
orbits [146] c 2008 by Figure 2-27 Earth–Moon halo orbit 

© 2009 by American 
Office, San Diego, California [Web Site: Astronautical Society Publications Office, all 
http://www.univelt.com], all rights reserved; rights reserved, reprinted with permission of 
reprinted with permission of the AAS). the AAS). 

2.6.9.5 Vertical Lyapunov Orbits Another family of libration orbits that exist 
about each of the collinear Lagrange points is the family of vertical Lyapunov orbits, 
also known as vertical orbits for short. Vertical orbits oscillate out of the xy plane, 
piercing the plane at the Lagrange point itself. They are symmetric orbits, traversing 
the same route above the plane as below it. Figure 2-28 provides several views of 
example orbits in the family of LL1 vertical Lyapunov orbits. 

2.6.9.6 Resonant Orbits Although there are numerous other interesting fam
ilies of periodic orbits in the three-body system, the last type of orbit that will be 

http:http://www.univelt.com
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Figure 2-28 Four perspectives of example orbits within the family of L1 vertical Lyapunov 
orbits computed in the Earth–Moon CRTBP. 

described here is the resonant orbit. Resonant orbits in the Earth–Moon three-body 
problem are essentially two-body orbits about the Earth that are in resonance with the 
Moon, and which have been significantly perturbed by the Moon. As one may expect, 
there are different families of resonant orbits for each resonant period, namely, 3:1, 
3:2, 5:1, 5:2, and so forth, where an m:n resonant orbit is one where the spacecraft 
traverses the resonant orbit n times while the primaries orbit their barycenter m times. 
Figure 2-29 illustrates four families of resonant orbits in the Earth–Moon system, 
shown in the synodic reference frame. 

The resonant orbits shown in Fig. 2-29 are particularly unstable as they pass by 
the Moon, but they are generally stable elsewhere. It is possible to transition a 
spacecraft off of one three-body orbit, such as a Lyapunov orbit, and onto a resonant 
orbit for very little fuel, if the transition is performed near the Moon. A spacecraft 
that arrives onto a resonant orbit may then sit in it without requiring any significant 
station-keeping fuel, until the spacecraft returns to the Moon. In that way, resonant 
orbits may play a useful role as a staging orbit, quarantine orbit, or a destination for a 
spacecraft to remain to avoid performing station-keeping maneuvers. One may also 
select how much time should pass between lunar swingbys, based on the resonance; 
for instance, a spacecraft traversing a 7:3 resonant orbit will spend far longer between 
lunar swingbys than a spacecraft traversing a 3:2 resonant orbit. 
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Figure 2-29 Four example families of resonant orbits in the Earth–Moon system, viewed 
from above in the Earth–Moon rotating frame. 

2.6.10 Invariant Manifolds 

The dynamics in the circular restricted three-body system permit the existence of five 
fixed points (Section 2.6.2.1) and numerous periodic orbits (Section 2.6.6.1). The 
three collinear libration points and many of the periodic orbit solutions in the Earth– 
Moon three-body system are unstable (Section 2.6.8). An unstable orbit has at least 
one stable and one unstable eigenvalue with corresponding eigenvectors. A spacecraft 
traveling along an unstable orbit that experiences a perturbation even slightly in the 
unstable direction will exponentially fall away from its nominal position on that orbit, 
tracing out a smooth trajectory away from the orbit. In a similar sense, a spacecraft 
that has the right initial conditions will follow a smooth trajectory that exponentially 
approaches an unstable orbit and eventually arrives on that orbit from the orbit’s 
stable direction. These two trajectories describe what is known as an orbit’s stable 
and unstable invariant manifolds. 

An orbit’s unstable invariant manifold (W U ) contains the set of all trajectories 
that a spacecraft may take if it was perturbed anywhere on that orbit in the direction 
of the orbit’s unstable eigenvector. Similarly, an orbit’s stable invariant manifold 
(W S ) contains the set of all trajectories that a spacecraft may take to asymptotically 
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arrive onto that orbit along the orbit’s local stable eigenvector. Put another way, the 
orbit’s stable invariant manifold is the set of all trajectories that a spacecraft may 
take backward through time after a perturbation in the direction of the orbit’s stable 
eigenvector. 

Mathematically, the invariant manifolds are defined as follows. First, the CRTBP 
may be defined as a vector field bound in R6 . One and only one vector is bound to 
every point in the vector field. Thus, the integration of any point p in the vector field 
with respect to time generates only one trajectory. Let us define Tp as the trajectory 
generated by the point p. The α- and ω-limits are defined to be the set of points in R6 

as Tp tends toward −∞ and +∞, respectively. The α- and ω-limits may include a 
single point, a periodic orbit, or, if Tp has no asymptotic behavior, they may include 
a large portion of the state space. The set of all points defining trajectories that have 
the same α-limit set is called the unstable manifold of that limit set. Similarly, the 
set of all points defining trajectories that have the same ω-limit set is called the stable 
manifold of that limit set. 

2.6.10.1 Invariant Manifolds of the Unstable Lagrange Points The three 
collinear Lagrange points are unstable in both the Sun–Earth and Earth–Moon three-
body systems; hence, they have associated invariant manifolds. Since the Lagrange 
points are single points in space, their invariant manifolds are one-dimensional struc
tures. To produce them, one first computes the eigenvalues of the Jacobian of 
their states. If X is the state of one of the collinear Lagrange points, equal to 
[x y z ẋ ẏ ż]T , then its Jacobian is equal to 

⎡ ⎤
∂ẋ ∂ẋ ∂ẋ· · · 
∂ x ∂ y ∂ż
∂ẏ ∂ẏ ∂ẏ

⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

∂Ẋ
J = = 

∂X 

· · · 
∂ x ∂ y ∂ż
. . ... . . ... . . 
∂z̈ ∂z̈ ∂z̈· · · 
∂ x ∂ y ∂ż

(2.60) 

After plugging in the equations of motion of the CRTBP given in Eqs. (2.1)–(2.3) in 
Section 2.5.1, Eq. (2.60) simplifies to ⎤⎡ 

0 0 0 1 0 0 
0 0 0 0 1 0 
0 0 0 0 0 1 
∂ẍ ∂ẍ ∂ẍ

0 2 0J = 

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

∂ x 
∂ÿ

∂ x 
∂z̈

∂ x 

∂ y 
∂ÿ

∂ y 
∂z̈

∂ y 

∂z 
∂ÿ

∂z 
∂z̈

∂z 

−2 0 0 

0 0 0 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

(2.61) 

It is apparent that the Jacobian is the same as the A-matrix given in Eq. (2.16). 
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The eigenvalues of the Jacobian for each of the three collinear Lagrange points 
include two pairs of imaginary numbers and one pair of real numbers. Tables 2-6 
and 2-7 summarize the six eigenvalues for the Jacobian of each of the five Lagrange 
points for the Earth–Moon system and for the Sun–Earth system, respectively. The 
eigenvector corresponding to the larger real eigenvalue indicates the unstable direc
tion: vU ; the eigenvector corresponding to the other real eigenvalue indicates the 

Sstable direction: v . The unstable manifold of the Lagrange point, W U , may be 
mapped by propagating the state XU forward in time, where XU = X ± EvU and E 
is some small perturbation. Similarly, the stable manifold, W S , may be mapped by 

Spropagating the state XS backward in time, where XS = X ± Ev . 
The perturbation Ev may be applied to the state X in either a positive or a negative 

sense, corresponding to two halves of each manifold. One perturbation will result in 
motion that departs the Lagrange point toward the smaller body (for example, toward 
the Moon in the Earth–Moon system), and one will result in motion that departs the 
Lagrange point away from the smaller body. It is conventional to refer to the half of 
the manifold that moves toward the smaller body as the interior manifold, since it 
remains in the interior of the smaller body’s influence, at least for a short while, and 

Table 2-6 A summary of the eigenvalues of the Jacobian of each Lagrange point in 
the Earth–Moon CRTBP. 

Component LL1 LL2 LL3 LL4 LL5 

λ1 -2.932056 -2.158674 -0.177875 1i 1i 
λ2 2.932056 2.158674 0.177875 -1i -1i 
λ3 2.334386i 1.862646i 1.01041991i 0.95450078i 0.95450078i 
λ4 -2.334386i -1.862646i -1.01041991i -0.95450078i -0.95450078i 
λ5 2.268831i 1.786176i 1.00533144i 0.29820842i 0.29820842i 
λ6 -2.268831i -1.786176i -1.00533144i -0.29820842i -0.29820842i 

Table 2-7 A summary of the eigenvalues of the Jacobian of each Lagrange point in 
the Sun–Earth CRTBP. 

Component EL1 EL2 EL3 EL4 EL5 

λ1 -2.532659 -2.484317 -0.002825 1i 1i 
λ2 2.532659 2.484317 0.002825 -1i -1i 
λ3 2.0864535i 2.057014i 1.00000266i 0.99998974i 0.99998974i 
λ4 -2.0864535i -2.057014i -1.00000266i -0.99998974i -0.99998974i 
λ5 2.0152106i 1.985075i 1.00000133i 0.00453024i 0.00453024i 
λ6 -2.0152106i -1.985075i -1.00000133i -0.00453024i -0.00453024i 
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to refer to the half that moves away from the smaller body as the exterior manifold 
[37]. 

The process of analyzing and constructing the invariant manifolds of the unstable 
Lagrange points may be visualized by considering that each unstable Lagrange point 
is a dynamical saddle point, as illustrated by the plot shown in Fig. 2-30. One can 
see that a spacecraft’s motion will follow the unstable manifold when propagated 
forward in time after a perturbation, and it will follow the point’s stable manifold 
when propagated backward in time. Figure 2-30 also demonstrates how there are two 
halves of each manifold. 

Figures 2-31–2-33 show plots of the stable and unstable manifolds of the first 
three Lagrange points in the Earth–Moon three-body system. The forbidden region 
is shown shaded in gray in each plot. 

The eigenvalues of the Jacobian of the triangular Lagrange points include three 
imaginary pairs for the Sun–Earth and Earth–Moon three-body systems; hence, they 
do not have interesting associated invariant manifolds. A spacecraft following a 
trajectory near one of these Lagrange points will oscillate about the point. If the 
spacecraft is perturbed, its motion will change but it will not exponentially deviate 
from its nominal path. 

2.6.10.2 Invariant Manifolds of Unstable Periodic Orbits Every unstable 
periodic orbit in the CRTBP has a set of invariant manifolds, much like the Lagrange 
points. The only substantial difference between the invariant manifolds of periodic 

Figure 2-30 A dynamical saddle point, such as that of the unstable Lagrange points in the 
CRTBP, with a vector field shown that indicates the motion of a spacecraft near the point. 
There are two lines of stable (W S ) and unstable (W U ) manifolds of the saddle point (first 
published in Ref. [97]; reproduced with kind permission from Springer Science+Business 
Media B. V.). 
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Figure 2-31 The stable and unstable invariant manifolds of the first Lagrange point of the 
Earth–Moon three-body system. See inset at right for expanded view of the lunar vicinity (First 
published in Ref. [97]; reproduced with kind permission from Springer Science+Business 
Media B. V.). 

Figure 2-32 The stable and unstable invariant manifolds of the second Lagrange point of the 
Earth–Moon three-body system. See inset at right for expanded view of the lunar vicinity (First 
published in Ref. [97]; reproduced with kind permission from Springer Science+Business 
Media B. V.). 

orbits and of the Lagrange points is that an additional dimension is added when 
considering periodic orbits: periodic orbits are one-dimensional structures where 
the Lagrange points are zero-dimensional structures. Consequently, the invariant 
manifolds of unstable periodic orbits are two-dimensional structures. They are 
constructed of a set of trajectories, where each trajectory corresponds to a point along 
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Figure 2-33 The stable and unstable invariant manifolds of the third Lagrange point of the 
Earth–Moon three-body system. See inset at right for an expanded view in the vicinity 
of Earth (First published in Ref. [97]; reproduced with kind permission from Springer 
Science+Business Media B. V.). 

the periodic orbit. The set of trajectories wraps about itself, forming a topological 
tube. This is further explained below. 

To produce the invariant manifolds of an unstable periodic orbit, one requires 
information about the local stability characteristics of each point along the orbit. 
In theory, one may evaluate the eigenvalues and eigenvectors of the Jacobian at 
each and every state along the orbit, and use that information to produce the orbit’s 
invariant manifold. However, evaluating so many eigenvalues requires a great deal 
of computation. A more efficient manner of producing the invariant manifolds uses 
the eigenvalues and eigenvectors of the monodromy matrix [147, 148]. 

Since the monodromy matrix is produced by propagating the state transition 
matrix all the way around the orbit, from time t = t0 to time t = t0 + T , it contains 
information about the stability of the entire orbit. To determine the stable and 
unstable directions at each point along the orbit, one only has to propagate the stable 
and unstable eigenvectors of the monodromy matrix about the orbit using the state 
transition matrix. That is, the stable and unstable vectors at time ti about the orbit, vS 

i 
and vU 

i , respectively, may be determined using the stable and unstable eigenvectors 
of the monodromy matrix, vS and vU , respectively, using the following equations 

v S 
i = Φ(ti, t0)v S (2.62) 

v U 
i = Φ(ti, t0)v U (2.63) 

A small perturbation, E, is then applied to the state of the orbit at that time, Xi, and 
the result is propagated in time. Since the state transition matrix grows exponentially 
along an unstable orbit, the magnitudes of the vectors vS 

i and vU 
i grow along the orbit. 

It is therefore important to normalize the vectors so that a consistent perturbation is 
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applied to each orbit state. The final equations to produce the initial conditions for 
S 
i and XU 

i , respectively, the stable and unstable manifolds at time ti about the orbit, X
are then equal to 

= 
v

|v

S 
i 
S
i

U
i 

S 
i | 

| 

(2.64) 

(2.65) 

X Xi ± E 

v

|v
U 
iX Xi ± E= 

U 
i

The sign of the perturbation differentiates between interior and exterior manifolds, 
as discussed in Section 2.6.10.1. 

Some discussion should be provided regarding the magnitude of the perturbations 
applied to the state to produce the manifolds. The theoretical invariant manifolds of 
the orbit include the set of all trajectories that asymptotically approach the orbit as time 
goes either forward or backward. In fact, they never truly arrive on the orbit in finite 
time, but just come arbitrarily close to the orbit. To map them, one approximates the 
manifolds by perturbing a state slightly off of the orbit and then propagating that state 
in time. The smaller the perturbation, the closer the approximation comes to mapping 
the true manifolds; however, small perturbations require more time to depart from 
the orbit than larger perturbations. When designing practical missions, one is less 
interested in precisely mapping the invariant manifolds of the orbits, and generally 
more interested in computationally-swift algorithms. Additionally, the dynamics of 
the trajectories depend the greatest on the largest eigenvalues since motion in those 
directions grows exponentially faster than motion in any other direction. Hence, 
somewhat large perturbations may be used to map out the motion of the trajectories 
in the manifolds, for example, on the order of 100 km in the Earth–Moon system 
and 1000 km in the Sun–Earth system. In practice, the perturbation magnitudes 
are given in either units of position or units of velocity, but the perturbation is 
applied proportionally to all six components. A 100-km perturbation means that the 
magnitude of the perturbation applied to the position coordinates is equal to 100 km, 
and the resulting proportionality is used to apply the perturbation to the velocity 
components, that is 

100 km 
E = - (2.66) 

v2 
x + v2 

y + v2 
z 

The structure of the manifolds of an orbit greatly depends on the stability charac
teristics of each portion of the orbit. Orbits such as libration orbits are fairly uniformly 
unstable; that is, the local Lyapunov exponent does not vary much along the orbit 
(Anderson, among others, provides a detailed exploration about the local Lyapunov 
exponent of libration orbits [149]). Consequently, their manifolds are fairly smooth 
as they extend from the orbit. Various other orbits are unstable due to a close flyby 
of one of the primary bodies. The local stability of these orbits changes drastically, 
becoming very unstable as the orbit approaches one of the massive bodies. Hence, 
their manifolds spread out quickly near the body and remain fairly close together 
elsewhere. 
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Figure 2-34 shows the stable and unstable manifolds of a two-dimensional Lya
punov orbit about the Earth–Moon L2 point. One can see that the manifolds are 
smooth and form a tube-like structure. They remain well-defined until they encounter 
the Moon, at which time they spread out very rapidly, and the tube-like structure be
comes less obvious. One can also see that the stable and unstable manifolds are 

Figure 2-34 The stable (left) and unstable (right) manifolds of a Lyapunov orbit about the 
Earth–Moon L2 point. 
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symmetric about the x-axis, due to the symmetry in the CRTBP. For comparison, 
Fig. 2-35 shows the stable manifold of a resonant flyby orbit, which shows how the 
structure of the manifolds depends on the local stability of the orbit. One notices that 
the trajectories in the manifold diverge quickly near the Moon but remain near the 
orbit elsewhere. The unstable manifold is not shown but is symmetric to the stable 
manifold. 

2.6.10.3 Invariant Manifolds of Unstable Quasiperiodic Orbits Unstable 
quasi-periodic orbits have associated stable and unstable invariant manifolds, much 
like unstable periodic orbits; however, the structure and the procedures required to 
produce them are slightly different. Quasiperiodic Lissajous and quasi-halo orbits in 
the CRTBP are two-dimensional structures [125]. Hence, their invariant manifolds 
are three-dimensional structures. The additional dimension adds benefits as well as 
complexity when using them in practical mission designs. 

Since quasiperiodic orbits never retrace their path, one cannot produce them 
entirely, although one can use a variety of numerical tools to represent them and to 
produce desirable segments of them [150]. Since these orbits are not periodic, they do 
not have associated monodromy matrices. Hence, one cannot use the same simplified 
procedures to produce their invariant manifolds as those procedures discussed in 
Section 2.6.10.2. 

To produce a quasiperiodic orbit’s invariant manifolds, one can always compute 
the eigenvectors of the Jacobian of the states at each point along sample segments 
of the orbit, and follow the same procedures as given in the previous sections. 
However, that procedure is numerically intensive and slow. Alternatively, to reduce 
the computational load, one may approximate the manifolds by producing an analog 
to the monodromy matrix. One may propagate the state transition matrix from one 
y = 0 plane crossing in the synodic frame to the next (or to any later crossing) and 

Figure 2-35 The stable manifold of a resonant lunar flyby orbit. See inset at right for 
expanded view of the lunar vicinity. 



LOW-ENERGY MISSION DESIGN 95 

use the resulting matrix as a pseudo-monodromy matrix. When one propagates this 
matrix’s stable and unstable eigenvectors about the orbit segment, and then follows 
the process outlined in Section 2.6.10.2, one produces approximations of the invariant 
manifolds of the quasiperiodic orbit. These approximations are often good enough to 
be used for preliminary spacecraft mission design, such as that used for the Genesis 
spacecraft mission [137]. 

2.6.11 Orbit Transfers 

Dynamical systems theory provides the tools needed to systematically produce trans
fers to/from unstable orbits in the CRTBP. This section discusses several example 
orbit transfers as demonstrations of the application of dynamical systems theory. 
Section 2.6.11.1 discusses the construction of a transfer from the Earth to a halo 
orbit about the Sun–Earth L2 point, and that transfer is very similar to that used by 
the WMAP mission [70]. Section 2.6.11.3 discusses the construction of a chain of 
periodic orbits in the CRTBP, which is relevant to missions like Genesis [71, 72] and 
Wind [63]. That is, trajectories are constructed that transfer a spacecraft back and 
forth between several periodic orbits in the CRTBP. These examples demonstrate the 
procedures that may be followed to construct any type of orbit transfer in the CRTBP 
using dynamical systems theory. 

2.6.11.1 Surface to Orbit Transfers Several missions (including WMAP, 
Herschel, and Planck) have demonstrated the benefits of operating in a libration 
orbit about the Sun–Earth L2 point; many other missions have been proposed to op
erate in similar orbits, including the James Webb Space Telescope and the Terrestrial 
Planet Finder. In this section, we demonstrate how to construct a ballistic transfer 
from the Earth to a halo orbit about EL2, a transfer that might prove to be very useful 
for missions such as these proposed missions. The transfers produced here do not 
require any orbit insertion maneuvers; after their LEO departures, each transfer is 
thereafter entirely free of any deterministic maneuvers. The process used here may 
be generalized to compute a transfer from the surface of the secondary body in most 
three-body systems into many unstable three-body periodic orbits, or vice-versa. 

We first consider the family of halo orbits about the EL2 point, illustrated in 
Section 2.6.9.4. The family begins as a bifurcation of the family of planar Lyapunov 
orbits about EL2. The orbits in the family gradually move farther out of the plane 
until they eventually make close approaches with the Earth. Example orbits in the 
family of northern EL2 halo orbits are shown in Fig. 2-36. 

We next consider a single unstable halo orbit and produce its stable invariant 
manifold. This manifold includes all the trajectories that a spacecraft may take to 
arrive onto the orbit. A plot of the example halo orbit and its stable manifold is shown 
in Fig. 2-37. The trajectories shown in blue have a perigee altitude below 500 km. 
The halo orbit chosen here has a Jacobi constant equal to approximately 3.00077207. 
The CRTBP is a good model of the real Solar System for trajectories propagated for 
a reasonably short amount of time, namely, for one orbital period of the two primary 
masses about their barycenter, or about a year in the Sun–Earth system. Beyond 
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Figure 2-36 Example halo orbits in the family of northern halo orbits about the Sun–Earth 
L2 point. The orbits are shown from four perspectives. 

that, the accumulation of errors due to perturbations in the real Solar System causes 
the CRTBP approximation to break down. The trajectories shown in Fig. 2-37 have 
been propagated for at most 365 days—they are only plotted in the figure until they 
cross the plane of the Earth for clarity. As the propagation time is increased, the 
trajectories may make additional close approaches to the Earth. In some cases the 
second or third perigee passes closer to the Earth than the first. These features will 
be explored below. 

Each trajectory shown in Fig. 2-37 may be characterized using several parameters. 
The parameter τ , defined in Section 2.6.2.3, indicates the point where the trajectory 
arrives at the halo orbit. The closest approach of each trajectory with the Earth 
is identified to compute the perigee altitude and ecliptic inclination with respect to 
the Earth. These two parameters are useful because they indicate the altitude and 
inclination of a low Earth orbit that may be used as a staging orbit to transfer a 
spacecraft to the halo orbit. Figure 2-38 shows two plots: one of the perigee altitude 
and one of the corresponding ecliptic inclination as functions of τ , where the vertical 
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Figure 2-37 An example unstable halo orbit (green) about the Sun–Earth L2 point and its 
stable invariant manifold (blue). (See insert for color representation of this figure.) 

bars indicate the locations in the manifold that have perigee altitudes below 500 km. 
For example, one can see that the trajectory with a τ -value of 0.751 encounters a 
closest approach with the Earth with a perigee altitude of approximately 185 km and 
an ecliptic inclination of approximately 34.8 deg. Hence, a spacecraft in a circular 
low Earth parking orbit with an altitude of 185 km and an ecliptic inclination of 
34.8 deg may perform a tangential ΔV to transfer onto the manifold; once on the 
manifold, the spacecraft ballistically follows it and asymptotically arrives on the halo 
orbit. 

There are two statements in these results that need to be addressed. The first is 
that the inclination values displayed in Fig. 2-38 are the inclination values computed 
in the axes of the CRTBP: namely, in a plane that is very similar to the ecliptic. 
The equatorial inclination values of these perigee points depend on which date a 
spacecraft launches. Since the Earth’s rotational axis is tilted by approximately 
23.45 deg with respect to the ecliptic [97], many equatorial inclinations may be used 
to inject onto a desired trajectory, depending on the date. The second statement 
that should be addressed is that the results shown in Fig. 2-38 depend greatly on 
the perturbation magnitude, E, described in Section 2.6.10. Implementing a different 
perturbation magnitude results in a change in the τ -values required to obtain a certain 
trajectory. For example, if E were reduced, the trajectories modeling the orbit’s 
manifold would spend more time asymptotically approaching/departing the orbit. 
Once the trajectories are sufficiently far from the orbit, their characteristics are nearly 
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Figure 2-38 The perigee altitude (top) and corresponding ecliptic inclination (bottom) of 
the trajectories in the stable manifold shown in Fig. 2-37 as functions of τ . 

unchanged. The result is that the τ -value for a desired trajectory is strongly related 
to the value of E. This has no significant effect for practical spacecraft mission 
designs; a spacecraft following a trajectory in the halo orbit’s stable manifold will 
asymptotically approach the halo orbit—the value of E is only used for modeling the 
stable manifold. 



LOW-ENERGY MISSION DESIGN 99 

It is now of interest to identify how the manifolds change and how the plots shown 
in Fig. 2-38 change as the manifold’s propagation time is varied. Figure 2-39 shows 
plots of the stable manifold of the same halo orbit propagated for successively longer 
amounts of time. One can see that the trajectories on the manifold spend some 
amount of time near the halo orbit (where, once again, the amount of time depends 
on the value of E), and then depart. It may be seen that many of the trajectories in the 
manifold make closer approaches with the Earth after their first perigee. Figure 2-40 
shows many plots of the closest approach each manifold makes with the Earth for 
varying amounts of propagation time. It is clear that the longer propagation times 
yield closer perigee passages. 

The procedures given in this section may be repeated for each halo orbit in the 
entire family of halo orbits, and maps may be produced showing the range of perigee 
altitudes and the range of inclination values obtainable for each halo orbit. These 
are useful for identifying the approximate location of desirable trajectories in the real 
Solar System. 

2.6.11.2 Homoclinic and Heteroclinic Connections Many unstable peri
odic orbits in the CRTBP contain homoclinic connections with themselves and/or 
heteroclinic connections with other unstable periodic orbits [71, 98, 151]. If a tra
jectory in an orbit’s unstable manifold departs that orbit, traverses the three-body 
system for some time, and then later arrives back onto the same orbit, it makes what 
is known as a homoclinic connection with the host orbit [151]. This trajectory is 
contained within both the orbit’s unstable and stable manifolds. McGehee proved the 
existence of homoclinic connections in both the interior and exterior regions of the 
three-body system [152]. In a similar sense, a different trajectory within the unstable 
manifold of one orbit may depart that orbit and eventually arrive onto a second orbit. 
The trajectory is thus contained within both the unstable manifold of the first orbit 
and the stable manifold of the second orbit. Such a trajectory forms what is known 
as a heteroclinic connection between the two unstable orbits [151]. 

In theory, heteroclinic connections asymptotically depart one orbit and asymp
totically approach another orbit. In practice, the spacecraft is never truly on any 
host periodic orbit, but is instead within some small distance from the orbit. For the 
purpose of the discussions provided here, it is assumed that a spacecraft departs an 
orbit when its state is perturbed off of that orbit, and it arrives on the new orbit when 
it arrives at the state that corresponds to the perturbation that generated the stable 
manifold. For the case of orbit transfers in the Earth–Moon system, this means that 
the duration of an orbit transfer includes all time that the spacecraft is further than 
100 km from a host orbit. 

Many authors have explored homoclinic and heteroclinic transfers between three-
body orbits as transport mechanisms for spacecraft and comets [98, 147, 149, 151, 
153–160]. Using dynamical systems theory, Lo and Ross noted that the orbit of 
the comet Oterma appeared to shadow the invariant manifolds of libration orbits 
about the L1 and L2 points in the Sun–Jupiter three-body system [161]. Koon et al. 
later showed that the comet closely followed a homoclinic-heteroclinic chain [151]. 
Gómez et al. began exploring the numerical construction of orbits with prescribed 
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Figure 2-39 The stable manifold of a Sun–Earth L2 halo orbit propagated for successively 
longer amounts of time. The duration of each propagation is indicated in each plot by the 
value Δt. 
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Figure 2-40 The altitude of closest approach of each trajectory in the stable manifolds 
shown in Fig. 2-39 with respect to the Earth. The propagation times of each manifold are 
shown in the legend. Longer propagation times yield closer perigee passages. (See insert for 
color representation of this figure.) 
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itineraries to describe the resonant transitions exhibited by the comet Oterma [98]. 
The material presented in Section 2.6.11.3 extends their work, applying a method for 
the construction of prescribed orbit transfers in the Earth–Moon system [101]. 

2.6.11.3 Orbit Transfers and Chains Once a spacecraft is on an unstable 
periodic orbit in the three-body system, then it may theoretically stay there for an 
arbitrarily long time, or it may depart that orbit by following any trajectory on that 
orbit’s unstable manifold. The practical ΔV cost for a spacecraft to depart an orbit 
is the same as the cost of station-keeping to remain on that orbit: both are arbitrarily 
small given good navigational support. These considerations are further explored in 
Chapter 6. 

Section 2.6.10.2 shows several examples of stable and unstable invariant manifolds 
of unstable periodic orbits. One may notice by studying these manifolds that by 
controlling exactly when the spacecraft departs from its periodic orbit, it may be able 
to transfer to numerous other locations in the state space, including, but not limited 
to, the surface of the Moon, any of the five lunar Lagrange points, another unstable 
periodic orbit in the system, or an escape trajectory away from the vicinity of the 
Moon or Earth. If the spacecraft were carefully navigated onto the correct trajectory 
within the unstable manifold of one orbit, it would then encounter the stable manifold 
of a different unstable three-body orbit. 

After considering a spacecraft’s options, several categories of orbit transfers may 
be identified. Table 2-8 summarizes a few characteristic categories of orbit transfers. 
In the table, a “stable orbit” includes conventional two-body orbits about either of the 
two primaries in the system, as well as stable three-body orbits, and even transfers 
to/from the surface of one of the primary bodies. The minimum number of ΔVs 
indicates the fewest number of maneuvers that may typically be used to perform 
the given transfer. There are many cases when a particular transfer might require 
more maneuvers, such as a transfer from the surface of a body to a particular orbit 
in space with a time constraint. There are also certain special cases when a transfer 
might require fewer maneuvers, such as a transfer between two stable orbits where 
the two orbits intersect in space. Nonetheless, Table 2-8 gives a good idea about the 
minimum number of required maneuvers for orbit transfers in several circumstances. 

Table 2-8 A summary of several categories of orbit transfers in the CRTBP. 

Orbit 1 Orbit 2 Constraints 
Minimum 

Number of ΔVs 

Stable Orbit 
Stable Orbit 
Unstable Orbit 
Unstable Orbit 

Stable Orbit 
Unstable Orbit 
Stable Orbit 
Unstable Orbit 

None 
None 
None 
None 

2 
1 
1 
1 

Any Orbit 
Unstable Orbit 

Any Orbit 
Unstable Orbit 

Transfer Time 
Same Jacobi Constant 

2 
0 
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In this section, low-energy orbit transfers are introduced that may be useful for 
practical mission design, and which are useful background for the discussions of 
low-energy lunar transfers in later chapters. These orbit transfers are in the category 
represented by the last row of Table 2-8, transfers that are free of deterministic 
maneuvers. 

Low-energy transfers between unstable orbits may be located in the CRTBP by 
analyzing Poincar ́ Suppose there are two unstable e maps (Section 2.6.3) [156]. 
Lyapunov orbits in the Earth–Moon three-body system: one about LL1 and the 
other about LL2. Both of these orbits have a set of stable and unstable invariant 
manifolds. In the planar CRTBP, each point along a manifold may be characterized 
by a four-dimensional state [ x, y, x,˙ ẏ ]. If a surface of section is placed in R4 at 
some x-position, the resulting intersection is a surface in R3. If it is further specified 
that the two Lyapunov orbits have the same Jacobi constant, then each point along 
any trajectory within both orbits’ manifolds will have the same Jacobi constant and 
the phase space of the problem is reduced to R2 . The state at any intersection in 
the surface may only be reconstructed if the Poincaré map is one-sided, since the 
Jacobi constant has a sign ambiguity. The stable and unstable manifolds of both 
orbits appear as curves in the two-dimensional Poincar ́e map. Any intersection of 
these curves corresponds to a free transfer between the two orbits. 

Figure 2-41 illustrates the process of identifying free transfers from a Lyapunov 
orbit about LL1 to a Lyapunov orbit about LL2. In this case, the value of the Jacobi 
constant of both orbits has been selected to be 3.13443929. A P+ e map Poincar´
has been constructed, where the surface, Σ, has been placed at the x-coordinate 
of the Moon, namely, at a value of approximately 379,730 km with respect to the 
barycenter of the Earth–Moon system. The top of Fig. 2-41 illustrates the unstable 
and stable manifolds integrated to the first intersection with the surface of section. 
The intersection of both manifolds with the surface of section is shown on the bottom 
of Fig. 2-41. One can see that there are two intersections that correspond to the two 
free transfers indicated in the figure. 

The simple illustration shown in Fig. 2-41 may be extended by propagating the 
manifolds longer and identifying intersections in the manifolds that correspond to 
longer, more complicated heteroclinic connections. The Poincaré map shown in 
Fig. 2-42 is produced by propagating the unstable manifold of the LL1 Lyapunov 
orbit and the stable manifold of the LL2 Lyapunov orbit for 60 days each. In 
addition, the map shown in Fig. 2-42 is a P± map, displaying all intersections of 
both manifolds with the surface of section. In this particular mapping, the majority 
of the points shown below the y = 0 line are members of the P+ map (including the 
points shown in Fig. 2-41), the majority of the points shown above it are members of 
the P− map, and all observed intersections of the two manifolds do indeed intersect, 
even accounting for the sign ambiguity of ẋ. 

Figure 2-42 includes eight example orbit transfers to illustrate what sort of hetero
clinic connections exist between these two libration orbits. Certain types of motion 
appear in more than one heteroclinic connection. For example, the trajectories la
beled (1), (2), and (7) appear to graze a distant prograde orbit, whereas the trajectories 
labeled (1), (3), and (4) appear to traverse a figure-eight type orbit. The appearance of 
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Figure 2-41 An illustration of the process of using a Poincaré map to identify free transfers 
between two Lyapunov orbits. Both orbits have a Jacobi constant of 3.13443929. Top: the 
unstable manifold of an LL1 Lyapunov orbit and the stable manifold of an LL2 Lyapunov 
integrated to the surface of section. Bottom: the corresponding P+ Poincaré map and two 
free transfers [101] (Acta Astronautica by International Academy of Astronautics, reproduced 
with permission of Pergamon in the format reuse in a book/textbook via Copyright Clearance 
Center). 
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Figure 2-42 The P± Poincaré map produced from the same system and surface of section 
shown in Fig. 2-41, now with an extended manifold propagation duration of 60 days. The 
plots shown surrounding the Poincaré map illustrate several example free transfers that have 
been identified in the central map [101] (Acta Astronautica by International Academy of 
Astronautics, reproduced with permission of Pergamon in the format reuse in a book/textbook 
via Copyright Clearance Center). 

such orbits in the Poincar ́e maps reinforces the idea that one may construct a specific 
chain of simple orbits to construct a complicated itinerary of orbit transfers. 

The Poincar ́e map is a useful tool to identify what sorts of orbit transfers exist, but 
it does not immediately reveal the shape or geometry of the transfers. For instance, 
the transfer labeled (8) in Fig. 2-42 includes a lunar flyby, which may or may not 
be desirable. Section 2.6.12 introduces a method that may be used to construct a 
desirable sequence of orbit transfers after identifying that such orbit transfers exist. 

Free transfers only exist in the CRTBP between two unstable orbits that have the 
same Jacobi constant. Figure 2-43 shows a plot of several families of three-body 
orbits in the Earth–Moon CRTBP, where the orbits’ Jacobi constant values are plotted 
as functions of their x0-values. The curves shaded in black correspond to unstable 
three-body orbits; the curves shaded in gray correspond to orbits that are neutrally 
stable [130]. The horizontal line indicates the Jacobi constant value used to produce 
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Figure 2-43 A plot of several families of three-body orbits in the Earth–Moon CRTBP, 
where the orbits’ Jacobi constant values are plotted as functions of their x0-values. The curves 
shaded in black correspond to unstable three-body orbits; the curves shaded in gray correspond 
to orbits that are neutrally stable [162] (Copyright c©2006 by American Astronautical Society 
Publications Office (web site: http://www.univelt.com), all rights reserved, reprinted with 
permission of the AAS). 

the heteroclinic connections observed in Figs. 2-41 and 2-42. The figure verifies that 
the families of Lyapunov orbits about LL1 and LL2 both include unstable orbits at 
the same indicated Jacobi constant value, along with the family of distant prograde 
orbits, which helps to explain the appearance of such an orbit in the transfers labeled 
(1), (2), and (7) in Fig. 2-42. 

2.6.12 Building Complex Orbit Chains 

In the previous section, a technique was presented that may be used to identify 
the heteroclinic connections between two unstable periodic orbits. Previous papers 
have theorized using symbolic dynamics that if a heteroclinic connection exists, it 
is possible to find a trajectory that transfers back and forth arbitrarily between those 
orbits. Robinson provides a thorough review of the background of symbolic dynamics 
[163]. Canalias et al. [155], provide a methodology to search for a combination of 
homoclinic transfers that may be used to change the phase of a spacecraft traversing 
an unstable periodic orbit. In this section we study a practical method to construct 
a complex orbit chain given a desired sequence of homoclinic and/or heteroclinic 
transfers. 

http:http://www.univelt.com
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2.6.12.1 Constructing a Complex Orbit Chain One may describe a space
craft’s itinerary between simple periodic orbits in the CRTBP by considering its state 
at each x-axis crossing. A spacecraft traversing any simple periodic orbit pierces the 
x-axis twice: once with positive and once with negative values of ẏ. One may model 
a simplified orbit transfer by considering that the spacecraft departs the initial orbit at 
one x-axis crossing, is midway through the transfer at the next x-axis crossing, and 
completes the transfer at a later x-axis crossing. Using this conceptualization, one 
may construct a set of x-axis states to describe a given itinerary between two orbits. 
A set of eight states are summarized in Fig. 2-44 and Table 2-9 for transfers between 
an example LL1 Lyapunov orbit and an example distant prograde orbit (DPO) that 
have the same Jacobi constant. 

The states given in Fig. 2-44 and Table 2-9 have been collected from two sources. 
The states corresponding to the simple periodic orbits (A, B, E, and F) have been 
taken directly from those orbits; the algorithm described in Section 2.6.6.2 is well-
suited to generate the states of a periodic orbit at their orthogonal x-axis crossings. 
The states that correspond to the orbit transfers (C, D, G, and H) have been taken 
from their heteroclinic connections identified using the Poincar ́e analysis described 
in Section 2.6.3. A theoretical heteroclinic connection between these orbits asymp-

Figure 2-44 A summary of the states needed to produce complex itineraries between two 
orbits. In this case, the two orbits are a Lyapunov orbit about L1 and a DPO about the Moon. 
The states “D” and “H” are on the x-axis, although the labels are offset [101] (Acta Astronautica 
by International Academy of Astronautics, reproduced with permission of Pergamon in the 
format reuse in a book/textbook via Copyright Clearance Center). 
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Table 2-9 The eight states shown in Fig. 2-44. The state coordinates are given in the 
Earth–Moon synodic reference frame, relative to the Earth–Moon barycenter, in both 
nondimensional normalized units and SI units [101] (Acta Astronautica by International 
Academy of Astronautics, reproduced with permission of Pergamon in the format reuse 
in a book/textbook via Copyright Clearance Center). 

State Units x y ẋ ẏ

Normalized 0.812255 0.0 0.0 0.248312 
X+A: LL1−LL1 SI (km, m/s) 312,230 0.0 0.0 254.418 

Normalized 0.878585 0.0 0.0 −v0.281719 
X−B: LL1−LL1 SI (km, m/s) 337,728 0.0 0.0 −288.647 

Normalized 0.813049 0.0 0.0 0.247532 
X+C: LL1−DP O SI (km, m/s) 312,536 0.0 0.0 253.618 

Normalized 0.890940 0.0 0.049050 −0.311179 
X−D: LL1−DP O SI (km, m/s) 342,477 0.0 50.256 −318.830 

Normalized 1.061692 0.0 0.0 0.403877 
X+E: DP O−DP O SI (km, m/s) 408,115 0.0 0.0 413.809 

Normalized 0.909845 0.0 0.0 −0.386264 
X−F: DP O−DP O SI (km, m/s) 349,745 0.0 0.0 −395.762 

Normalized 1.056340 0.0 0.0 0.432104 
X+G: DP O−LL1 SI (km, m/s) 406,057 0.0 0.0 442.729 

Normalized 0.890940 0.0 −0.049050 −0.311179 
X−H: DP O−LL1 SI (km, m/s) 342,477 0.0 −50.256 −318.830 

totically wraps off one orbit and onto the next as E in Eq. (2.65) approaches 0; an 
infinite number of x-axis crossings precede the theoretical heteroclinic connection. 
The states D and H correspond to the x-axis crossings that are furthest from either 
host orbit. The states C and G correspond to the previous respective x-axis crossing. 
As one can see in Table 2-9, state C is approximately 306 km and 0.8 m/s away from 
state A, and state G is approximately 2058 km and 28.9 m/s away from state E. These 
state differences are small enough to proceed without difficulty. 

The states summarized in Fig. 2-44 and Table 2-9 may be used to construct a 
sequence of states that represent any itinerary between the two given orbits. This 
sequence may then be converted into a series of patchpoints that may be inputted into 
a differential corrector in order to produce a continuous trajectory. For instance, the 
trajectory of a spacecraft in orbit about the LL1 Lyapunov orbit may be represented 
by the sequence 

{. . . , A, B, A, B, . . . } 
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A differential corrector may be used to convert this sequence into a continuous 
trajectory. If a mission designer wishes to transfer the spacecraft from the LL1 orbit 
to the distant prograde orbit, the designer would construct the sequence 

{. . . , A, B, A, B, C, D, E , F, E , F, . . . } 

and input that sequence into the differential corrector. The differential correction 
process adjusts every state in the sequence to accommodate the slight differences 
between the states A and C to make the transfer continuous. 

Table 2-10 provides two example sequences that may be used as inputs to a differ
ential corrector in order to produce continuous trajectories with different itineraries. 
To demonstrate this process, the first sequence in Table 2-10 has been converted into 
patchpoints and processed by the multiple-shooting differential corrector described in 
Section 2.6.5.2. Table 2-11 displays the results of the differential correction process, 
comparing the states of the patchpoints before and after the process. One can see 
that the differential corrector adjusted each patchpoint away from the x-axis in order 
to produce a continuous trajectory, however, none of the patchpoints moved far. In 
this example, the differential corrector achieved a trajectory that met the requested 
continuity tolerances: the largest position and velocity discontinuities that were ob
served in any of the patchpoints along the final trajectory were less than 0.4 mm and 
3.1 × 10−9 m/s, respectively. 

2.6.12.2 Complex Periodic Orbits A complex periodic orbit may be con
structed by repeating a given sequence of states ad infinitum and inputting that 
theoretical sequence into the differential corrector. For instance, the following se
quence may be used to represent a periodic orbit that consists of two revolutions 

Table 2-10 Two sequences that may be used as inputs to a differential corrector in 
order to produce continuous trajectories with different example itineraries. The letters 
correspond to the states summarized in Fig. 2-44 [101] (Acta Astronautica by 
International Academy of Astronautics, reproduced with permission of Pergamon in the 
format reuse in a book/textbook via Copyright Clearance Center). 

Example 1 Example 2 

Sequence Objective Sequence Objective 

A A
Traverse LL1 Traverse LL1B B 

C C
Transfer to DPO Transfer to DPO 

D D 
E 

Traverse DPO (1) 
G 

Transfer to LL1F H 
E 

Traverse DPO (2) 
C 

Transfer to DPO 
F D 
G E

Transfer to LL1 Traverse DPO 
H F 
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about the LL1 Lyapunov orbit, followed by one revolution about the distant prograde 
orbit, repeating itself indefinitely, where the orbits and letters are defined in Fig. 2-44 

{. . . , A, B, A, B, C, D, G, H , A, B, A, B, C, D, G, H , . . . } 

Figure 2-45 shows a plot of such a periodic orbit. One can see that a trajectory 
following a complex itinerary gets very close to one of its generating three-body 
orbits even with as few as two revolutions about the orbit. 

Since each unstable three-body orbit exists in a family, where the characteristics 
of each orbit in the family vary continuously from one end of the family to the other, 
it is hypothesized that a complex periodic orbit also exists in a family. The family of 
any given periodic orbit is limited in extent to some range of parameters [46]. The 
extent of the family of complex orbits is also limited in extent, and it is hypothesized 
that the family may only extend through a range where each of its fundamental orbits 
and orbit transfers exists. Figure 2-46 shows several example complex periodic orbits 
that exist in the same family as the orbit shown in Fig. 2-45. Each of these orbits has 
a different Jacobi constant, but the same morphology. 

2.6.12.3 Generalization The method demonstrated here has been illustrated by 
a very straightforward example, namely, the construction of orbit transfers between 
an LL1 Lyapunov orbit, and a distant prograde orbit, two simple periodic three-body 
orbits. These orbits have been used because they are easily visualized and may 
be characterized using only a handful of states. Each state is placed at an x-axis 
crossing, although one can see in Table 2-11 that the states may be displaced during 
the differential correction process. 

Figure 2-45 A complex periodic orbit that consists of two revolutions about the LL1 

Lyapunov orbit, followed by one revolution about the distant prograde orbit, repeating itself 
indefinitely. This orbit is viewed from above in the Earth–Moon synodic reference frame. 
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Figure 2-46 Several example complex periodic orbits that exist in the same family as the 
orbit shown in Fig. 2-45. 

This method may certainly be applied to orbit transfers between other unstable 
three-body orbits, including non-symmetric orbits. In addition, a chain of orbits may 
certainly contain more than two different three-body orbits. Longer orbits and orbit 
transfers will likely require more states per segment for the differential corrector to 
converge. In that case, it is easier to visualize the problem by defining a sequence of 
states per segment and using symbols that represent sequences rather than individual 
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states. Table 2-12 provides an example where the states A–H given above have been 
mapped to four such sequences. 

If one refers to Fig. 2-41, one notices that there are two low-energy transfers 
between the example Lyapunov orbits about LL1 and LL2. One may construct a 
different sequence of states for each of those transfers, for example, S1 andLL1−LL2 
S2 , which may be constructed from three or more states, including an initial LL1−LL2 
state and two intermediate states in order to keep the trajectory segment lengths short 
enough to permit the differential corrector to converge. 

Figure 2-42 shows several low-energy transfers that exist from an orbit about LL1 

to an orbit about LL2 that were generated using a Poincar ́e map. The transfer labeled 
(7) may be described as a complex chain that starts in an orbit about LL1, transfers 
to a DPO, remains in that orbit for a revolution, and then transfers from there to an 
orbit about LL2. This complex chain was identified using a Poincar ́e map, but it may 
be quickly generated by differentially correcting the series of states represented by 
the following sequence of 

{. . . , SLL1, SLL1, SLL1−DP O , SDP O , SDP O−LL2, SLL2, SLL2, . . . } 

2.6.13 Discussion 

This section introduced the tools that may be used to construct interplanetary transfers 
in the CRTBP using dynamical systems theory. It introduced the basic solutions of 
the CRTBP, including the Lagrange points and simple periodic orbits. It discussed 
several methods that may be used to build periodic orbits in the CRTBP. The sta
bility of a trajectory or an orbit may be evaluated using the eigenvalues of the state 
transition or monodromy matrices. The state transition matrix is also very useful 
when implementing targeting tools such as the differential corrector. The unstable 
nature of many trajectories in the CRTBP leads to divergent behavior and chaos, but 
it also permits a mission designer to build low-energy transfers from one orbit to 
another. Mission designers trace structure in an orbit’s stable and unstable manifolds 
and use that information to target a transfer to/from that orbit. Such transfers require 

Table 2-12 The mapping of the states A–H to sequences [101] (Acta Astronautica by 
International Academy of Astronautics, reproduced with permission of Pergamon in the 
format reuse in a book/textbook via Copyright Clearance Center). 

Sequence States Purpose 

SLL1 

SLL1−DP O 

SDP O 

SDP O−LL1 

{ A, B }
{ C, D }
{ E , F }
{ G, H } 

Traverse the LL1 Orbit 
Transfer from LL1 to DPO 
Traverse the DPO 
Transfer from DPO to LL1 
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very little energy and may be used to move a spacecraft a great distance around the 
three-body system without expending much fuel. These transfers are the basis for 
building ballistic transfers between the Earth and the Moon, which is the topic of the 
next few chapters. 

2.7 TOOLS 

Many tools are used in the design of low-energy lunar transfers. Dynamical sys
tems methods and the corresponding tools, such as the differential corrector and 
Poincaré sections, are described earlier in this chapter. Other tools include numerical 
integrators and optimizers. These will be briefly described here. 

2.7.1 Numerical Integrators 

The two primary integrators used in the analyses contained in this work are the DIVA 
integrator [164–166] and a Runge-Kutta-Fehlberg seventh-order (RKF78) integrator 
with step-size control [167]. The DIVA integrator is currently implemented in both 
the Mission-analysis, Operations, and Navigation Toolkit Environment (MONTE) 
and libration point mission design tool (LTool) software (see Section 2.7.3) and has 
a rich heritage spanning more than three decades as an integrator for interplanetary 
missions at the Jet Propulsion Laboratory. It uses a variable-order Adams method 
for solving ordinary differential equations that has been written specifically for inte
grating trajectories. The RKF78 integrator is implemented in JPL’s LTool. It allows 
for a variable step size as described by Fehlberg [167], and it is also widely used for 
astrodynamics and mission design. 

2.7.2 Optimizers 

Many mission designs presented in this book take advantage of the software package 
SNOPT (Sparse Nonlinear OPTimizer) [168, 169] to adjust the various parameters in 
order to identify solutions that require minimal amounts of fuel. SNOPT is written 
to use a particular sequential quadratic programming (SQP) method, one that takes 
advantage of the sparsity of the Jacobian matrix of the constraints of the system while 
maintaining a quasi-Newtonian approximation of the Hessian of the Lagrangian of 
the system. The details of the algorithms are beyond the scope of this discussion, 
except to say that they are written to be highly effective when applied to a system 
that has smooth nonlinear objective functions [169]. 

The objective functions and constraints studied here are indeed nearly smooth 
functions. There are two reasons why the functions studied in this paper are not 
perfectly smooth. First, the unstable nature of low-energy lunar transfers combined 
with finite-precision computers yields functions that have discontinuities. In general, 
these discontinuities are several orders of magnitude smaller than the trends being 
studied in this paper and are therefore ignored. Second, several objective functions 
studied in this paper involve iterative algorithms; there are discontinuities between a 
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set of parameters that require n iterations to generate a solution and a neighboring set 
of parameters that require n + 1 iterations to converge. The discontinuities observed 
are small relative to the topography in the state space; thus, SNOPT tends to work 
well in these studies. 

2.7.3 Software 

JPL’s MONTE software [170] has been used for the majority of the analyses con
tained in this book. It provides an interface with JPL’s DE421 Planetary and Lunar 
Ephemerides as well as integration using the DIVA propagator. JPL’s LTool has 
been used for many of the computations involving libration orbits and their invariant 
manifolds. Targeting and optimization algorithms have been implemented in both 
sets of software for analyses in the CRTBP and in the ephemeris model. All of the 
coordinate frames described in Section 2.4 are accessed through the SPICE Toolkit 
in both software suites [171]. 





CHAPTER 3
 

TRANSFERS TO LUNAR LIBRATION 
ORBITS 

3.1 EXECUTIVE SUMMARY 

This chapter focuses on the performance of low-energy transfers to lunar libration 
orbits and other three-body orbits in the Earth–Moon system. This chapter presents 
surveys of direct transfers as well as low-energy transfers to libration orbits, and 
provides details about how to construct a desirable transfer, be it a short-duration 
direct transfer or a longer-duration low-energy transfer. The work presented here 
uses lunar halo orbits as destinations, but any unstable three-body orbit may certainly 
be used in place of those example destinations. 

For illustration, Figs. 3-1 and 3-2 show some example direct and low-energy 
transfers to lunar halo orbits, respectively. One can see that these transfers are 
ballistic in nature: they require a standard trans-lunar injection maneuver, a few 
trajectory correction maneuvers, and a halo orbit insertion maneuver. One may also 
add Earth phasing orbits and/or lunar flybys to the trajectories, which change their 
performance characteristics. 

Many thousands of direct and low-energy trajectories are surveyed in this chapter. 
Table 3-1 provides a quick guide for several types of transfers that are presented here, 
comparing their launch energy costs, the breadth of their launch period, that is, the 
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Figure 3-1 The profile for a simple direct transfer from the Earth to a lunar libration orbit 
about either the Earth–Moon L1 or L2 point. 

Figure 3-2 The profile for a simple, low-energy transfer from the Earth to a lunar libration 
orbit about either the Earth–Moon L1 or L2 point. 
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Table 3-1 A summary of several parameters that are typical for different mission 
scenarios to libration orbits about either the Earth–Moon L1 or L2 points. EPOs = Earth 
phasing orbits, BLT = low-energy ballistic lunar transfer. 

Mission 
Element 

Direct 
Transfer 

Direct 
w/EPOs 

Simple 
BLT 

BLT w/Outbound BLT 
Lunar Flyby w/EPOs 

Launch C3 

(km2/s2) 
−2.2 to −1.5 < −1.5 −0.7 to −0.4 −2.1 to −0.7 < −1.5 

Launch Period Short Extended Extended Short Extended 

Transfer Duration 
(days) 

3–6 13+ 70–120+ 70–120+ 80–130+ 

Outbound Lunar 
Flyby 

No No No Yes Yes 

Libration Orbit 
Insertion ΔV (m/s) 

∼500 ∼500 ∼0 ∼0 ∼0 

number of consecutive days they may be launched, their transfer duration, and the 
relative magnitude of the orbit insertion change in velocity (ΔV) upon arriving at the 
lunar libration orbit. These are representative and may be used for high-level mission 
design judgements, though the details will likely vary from mission to mission. 

Direct transfers to lunar libration orbits are presented in Section 3.3. That section 
surveys thousands of transfers to libration orbits about both the Earth–Moon L1 and 
L2 points and presents methods to construct them. The trajectories minimize the 
halo orbit insertion ΔV cost while keeping the total transfer duration low, between 
5 days and 2 months. The trajectories include no maneuvers other than the trans-
lunar injection maneuver and the halo orbit insertion maneuver. Hence, there are 
no high-risk maneuvers, such as powered lunar flybys, though such maneuvers may 
indeed reduce the total transfer ΔV cost [172]. 

The surveys show that one may depart the Earth from any parking orbit, certainly 
including low-altitude parking orbits with an inclination of 28.5 degrees (deg). The 
transfers involve trans-lunar injections with launch injection energy (C3) requirements 
as low as −2.6 kilometers squared per second squared (km2/s2) and as high as 
−2.0 km2/s2 for transfers to LL1 or as high as −1.0 km2/s2 for transfers to LL2. 
The halo orbit insertion maneuver may be as low as 430 meters per second (m/s) 
or as high as 950 m/s, depending on the mission’s requirements, though most are 
in the range of 500–600 m/s. The quickest transfers arrive at their libration orbit 
destinations within 5 or 6 days. Some missions can reduce the total transfer ΔV by 
∼50 m/s by implementing a longer, 30-day transfer. In some cases it is beneficial to 
extend the duration to 40 or 50 days. Finally, direct lunar transfers exist in families, 
such that very similar transfers exist to neighboring libration orbits. That is, if a 
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mission’s requirements change slightly and a new libration orbit is required, one can 
usually build a very similar transfer to that orbit as to the original orbit. 

Low-energy transfers to lunar libration orbits are presented in Section 3.4. Much 
like the analyses of direct transfers, Section 3.4 surveys thousands of transfers to 
libration orbits about both the Earth–Moon L1 and L2 points and presents methods 
to construct them. The trajectories are always entirely ballistic, except for the trans-
lunar injection maneuver. None of the transfers studied requires an orbit insertion 
maneuver; every trajectory asymptotically arrives at the target orbit and inserts au
tomatically. Trajectories are studied with a wide variety of geometry characteristics, 
but all require less ΔV than direct transfers. 

Much like the analyses of direct transfers, the surveys in Section 3.4 show that 
one may depart the Earth from any given low Earth parking orbit, or any higher 
orbit as needed. The transfers involve trans-lunar injections with C3 requirements 
as low as −0.75 km2/s2 and as high as −0.35 km2/s2 . This C3 requirement may be 
reduced to about −2.1 km2/s2 if a lunar flyby is implemented at an altitude of about 
2000 km. The quickest transfers identified require about 83 days between the trans-
lunar injection and the point when the trajectory has arrived within 100 km of the 
lunar libration orbit. Many transfer options exist that require 90–140 days between 
the injection point and the orbit arrival point. Since the transfers asymptotically 
approach the target libration orbit, they are essentially at the target orbit as many 
as 10 days prior to the “arrival” time. Finally, much like direct transfers to lunar 
libration orbits, low-energy transfers exist in families, such that very similar transfers 
exist to neighboring libration orbits. Very similar transfers also exist to the same 
orbit when the arrival time or arrival location is adjusted. 

This chapter summarizes nearly ballistic transfers between the Earth and lunar 
libration orbits. Techniques to use these transfers in practical spacecraft mission 
design (for example, building launch periods, and budgeting station keeping ΔV) are 
studied in Chapter 6. 

3.2 INTRODUCTION 

This chapter describes methods to construct both direct and low-energy transfers 
between the Earth and libration orbits near the Moon. The focus of this book is on 
the analysis and construction of low-energy transfers, but it is helpful to have a good 
understanding of the costs and benefits of direct transfers as well. In addition, this 
chapter provides some transfers that one may take after arriving at a lunar libration 
orbit; transfers are presented from those libration orbits to other libration orbits, to 
low lunar orbits, and to the lunar surface. 

Direct transfers include any sort of high-energy conventional trajectories using 
chemical propulsion systems. Low-energy transfers use the same propulsion systems 
but travel well beyond the orbit of the Moon, taking advantage of the Sun’s gravity to 
reduce the ΔV cost of the transfer. Direct transfers to lunar libration orbits (and other 



INTRODUCTION 121 

three-body orbits) typically require 3–6 days, though there are benefits to increasing 
the transfer duration as long as 1 or 2 months. Low-energy transfers typically require 
3–4 months of transfer time or more in some circumstances. 

Figure 3-1 illustrates two example direct transfers between the Earth and libration 
orbits about the Earth–Moon L1 and L2 points. Figure 3-2 illustrates two low-energy 
transfers to the same two libration orbits, viewed in the same reference frame. One 
can see that the trajectories traverse beyond the orbit of the Moon and return after 
2–3 months to arrive at the Moon in such a way that they insert into the target 
orbits without requiring any insertion maneuver. The lack of a large orbit insertion 
maneuver is the primary reason why these transfers save so much fuel (the direct 
transfers require an orbit insertion maneuver near 500 m/s). 

Figure 3-3 illustrates two different low-energy transfers viewed in the Sun–Earth 
rotating frame to show that spacecraft may fly either toward the Sun or away from it 
during their transfers. 

This chapter describes techniques to build direct and low-energy transfers to lunar 
libration orbits and surveys the performance of both types of transfers. Section 3.3 
describes the techniques and provides performance data for direct transfers to lunar 
libration orbits. Section 3.4 does the same for low-energy transfers to the same 
orbits. Section 3.5 provides information about orbit transfers from the libration 
orbits to other libration orbits, to low lunar orbits, and to the lunar surface. Finally, 
Section 3.5 discusses transfers that a spacecraft could take to depart its lunar libration 
orbit and travel to another three-body orbit, a low lunar orbit, the lunar surface, or 
back to the Earth. 

Figure 3-3 Two example low-energy transfers between the Earth and an LL2 libration 
orbit. The transfers are viewed from above in the Sun–Earth rotating coordinate frame [44] 
(Copyright © 2009 by American Astronautical Society Publications Office, all rights reseved, c
reprinted with permission of the AAS.). 
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3.3	 DIRECT TRANSFERS BETWEEN EARTH AND LUNAR LIBRATION 
ORBITS 

As of 2012 no missions have flown a direct transfer from the Earth to a lunar libration 
orbit. Many researchers have considered the problem, dating back to 1970 when 
Edelbaum studied the case of transferring a spacecraft from the Earth to the L1 point 
itself via a direct transfer [173]. Certainly NASA has considered the problem as it 
considers destinations for future missions [126]. The work presented here is based 
upon the work of Parker and Born [174, 175], who performed a robust survey of 
direct transfers to lunar halo orbits about both L1 and L2. Several other authors have 
also studied this problem, including Rausch [176], Gordon [177], and Alessi et al. 
[178]. 

The trajectories generated here are constructed by intersecting a low Earth orbit 
(LEO) parking orbit with a trajectory within the stable invariant manifold of the target 
libration orbit. Hence, the trajectories include two maneuvers: a maneuver to depart 
the Earth and a maneuver to inject onto the target orbit’s stable manifold. Once on 
the stable manifold, the spacecraft asymptotically arrives at the target orbit. 

3.3.1 Methodology 

Direct transfers are constructed here by targeting states within the stable manifold of 
a desirable halo orbit or other libration orbit. This strategy has been implemented 
before for transfers to many types of Sun–Earth libration orbits, yielding trajectories 
for missions such as Genesis [72], Wilkinson Microwave Anisotropy Probe (WMAP) 
[70], and Solar and Heliospheric Observatory (SOHO) [66]. The technique has been 
highly successful for missions in the Sun–Earth system because the stable manifolds 
of many Sun–Earth halo orbits intersect the Earth. Unfortunately, as one can begin 
to see in Fig. 3-4, the stable manifolds of libration orbits near the Earth–Moon L1 

and L2 points do not intersect the Earth within as much as two months of time. 
Consequently, at least two maneuvers must be performed to directly transfer onto the 
lunar halo orbit’s stable manifold from an initial LEO parking orbit, rather than the 
single maneuver required to inject onto the stable manifold of a Sun–Earth halo orbit. 

In theory, a direct transfer to a lunar halo orbit could involve many burns, each 
performed in some arbitrary direction. We have chosen to survey the simplest type 
of direct lunar halo orbit transfers, namely, transfers with only two burns that are 
each performed in a direction tangential to the spacecraft’s velocity vector. These 
transfers are not guaranteed to have the lowest ΔV cost of any type of direct lunar 
halo transfer, but they should provide a good estimate for the ΔV requirement of such 
transfers. Even with this simplification, this design problem yields a very rich design 
space and is a useful foundation for future studies. 

Figure 3-5 shows two perspectives of a scenario that illustrates the strategy used 
here to transfer a spacecraft from a 185-km LEO parking orbit to a lunar L1 halo 
orbit. The scenario requires a large maneuver at the LEO injection point (ΔVLEO; 
also known as the trans-lunar injection maneuver) and a second large maneuver at the 
manifold injection point (ΔVMI). The two ballistic mission segments are referred to 
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Figure 3-4 Plots of the stable manifolds of example L1 and L2 halo orbits, viewed from 
above in the Earth–Moon synodic reference frame. A spacecraft that travels along any one of 
these trajectories will asymptotically arrive onto the corresponding halo orbit [174] (Copyright 
c© 2008 by American Astronautical Society Publications Office, all rights reserved, reprinted 

with permission of the AAS). 

as the bridge segment and the manifold segment. Once the spacecraft arrives onto the 
manifold segment, after performing the ΔVMI maneuver, it asymptotically transfers 
onto the lunar halo orbit. 

It is assumed that each transfer constructed here begins in a 185-km circular 
prograde Earth parking orbit. In this way, the performance of each transfer may be 
directly compared. In reality, the same sorts of transfers that are constructed here 
may begin from a LEO parking orbit at any altitude and with any eccentricity, or even 
from the surface of the Earth, provided that the vehicle is at the correct position at 
the correct time to perform the ΔVLEO maneuver successfully. 

The following strategy has been followed to construct direct transfers to lunar halo 
orbits: 

Step 1. Construct the desired halo orbit. 

Step 2. Construct the manifold segment: 

1. Choose a	 τ -value, that is, a point along the halo orbit as illustrated 
in Fig. 2-10 (page 50); choose a direction, that is, either “interior” or 
“exterior” as shown in Fig. 3-4; and choose a manifold propagation 
duration, Δtm. 

2. The manifold segment is constructed by propagating the specific tra
jectory in the halo orbit’s stable manifold that corresponds to the given 
τ -value. The trajectory departs the halo orbit either in the interior or exte
rior direction, as indicated. It is propagated in the Earth–Moon three-body 
system backward in time for the given duration. 
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Figure 3-5 Two perspectives of an example scenario that may be used to transfer a spacecraft 
from a 185-km LEO parking orbit to a lunar L1 halo orbit. The transfer is shown in the Earth– 
Moon rotating frame (top) and the corresponding inertial frame of reference (bottom). The 
halo orbit is shown in the inertial frame only for reference. 
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Step 3. Define XMI to be the final state of the manifold segment. This is the state 
that a spacecraft would need to obtain in order to inject onto the manifold 
segment. 

Step 4. Construct ΔVMI and the bridge segment: 

1. Define ΔVMI to be the tangential ΔV that may be applied to XMI in order 
to construct the bridge segment. 

2. When propagated further backward in time, the bridge segment will 
encounter the prograde 185-km LEO orbit at the bridge’s first perigee 
point. The bridge segment is propagated in the Earth–Moon three-body 
system. 

Step 5. Construct ΔVLEO, the tangential ΔV that may be applied to transfer the 
spacecraft from its LEO orbit onto the bridge segment. 

This procedure is used here to produce a direct, two-burn transfer to a lunar halo 
orbit given an arbitrary lunar halo orbit and any given value for those parameters 
specified in Step 2 above. A significant benefit of this procedure is that it requires no 
knowledge of what a transfer should look like, except that the bridge segment is only 
propagated backward in time to its first perigee passage. 

This process generates three-dimensional transfers in the idealized Earth–Moon 
circular restricted three-body problem (CRTBP). The inclination of the Earth de
parture is a free variable; it is computed and reported, but not targeted in any way. 
Furthermore, since no date is specified, the inclination is presented relative to the 
orbital plane of the Moon. The performance of actual transfers to real halo orbits 
will vary based on the date and orientations of each body and its orbit in the Solar 
System. Nevertheless, this exploration sheds light on what sorts of transfers exist 
and their approximate performance. 

Several scenarios have been explored to identify optimal transfers, given the 
confines of this survey. The first suspicion is that the optimal transfer may be 
constructed by building a bridge segment that connects the LEO departure with the 
manifold segment’s perigee point. Since energy-change maneuvers are more efficient 
when a spacecraft is traveling faster [97], the perigee of the manifold segment seems 
like a good location to perform the ΔVMI maneuver. The best transfer for a specific 
halo orbit would then be the one that requires the least total ΔV over all τ -values. 
This perigee-point scenario is presented first. It turns out that this strategy does not 
produce the most efficient transfers—the next strategy generates better transfers—but 
the perigee-point scheme will still be presented because it illuminates the problem 
very well. 

3.3.2 The Perigee-Point Scenario 

Figure 3-6 shows two perspectives of several example trajectories that may be used 
to transfer a spacecraft onto a single lunar L1 halo orbit using the perigee-point 
scheme. Each transfer implements a different τ -value about the same halo orbit. For 
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Figure 3-6 Example trajectories that implement the perigee-point scheme to directly transfer 
from LEO to a lunar L1 halo orbit. The transfers are shown in the Earth–Moon rotating 
frame (top) and the corresponding inertial frame of reference (bottom). (See insert for color 
representation of this figure.) 
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reference, the halo orbit is a northern L1 halo orbit with an x0-value of approximately 
319,052 kilometers (km). The manifold segment in each case has been propagated 
to its perigee point, and the corresponding bridge segment has been constructed to 
transfer from a 185-km prograde LEO orbit to that perigee point. The trajectories are 
shown in both the Earth–Moon rotating frame and the corresponding inertial frame 
of reference. 

Several of the trajectories shown in the left plot of Fig. 3-6 appear to have non-
tangential ΔVMI maneuvers; this is only a visual effect caused by the rotating frame 
of reference. As the spacecraft departs the Earth on the bridge segment, it quickly 
crosses a point where the frame of reference rotates about the Earth faster than the 
spacecraft. After that point, the spacecraft appears to travel in a retrograde fash
ion about the Earth, seemingly in conflict with its inertially prograde orbit. If the 
spacecraft then performs a large enough ΔVMI maneuver, the spacecraft’s rotational 
velocity will once again exceed the rotational velocity of the frame of reference. The 
spacecraft will appear to have switched directions when it actually just increased its 
inertial velocity. 

Figure 3-7 shows plots of the magnitudes of the two required maneuvers, ΔVLEO 
and ΔVMI, as well as the total maneuver cost as functions of the parameter τ . One 
can see that the minimum ΔV cost to transfer from the 185-km LEO orbit to this halo 
orbit using the perigee-point scheme is approximately 4.14 kilometers per second 
(km/s). One can also see that this minimum occurs at the point where ΔVLEO is at its 
maximum. Figure 3-8 shows plots of the minimum- and maximum-ΔV transfers and 
verifies that the minimum-ΔV transfer involves the largest bridge segment observed 
in Fig. 3-6. The total transfer duration from the point where the spacecraft performs 
its ΔVLEO maneuver to the point where it is within 100 km of the given halo orbit 
ranges between approximately 17.7 days (τ ≈ 0.30) and 22.9 days (τ ≈ 0.83). 

3.3.3 The Open-Point Scenario 

Although it may be intuitive to perform ΔVMI at the manifold segment’s perigee 
point because of the energy considerations, it is actually better to perform a larger 
ΔVLEO and a smaller, although less-efficient, ΔVMI. This is because the maneuver at 
LEO can take advantage of its close proximity to the Earth to make the total energy 
change required in the transfer as efficient as possible. That is, it is most efficient 
to change as much of the spacecraft’s energy at LEO as possible, since that is the 
location where the spacecraft will be traveling the fastest during the lunar transfer. 
This result is evident by studying the results of the perigee-point scheme. 

An alternate scheme is presented here where the second maneuver, ΔVMI, may 
be placed anywhere along the stable manifold of the halo orbit. The manifold 
segment may be propagated well beyond its perigee point, although it has an imposed 
maximum propagation time of 1 or 2 months: 1 month for exterior manifolds since 
they depart the Moon’s vicinity quickly and 2 months for interior manifolds since they 
linger near the Moon for longer amounts of time. The transfers have an additional 
degree of freedom compared with the perigee-point scheme, but they are otherwise 
constructed in exactly the same manner as listed above. This new scheme will be 
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Figure 3-7 Plots of the maneuver requirements to transfer onto a lunar L1 halo orbit using 
the perigee-point scheme. Top: the magnitudes of the two maneuvers ΔVLEO and ΔVMI as 
functions of τ ; bottom: the total ΔV cost as a function of τ . 
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Figure 3-8 The minimum- and maximum-ΔV transfers produced using the perigee-point 
scheme. One can see that the minimum-ΔV transfer contains the largest bridge segment 
observed in Fig. 3-6 [174] (Copyright c© 2008 by American Astronautical Society Publications 
Office, all rights reserved, reprinted with permission of the AAS). 
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referred to as the open-point scheme, since the manifold insertion point has had its 
position constraint opened. 

To demonstrate the open-point transfer strategy, Fig. 3-9 shows several transfers 
that may be constructed from LEO to an arbitrary trajectory along the stable manifold 
of a particular halo orbit. The halo orbit shown in Fig. 3-9 is the same northern L1 

halo orbit presented in Section 3.3.2, and the manifold shown has a τ -value of 0.3. 
Figure 3-10 shows the maneuver cost associated with transferring to various points 
along the manifold, where the location of ΔVMI is specified by the manifold propa
gation duration, Δtm. One can see that there are two local minima that correspond 
to low-energy lunar transfers: one at a Δtm of approximately 10.0 days and the next 
at a Δtm of approximately 22.7 days, neither of which corresponds to a mission that 
transfers to the manifold segment’s perigee point, which has a Δtm of approximately 
16.86 days. In fact, these transfers correspond to missions where the bridge segment 
connects the spacecraft to a point very near the apogee of the manifold segment. 
Figure 3-11 shows plots of the extreme cases, namely, the four transfers indicated by 
the labels (1)–(4) in Fig. 3-10. One can see that the two local minima observed in 
Fig. 3-10, that is, the trajectories marked with a (2) and a (4), coincide very near to 
the manifold segment’s apogee locations. 

Figures 3-9 to 3-11 have demonstrated the open-point scheme applied to a single 
trajectory (where τ = 0.3) on the stable manifold of a single halo orbit (the lunar 
L1 halo orbit with an x0-value of approximately 319,052 km). The open-point 
scheme is easily extended to cover many trajectories along the halo orbit’s stable 
manifold. Figure 3-12 summarizes the required maneuvers and the total maneuver 
cost associated with the least expensive lunar transfer for each trajectory on the stable 
manifold of the same halo orbit. One can see that the lowest-energy open-point 
transfer constructed to this particular halo orbit requires a total ΔV of approximately 
3.62 km/s. This low-energy transfer implements the trajectory in the orbit’s stable 
manifold with a τ -value of approximately 0.48. For verification, Fig. 3-12 shows 
that the trajectory with a τ -value of 0.3 requires a minimum ΔV of approximately 
3.67 km/s: the same result as that shown in Fig. 3-10. 

Note that in Fig. 3-12 the least-expensive transfers to this halo orbit use the first 
maneuver, ΔVLEO, to perform the vast majority of the spacecraft’s energy change. 
This is consistent with the notion that the most efficient transfer performs as much 
ΔV as possible deep within the Earth’s gravity well where the spacecraft is traveling 
fastest. 

3.3.4 Surveying Direct Lunar Halo Orbit Transfers 

The previous section illustrates the open-point scheme applied to a single halo orbit 
about the Earth–Moon L1 point using the halo orbit’s exterior stable manifold. The 
process results in a low-energy, two-maneuver, direct lunar transfer to that halo orbit, 
following the exterior stable manifold. This section surveys low-energy direct lunar 
transfers to a large number of orbits within the families of halo orbits about both 
the Earth–Moon L1 and L2 points, taking advantage of both the exterior and interior 
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Figure 3-9 Example trajectories that implement the open-point scheme to directly transfer 
from LEO to a specific manifold of a particular lunar L1 halo orbit. 
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Figure 3-10 Plots of the maneuver requirements to transfer onto a specific manifold of a 
specific lunar L1 halo orbit using the open-point scheme. Top: the magnitudes of the two 
maneuvers ΔVLEO and ΔVMI as functions of Δtm; bottom: the total ΔV cost as a function 
of Δtm. 
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Figure 3-11 The four transfers with locally extreme ΔV requirements as indicated by the 
labels (1)–(4) in Fig. 3-10. The transfers are shown in the Earth–Moon rotating frame (top) and 
the corresponding inertial frame of reference (bottom) [174] (Copyright © 2008 by American c
Astronautical Society Publications Office, all rights reserved, reprinted with permission of the 
AAS). 
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Figure 3-12 Plots of the magnitudes of the two required maneuvers ΔVLEO and ΔVMI 
(top) and the total ΔV cost (bottom) associated with the least-expensive lunar transfer for each 
trajectory on the stable manifold of a single lunar L1 halo orbit. 
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stable manifolds. These results should be representative of other three-body orbits 
as well, such as Lissajous and vertical Lyapunov orbits. 

The following sections summarize the results of four surveys performed here: 

Section Halo Family 
Interior/Exterior 
Stable Manifold Page Number 

Section 3.3.4.1 
Section 3.3.4.2 
Section 3.3.4.3 
Section 3.3.4.4 

L1 

L1 

L2 

L2 

Exterior 
Interior 
Exterior 
Interior 

136 
140 
142 
146 

In each of these four cases, it would be ideal to perform an exhaustive search 
for the very best transfer to each halo orbit implementing the given stable manifold. 
However, it is very time-consuming to construct a transfer to each point along each 
trajectory in each halo orbit’s stable manifold. The corresponding phase space is 
three-dimensional, and every combination of parameters takes a significant amount 
of computation time. To reduce the computation load, while still performing a survey 
of a large portion of the phase space, several numerical optimization routines have 
been implemented. 

It has been found that a combination of hill-climbing and genetic algorithms per
forms very well at identifying the least-expensive transfers to a given halo orbit very 
swiftly [46]. The numerical algorithms use the state X = [x0, τ , Δtm]T to define 
a direct two-maneuver lunar transfer, given the procedure outlined in Section 3.3.1. 
The numerical optimization process begins by implementing a genetic algorithm to 
identify a local ΔV-minimum in the phase space. The implementation of the genetic 
algorithm will not be discussed here for brevity, but may be found in many sources in 
literature [179]. After several iterations of the genetic algorithm, the state that corre
sponds to the least-expensive lunar transfer is refined using a dynamic hill-climbing 
algorithm, also known as the steepest-descent algorithm [180]. In this way, the local 
minima of the three-dimensional phase space are quickly explored. In order to survey 
specific orbits within a family of halo orbits, the parameter x0 is held constant and 
the remaining two parameters are varied. 

The majority of the locally-optimal transfers found in this work were identified 
by specifying a value for x0 and varying the values of τ and Δtm using ten iterations 
of a genetic algorithm with a population of twenty states. The least-expensive state 
resulting from the genetic algorithm was then iterated in the dynamic hill-climbing 
algorithm until a solution was found whose ΔV cost could not be improved by varying 
τ by more than 1 × 10−5 or by varying Δtm by more than 4 seconds. 

The numerical optimization routine is not guaranteed to converge on the most 
efficient transfer, but it easily converges on relatively efficient transfers. The results 
given in the following sections include the most efficient transfers identified, as well 
as somewhat less efficient transfers. The results then trace out a Pareto front of 
optimal solutions [181]. Other nonoptimal points have been added to the results to 
give an impression of the range of costs of transfers that exist. Each result is discussed 
in more detail in the following sections. 
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3.3.4.1 Survey of Exterior Transfers to L1 Halo Orbits This section presents 
the results of open-point transfers constructed between 185-km LEO parking orbits 
and the exterior stable manifold of halo orbits in the family of lunar L1 halo orbits. 
Figure 3-13 shows the cost of many such example transfers to halo orbits in the fam
ily. One can see that there are several types of efficient transfers. To help identify the 
trends and differences between each type of transfer, Fig. 3-14 shows plots of several 
example transfers. Finally, Tables 3-2 through 3-5 provide additional information 
about sample transfers of several varieties observed in the figures. Table 3-2 sum
marizes the characteristics of the numbered transfers shown in Fig. 3-14; Table 3-3 
provides details about the shortest-duration transfers identified; Tables 3-4 and 3-5 
summarize the transfers labeled “efficient” and “complex” in Fig. 3-13, respectively. 

Figures 3-13 and 3-14 show many interesting patterns. After studying the transfers 
presented in these figures, as well as the corresponding data presented in Tables 3-2 
through 3-5, the following observations have been made: 

•	 The majority of the least-expensive transfers of this type are very fast transfers, 
requiring only five days to transfer to a close proximity of each corresponding 
halo orbit. Table 3-3 provides details about examples of such fast transfers. 
Their bridge segments take the spacecraft nearly directly to the halo orbit. 
These transfers compose the majority of the Pareto front observed in the figures. 

Figure 3-13 The total ΔV cost of many surveyed transfers to the exterior stable manifold of 
orbits in the family of lunar L1 halo orbits. 
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Figure 3-14 Several example transfers between 185-km LEO parking orbits and the exterior 
stable manifold of lunar L1 halo orbits. The parameters of the numbered transfers are 
summarized in Table 3-2. 

Table 3-2 Characteristics of the numbered transfers identified in Fig. 3-14 [174] 
(Copyright c© 2008 by American Astronautical Society Publications Office, all rights 
reserved, reprinted with permission of the AAS). 

# 
x0 

(km) 
ΔVLEO 

(m/s) 
ΔVMI 

(m/s) 
Total ΔV 

(m/s) 
Inc∗ 

(deg) 
Transfer 
Δt (days) 

Bridge 
Δt (days) 

Manifold 
Δt (days) 

τ 

1 320265 3128.0 539.0 3667.0 26.3 13.1 4.5 8.5 0.179 
2 348963 3134.1 934.1 4068.2 8.2 8.8 4.7 4.1 0.888 
3 357643 3132.9 923.1 4056.0 16.1 7.5 4.6 2.9 0.500 
4 357177 3129.0 579.0 3708.0 25.7 30.6 4.6 26.0 0.501 
5 342539 3136.2 453.5 3589.7 48.1 22.1 4.9 17.2 0.461 
6 334016 3135.9 493.6 3629.5 46.9 28.8 4.9 23.9 0.911 
7 322568 3119.2 503.1 3622.2 9.8 31.3 4.0 27.3 0.800 
8 317035 3111.3 531.7 3643.0 5.0 23.5 3.4 20.1 0.281 
∗The inclination of the LEO parking orbit in the CRTBP. 
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Table 3-3 Characteristics of example fast transfers identified in Figs. 3-13 and 3-14 
[174] (Copyright c© 2008 by American Astronautical Society Publications Office, all 
rights reserved, reprinted with permission of the AAS). 

x0 ΔVLEO ΔVMI Total ΔV Inc Transfer Bridge Manifold 
(km) (m/s) (m/s) (m/s) (deg) Δt (days) Δt (days) Δt (days) τ 

317406 3123.6 572.1 3695.7 17.0 7.6 4.4 3.1 0.757 
318240 3125.3 558.3 3683.6 21.1 9.0 4.4 4.5 0.863 
320569 3129.4 540.9 3670.3 30.0 5.4 4.6 0.7 0.543 
324912 3133.4 522.2 3655.6 38.3 6.6 4.8 1.8 0.638 
328382 3134.8 511.3 3646.2 42.2 6.8 4.8 2.0 0.664 
332715 3135.7 497.9 3633.5 45.9 5.7 4.9 0.7 0.562 
335440 3135.9 488.6 3624.5 47.7 5.7 4.9 0.8 0.566 
339191 3136.1 471.9 3608.0 49.3 6.5 4.8 1.7 0.673 
341814 3136.1 457.9 3594.0 49.5 8.2 4.8 3.5 0.878 
345948 3135.8 876.0 4011.8 26.0 8.3 4.9 3.4 0.874 
347333 3135.2 915.6 4050.8 13.4 7.3 4.8 2.5 0.745 
350325 3133.4 940.5 4073.9 8.6 5.9 4.7 1.3 0.500 
353906 3132.5 940.7 4073.2 12.7 6.7 4.6 2.1 0.500 
357643 3132.9 923.1 4056.0 16.1 7.5 4.6 2.9 0.500 

Table 3-4 Characteristics of example transfers from the family labeled “Efficient 
Transfers” in Fig. 3-13 [174] (Copyright © 2008 by American Astronautical Society c
Publications Office, all rights reserved, reprinted with permission of the AAS). 

x0 ΔVLEO ΔVMI Total ΔV Inc Transfer Bridge Manifold 
(km) (m/s) (m/s) (m/s) (deg) Δt (days) Δt (days) Δt (days) τ 

316507 3108.9 561.7 3670.6 1.4 22.3 3.4 18.9 0.204 
317035 3111.3 531.7 3643.0 5.0 23.5 3.4 20.1 0.281 
317353 3112.1 524.8 3636.9 5.7 24.0 3.5 20.5 0.312 
317721 3112.9 519.0 3631.9 6.3 24.6 3.5 21.1 0.348 
318219 3113.8 513.2 3627.0 6.9 25.4 3.6 21.8 0.398 
318745 3114.7 508.7 3623.4 7.5 26.2 3.6 22.6 0.453 
319497 3115.8 504.6 3620.3 8.1 27.4 3.7 23.7 0.525 
320179 3116.7 502.3 3619.0 8.6 28.3 3.7 24.6 0.583 
320899 3117.6 501.2 3618.8 9.1 29.2 3.8 25.5 0.645 
321932 3118.7 501.1 3619.8 9.6 30.7 3.8 26.8 0.743 

•	 The bridge segments that do connect the spacecraft nearly directly with the halo 
orbit appear to do so in an organized manner. For halo orbits with x0-values 
below a value of approximately 345,000 km, the bridge segments connect the 
spacecraft with the far side of the halo orbit. Beyond x0-values of 345,000 km, 
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Table 3-5 Characteristics of example transfers from those labeled “Complex 
Transfers” in Fig. 3-13 [174] (Copyright c© 2008 by American Astronautical Society 
Publications Office, all rights reserved, reprinted with permission of the AAS). 

x0 ΔVLEO ΔVMI Total ΔV Inc Transfer Bridge Manifold 
(km) (m/s) (m/s) (m/s) (deg) Δt (days) Δt (days) Δt (days) τ 

348011 3137.0 430.7 3567.6 31.9 28.4 4.2 24.2 0.476 
352619 3135.9 587.1 3723.0 32.7 31.7 4.5 27.3 0.904 
354615 3136.4 669.3 3805.7 19.7 29.9 4.3 25.6 0.703 
358106 3134.2 501.1 3635.3 24.8 31.2 4.9 26.3 0.499 
358150 3131.1 519.1 3650.2 15.7 31.8 4.6 27.2 0.499 

that is, for very large z-amplitude halo orbits, the optimal direct transfers 
tend to connect closer to the near-side of the halo orbit. This pattern may be 
observed in the plots shown around the perimeter of Fig. 3-14. 

•	 A family of very efficient direct transfers of this kind appears for transfers 
to halo orbits with x0-values between approximately 316,000 km and ap
proximately 323,000 km. The bridge segments of these transfers connect the 
spacecraft with the first apogee of the manifold segments after the manifold 
segments traverse to the opposite side of the Earth–Moon system. This family 
of transfers may be seen on the left side of the figures and corresponds to halo 
orbits that have small z-amplitudes. Table 3-4 summarizes additional details 
about these transfers. 

•	 A few transfers have been found that require less total ΔV than the vast 
majority of locally optimal transfers. These transfers appear toward the lower 
right portion of the plot shown in Fig. 3-13 and are labeled as complex transfers. 
These transfers tend to involve several close flybys of the Moon. This study 
has not fully explored these transfers, since they are much more complicated 
by nature, but Table 3-5 provides details about several example transfers of this 
type. 

•	 The transfers shown in Figs. 3-13 and 3-14 implement LEO parking orbits 
with ecliptic inclinations anywhere between 0 deg and 50 deg. The equatorial 
inclination, by comparison, depends on the specific launch date and varies from 
the ecliptic inclination by as much as ±23.45 deg. 

•	 The duration of time required to transfer within 100 km of the halo orbit may 
be anywhere between 5–30 days. Transfers may certainly be constructed that 
require more time; however, these transfers are not considered in this study 
since they may be more influenced by the Sun’s gravity. 

•	 The least-expensive transfers to lunar L1 halo orbits following their exterior 
stable manifolds generally require a total ΔV no smaller than approximately 
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3.60 km/s, depending on the halo orbit of choice. Halo orbits with x0-values 
greater than approximately 345,000 km tend to require more total ΔV: in the 
range of 4.05 km/s ≤ ΔV ≤ 4.08 km/s. 

In many practical missions, the launch vehicle provides a set amount of ΔV, 
given a payload mass, and mission designers must optimize their transfer trajectories 
around that performance. Hence, many times it is useful to consider the two transfer 
maneuvers separately as well as the total cost of the transfer. Figure 3-15 shows the 
magnitudes of the two maneuvers separately, which combine to produce the total ΔV 
cost of the transfers shown in Figs. 3-13 and 3-14. One can see that nearly all of 
the transfers require the magnitude of the trans-lunar injection maneuver (ΔVLEO) 
to be between 3.120 and 3.136 km/s. This suggests that the same launch vehicle can 
perform the trans-lunar injection maneuver for nearly all of these transfers given the 
same payload mass. Although it is difficult to see in these plots, the least-expensive 
transfers require the most-expensive ΔVLEO-magnitudes. The second maneuver, 
ΔVMI, contributes most of the variations seen in the total cost of the lunar transfer. 

3.3.4.2 Survey of Interior Transfers to L1 Halo Orbits This section presents 
the survey of transfers constructed between 185-km LEO parking orbits and the inte
rior stable manifold of halo orbits in the family of lunar L1 halo orbits. Figure 3-16 
shows the cost of many such example transfers, where several families of locally 
optimal transfers have been plotted in a more prominent shade. Other nonoptimal 
transfers have been scattered about the plot to demonstrate that an entire field of 
options are available. To help identify the trends and differences between each type 
of transfer, Fig. 3-17 shows plots of several example transfers and Tables 3-6 through 
3-9 summarize the characteristics of many of these transfer types. 

The following observations may be made after studying the plots shown in 
Figs. 3-16 and 3-17 and the data displayed in Tables 3-6 through 3-9: 

•	 The same types of fast transfers exist to L1 halo orbits via their interior stable 
manifolds as via their exterior stable manifolds, because the manifold segments 
of those transfers do not extend far beyond the halo orbits. Hence, the cost and 
performance of such fast transfers closely resemble the cost of the fast transfers 
explored in Section 3.3.4.1. This is apparent when comparing the data shown 
in Tables 3-3 and 3-7. 

•	 Many families of longer-duration transfers exist that often require less total 
ΔV than the faster transfers. Examples of these transfers may be seen in 
the lower left and lower right regions of Figs. 3-16 and 3-17, as well as in 
Tables 3-8 and 3-9. In general, each of these transfers involves at least one close 
lunar encounter, and many are constructed by intersecting the transfer’s bridge 
segment with a point very near apogee of the transfer’s manifold segment. 

•	 The transfers shown in Figs. 3-16 and 3-17 implement LEO parking orbits with 
ecliptic inclinations anywhere between 0 deg and 60 deg. Again, the equatorial 
inclinations of the LEO parking orbits depend on the launch date. 
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Figure 3-15 The two transfer maneuver magnitudes that combine to produce the total ΔV 
cost of the transfers shown in Figs. 3-13 and 3-14. Top: The magnitudes of the trans-lunar 
injection maneuvers (ΔVLEO) in each transfer; bottom: The magnitudes of the manifold-
insertion maneuvers (ΔVMI) in each transfer. 

•	 The least-expensive transfers to lunar L1 halo orbits following their interior 
stable manifolds generally require a total ΔV no smaller than approximately 
3.60 km/s, depending on the halo orbit of choice. The trend is very similar to 
that presented in Section 3.3.4.1 for short-duration lunar halo transfers. 
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Figure 3-16 The total ΔV cost of many surveyed transfers to the interior stable manifold 
of orbits in the family of lunar L1 halo orbits. Dark points correspond to locally optimal 
trajectories; faint points represent additional nonoptimal solutions. 

To continue this analysis, Fig. 3-18 shows the magnitudes of the two determin
istic maneuvers separately. One can see that the total ΔV cost of each transfer is 
divided between the two maneuvers in a very similar way as the exterior transfers 
shown in Section 3.3.4.1. Many of the transfers require a trans-lunar injection ma
neuver magnitude (ΔVLEO) between 3.120 and 3.136 km/s. Some of the families of 
more-efficient transfers require smaller ΔVLEO-magnitudes. Even with these slight 
reductions, the second maneuver, ΔVMI, still contributes most of the variations seen 
in the total cost of the lunar transfer. 

3.3.4.3 Survey of Exterior Transfers to L2 Halo Orbits This section presents 
the survey of transfers constructed between 185-km LEO parking orbits and the ex
terior stable manifold of halo orbits in the family of lunar L2 halo orbits. Figure 3-19 
shows the cost of many such example transfers to halo orbits in the family, including a 
Pareto front of optimal transfers. To help identify the trends and differences between 
each type of transfer, Fig. 3-20 shows plots of several example transfers, and Tables 
3-10 through 3-13 summarize the characteristics of many sample transfers of this 
type. 

Figures 3-19 and 3-20 show many interesting patterns. After studying the transfers 
presented in these figures, and the data summarized in Tables 3-10 through 3-13, the 
following observations have been made: 



DIRECT TRANSFERS BETWEEN EARTH AND LUNAR LIBRATION ORBITS 143 

Figure 3-17 Several example transfers between 185-km LEO parking orbits and the interior 
stable manifold of lunar L1 halo orbits. The parameters of the numbered transfers are 
summarized in Table 3-6. Dark points correspond to locally optimal trajectories; faint points 
represent additional nonoptimal solutions. 

•	 Two dominant types of efficient transfers exist that transfer to the halo orbits’ 
exterior stable manifold. The first one, indicated by the upper prominent curve 
in Fig. 3-19, includes transfers whose bridge segments connect the spacecraft 
directly with the far side of the L2 halo orbit. These are short-duration trans
fers, characterized by data shown in Table 3-11, and they are similar to the 
short-duration transfers explored in Sections 3.3.4.1 and 3.3.4.2. The second 
dominant type of transfer, indicated by the lower prominent curve in Fig. 3-19, 
includes trajectories whose bridge segments send the spacecraft well beyond 
the Moon, where they intersect the corresponding manifold segments near the 
segments’ apogee points. The first type of transfer requires only 5–6 days to 
accomplish, whereas the second type requires as many as 35–50 days before 
the spacecraft is within 100 km of the lunar halo orbit. 

•	 Additional benefit may be obtained for transfers to L2 halos with x0-values 
greater than approximately 425,000 km by flying near the Moon en route to 
the ΔVMI maneuver. The lunar flyby reduces the total required ΔV, albeit at 
the expense of more sensitive navigation requirements near that lunar flyby. 
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Table 3-6 Characteristics of the numbered transfers identified in Fig. 3-17 [174] 
(Copyright c© 2008 by American Astronautical Society Publications Office, all rights 
reserved, reprinted with permission of the AAS). 

# 
x0 

(km) 
ΔVLEO 

(m/s) 
ΔVMI 

(m/s) 
Total ΔV 

(m/s) 
Inc∗ 

(deg) 
Transfer 
Δt (days) 

Bridge 
Δt (days) 

Manifold 
Δt (days) 

τ 

1 326808 3111.3 902.6 4013.9 12.2 48.8 3.5 45.4 0.447 
2 348529 3118.2 837.7 3955.9 12.1 58.4 3.9 54.6 0.193 
3 353325 3132.6 941.9 4074.5 12.0 8.7 4.6 4.1 0.772 
4 358234 3129.9 920.8 4050.8 18.3 24.1 4.5 19.6 0.499 
5 358745 3116.7 796.4 3913.1 17.5 39.4 3.9 35.5 0.660 
6 357400 3127.1 729.5 3856.6 10.6 57.3 4.3 53.0 0.008 
7 353001 3133.0 498.9 3631.9 27.0 37.6 4.7 32.9 0.456 
8 341601 3136.2 462.4 3598.6 51.9 25.7 4.9 20.8 0.848 
9 326786 3121.0 477.5 3598.5 9.3 48.5 3.9 44.6 0.756 

10 321441 3117.8 469.6 3587.4 7.9 39.7 3.8 35.9 0.121 
11 325594 3133.8 520.1 3653.9 39.5 6.2 4.8 1.4 0.609 
12 317083 3111.4 593.1 3704.5 6.7 31.5 3.5 28.0 0.079 

*The inclination of the LEO parking orbit in the CRTBP. 

Table 3-7 Characteristics of example fast transfers identified in Figs. 3-16 and 3-17 
[174] (Copyright c© 2008 by American Astronautical Society Publications Office, all 
rights reserved, reprinted with permission of the AAS). 

x0 ΔVLEO ΔVMI Total ΔV Inc Transfer Bridge Manifold 
(km) (m/s) (m/s) (m/s) (deg) Δt (days) Δt (days) Δt (days) τ 

316536 3121.0 607.9 3728.9 7.0 8.2 4.3 3.9 0.834 
318562 3126.3 556.5 3682.9 23.3 7.5 4.5 3.0 0.738 
320977 3130.0 538.2 3668.2 31.3 6.5 4.7 1.8 0.635 
324263 3133.1 523.2 3656.4 37.5 9.5 4.7 4.7 0.892 
328038 3134.8 513.0 3647.8 41.7 4.9 4.8 0.1 0.487 
331309 3135.5 500.8 3636.2 44.2 9.2 4.8 4.3 0.905 
335684 3135.9 485.5 3621.5 47.6 9.2 4.8 4.4 0.946 
339602 3136.1 469.3 3605.4 50.0 7.7 4.8 2.9 0.805 
341979 3136.1 456.2 3592.3 49.9 9.5 4.8 4.7 0.025 
345722 3135.9 859.6 3995.5 30.4 6.6 4.9 1.7 0.671 
347918 3134.8 924.3 4059.2 10.1 7.1 4.8 2.4 0.707 
349968 3133.6 939.0 4072.6 8.4 8.5 4.6 3.8 0.828 
351974 3132.9 942.7 4075.6 10.4 8.3 4.6 3.7 0.764 
354725 3132.5 939.9 4072.5 13.7 5.0 4.7 0.3 0.256 
358661 3133.3 910.4 4043.7 16.7 7.8 4.6 3.2 0.500 
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Table 3-8 Characteristics of example transfers from the region labeled “Efficient 
Transfers” in Fig. 3-16. The rows of the table are organized in groups, where each group 
describes example transfers in a different family [174] (Copyright c© 2008 by American 
Astronautical Society Publications Office, all rights reserved, reprinted with permission 
of the AAS). 

x0 ΔVLEO ΔVMI Total ΔV Inc Transfer Bridge Manifold 
(km) (m/s) (m/s) (m/s) (deg) Δt (days) Δt (days) Δt (days) τ 

320688 3117.0 473.3 3590.3 7.9 38.3 3.8 34.6 0.057 
321925 3118.2 468.3 3586.6 7.9 40.6 3.8 36.8 0.173 
323219 3119.4 470.2 3589.6 8.0 44.6 3.8 40.8 0.456 
324345 3120.2 476.2 3596.4 8.3 46.2 3.9 42.4 0.556 
326087 3120.9 477.5 3598.4 8.8 47.8 3.9 43.9 0.686 
327737 3121.3 480.6 3601.8 9.5 49.6 3.9 45.7 0.859 

327189 3127.3 497.7 3625.0 15.3 45.4 4.3 41.1 0.658 
328326 3129.4 491.6 3621.0 20.1 46.3 4.5 41.8 0.745 
329353 3131.5 486.5 3618.0 25.9 47.1 4.7 42.5 0.830 
330278 3133.7 480.9 3614.6 33.9 47.9 4.9 43.1 0.933 

322265 3126.8 495.6 3622.4 18.1 31.2 4.4 26.8 0.212 
325061 3128.2 498.4 3626.6 20.1 36.2 4.4 31.8 0.599 
326012 3129.2 496.2 3625.4 22.5 36.9 4.5 32.5 0.669 
328613 3130.8 496.3 3627.1 26.6 39.5 4.6 34.9 0.947 

329737 3136.3 486.6 3622.8 52.5 29.0 4.9 24.1 0.861 
329778 3136.5 486.8 3623.3 52.9 30.0 5.0 25.0 0.972 
330195 3136.2 484.3 3620.6 51.8 33.7 4.8 28.8 0.326 
330545 3136.2 487.4 3623.6 51.5 30.4 4.9 25.5 0.018 

These transfers may be seen in the lower right portions of the plots shown 
in Figs. 3-19 and 3-20; Tables 3-12 and 3-13 compare the characteristics of 
transfers with and without the lunar flyby. 

•	 The transfers shown in Figs. 3-19 and 3-20 implement LEO parking orbits 
with different ranges of ecliptic inclinations. The transfers indicated by the 
upper prominent curve in Fig. 3-19 may be launched from LEO parking orbits 
with ecliptic inclination values anywhere in the range of 0 deg–25 deg. Those 
transfers indicated by the lower prominent curve have a narrower range of 
0 deg–19 deg. Finally, the lowest ΔV transfers shown in the lower right portion 
of the figures may implement LEO parking orbits with a much more broad 
range of ecliptic inclinations: anywhere in the range of 20 deg–120 deg and 
possibly beyond. 
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Table 3-9 Characteristics of example transfers in the region labeled “Complex 
Transfers” in Fig. 3-16. The examples summarized here belong to many different 
families, demonstrating the variety of transfers that exist [174] (Copyright c© 2008 by 
American Astronautical Society Publications Office, all rights reserved, reprinted with 
permission of the AAS). 

x0 ΔVLEO ΔVMI Total ΔV Inc Transfer Bridge Manifold 
(km) (m/s) (m/s) (m/s) (deg) Δt (days) Δt (days) Δt (days) τ 

351166 3134.5 501.3 3635.8 34.8 37.4 4.8 32.6 0.448 
351444 3121.5 506.1 3627.5 11.6 49.9 3.9 46.0 0.515 
352138 3135.3 528.4 3663.7 40.2 35.2 4.7 30.5 0.260 
353639 3120.0 522.0 3642.0 12.7 50.0 3.8 46.3 0.508 
355251 3135.1 529.1 3664.2 35.3 35.3 4.7 30.5 0.250 
355550 3131.2 504.5 3635.7 19.5 37.5 4.6 32.9 0.405 
355848 3121.8 508.6 3630.4 12.1 49.2 4.0 45.3 0.454 
358221 3135.3 532.3 3667.6 31.6 35.1 4.7 30.4 0.108 
358332 3130.8 501.3 3632.1 15.9 37.9 4.5 33.4 0.317 
358677 3122.8 502.7 3625.5 13.0 50.2 4.0 46.2 0.374 
358837 3135.6 523.4 3659.0 28.1 36.6 4.7 31.8 0.142 

•	 The total ΔV cost of the least-expensive transfers to lunar L2 halo orbits 
following their exterior stable manifolds greatly depend on which halo orbit is 
being targeted. Halo orbits with x0-values less than 385,000 km, that is, very 
large z-amplitude halo orbits, require no less than approximately 3.95 km/s to 
reach in this way. The cost steadily decreases for halo orbits with x0-values 
between 385,000 km and 415,000 km. Halo orbits with x0-values greater than 
approximately 415,000 km, that is, very low z-amplitude halo orbits, require 
no less than approximately 3.77 km/s to reach in this way. Finally, those halo 
orbits that may be reached using an additional lunar flyby en route have a total 
ΔV requirement that may be reduced to as low as approximately 3.69 km/s. 

Once again, to continue this analysis, Fig. 3-21 shows the magnitudes of the two 
transfer maneuvers separately. One can see that the total ΔV cost of each transfer 
is divided between the two maneuvers in a similar way as the transfers shown in 
Sections 3.3.4.1 and 3.3.4.2. However, in these exterior transfers to the L2 halo 
orbits, the first maneuver, ΔVLEO, must perform somewhat larger ΔVs than it did for 
transfers to L1 halo orbits: between 3.145 and 3.185 km/s. The second maneuver, 
ΔVMI, still contributes most of the variations seen in the total cost of the lunar transfer. 

3.3.4.4 Survey of Interior Transfers to L2 Halo Orbits This section presents 
the survey of transfers constructed between 185-km LEO parking orbits and the inte
rior stable manifold of halo orbits in the family of lunar L2 halo orbits. Figure 3-22 
shows the cost of many such example transfers to halo orbits in the family. Sev
eral families of locally optimal transfers have been highlighted in a more prominent 
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Figure 3-18 The two transfer maneuver magnitudes that combine to produce the total ΔV 
cost of the transfers shown in Figs. 3-16 and 3-17. Dark points correspond to locally optimal 
trajectories; faint points represent additional nonoptimal solutions. Top: The magnitudes of 
the trans-lunar injection maneuvers (ΔVLEO) in each transfer; Bottom: The magnitudes of the 
manifold-insertion maneuvers (ΔVMI) in each transfer. 

shade to be distinguished from the scattered nonoptimal transfers. To help identify 
the trends and differences between each type of transfer, Fig. 3-23 shows plots of 
several example transfers and Tables 3-14 through 3-16 summarize the characteristics 
of many sample transfers of this type. 
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Figure 3-19 The total ΔV cost of many surveyed transfers to the exterior stable manifold of 
orbits in the family of lunar L2 halo orbits, including a Pareto front of optimal solutions. Dark 
points correspond to locally optimal trajectories; faint points represent additional nonoptimal 
solutions. 

The following observations may be made after studying the plots shown in 
Figs. 3-22 and 3-23 and the data presented in Tables 3-14 through 3-16: 

•	 The most prominent upper curve in Fig. 3-22 is nearly identical to the most 
prominent curve in Fig. 3-19 from Section 3.3.4.3. This is because the manifold 
segments of the transfers along both of those curves do not depart far from the 
corresponding halo orbits. Both of these curves correspond to the shortest-
duration transfers to lunar L2 halo orbits, although they are certainly not the 
least-expensive in most cases. 

•	 Many transfers exist that may be modeled as a transfer from LEO to an orbit 
about the Moon’s L1 point, followed by a transfer from L1 to L2. It makes 
sense, then, that many transfers to L2 require no more ΔV than transfers to L1. 
These transfers require more transfer time than the shortest-duration transfers 
previously described. 

•	 The transfers shown in the lower left plots in Fig. 3-23 include manifold 
segments that extend well beyond the lunar vicinity. The bridge segments 
in those transfers connect with a point near one of the apogee points of the 
corresponding manifold segments. Several such families exist; in fact, a 
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Figure 3-20 Several example transfers between 185-km low Earth orbits and the exterior 
stable manifold of lunar L2 halo orbits. Dark points correspond to locally optimal trajectories; 
faint points represent additional nonoptimal solutions. Parameters of the transfers shown are 
summarized in Table 3-10. 

different family may be produced for transfers that connect with any given 
apogee of the corresponding manifold segments. Figure 3-23 shows two 
plots of transfers that connect with the manifold segment’s first apogee point 
opposite of the Moon, as well as one plot of a transfer that connects with the 
manifold segment’s second apogee point. Families of transfers that intersect 
with later apogee points have not been produced here because they require 
longer transfer durations. The characteristics of example transfers from several 
of these families are shown in Table 3-16. 

•	 There exist many types of transfers that make at least one close lunar passage 
en route to the L2 halo orbit. It is apparent when studying the figures that the 
total required ΔV of a transfer is very dependent on the distance between the 
Moon and the manifold-insertion maneuver. That is, as the proximity of ΔVMI 
with the Moon is reduced the total required ΔV in the transfer is reduced. This 
makes sense because more of the energy change in the transfer is performed 
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Table 3-10 Characteristics of the numbered transfers identified in Fig. 3-20 [174] 
(Copyright c© 2008 by American Astronautical Society Publications Office, all rights 
reserved, reprinted with permission of the AAS). 

x0 ΔVLEO ΔVMI Total ΔV Inc∗ Transfer Bridge Manifold
#	 τ(km) (m/s) (m/s) (m/s) (deg) Δt (days) Δt (days) Δt (days) 

1 379441 3142.6 820.4 3963.0 22.9 25.6 5.3 20.3 0.046 
2 406016 3150.5 860.0 4010.4 13.4 9.4 5.9 3.5 0.740 
3 430307 3152.4 957.0 4109.4 1.7 13.3 6.0 7.3 0.970 
4 427287 3185.5 588.5 3774.1 3.2 44.2 16.9 27.3 0.465 
5 430167 3162.2 536.4 3698.6 85.4 51.5 24.2 27.3 0.593 
6 399548 3173.9 659.5 3833.4 9.1 39.2 11.9 27.3 0.004 
7 391748 3169.2 696.2 3865.3 9.8 37.4 10.1 27.3 0.203 
∗The inclination of the LEO parking orbit in the CRTBP. 

Table 3-11 Characteristics of example fast transfers observed in Figs. 3-19 and 3-20 
c

rights reserved, reprinted with permission of the AAS). 
[174] (Copyright © 2008 by American Astronautical Society Publications Office, all 

x0 ΔVLEO ΔVMI Total ΔV Inc Transfer Bridge Manifold 
(km) (m/s) (m/s) (m/s) (deg) Δt (days) Δt (days) Δt (days) τ 

382074 3146.3 801.5 3947.7 19.0 6.2 5.6 0.6 0.547 
388716 3148.2 811.5 3959.7 17.1 7.5 5.7 1.8 0.636 
400469 3149.9 842.4 3992.3 14.8 7.3 5.9 1.5 0.594 
407319 3150.6 864.3 4014.8 13.4 6.2 6.0 0.2 0.506 
412311 3151.0 881.8 4032.8 12.1 6.2 6.0 0.3 0.506 
418589 3151.4 905.9 4057.3 10.0 6.2 6.0 0.3 0.506 
423782 3151.8 927.8 4079.6 7.7 6.3 6.0 0.3 0.506 
430202 3152.1 957.8 4109.9 2.0 6.3 6.0 0.2 0.506 

deeper in a gravity well, where the spacecraft is traveling faster. The transfer 
shown in the lower right plot of Fig. 3-23 is a good example of this effect: its 
ΔVMI is performed very close to the Moon; hence, its total ΔV cost is lower. 

•	 Several of the nonoptimal transfers (plotted in a lighter shade in Fig. 3-22) 
appear to require less total ΔV than other locally optimal transfers. It is likely 
that those nonoptimal transfers are in a different class of transfer, that is, they 
require a different combination of lunar flybys en route to the L2 halo orbit, 
such that the optimized transfers of that class require a longer transfer time. 
Only transfers requiring fewer than 60 days are plotted in the figures; the 
locally optimal transfers that require more than 60 days, and perhaps less total 
ΔV, are not displayed. 
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Table 3-12 Characteristics of example long-duration transfers observed in Figs. 3-19 
and 3-20 that do not include a lunar flyby [174] (Copyright © 2008 by American c
Astronautical Society Publications Office, all rights reserved, reprinted with permission 
of the AAS). 

x0 ΔVLEO ΔVMI Total ΔV Inc Transfer Bridge Manifold 
(km) (m/s) (m/s) (m/s) (deg) Δt (days) Δt (days) Δt (days) τ 

384950 3152.7 795.4 3948.1 12.3 33.2 6.4 26.8 0.650 
392617 3169.9 689.9 3859.8 9.7 37.6 10.4 27.3 0.172 
399992 3173.8 657.8 3831.5 9.1 39.1 11.8 27.3 0.988 
407598 3178.5 607.7 3786.1 8.6 41.0 13.7 27.3 0.725 
415027 3181.8 593.0 3774.7 7.2 42.4 15.1 27.3 0.600 
422804 3184.3 588.5 3772.7 5.0 43.6 16.3 27.3 0.508 
430370 3186.4 589.4 3775.8 0.9 44.7 17.4 27.3 0.440 

Table 3-13 Characteristics of example long-duration transfers seen in Figs. 3-19 
and 3-20 that do include a lunar flyby in their corresponding bridge segments. 

x0 ΔVLEO ΔVMI Total ΔV Inc Transfer Bridge Manifold 
(km) (m/s) (m/s) (m/s) (deg) Δt (days) Δt (days) Δt (days) τ 

424719 3183.8 592.0 3775.9 22.1 50.9 23.6 27.3 0.684 
426208 3182.5 578.6 3761.1 23.5 50.8 23.6 27.3 0.655 
427590 3179.4 562.6 3742.0 30.9 51.0 23.7 27.3 0.631 
428819 3174.2 549.2 3723.4 48.4 51.2 23.9 27.3 0.612 
430167 3162.2 536.4 3698.6 85.4 51.5 24.2 27.3 0.593 

•	 The transfers shown in Figs. 3-22 and 3-23 implement LEO parking orbits with 
ecliptic inclinations generally in the range of 0–55 deg. 

•	 The duration of time required to transfer within 100 km of the halo orbit may 
be anywhere between 5 and 60 days. 

•	 The least-expensive transfers to lunar L2 halo orbits following their exterior 
stable manifolds generally require a total ΔV no smaller than approximately 
3.60 or 3.65 km/s, depending on the halo orbit of choice. 

The final analysis in this section is to study the performance of the two maneuvers 
separately for each interior lunar L2 halo transfer. Figure 3-24 shows the magnitudes 
of the two transfer maneuvers. One can see that the majority of each transfer’s ΔV 
cost is performed in the first maneuver, ΔVLEO, but the variations in the magnitude 
of ΔVLEO between transfers is very small, ranging between approximately 3.11 and 
3.15 km/s. The second maneuver, ΔVMI, although much smaller, has a great deal 
more variability and therefore determines the total cost of the transfer. 
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Figure 3-21 The two transfer maneuver magnitudes that combine to produce the total ΔV 
cost of the transfers shown in Figs. 3-19 and 3-20. Dark points correspond to locally optimal 
trajectories; faint points represent additional nonoptimal solutions. Top: The magnitudes of 
the trans-lunar injection maneuvers (ΔVLEO) in each transfer. Bottom: The magnitudes of 
the manifold-insertion maneuvers (ΔVMI) in each transfer. 

3.3.5 Discussion of Results 

The previous four sections surveyed four different types of direct lunar halo transfers; 
this section studies them together to draw several overall conclusions. 
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Figure 3-22 The total ΔV cost of many surveyed transfers to the interior stable manifold 
of orbits in the family of lunar L2 halo orbits. Dark points correspond to locally optimal 
trajectories; faint points represent additional nonoptimal solutions. 

Each of the results presented above implemented direct lunar transfers found by 
searching through only one half of the stable manifold of the targeted halo orbits. 
In reality, it most likely doesn’t matter whether a particular trajectory implements 
an interior or an exterior transfer—just that the spacecraft arrives at the halo orbit in 
some way. Figure 3-25 shows a summary of the ΔV requirements for both interior and 
exterior transfers to lunar L1 halo orbits, plotted in the same axes. Hence, Fig. 3-25 
may be used to identify the least-expensive transfers to any lunar L1 halo orbit no 
matter which type of manifold is taken. Figure 3-26 shows the same ΔV summary 
for transfers to lunar L2 halo orbits. 

Theoretically, it is possible to transfer to any given lunar L2 halo orbit from a lunar 
L1 halo orbit with the same Jacobi constant, and vice versa. The dynamical systems 
methodology presented in this work has been used in previous studies to construct 
low-energy orbit transfers and orbit chains [162]. To explore this concept further, 
Fig. 3-27 shows a plot of the Jacobi constant, C, of the lunar halo orbits surveyed in 
this work as a function of the halo orbits’ x0-values. One can see that there is a lunar 
L1 halo orbit with the same Jacobi constant as each and every lunar L2 halo orbit in 
this study. The family of lunar L2 halo orbits includes orbits with Jacobi constants in 
the approximate range 3.015 < C < 3.152; the family of lunar L1 halo orbits spans 
that entire range and then extends a bit further in each direction. In theory, it is thus 
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Figure 3-23 Several example transfers between 185-km LEO parking orbits and the interior 
stable manifold of lunar L2 halo orbits. Dark points correspond to locally optimal trajectories; 
faint points represent additional nonoptimal solutions. The parameters of the numbered 
transfers are summarized in Table 3-14. 

possible to transfer to any lunar L2 halo orbit from the corresponding lunar L1 halo 
orbit for very little energy. 

Figure 3-28 shows the same results shown in Figs. 3-25 and 3-26, but now plotted 
as a function of the halo orbits’ Jacobi constant values (C-values) rather than their 
x0-values. In this way, one can observe the minimum total ΔV required to reach 
any halo orbit of a particular Jacobi constant. Then, once in that orbit, one can 
theoretically transfer to a different desired orbit, provided the desired orbit has the 
same Jacobi constant. The left part of Fig. 3-28 shows transfers that may be used to 
reach only lunar L1 halo orbits, since there are no lunar L2 halo orbits with Jacobi 
constant values below 3.015. Figure 3-28 also shows that if a low-energy transfer 
can be found between halo orbits about L1 and L2 of a given Jacobi constant, it is 
almost always more efficient to transfer directly to the lunar L1 halo orbit first, and 
then take the low-energy transfer over to the lunar L2 halo orbit. 

Halo orbits exist in two families: a northern and a southern family as illustrated in 
Fig. 2-25. Every lunar L1 halo orbit explored in this work has been a member of the 



DIRECT TRANSFERS BETWEEN EARTH AND LUNAR LIBRATION ORBITS 155 

Table 3-14 Characteristics of the numbered transfers identified in Fig. 3-23 [174] 
(Copyright c© 2008 by American Astronautical Society Publications Office, all rights 
reserved, reprinted with permission of the AAS). 

x0 ΔVLEO ΔVMI Total ΔV Inc∗ Transfer Bridge Manifold
# τ(km) (m/s) (m/s) (m/s) (deg) Δt (days) Δt (days) Δt (days) 

1 394370 3132.7 817.6 3950.3 31.9 38.6 4.7 34.0 0.951 
2 394096 3149.0 824.6 3973.6 16.2 6.4 5.8 0.6 0.537 
3 411239 3150.8 878.7 4029.4 12.4 12.4 5.9 6.5 0.948 
4 429222 3152.0 953.8 4105.8 3.6 9.2 5.9 3.3 0.708 
5 415075 3129.0 776.3 3905.3 19.9 25.4 4.5 20.9 0.288 
6 425204 3126.7 705.0 3831.7 13.0 23.5 4.5 19.0 0.177 
7 430641 3133.4 464.8 3598.2 5.6 18.3 5.2 13.1 0.034 
8 420255 3112.2 605.2 3717.4 9.7 31.5 3.6 27.9 0.868 
9 406534 3112.8 599.5 3712.3 20.9 49.2 3.8 45.4 0.112 
10 403368 3113.6 676.7 3790.3 16.3 43.6 3.6 40.0 0.284 
11 396769 3122.9 728.2 3851.1 17.9 31.3 4.1 27.2 0.356 
12 393789 3135.7 792.6 3928.3 26.9 25.9 4.9 21.0 0.485 
∗The inclination of the LEO parking orbit in the CRTBP. 

Table 3-15 Characteristics of example fast transfers observed in Figs. 3-22 and 3-23 
c

rights reserved, reprinted with permission of the AAS). 
[174] (Copyright © 2008 by American Astronautical Society Publications Office, all 

x0 ΔVLEO ΔVMI Total ΔV Inc Transfer Bridge Manifold 
(km) (m/s) (m/s) (m/s) (deg) Δt (days) Δt (days) Δt (days) τ 

383881 3147.0 802.9 3949.9 18.4 5.7 5.7 0.1 0.497 
392708 3148.8 821.0 3969.8 16.5 5.9 5.8 0.1 0.495 
401069 3149.9 844.3 3994.2 14.9 6.0 5.9 0.1 0.494 
408865 3150.7 869.6 4020.3 13.1 6.0 5.9 0.1 0.494 
416071 3151.2 896.0 4047.3 11.0 6.1 6.0 0.1 0.494 
429548 3152.0 954.7 4106.7 3.2 6.1 6.1 0.0 0.493 

northern family; every lunar L2 halo orbit has been a member of the southern family. 
To access the symmetric family of halo orbits, in either case, the transfer must be 
reflected about the z = 0 plane. The only difference that would be noticeable in such 
a symmetric transfer would be that the LEO parking orbit’s inclination relative to the 
Moon’s orbital plane would have the opposite sign. 
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Table 3-16 Characteristics of example transfers within a collection of seven different 
sample families observed in Figs. 3-22 and 3-23. The families are identified by the 
number of the corresponding example plot shown around the perimeter of Fig. 3-23 
[174] (Copyright c© 2008 by American Astronautical Society Publications Office, all 
rights reserved, reprinted with permission of the AAS). 

x0 ΔVLEO ΔVMI Total ΔV Inc Transfer Bridge Manifold 
(km) (m/s) (m/s) (m/s) (deg) Δt (days) Δt (days) Δt (days) τ 

Family (12) 
390299 3138.3 801.0 3939.3 26.9 27.6 5.0 22.5 0.607 
395448 3134.5 787.5 3922.0 27.0 25.1 4.8 20.4 0.429 
400189 3130.9 769.1 3900.0 25.6 23.7 4.6 19.1 0.302 
405365 3128.0 744.0 3872.0 22.9 22.3 4.4 17.9 0.200 
410586 3126.4 715.0 3841.4 19.9 21.3 4.4 16.9 0.126 
415399 3125.9 685.8 3811.8 17.7 20.5 4.4 16.1 0.070 

Family (1) 
394170 3132.7 818.8 3951.5 31.4 38.7 4.6 34.1 0.961 
395343 3131.6 814.3 3945.9 35.1 38.2 4.6 33.6 0.873 
395820 3130.3 812.9 3943.3 34.7 37.5 4.6 33.0 0.821 
396907 3129.3 808.0 3937.4 31.4 35.7 4.5 31.2 0.737 

Family (11) 
396738 3122.9 721.1 3844.0 14.9 30.2 4.1 26.1 0.240 
402272 3119.7 717.4 3837.1 11.4 27.8 3.9 23.9 0.070 
407548 3117.3 712.2 3829.5 8.4 25.8 3.8 22.0 0.973 
413568 3116.3 695.0 3811.4 6.4 23.2 3.8 19.4 0.873 
419902 3121.3 651.3 3772.6 10.0 21.0 4.2 16.7 0.808 
425400 3126.1 600.1 3726.1 8.2 19.9 4.7 15.2 0.736 
430618 3131.1 510.9 3642.0 0.2 19.2 5.2 14.0 0.648 

Family (5, 6) 
401972 3121.6 782.7 3904.4 24.7 33.3 4.1 29.2 0.587 
406699 3130.4 803.3 3933.7 22.0 28.3 4.6 23.7 0.440 
411226 3130.0 793.3 3923.2 21.2 26.6 4.6 22.0 0.350 
415688 3128.7 772.4 3901.0 19.3 25.3 4.5 20.8 0.281 
420324 3127.5 742.3 3869.8 16.7 24.3 4.5 19.8 0.225 
425204 3126.7 705.0 3831.7 13.0 23.5 4.5 19.0 0.177 
429490 3126.4 668.3 3794.7 6.7 23.0 4.6 18.4 0.144 

Family (8, 10) 
399413 3114.9 687.4 3802.3 15.7 41.4 3.7 37.7 0.145 
403744 3112.9 679.1 3792.0 16.7 38.7 3.6 35.0 0.053 
408970 3112.5 654.2 3766.7 15.7 35.1 3.5 31.5 0.999 
413531 3112.7 626.8 3739.5 13.3 33.4 3.6 29.8 0.936 
418227 3112.5 607.8 3720.3 10.7 31.9 3.5 28.4 0.887 
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Table 3-16 Continued. 

x0 ΔVLEO ΔVMI Total ΔV Inc Transfer Bridge Manifold 
(km) (m/s) (m/s) (m/s) (deg) Δt (days) Δt (days) Δt (days) τ 

Family (8, 10) (cont’d) 
422292 3112.0 608.8 3720.7 8.5 31.3 3.5 27.8 0.853 
425682 3111.4 640.5 3751.9 6.1 31.5 3.5 28.0 0.837 
427668 3110.3 690.6 3801.0 4.2 32.4 3.5 28.9 0.830 

Family (9) 
416120 3112.2 603.2 3715.5 10.4 43.7 3.5 40.2 0.950 
418419 3111.7 600.1 3711.8 10.1 42.9 3.5 39.4 0.898 
420564 3111.4 599.0 3710.4 9.2 42.4 3.5 38.9 0.873 
423526 3110.8 605.7 3716.5 7.6 42.3 3.5 38.8 0.849 
425847 3110.2 619.5 3729.7 6.0 43.0 3.5 39.5 0.836 

Nearby (7) 
417319 3111.8 617.5 3729.3 13.0 43.4 3.5 39.9 0.194 
420771 3110.7 586.4 3697.1 13.0 42.4 3.4 39.0 0.086 
422285 3110.5 569.7 3680.1 12.4 42.2 3.4 38.8 0.055 
425306 3110.8 536.4 3647.2 9.0 40.7 3.5 37.3 0.004 
426565 3110.6 529.4 3640.0 7.5 40.5 3.5 37.0 0.981 

3.3.6 Reducing the ΔV Cost 

One notices that the transfers that require the least ΔV presented in the previous 
sections involve missions that perform the majority of the energy-changing maneuvers 
deep within either the Earth’s or the Moon’s gravity wells where the spacecraft is 
moving the fastest. The most convincing example of this is the trajectory labeled (7) 
in Fig. 3-23: the Earth-departure maneuver is large enough to send the spacecraft out 
to the radius of the Moon, and the manifold-insertion maneuver is performed quite 
close to the Moon. 

The trajectories designed here do not purposefully place the manifold-insertion 
maneuver near the Moon, and in fact, may not converge well if the maneuver occurs 
nearby. However, the total transfer ΔV may be reduced if the manifold-insertion 
maneuver were indeed performed near the Moon, and recent research supports this 
[172]. 

Performing a maneuver near the Moon may have energy benefits, but it does 
increase the operational complexity of the mission. The manifold-insertion maneuver 
becomes very time-critical when performed close to the Moon, and any execution 
errors tend to exponentially increase afterward. Other operational considerations are 
discussed in Chapter 6. 
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Figure 3-24 The two transfer maneuver magnitudes that combine to produce the total ΔV 
cost of the transfers shown in Figs. 3-22 and 3-23. Dark points correspond to locally optimal 
trajectories; faint points represent additional nonoptimal solutions. Top: The magnitudes of 
the trans-lunar injection maneuvers (ΔVLEO) in each transfer; bottom: The magnitudes of the 
manifold-insertion maneuvers (ΔVMI) in each transfer. 

3.3.7 Conclusions 

This section has explored direct transfers to lunar halo orbits. It has been found 
that short-duration transfers exist to both lunar L1 and L2 halo orbits, requiring 
approximately 5 days of transfer time. Such short-duration transfers require between 
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Figure 3-25 The total ΔV cost of many transfers to lunar L1 halo orbits using either interior 
or exterior transfers. 

Figure 3-26 The total ΔV cost of many transfers to lunar L2 halo orbits using either interior 
or exterior transfers. 
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Figure 3-27 The Jacobi constant, C, of the lunar halo orbits surveyed in this work as a 
function of the halo orbits’ x0-values. 

Figure 3-28 The total ΔV cost of direct lunar halo orbit transfers as a function of the halo 
orbits’ Jacobi constant values. 
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3.6 and 4.1 km/s, depending on the halo orbit, when launched from a 185-km circular 
parking orbit. It has also been found that transfers exist between LEO and every 
halo orbit surveyed here that require as little as 3.59–3.65 km/s, although many of 
these transfers require 3 weeks or more of transfer time. Figure 3-29 summarizes the 
results, showing the least amount of total ΔV required to reach any halo orbit using the 
fastest optimized transfers, that is, transfers with a duration of approximately 5 days, 
as well as an envelope of longer low-ΔV transfers that require at most 2 months of 
transfer time. The curve representing the longer transfers is very approximate—it 
was produced by tracing out points that were produced successfully and interpolating 
between those points. Some of these transfers may be difficult to construct; other 
lower-cost transfers may also exist. Figure 3-30 summarizes the same results as a 
function of the halo orbits’ C-values rather than their x0-values. 

3.4	 LOW-ENERGY TRANSFERS BETWEEN EARTH AND LUNAR 
LIBRATION ORBITS 

Transfers between the Earth and lunar libration orbits may be constructed that re
quire less fuel than direct transfers by taking advantage of the gravity of the Sun. 
The scenario involves propelling a spacecraft beyond the orbit of the Moon, about 
1–2 million kilometers away from the Earth, and letting the Sun’s gravity raise the 
spacecraft’s energy. When the spacecraft returns toward its perigee after 2–4 months, 
it encounters the Moon. The spacecraft encounters the Moon at a much lower relative 
velocity than that of a direct transfer. The trajectory is crafted such that the spacecraft 
approaches the Moon on the stable manifold of the target lunar libration orbit. 

This section illustrates low-energy transfers that arrive at a variety of lunar li
bration orbits, such that they require no orbit insertion maneuver whatsoever. The 
performance of many low-energy transfers is surveyed. First, Section 3.4.1 demon
strates how to model a low-energy transfer using dynamical systems theory. Then 
Section 3.4.2 provides an energy analysis of an example transfer, which illuminates 
how energy shifts and how one may use both two-body and three-body tools to design 
and analyze a low-energy transfer. Sections 3.4.3 and 3.4.4 describe the process of 
constructing desirable low-energy transfers in the patched three-body and DE421 
ephemeris models, respectively. The dynamical systems methods used to construct 
low-energy transfers may be extended to construct entire families of transfers. Sec
tion 3.4.5 surveys many families of transfers that have different geometries and 
performance characteristics. Section 3.4.6 discusses how these transfers vary from 
one month to the next. Finally, Section 3.4.7 presents several additional example 
analyses to design low-energy transfers to different three-body orbits, including an 
LL1 halo orbit and a distant prograde orbit. 

http:3.59�3.65
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Figure 3-29 A summary of the minimum amount of total ΔV required to reach any lunar 
L1 halo orbit (top) and any lunar L2 halo orbit (bottom) surveyed here using the fastest 
optimized transfers (approximately 5 days) as well as an envelope of longer low-ΔV transfers 
(1–2 months). 
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Figure 3-30 A summary of the minimum amount of total ΔV required to reach halo orbits 
with a given Jacobi constant. 

3.4.1	 Modeling a Low-Energy Transfer using Dynamical Systems 

Theory 

Many types of low-energy transfers exist in any given month, and their characteristics 
tend to repeat from one month to the next. The most complex low-energy transfers 
typically do not appear in many consecutive months due to the asymmetries in the 
real Solar System; however, simple low-energy transfers reappear in a predictable 
fashion from one month to the next. 

This section studies how to model low-energy transfers using dynamical systems 
theory and the Patched Three-Body Model (introduced in Section 2.5.2). It turns 
out that simple low-energy transfers are represented well in this simplified model 
of the Solar System, and that one may use the modeled trajectory as a guide to 
construct a realistic transfer in a more accurate model of the solar system. Because 
low-energy transfers may be represented in the Patched Three-Body Model, one may 
take advantage of tools within dynamical systems theory to analyze these transfers. 
The goal is to be able to build a useful low-energy transfer quickly to meet a mission’s 
needs; dynamical systems tools provides an avenue to do this. 

A low-energy ballistic transfer may be modeled as a series of heteroclinic transfers 
between unstable three-body orbits in the Sun–Earth system and the Earth–Moon 
system [39, 40, 45, 46]. Figure 3-31 illustrates these orbit transfers in the Patched 
Three-Body Model. One can see that a spacecraft departs the Earth on a trajectory 
that shadows the stable invariant manifold of an unstable three-body orbit in the 
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Figure 3-31 Modeling a ballistic lunar transfer as a series of heteroclinic transfers between 
unstable three-body orbits in the Patched Three-Body Model [97] (first published in Ref. [97]; 
reproduced with kind permission from Springer Science+Business Media B.V.). (See insert 
for color representation of this figure.) 
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Sun–Earth/Moon three-body system. The spacecraft does not arrive on that orbit, 
however, before it ballistically diverts and then shadows the unstable manifold of that 
orbit. The trajectory is designed to arrive in the stable manifold of a target three-body 
orbit in the Earth–Moon three-body system, for example, an LL2 halo orbit. This 
process will be described in detail in this section. 

A low-energy, ballistic lunar transfer may be modeled as a series of transfers from 
one three-body orbit to another. After the spacecraft launches from its LEO parking 
orbit, the spacecraft transfers to the vicinity of a three-body orbit in the Sun–Earth 
system, referred to in this section as the Earth staging orbit. The spacecraft’s LEO 
departure trajectory follows the flow of the Earth staging orbit’s stable manifold. 
Once in the vicinity of the Earth staging orbit, the spacecraft falls away from the 
staging orbit, following the flow of that orbit’s unstable manifold. The trajectory is 
chosen so that it encounters the stable manifold of a three-body orbit in the Earth– 
Moon system, referred to in this section as the lunar staging orbit. The spacecraft 
may use the lunar staging orbit as a final destination or as a transitory orbit, as 
discussed later in Section 3.5. To generalize the modeling process even further, a 
ballistic lunar transfer may be modeled as a transfer from Earth to one or more Earth 
staging orbits to one or more lunar staging orbits and then to some final destination. 

Earth Staging Orbits. Many types of three-body orbits may be used as Earth 
staging orbits in the process of modeling or constructing a low-energy transfer. A 
proper staging orbit must meet the following requirements: 

1. The orbit must be unstable; 

2. If the orbit is the first Earth staging orbit, then the orbit’s stable manifold must 
intersect LEO or the launch asymptote; otherwise, the orbit’s stable manifold 
must intersect the preceding staging orbit’s unstable manifold; 

3. The orbit’s unstable manifold must intersect the following staging orbit’s stable 
manifold, be it another Earth staging orbit or a lunar staging orbit. 

A quasiperiodic Lissajous orbit has been selected to build the example transfer 
shown in this section, because it meets each of these requirements. Unfortunately, 
quasiperiodic orbits and their invariant manifolds are difficult to visualize since they 
never retrace their paths. This section illustrates the validity of a Lissajous orbit by 
showing that halo orbits are viable candidates to be used as Earth staging orbits. 

Figure 3-32 shows four perspectives of the family of northern halo orbits centered 
about the Sun–Earth L2 point. Lissajous orbits span a very similar region of space, 
but often do not extend as far in the z-axis. 

Most libration orbits in the Sun–Earth system are unstable and hence meet Re
quirement 1 given above. This discussion will assume that a halo orbit from the 
family shown in Fig. 3-32 will be used as the only Earth staging orbit en route to 
a lunar staging orbit. Figure 3-33 shows two plots of an example halo orbit about 
the Sun–Earth L2 point and the interior half of its stable manifold. One can see that 
this stable manifold intersects the Earth. Thus, a spacecraft may make a single ma
neuver to transfer from a LEO parking orbit to a trajectory on this halo orbit’s stable 
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Figure 3-32 Four perspectives of the family of northern halo orbits about the Sun–Earth L2 

point. 

manifold; this satisfies Requirement 2 for this itinerary. Similarly, Fig. 3-34 shows 
two plots of the same halo orbit’s unstable manifold, showing that trajectories exist 
that intersect the Moon’s orbit about the Earth. Thus, a spacecraft on, or sufficiently 
near, the halo orbit may use the orbit’s unstable manifold to guide it to intersect the 
Moon (satisfying Requirement 3). The invariant manifolds of Lissajous orbits with 
similar Jacobi constants also demonstrate the same properties, making them viable 
candidates for low-energy staging orbits. 

Lunar Staging Orbits. Many different Earth–Moon three-body orbits may be used 
as lunar staging orbits; the example low-energy transfer modeled in this section uses 
a halo orbit about the Earth–Moon L2 point as its lunar staging orbit because it meets 
all of the requirements. 
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Figure 3-33 Two perspectives of an example Northern halo orbit about the Sun–Earth L2 

point, shown with the interior half of its stable manifold. One can see that the stable manifold 
intersects the Earth. 

Figure 3-34 Two perspectives of the same northern EL2 halo orbit shown in Fig. 3-33, 
this time shown with the interior half of its unstable manifold. One can see that the unstable 
manifold intersects the Moon’s orbit. 

The requirements for a lunar staging orbit typically come from the requirements 
of the mission itself. The following list summarizes the additional requirements 
imposed on the lunar staging orbit: 

1. The orbit must be unstable; 

2. The orbit’s stable manifold must intersect the unstable manifold of the preced
ing staging orbit, be it the previous lunar or the previous Earth staging orbit; 
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3. If the orbit is the final lunar staging orbit, then it must meet any require
ments derived from the mission; otherwise, the orbit’s unstable manifold must 
intersect the following lunar staging orbit’s stable manifold. 

There are many families of Earth–Moon three-body orbits that satisfy Requirement 1, 
including the family of lunar L2 halo orbits. The family of halo orbits about the Earth– 
Moon L2 point closely resembles the family of halo orbits about the Sun–Earth L2 

point shown in Fig. 3-32 and won’t be shown here for brevity. 
Figure 3-35 shows two perspectives of an example LL2 halo orbit along with its 

exterior stable manifold, propagated in the Patched Three-Body Model. If a spacecraft 
were to target a trajectory on this manifold it would asymptotically approach and 
eventually arrive onto the staging orbit. Thus, if a spacecraft were able to transfer 
from the Earth staging orbit’s unstable manifold onto this LL2 halo orbit’s stable 
manifold, then the spacecraft would have achieved a ballistic transfer to this lunar 
orbit from LEO. 

An Example Modeled Ballistic Lunar Transfer. An example ballistic lunar trans
fer has been modeled using dynamical systems theory and is presented here. It is a 
fairly simple example of a transfer: it consists of a single Earth staging orbit and a 
single lunar staging orbit. A Lissajous orbit about the Sun–Earth L2 point has been 
selected to be the Earth staging orbit, although it is visualized here by a halo orbit 
with the same Jacobi constant. A lunar L2 halo orbit has been selected to be the 
only lunar staging orbit. The transfer has been produced in the Patched Three-Body 
Model (see Section 2.5.2). 

Figure 3-36 shows the first portion of the three-dimensional transfer in two per
spectives. The spacecraft is launched from a 185-km low Earth orbit, travels outward 
toward the Sun–Earth L2 point along a trajectory that shadows the stable manifold 
of an EL2 libration orbit, skims the periodic orbit, and then travels toward the Moon. 
Figure 3-36 shows the representative halo orbit and its stable manifold, W S ; the staEL2 

ble manifold of the actual Lissajous staging orbit does an even better job of mapping 
out the flow of the spacecraft’s motion in space. 

Figure 3-37 shows two perspectives of the same transfer trajectory, but this time 
plotted with the Earth staging orbit’s unstable manifold, W U . One can see that EL2 

as the spacecraft departs the vicinity of the Earth staging orbit and approaches the 
Moon, its trajectory shadows the unstable manifold of the Earth staging orbit. 

Figure 3-38 shows the same two perspectives of the three-dimensional low-energy 
transfer plotted alongside the lunar staging orbit’s stable manifold, W S . One can LL2 

see that the low-energy transfer intersects the manifold in full phase space, indicating 
that the spacecraft has injected into the LL2 halo orbit. Once in the final Earth–Moon 
halo orbit, the spacecraft has all of the options presented in Section 3.5 available to 
it. 

Figure 3-39 shows a top-down perspective of the entire three-dimensional low-
energy transfer with all three manifolds displayed. 
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Figure 3-35 Two perspectives of an example southern halo orbit about the Earth–Moon L2 

point, shown with the exterior half of its stable manifold. One can see that the stable manifold 
quickly departs the Moon’s vicinity and may then intersect the unstable manifold of the Earth 
staging orbit. 

3.4.2 Energy Analysis of a Low-Energy Transfer 

Low-energy lunar transfers harness the Sun’s gravity to reduce the ΔV requirements 
of a lunar transfer. It is useful to observe how the two-body energy of the spacecraft 
with respect to each of the massive bodies changes throughout the transfer. It is also 
useful to observe how the Moon affects the spacecraft’s Sun–Earth Jacobi constant 
and especially how the Sun affects the spacecraft’s Earth–Moon Jacobi constant. 
These energy changes are explored in this section, applied to the example transfer 
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Figure 3-36 Two perspectives of the first portion of the example low-energy transfer, 
modeled using the stable manifold of a halo orbit about the Sun–Earth L2 point. One can see 
that the spacecraft’s outbound motion shadows the halo orbit’s stable manifold. 

produced in the previous section. Other low-energy transfers have been found to 
behave in a very similar fashion. 

To begin this analysis, Fig. 3-40 shows plots of the distance between the spacecraft 
and both the Earth and Moon as the spacecraft traverses the low-energy ballistic lunar 
transfer. This is a useful illustration since both the spacecraft’s two-body energy and 
its Jacobi constant vary as functions of distance to these bodies. By observing 
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Figure 3-37 Two perspectives of the second portion of the example low-energy transfer, 
modeled using the unstable manifold of a halo orbit about the Sun–Earth L2 point. One can 
see that as the spacecraft departs the vicinity of the Earth staging orbit and approaches the 
Moon, its trajectory shadows the unstable manifold of the Earth staging orbit. 

Fig. 3-40, one can determine the time at which the spacecraft arrives at its lunar halo 
orbit destination. 

It is expected that the two-body energy of a spacecraft with respect to the Earth 
increases over time due to the Sun’s gravity, since the spacecraft’s perigee radius 
gradually rises throughout the transfer. Figure 3-41 shows the two-body specific 
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Figure 3-38 Two perspectives of the third portion of the example low-energy transfer, 
modeled using the stable manifold of a halo orbit about the Earth–Moon L2 point. Every 
fourth trajectory has been darkened for visualization purposes. One can see that the transfer 
intersects the manifold in full phase space, indicating that the spacecraft has injected into the 
LL2 halo orbit. 

energy of the spacecraft with respect to the Earth throughout the transfer. One can 
see that the spacecraft’s energy does indeed rise while it is in the vicinity of the 
Earth staging orbit. The energy then begins to vary wildly once it enters the lunar 
halo orbit, which makes sense because the halo orbit only exists in the presence of 
both the Earth and the Moon, balancing the gravity of both bodies. Figure 3-42 
shows four other two-body orbital elements of the spacecraft with respect to the 
Earth as the spacecraft traverses the ballistic transfer, including the spacecraft’s semi-
major axis, perigee radius, eccentricity, and ecliptic inclination. One can see that 
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Figure 3-39 A top-down perspective of the example low-energy transfer, shown with all 
three manifolds that were used to model it (blue = the low-energy transfer, green = stable 
manifold of a three-body orbit, brown = unstable manifold of a three-body orbit). (See color 
insert.) 

the Sun’s gravity increases the spacecraft’s semi-major axis and perigee radius as the 
spacecraft traverses the Earth staging orbit. The Sun’s gravity reduces the spacecraft’s 
eccentricity and inclination with respect to the Earth. The spacecraft enters the lunar 
halo orbit at approximately 110 days after launch, beyond which the Moon’s gravity 
is the dominant source causing each of the spacecraft’s orbital elements to vary over 
time. 

It is interesting to notice that the spacecraft’s inclination changes dramatically 
during the first half of the transfer, while the perigee radius remains near zero; then 
during the second half of the transfer the perigee radius rises dramatically while 
the spacecraft’s inclination settles down. These effects may be correlated with the 
location of the spacecraft relative to the four quadrants of the Sun–Earth state space. 
In this particular transfer, the spacecraft spends several weeks near the boundary of 
the first and fourth quadrants before moving definitively into the fourth quadrant, 
where the spacecraft’s perigee radius rises rapidly. Other low-energy transfers have 
varying geometries and their two-body orbital elements change in correspondingly 
different fashions. 

It is also expected that the spacecraft’s two-body energy with respect to the Moon 
decreases as the spacecraft approaches and ballistically inserts into the lunar halo 
orbit. Figure 3-43 shows the two-body specific energy of the spacecraft with respect 
to the Moon throughout the low-energy lunar transfer. One can clearly see that the 
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Figure 3-40 The magnitude of the radius vector of the spacecraft with respect to the Earth 
and the Moon as the spacecraft traverses the example low-energy lunar transfer. 

Figure 3-41 The two-body specific energy of a spacecraft with respect to the Earth over 
time as it traverses an example low-energy lunar transfer. 

spacecraft’s specific energy drops as it approaches the lunar halo orbit. Furthermore, 
its energy drops below zero, satisfying some authors’ requirements to be temporarily 
captured by the Moon [29, 46, 182]. 
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Figure 3-42 Four two-body orbital elements of the spacecraft with respect to the Earth 
as the spacecraft traverses the example lunar transfer: (a) the spacecraft’s semi-major axis, 
(b) perigee radius, (c) eccentricity, and (d) ecliptic inclination. 

Figures 3-44 and 3-45 show the evolution of the spacecraft’s Jacobi constant 
with respect to the Sun–Earth and Earth–Moon three-body systems, respectively, as 
the spacecraft traverses the example lunar transfer. The spacecraft’s trajectory has 
been constructed in the Patched Three-Body Model; hence, the spacecraft’s Jacobi 
constant will be constant in one or the other three-body system at any given time, 
depending on which three-body system is responsible for the given segment of the 
spacecraft’s trajectory. The spacecraft’s motion has been modeled by the Sun–Earth 
three-body system during the first 105 days of the transfer. After the spacecraft has 
crossed the Earth–Moon three-body sphere of influence (3BSOI), its motion is then 
modeled by the Earth–Moon three-body system. 
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Figure 3-43 The two-body specific energy of a spacecraft with respect to the Moon over 
time as it traverses an example low-energy lunar transfer. 

Figure 3-44 The evolution of the spacecraft’s Jacobi constant with respect to the Sun–Earth 
three-body system as the spacecraft traverses the example lunar transfer. 

Figure 3-45 presents a compelling case that it is possible to build low-energy trans
fer to lunar halo orbits, or other unstable Earth–Moon three-body orbits, with a wide 
variety of different Jacobi constants. If the spacecraft traversing the example transfer 
had arrived at the Moon slightly earlier or slightly later, it could have transferred to a 
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Figure 3-45 The evolution of the spacecraft’s Jacobi constant with respect to the Earth–Moon 
three-body system as the spacecraft traverses the example lunar transfer. 

lunar halo orbit with a different Jacobi constant. Furthermore, it may be possible for a 
spacecraft to depart one lunar halo orbit, traverse through the Sun–Earth environment 
for some time, and return to the Moon on the stable manifold of a different lunar 
halo orbit. Section 3.4.5 demonstrates that it is indeed possible to build low-energy 
transfers to lunar halo orbits within a wide range of Jacobi constants [46], but more 
work needs to be accomplished to determine how to take advantage of the time series 
shown in Fig. 3-45 to target a lunar halo orbit with a specified Jacobi constant. 

3.4.3	 Constructing a Low-Energy Transfer in the Patched Three-Body 

Model 

Modeling a low-energy transfer using dynamical systems theory involves the use of 
several staging orbits and their corresponding invariant manifolds in the Earth–Moon 
and Sun–Earth systems. If a mission designer wishes to construct a transfer that 
intentionally visits certain staging orbits, then the transfer may be constructed in the 
same manner that it is modeled. More often, a mission designer only wishes for the 
spacecraft to reach the final lunar orbit, no matter its route through the Sun–Earth 
system. In that case, the methods used to construct a low-energy transfer may be 
simplified. 

Ballistic lunar transfers are constructed here by propagating the stable manifold 
of the final lunar halo orbit backward in time for a set amount of time. After each 
trajectory has been propagated, the perigee point of the trajectory is identified. A 
proper transfer may be identified as one whose perigee point corresponds to some 
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desired value, for example, an altitude of 185 km. In this manner, a practical 
transfer may be constructed between the Earth and the lunar three-body orbit without 
identifying any required staging orbit. 

3.4.3.1 Parameters The dynamical systems method of constructing ballistic 
lunar transfers provides a natural set of six parameters that may be used to define 
each transfer. In the Patched Three-Body Model, this set may be described by the 
parameters: [F, C, θ, τ , p, Δtm]. Each of these parameters is described in this 
section. 

Orbit Family Parameter: F . Depending on the mission requirements, one may 
wish to target any type of Earth–Moon three-body orbit. The parameter F is a 
discrete variable that describes the orbit family that contains the desired target orbit. 
The example transfer presented previously has had the parameter F set to describe the 
family of southern LL2 halo orbits. There are certainly symbolic ways to represent 
each family of three-body orbits, but using text to do so provides a clear description 
of which family is being used. 

Orbit Parameter: C. The Jacobi constant, C, of the targeted orbit is used in this 
work to specify which orbit is being targeted within the family. There are numerous 
ways to identify a particular three-body orbit within its family [108, 113]. The Jacobi 
constant is used here because it also provides information about the corresponding 
forbidden regions and allowable motion of spacecraft with that Jacobi constant [46]. 

Sun–Earth–Moon Angle: θ. The parameter θ is defined to be the angle between 
the Sun–Earth line and the Earth–Moon line. It is a required parameter needed 
to convert between the two three-body systems in the Patched Three-Body Model. 
Figure 3-46 shows an example of the geometry and the definition of θ. 

Arrival Location: τ . Each point on a periodic orbit may be uniquely described by 
the parameter τ , a parameter analogous to a conic orbit’s true anomaly. This parameter 
was introduced in Section 2.6.2.3, but is described again here. The parameter τ may 
range from 0 to 1, representing a revolution number, or from 0 deg to 360 deg, 

Figure 3-46 An illustration of θ, the Sun–Earth–Moon angle. 
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representing an angle like the true anomaly [46]. Figure 3-47 shows a plot of the 
definition of τ when applied to two halo orbits. For halo orbits, it is intuitive to use 
an angle and model τ off of a conic orbit’s true anomaly; for other three-body orbits 
it is confusing using an angle. In any case, the only use of τ here is to identify each 
point about a three-body orbit, and either representation may be used. 

Perturbation Direction: p. To construct a trajectory in the stable invariant manifold 
of a given unstable orbit, one takes the state of the orbit at a given τ -value and perturbs 
that state along the direction of the stable eigenvector [46, 147]. The perturbation 
may occur in two directions: an interior or an exterior direction, as illustrated in 
Fig. 3-4. The parameter p is a discrete variable that may be set to interior or exterior, 
indicating the direction of the perturbation. 

Manifold Propagation Duration: Δtm. The trajectory in the given three-body 
orbit’s stable manifold is propagated backward in time for an amount of time equal 
to Δtm. Typically when propagated backward in time, the trajectories that lead to 
desirable low-energy transfers depart the vicinity of the Moon, traverse their apogee, 
fall toward the Earth, and then intersect a desirable altitude above the surface of the 
Earth. However, transfers may also be constructed that pass near the Earth once or 
several times before intersecting the desirable altitude above the surface of the Earth. 
Such trajectories must be propagated long enough to allow the desirable perigee 
passage to occur. Thus, the parameter Δtm is important in order to ensure that the 
proper perigee passage is being implemented by the low-energy transfer. 

Figure 3-47 The two halo orbits shown demonstrate how the parameter τ moves from 0 to 1 
about an orbit [174] (Copyright © 2008 by American Astronautical Society Publications c
Office, all rights reserved, reprinted with permission of the AAS). 
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Discussion Regarding Parameters. The set of parameters used here does not 
contain all continuous variables as other sets of orbital elements do, such as the 
Keplerian orbital element set of a two-body orbit. The present parameter set also 
requires knowledge about how to use it, for example, how to build the target lunar 
orbit given the parameters F and C. Nonetheless, this set may be used to uniquely 
describe any low-energy ballistic transfer between the Earth and an unstable lunar 
three-body orbit. Table 3-17 summarizes the parameter set. 

3.4.3.2 Producing the low-energy transfer The process of producing a low-
energy transfer given the parameter set [F, C, θ, τ , p, Δtm] is very simple and is 
described henceforth. 

Step 1. First, one must build the target Earth–Moon orbit. The desired orbit must 
be unstable and may be identified using the parameters F and C, as defined above. 
The example low-energy transfer presented in this section has been produced using 
an orbit in the family, F , of southern halo orbits about the Earth–Moon L2 point. The 
specific orbit has been identified in its family by the value of C, equal to 3.05. 

Step 2. The parameter θ specifies the location of the Moon, and hence the target 
orbit, with respect to the Earth and Sun in the Patched Three-Body Model. The 
example transfer has used an initial θ-value of approximately 293.75 deg. This may 
be verified by inspecting the final location of the Moon in Figs. 3-36–3-39. Since 
the transfer is generated backward in time, the value of θ specifies the final position 
of the Moon. 

Step 3. The parameter τ specifies a particular state in the unstable three-body 
orbit. The example transfer has implemented a τ -value of approximately 0.74, 
corresponding to a point roughly three quarters around the orbit from the orbit’s 
reference point (the point where the orbit crosses the y = 0 plane with positive ẏ) 
[46, 108]. 

Step 4. The particular state in the target orbit is then perturbed in order to 
construct a single trajectory in the stable manifold of the orbit. The magnitude of this 

Table 3-17 A summary of the six parameters used to produce low-energy transfers in 
the Patched Three-Body Model. 

Parameter Domain Description 

F Discrete Target three-body orbit family 
C Continuous Jacobi constant of target orbit 
θ Continuous [ 0 deg, 360 deg ] Sun–Earth–Moon angle 
τ Continuous [ 0,1 ] Arrival location on the target orbit 
p Discrete Perturbation direction 

Δtm Continuous Propagation duration 
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perturbation is given by E; the direction is given by the orbit’s monodromy matrix 
[131] and the parameter p. The orbit’s monodromy matrix is used to compute the 
orbit’s stable and unstable eigenvectors; the stable eigenvector is then mapped to the 
given τ -value using the orbit’s state transition matrix [46, 147]. The example lunar 
transfer has implemented a trajectory in the halo orbit’s exterior manifold with the 
value of E set proportional to a 100-km perturbation. 

Step 5. The resulting state is then used as the initial condition to construct a 
trajectory in the stable manifold of the three-body orbit. This trajectory is propagated 
backward in time for a duration of time equal to Δtm. The trajectory that has 
produced the example transfer has been propagated for approximately 28.53 non-
dimensional Earth–Moon time units (approximately 123.9 days) before encountering 
the desired perigee point, that is, the desired LEO injection point. 

Step 6. The final step in the construction of a low-energy transfer is to connect this 
trajectory with a prescribed LEO parking orbit or with the surface of the Earth. It is 
unlikely that an arbitrary set of parameters will yield a lunar transfer that connects 
with its prescribed LEO starting conditions. In such a case, either the parameters 
should be adjusted [46], or a bridge must be constructed to connect the spacecraft’s 
origin with the lunar transfer, as discussed in Section 3.3 [174]. 

3.4.3.3 Discussion The parameter set derived here is very useful if a mission 
designer needs to build a transfer to a specific lunar orbit that cannot exceed some 
maximum transfer time. In that case, the parameters F , C, and Δtm are fixed. By 
setting Δtm to the maximum transfer duration, one ensures that no transfers are 
constructed that require excessive transfer time, but one still permits transfers that 
require less transfer time. The three remaining parameters are conveniently well 
defined. The parameter p is binary and the parameters θ and τ are cyclic. Thus, 
mission designers can explore all possible low-energy transfers to a target orbit by 
producing two maps: one map of θ vs. τ with p set to “Exterior,” and another identical 
map with p set to “Interior.” Examples of these two maps that survey all possible 
low-energy transfers to an example halo orbit about the LL2 point, along with several 
representative transfers, are illustrated in Figs. 3-48 and 3-49. The exploration of 
these maps will be the purpose of Section 3.4.5, and further description of these 
figures will appear there. 

Other methods have been described in the literature that also describe parameter 
sets to target low-energy lunar transfers. The majority of these methods start with a 
spacecraft in orbit about the Earth and target a maneuver for that spacecraft to perform 
in order to reach the Moon’s vicinity via a low-energy transfer. For instance, Belbruno 
and Carrico have developed a set of parameters that describe the six-dimensional state 
that a spacecraft would need to obtain to reach the Moon’s vicinity via a low-energy 
transfer [27]. Five parameters are specified, including an epoch (t), the spacecraft’s 
radial distance from Earth (rE ), its longitude (αE ), its latitude (δE ), and its flight 
path azimuth (σE ). Then, the spacecraft’s speed (VE ) and flight path angle (γE ) are 
varied to target a prescribed radial distance from the Earth (rM ) and a prescribed 
inclination (iM ), which would ultimately send the spacecraft in the general direction 
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Figure 3-48 An example state space map, capturing a wide variety of low-energy transfers 
that exist between the Earth and an example LL2 halo orbit. Each trajectory arrives at the halo 
orbit from the exterior direction, and arrives at the orbit in a geometry according to the given 
(θ, τ ) combination. The color of the map indicates how close to the Earth the trajectory gets 
when propagated from the LL2 halo orbit backward in time. All black points represent viable 
low-energy transfers. (See insert for color representation of this figure.) 

of a low-energy transfer. The advantage of this method is that the spacecraft’s initial 
orbit at the Earth is well-defined, which is useful when a transfer must be designed 
for a spacecraft that is already in orbit about the Earth. However, the technique 
requires a great deal of predetermined knowledge of the problem, including a priori 
estimates for the values of rM , iM , VE , γE , and t (t is specified to obtain a proper 
Sun–Earth–Moon angle). The procedure is therefore constrained to build a transfer 
with a predefined geometry that may not be ideal. 

Operationally, it is likely that a combination of these two approaches will work the 
best to produce practical low-energy transfers. A transfer may then be constructed 
that starts from a prescribed orbit, ends at a specified lunar orbit, and probably 
includes one or two small trajectory correction maneuvers to connect the segments. 
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Figure 3-49 An example state space map that is identical to the map illustrated in Fig. 3-48, 
except that the trajectories arrive at the LL2 halo orbit from the interior direction. (See insert 
for color representation of this figure.) 

Chapter 6 presents such an algorithm, and the results demonstrate that it generates 
very successful trajectories. 

3.4.4	 Constructing a Low-Energy Transfer in the Ephemeris Model of 
the Solar System 

The previous sections demonstrated how to analyze and construct a low-energy 
lunar transfer to a libration orbit using the Patched Three-Body Model; this section 
describes how to do so in the more accurate DE421 ephemeris model of the Solar 
System. 

There are two main strategies that have been shown to work to generate a low-
energy transfer in a realistic model of the Solar System, such as a model that uses 
the JPL Ephemerides to approximate the motion of the planets and the Moon in the 
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Solar System. The first strategy is to generate the transfer in a simplified model, 
such as the Patched Three-Body Model, and then convert the transfer into the more 
realistic model of the Solar System. The conversion process typically involves some 
combination of multiple shooting differential correction and continuation [40, 46]. 
The second strategy is to construct the low-energy transfer directly in the realistic 
model, using experience gained from the simplified models. This strategy is described 
in this section. 

The dynamical systems methods that enabled the clear analysis and construction 
of low-energy ballistic lunar transfers in the Patched Three-Body Model apply to the 
DE421 model of the Solar System as well. The Sun, Earth, and Moon orbit their 
respective barycenters in orbits that are nearly circular and coplanar. Thus, many 
trajectories that exist in the Patched Three-Body Model are good approximations of 
trajectories that exist in the real Solar System. 

Low-energy ballistic lunar transfers are constructed in the DE421 model of the 
Solar System in the same way that they have been constructed in the Patched Three-
Body Model. An unstable three-body orbit is selected as a target orbit near the 
Moon. The orbit’s stable manifold is propagated and intersected with the Earth. 
Those trajectories that intersect the Earth may be used as ballistic transfers from 
the Earth to the target orbit via the orbit’s stable manifold. The most significant 
adjustment to this procedure involves the construction of the target three-body orbit 
in the DE421 model. This process is described in detail in Section 2.6.6.3. 

Ballistic lunar transfers to realistic halo orbits may be uniquely specified in the 
DE421 model using a set of six parameters that is similar to the set used to describe 
transfers constructed in the Patched Three-Body Model. This set includes the param
eters: { F, Az, Tref, p, τ , Δtm}, where Az replaces the Jacobi constant and Tref 
replaces the parameter θ from the previous set of parameters. It is very straightfor
ward to generate a halo orbit in the DE421 model using an analytical approximation 
as an initial guess to the multiple shooting differential corrector (Section 2.6.5.2). 
The parameter Az specifies the z-axis amplitude of the halo orbit in the analytical 
approximation specified by Richardson [123]. The parameter Tref specifies the ref
erence epoch that ties the initial guess of the states of the halo orbit to the DE421 
model. 

Table 3-18 summarizes the set of parameters that generates an example transfer 
in the DE421 model, shown in Fig. 3-50. The parameters F , Az , and Tref define the 
southern LL2 halo orbit that is shown in Fig. 3-51. One can see that the multiple 
shooting differential corrector adjusted the state of the analytical approximation of 
the halo orbit such that the reference epoch is no longer at the τ = 0 deg point, but 
at the τ ≈ 3.84 deg point. A particular trajectory in the halo orbit’s stable manifold 
is then generated that corresponds to the parameters τ and p in Table 3-18, which 
propagates backward in time to a perigee with an altitude of 185 km. The distance 
between this trajectory and the Moon is shown in Fig. 3-52. One can see that this 
trajectory asymptotically arrives at the orbit from the exterior direction. 



LOW-ENERGY TRANSFERS BETWEEN EARTH AND LUNAR LIBRATION ORBITS 185 

Table 3-18 The parameters used to produce the low-energy transfer shown in 
Fig. 3-50. 

Parameter Value 

F The family of southern Earth–Moon L2 halo orbits 
Az 30,752 km (0.08 normalized distance units) 
Tref 15 January 2017 12:57:36 Ephemeris Time 
τ 280.2 deg
 
p Exterior
 

Δtm 115.9 days
 

Figure 3-50 An example low-energy transfer produced in the DE421 model using the 
parameters specified in Table 3-18 [44] (Copyright c© 2009 by American Astronautical Society 
Publications Office, San Diego, California (Web Site: http://www.univelt.com), all rights 
reserved; reprinted with permission of the AAS). 

http:http://www.univelt.com
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Figure 3-51 The halo orbit specified by F , Az , and Tref in Table 3-18 [44] (Copyright 
c© 2009 by American Astronautical Society Publications Office, San Diego, California (Web 

Site: http://www.univelt.com), all rights reserved; reprinted with permission of the AAS). 

Figure 3-52 The distance between the transfer and the Moon as the trajectory approaches 
and arrives at the LL2 halo orbit [44] (Copyright © 2009 by American Astronautical Society c
Publications Office, San Diego, California (Web Site: http://www.univelt.com), all rights 
reserved; reprinted with permission of the AAS). 

http:http://www.univelt.com
http:http://www.univelt.com
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3.4.5 Families of Low-Energy Transfers 

A set of low-energy parameters may be used to generate the initial conditions of a 
trajectory that is propagated backward in time to construct a ballistic lunar transfer. 

' ' ' 'If one set of parameters {F , A ' , T p , τ , Δt ' } generates a trajectory that z ref, m 
originates from a LEO with an altitude of 185 km, then it is typically the case that 

' 'a small deviation in either T will generate a trajectory that originates from ref or τ 
a LEO with a slightly different altitude. However, small deviations in both of those 
parameters may often be designed to generate a new trajectory that originates from a 
LEO with the same 185 km altitude. In that case, the two sets of parameters define 
two different ballistic lunar transfers that are in the same family of transfers. 

Figure 3-53 illustrates how transfers may be organized into families. In this 
example, the lunar transfer shown in Fig. 3-50 with the parameters given in Table 3-18 
is used as a reference trajectory. The transfer’s parameters are all held constant, 
except for the parameters Tref and τ , which are systematically varied through all 
combinations of values shown in Fig. 3-53. At each combination, a new trajectory 
is propagated and analyzed to determine its new perigee altitude. One can see that 
by reducing both Tref and τ , one builds trajectories that come closer to the Earth at 

Figure 3-53 A map of the perigee altitude that each low-energy trajectory encounters as a 
function of Tref and τ . The 185-km contour is highlighted, which includes the nominal ballistic 
lunar transfer presented in Table 3-18 [44] (Copyright c© 2009 by American Astronautical 
Society Publications Office, San Diego, California (Web Site: http://www.univelt.com), all 
rights reserved; reprinted with permission of the AAS). (See insert for color representation of 
this figure.) 

http:http://www.univelt.com
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their perigee point, and vice versa. By reducing Tref and increasing τ an appropriate 
amount, one can produce new trajectories that also have a perigee altitude of 185 km. 

The exercise given above may be extended to allow Tref to vary across an entire 
month and τ to vary across 360 deg to observe full families of low-energy lunar 
transfers. Figure 3-54 shows such a Ballistic Lunar Transfer (BLT) state space map 
given the parameter set summarized in Table 3-19. The figure shows a plot that maps 
the perigee altitude of each trajectory generated using each combination of Tref and 
τ . The darkest regions contain the parameters that produce useful transfers; the white 
fields contain parameters that generate trajectories that do not approach the Earth. 
Figure 3-55 shows the same map with several trajectories plotted to illustrate the 
trajectories that may be generated using these parameters. 

Families of transfers may be identified in the BLT state space map shown in 
Fig. 3-54 by tracing those combinations of Tref and τ that have a perigee altitude 
of some desirable value, for example, 185 km. Figure 3-56 shows samples of the 
combinations of Tref and τ that generate ballistic transfers with injection altitudes of 
185 km. The points displayed in black correspond to trajectories that traverse closer 
to EL2 than EL1 and vice versa. Table 3-20 presents a summary of the characteristics 
of a sample of the transfers identified in Fig. 3-56. Each of these transfers is a member 
of a family of similar trajectories for which the characteristics vary smoothly away 
from those presented in the table. There are certainly many families of ballistic 

Figure 3-54 A BLT state space map that shows the perigee altitude of each generated 
trajectory as a function of Tref and τ . The darkest regions include the combinations of 
Tref and τ that yield transfers that begin from low Earth orbits [44] (Copyright © 2009c
by American Astronautical Society Publications Office, San Diego, California (Web Site: 
http://www.univelt.com), all rights reserved; reprinted with permission of the AAS). 

http:http://www.univelt.com
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Table 3-19 The parameters used to produce the results shown in Figs. 3-54–3-56. 

Parameter Value 
F The family of southern Earth–Moon L2 halo orbits 
Az 30,752 km (0.08 normalized distance units) 
Tref 1 Jan 2017 00:00:00 ET ≤ Tref ≤ 31 Jan 2017 00:00:00 ET 
τ 0 deg ≤ τ ≤ 360 deg
 
p Exterior
 

Δtm 180 days 

Figure 3-55 The same BLT state space map shown in Fig. 3-54 with example transfers 
shown around the perimeter [44] (Copyright c© 2009 by American Astronautical Society 
Publications Office, San Diego, California (Web Site: http://www.univelt.com), all rights 
reserved; reprinted with permission of the AAS). 

transfers unrepresented in the table. Figure 3-57 illustrates six example families of 
low-energy transfers. One can see that the general characteristics of each family 
varies in a smooth fashion from one transfer to the next in the family. 

The quickest transfer identified in Fig. 3-56 requires fewer than 83 days between 
the injection and the point when the trajectory has arrived within 100 km of the lunar 
halo orbit. The vast majority of the transfers shown require a launch energy in the 
range of −0.75 km2/s2 ≤ C3 ≤ −0.35 km2/s2 . The transfers that include a lunar 
flyby often require less launch energy, particularly those that involve a lunar flyby on 
the outbound trajectory soon after injection. Several transfers have been identified 
that require a C3 as low as −2.1 km2/s2, implementing a lunar flyby at an altitude 
of approximately 2000 km. Figure 3-58 shows the relationship between the required 
injection C3 and the transfer duration; Fig. 3-59 compares the required injection C3 

http:http://www.univelt.com
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Figure 3-56 Combinations of Tref and τ that generate ballistic transfers with perigee 
injections at an altitude of 185 km. The points displayed in black correspond to trajectories 
that traverse closer to EL2 than EL1; points shown in gray travel closer to EL1 than EL2. 

with the lowest lunar periapse altitude. One can see a clear correlation in Fig. 3-59 
that the closer a trajectory gets to the Moon during the transfer, the lower the injection 
C3 may be. Additional lunar flybys or Earth phasing orbits may help provide the 
geometry needed for a particular mission. 

3.4.6 Monthly Variations in Low-Energy Transfers 

The BLT state space map shown in Figs. 3-54–3-56 will repeat perfectly from one 
synodic month to the next in the Patched Three-Body Model, since the model is 
symmetric. The characteristics of the BLT state space map generated in the DE421 
model of the solar system will not repeat perfectly each month, although similar 
features will be present in each month. Figure 3-60 shows a map of the perigee altitude 
of trajectories generated from the same set of parameters presented in Table 3-18. 
But for a wider range of Tref and τ , Tref is varied over 3 months, and τ is varied over 
two halo orbit revolutions. One can see the same features from cycle to cycle, but 
the details of the state space map vary. Significant variations are observed between 
the first halo orbit revolution (0 deg ≤ τ ≤ 360 deg) and the second halo orbit 
(360 deg ≤ τ ≤ 720 deg), mostly as a consequence of the nonzero eccentricity of the 
Moon’s orbit about the Earth–Moon barycenter. 

3.4.6.1 12-Month Survey The state space map has been further extended to 
12 months to study the variations that exist throughout an entire year. It has been 
observed that the most prominent features continue to persist, and repeat regularly, 



LOW-ENERGY TRANSFERS BETWEEN EARTH AND LUNAR LIBRATION ORBITS 191 

Table 3-20 Summary characteristics for a sample of the ballistic transfers identified in 
Fig. 3-56 [44] (Copyright c© 2009 by American Astronautical Society Publications 
Office, San Diego, California (Web Site: http://www.univelt.com), all rights reserved; 
reprinted with permission of the AAS). 

Δ Reference τ EL1 / C3 Transfer # Earth # Lunar Injection Inclination (deg) 
# Epoch∗ (days) (deg) EL2 (km2/s2) Δt (days) Flybys Flybys Equatorial Ecliptic 

1 12.060302 334.519 2 −0.2902 133.76 0 0 23.225 28.192 
2 12.211055 333.736 2 −0.3457 132.91 0 0 131.701 151.274 
3 14.170854 283.655 2 −0.3444 118.36 0 0 51.319 69.045 
4 15.226131 271.069 2 −0.4944 108.76 0 1 32.329 51.431 
5 15.829146 279.419 2 −0.4296 171.62 0 0 85.326 103.860 
6 20.351759 238.347 2 −0.6556 130.11 0 0 115.737 137.694 
7 20.351759 239.232 2 −0.5856 145.20 0 0 21.877 22.738 
8 22.311558 221.171 2 −0.6904 137.51 0 1 35.973 13.527 
9 23.819095 206.901 2 −0.7153 129.17 0 0 22.180 10.275 
10 20.050251 180.970 2 −1.8533 171.79 0 1 97.684 92.972 
11 25.025126 164.113 2 −1.9222 146.35 0 1 20.490 4.271 
12 27.286432 137.373 2 −2.0307 176.72 0 2 38.302 36.809 
13 28.190955 168.405 2 −2.0880 122.46 2 2 19.325 30.359 
14 28.040201 185.608 2 −1.0318 145.08 0 1 34.251 11.315 
15 28.040201 185.630 2 −1.6144 145.75 0 2 103.995 126.244 
16 0.000000 55.325 2 −0.9032 179.35 2 1 143.590 121.792 
17 0.150754 63.382 2 −0.6429 97.90 0 0 23.372 0.836 
18 0.452261 54.781 2 −0.6608 132.55 0 0 145.538 168.969 
19 1.507538 66.990 2 −1.1266 113.39 0 1 166.454 144.152 
20 8.592965 59.539 2 −0.8393 178.32 0 1 99.214 87.676 
21 8.592965 59.962 2 −0.6791 165.37 0 0 14.732 20.434 
22 6.030151 144.580 2 −0.6940 170.11 0 3 23.140 17.669 
23 27.889447 53.118 2 −0.9637 140.22 1 2 11.452 28.632 
24 28.040201 15.470 2 −0.4261 172.37 0 1 27.743 40.712 
25 28.190955 34.787 2 −0.5891 105.30 0 0 148.336 171.495 
26 28.341709 43.756 2 −0.5740 96.55 0 0 20.962 3.797 
27 2.110553 245.420 1 −0.5465 91.66 0 0 20.003 4.747 
28 2.412060 247.372 1 −0.6290 172.42 1 0 54.249 30.825 
29 2.110553 251.704 1 −0.6311 178.46 1 2 59.547 36.213 
30 2.261307 255.586 1 −0.5150 154.75 0 0 65.164 44.035 
31 6.934673 122.568 1 −0.7340 165.38 0 0 20.624 28.138 
32 6.783920 138.709 1 −0.5098 164.58 0 2 124.809 129.384 
33 11.457286 38.141 1 −1.1299 167.55 0 2 39.917 26.275 
34 14.170854 65.695 1 −0.5599 143.25 0 0 19.771 14.374 
35 14.170854 70.107 1 −0.6869 123.22 0 0 106.493 129.791 
36 14.170854 73.417 1 −0.6246 115.20 0 0 87.048 110.261 
37 16.733668 222.850 1 −0.7658 179.64 0 1 137.534 126.323 
38 16.733668 223.945 1 −0.6178 171.17 0 0 11.994 14.627 
39 17.035176 192.365 1 −1.5154 156.53 1 1 28.596 51.902 
40 22.160804 108.406 1 −2.0107 129.17 0 1 18.754 5.377 
41 23.819095 87.587 1 −0.6915 167.13 0 0 50.748 32.372 
42 28.190955 313.713 1 −0.4043 177.60 0 0 140.309 130.765 
43 28.492462 285.732 1 −0.4568 109.17 0 1 10.097 14.214 
44 3.165829 227.614 1 −1.9572 169.47 7 2 153.358 172.197 
∗The reference epoch is given as a duration of time, in days, away from 1 Jan 2017 00:00:00 Ephemeris Time. 

http:http://www.univelt.com
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Figure 3-57 Example trajectories within six families of low-energy transfers that each may 
be used to transfer a spacecraft from a 185-km altitude state above the Earth to the same LL2 

halo orbit, though at different arrival times. 

while subtle features appear and disappear from month to month. Figure 3-61 shows 
a plot of samples of the combinations of Tref and τ that yield low-energy transfers 
between 185-km LEO parking orbits and the lunar halo orbit. 

The reference epoch of each transfer shown in Fig. 3-61 may be wrapped into 
one synodic month to observe the changes that occur in the state space map from 
one synodic month to the next. Figure 3-62 shows the resulting plot, revealing the 
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Figure 3-58 The relationship between the injection C3 value and the duration of the transfer 
for each transfer identified in Fig. 3-56. The points displayed in black correspond to trajectories 
that traverse closer to EL2 than EL1. 

Figure 3-59 The relationship between the injection C3 value and the lowest lunar periapse 
altitude during each lunar transfer identified in Fig. 3-56. The points displayed in black 
correspond to trajectories that travel closer to EL2 than EL1. 
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Figure 3-60 The same state space map shown in Fig. 3-54 extended to cover 90 days of 
reference epochs and two revolutions of the halo orbit. 

Figure 3-61 Sample combinations of Tref and τ that yield low-energy transfers between 
185-km LEO parking orbits and the lunar halo orbit for reference dates that span the year 
2017. From lightest to darkest, the shading corresponds to reference dates from 1/1/2017 to 
1/1/2018 [47] (first published by the American Astronautical Society). 

variations in the locations of the curves as they shift throughout the 12 months. The 
transfers are shaded in Fig. 3-62 in the same manner as they are in Fig. 3-61, that is, 
the transfers that exist in the first month, which starts at a reference epoch of January 
1, 2017, are shown in the lightest shade and the transfers in each consecutive synodic 
month thereafter are plotted in a darker shade. One can see that certain features 
repeat very closely from one synodic month to the next. Other features only appear 
in a subset of synodic months. 
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Figure 3-62 The combinations of Tref and τ that yield transfers during 12 synodic months, 
relative to the beginning of each synodic month. The first month, which starts at a reference 
epoch of 1 Jan 2017 00:00:00 Ephemeris Time, is shown in the lightest shade and each 
consecutive synodic month thereafter is plotted in a darker shade. From lightest to darkest, the 
shading corresponds to reference dates from 1/1/2017 to 1/1/2018 [47] (first published by the 
American Astronautical Society). 

Quite a few patterns exist in the families of transfers that are observed. First of all, 
the most pronounced curves observed in Figs. 3-61 and 3-62 correspond to transfers 
that do not include any lunar flybys or Earth phasing orbits. Most of them require 
between 90 and 110 days to transfer between the Earth and 100 km from their target 
orbit. Examples of these sorts of transfers may be seen in Fig. 3-55. 

Several relationships exist between the launch energy of a low-energy lunar trans
fer and how close it gets to the Moon on its Earth-departure leg. If the transfer 
does not encounter the Moon, it typically requires a launch energy in the range of 
−0.75 km2/s2 ≤ C3 ≤ −0.35 km2/s2. If a spacecraft traversing a low-energy transfer 
does encounter the Moon as it departs the Earth’s vicinity, one finds that the Moon 
may either boost or reduce the spacecraft’s energy, depending on how the spacecraft 
passes by the Moon. If it boosts the spacecraft’s energy, then the lunar transfer’s 
required launch energy drops to as low as −2.1 km2/s2. Figure 3-63 shows a plot of 
the relationship between the launch energy of each low-energy transfer observed in 
Fig. 3-62 and how close the transfer passes by the Moon. 

One can also glean a great deal of understanding about the characteristics of 
these transfers by observing the relationship between each transfer’s injection energy 
and the transfer’s duration. Figure 3-64 shows this relationship for each transfer 
in the 12-month survey. One can see that the trends in this relationship are nearly 
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Figure 3-63 The relationship between injection C3 and the lowest perilune altitude for each 
transfer in the 12-month survey. The trajectories near the top of the plot do not include any 
lunar flyby; trajectories toward the bottom do, where those toward the bottom-left receive an 
energy boost from the Moon and those toward the bottom right have energy removed by the 
Moon. From lightest to darkest, the shading corresponds to reference dates from 1/1/2017 
to 1/1/2018 [44] (Copyright c© 2009 by American Astronautical Society Publications Office, 
San Diego, California (Web Site: http://www.univelt.com), all rights reserved; reprinted with 
permission of the AAS). 

independent of the month of the transfer. Typical mission designs prefer the transfer 
duration to be as short as possible. One can see that there are two types of transfers 
that require fewer than 100 days to perform: those that require an injection C3 on 
the order of −2.1 to −1.5 km2/s2 and those that require an injection C3 on the order 
of −0.7 to −0.5 km2/s2 . Clearly, those that require less injection C3 pass near the 
Moon on the way out of the Earth’s vicinity. 

The inertial orientation of each low-energy transfer observed in this 12-month 
survey clearly depends on which month the transfer departs the Earth. However, the 
orientation of each similar low-energy transfer is fairly constant throughout the year 
when observed in the Sun–Earth rotating frame. One way to observe that is to track 
each transfer’s departure from Earth in the Sun–Earth rotating frame. Figure 3-65 
shows a plot that compares the departure state of each transfer in the 12-month survey 
by plotting the relationship of each transfer’s right ascension of apogee vector (RAV) 
and declination of apogee vector (DAV) parameters of the transfer’s initial apogee 
vector. The RAV and DAV values have been computed at the instant of the trans-lunar 
injection, before any perturbations change the orbit. Each transfer departs the Earth 
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Figure 3-64 The relationship between injection C3 and duration for each transfer in the 
12-month survey. From lightest to darkest, the shading corresponds to reference dates from 
1/1/2017 to 1/1/2018 [47] (first published by the American Astronautical Society). 

Figure 3-65 The relationship between the right ascension and declination of the apogee 
vector, RAV and DAV, respectively, for each transfer in the 12-month survey. From lightest 
to darkest, the shading corresponds to reference dates from 1/1/2017 to 1/1/2018 [47] (first 
published by the American Astronautical Society). 



198 TRANSFERS TO LUNAR LIBRATION ORBITS 

on an orbit that is highly eccentric, but still captured by the Earth. From Fig. 3-65, 
one can see that this initial orbit is usually oriented near the ecliptic plane and usually 
oriented either toward or away from the Sun. A RAV value of 0 deg corresponds 
to an orbit that has its apogee vector pointing away from the Sun, in the direction 
of positive x in the Sun–Earth rotating coordinate frame. The outlying points in the 
figure correspond to transfers that include some combination of Earth phasing loops 
and lunar flybys and typically do not reappear in the same region of this figure from 
one month to the next. 

The largest variations observed from one synodic month to the next correspond to 
differences in the low-energy transfer’s injection inclination, in both equatorial and 
ecliptic reference frames, as illustrated in Fig. 3-66. It is apparent when studying 
the plots shown in Fig. 3-66 that transfers depart the Earth from orbital planes at 
nearly any inclination during each synodic month. It is expected that the equatorial 
inclination of the transfers’ injection points will vary from one synodic month to the 
next due to the Earth’s obliquity angle; however, significant variations also exist from 
month to month when observing the transfers’ injection points’ ecliptic inclination 
values. The variations in the geometry during the year have a more pronounced effect 
when the trajectories fly near the Earth or Moon. 

3.4.6.2 Tracking One Family Through 12 Months The figures shown in 
the previous sections, as well as analyses in the literature [46] show that one can trace 
hundreds of different families of low-energy lunar transfers in any given reference 
month. The characteristics of these families often stack on top of each other in 
each relationship presented in Figs. 3-62–3-65, making it difficult to discern how 
the characteristics of one family evolve from month to month. This section studies 
a subset of transfers of the 12-month survey, filtered to isolate a particular set of 
practical low-energy transfers. It is often the case that a practical spacecraft mission 
benefits by shorter transfer durations; it is also usually beneficial to avoid outbound 
lunar flybys because they add geometrical constraints to the system that make it more 
difficult to establish a wide launch period. Hence, the filters that have been applied 
to the transfer selection include: 

• Maximum duration: 105 days 

• Minimum perilune altitude: 20,000 km 

In addition, the set of all transfers that meets these criteria has been divided into two 
subsets, split such that one subset includes those transfers that travel closer to EL1 

than EL2 and vice versa. In this way, one can compare practical EL1 transfers and 
practical EL2 transfers from one month to the next. 

Figure 3-67 identifies the transfers that meet the filter criteria in the state space 
map. A visual comparison will confirm that these transfers exist in the most prominent 
features of the state space maps shown in Figs. 3-54, 3-55, 3-61, and 3-62. One can 
see that the location of the curves of each family on these plots varies from month to 
month; the variations appear to be contained within approximately 50 deg in τ and 
at most 5 days in the orbit’s reference date, Tref. 
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Figure 3-66 The equatorial (top) and ecliptic (bottom) inclination of the transfers’ injection 
point for each low-energy lunar transfer identified in Fig. 3-62. The first month, which starts 
at a reference epoch of 1 Jan 2017 00:00:00 Ephemeris Time, is shown in the lightest shade 
and each consecutive synodic month thereafter is plotted in a darker shade. From lightest to 
darkest, the shading corresponds to reference dates from 1/1/2017 to 1/1/2018 [44] (Copyright 
c© 2009 by American Astronautical Society Publications Office, San Diego, California (Web 

Site: http://www.univelt.com), all rights reserved; reprinted with permission of the AAS). 

Figure 3-68 shows the relationship of each transfer’s injection C3 and its duration 
for every transfer that satisfies the filter criteria. One can clearly see that the transfers’ 
performance parameters vary along a curve for each month, and the performance 
curve does not vary significantly from one month to the next. The transfer duration 
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Figure 3-67 The relationship between the reference epoch and τ for each EL1 (top) and 
EL2 (bottom) transfer in the 12-month survey that satisfies the filter criteria. From lightest 
to darkest, the shading corresponds to reference dates from 1/1/2017 to 1/1/2018 [47] (first 
published by the American Astronautical Society). 

may vary by several days between months, but the curves span very similar ranges 
of injection C3. 

It is very interesting to plot the relationship between each transfer’s injection date 
and its injection energy, C3. Figure 3-69 shows this comparison for the EL1 and 
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Figure 3-68 The relationship between the injection C3 and transfer duration for each EL1 

(top) and EL2 (bottom) transfer in the 12-month survey that satisfies the filter criteria. From 
lightest to darkest, the shading corresponds to reference dates from 1/1/2017 to 1/1/2018 [47] 
(first published by the American Astronautical Society). 

EL2 transfers. One can see that the families of transfers shift on this plot from 
month to month. The comparison also shows that most families of transfers span an 
injection date of 10 to 15 days. This suggests that there are 10 to 15 days in a launch 
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Figure 3-69 The relationship between the injection date and the injection C3 for each EL1 

(top) and EL2 (bottom) transfer in the 12-month survey that satisfies the filter criteria. From 
lightest to darkest, the shading corresponds to reference dates from 1/1/2017 to 1/1/2018 [47] 
(first published by the American Astronautical Society). 

period to this lunar libration orbit via this type of transfer before the deep space ΔV 
cost increases. This relationship, however, does not take into account differences in 
the injection inclination throughout the family. Figure 3-69 also verifies that EL1 

transfers and EL2 transfers depart approximately two weeks apart from each other. 
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The departure geometry of the filtered transfers is very consistent and predictable 
from month to month, given the proper analysis. Figures 3-70 and 3-71 show the 
RAV and DAV parameters for the EL1 and EL2 transfers, respectively, computed 
in the Sun–Earth rotating coordinate frame at the instant of trans-lunar injection. 
One can immediately observe that the ranges of RAV and DAV values are very 
limited for each set of transfers: the EL1 transfers are confined to the approximate 
range of ∼140 deg ≤ RAV ≤ ∼170 deg, the EL2 transfers are confined to the range of 
∼320 deg ≤ RAV ≤ ∼355 deg, and both sets are confined in DAV to the approximate 
range ∼−10 deg ≤ DAV ≤ ∼10 deg. The RAV values appear to cover a very similar 
span of values for each month, but there appears to be an annual signal in the DAV 
values. This systematic variation may be isolated by observing the relationship 
between a transfer’s DAV value and the orientation of the Moon’s orbital pole vector 
at the arrival time. The Moon’s orbit has an inclination of approximately 5.1 deg 
relative to the ecliptic. The Moon’s orbital plane is approximately fixed in inertial 
space, but rotates in the Sun–Earth rotating frame. Figure 3-72 shows the relationship 
between the transfer’s injection DAV value and the right ascension of the lunar orbit 
pole vector in the Sun–Earth rotating coordinate frame at the time of arrival. One 
sees a clear annual signal in the data. A mission designer may be able to use this 
information to improve an initial estimate of the trans-lunar injection geometry. The 
injection DAV value still varies by approximately 10 deg throughout a family after 
accounting for the annual variation. This remaining variation may be explained by 
the z-axis motion of the target orbit at the time of arrival, though that relationship has 
not been studied sufficiently yet. 

A relationship has also been observed between the injection RAV value and the 
injection C3. Figure 3-73 shows this relationship for both the EL1 and EL2 transfers. 
One can see that higher RAV values require less injection energy and there is very 
little monthly variation in the observed data. 

Another parameter that depends closely on the relative orientation of the Moon’s 
orbit about the Earth at the time of the transfer is the inclination of the LEO parking 
orbit that is used to transfer onto these low-energy transfers. The transfers are 
constructed by building an initial state at the Moon and propagating backward in 
time until they intersect a 185-km parking orbit above the Earth’s surface. The 
inclination of that parking orbit is driven by the geometry of the transfer. A real 
mission launched from Cape Canaveral, Florida, would likely launch from an orbit 
with an equatorial inclination near 28.5 deg and perform maneuvers to target the 
desirable low-energy transfer [183, 184]. This is the subject of Section 6.5. That 
section shows that the closer the natural transfer is to having a parking orbit with a 
particular, desired inclination, the less ΔV is required to target that transfer from the 
desired parking orbit, though extended launch periods reduce the ΔV significance. 
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Figure 3-70 The relationship between RAV and DAV (the right ascension and declination 
of the apogee vector) at the time of trans-lunar injection for the filtered EL1 transfers. From 
lightest to darkest, the shading corresponds to reference dates from 1/1/2017 to 1/1/2018. Top: 
one can see that RAV and DAV are confined in a narrow box for these transfers; bottom: a 
closer look at the parameter space [47] (first published by the American Astronautical Society). 
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Figure 3-71 The same relationship between RAV and DAV as Fig. 3-70, but for the filtered 
EL2 transfers. From lightest to darkest, the shading corresponds to reference dates from 
1/1/2017 to 1/1/2018 [47] (first published by the American Astronautical Society). 
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Figure 3-72 The relationship between the right ascension of the lunar orbit’s pole vector 
at the time of arrival and the value of DAV at the time of injection, both computed in the 
Sun–Earth rotating coordinate frame. From lightest to darkest, the shading corresponds to 
reference dates from 1/1/2017 to 1/1/2018.This relationship is shown for each EL1 (top) and 
EL2 (bottom) transfer in the 12-month survey that satisfies the filter criteria [47] (first published 
by the American Astronautical Society). 
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Figure 3-73 The relationship between the right ascension of the apogee vector, RAV, at the 
time of trans-lunar injection and the injection energy, C3, for each EL1 (top) and EL2 (bottom) 
transfer in the 12-month survey that satisfies the filter criteria. From lightest to darkest, the 
shading corresponds to reference dates from 1/1/2017 to 1/1/2018 [47] (first published by the 
American Astronautical Society). 
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Figure 3-74 shows the relationship between the reference date of the lunar halo 
orbit and the equatorial inclination of the natural LEO parking orbit needed to perform 
the transfer. One can see that the inclination varies significantly from one month to 
the next. Figure 3-75 shows the relationship between the right ascension of the lunar 
orbit pole vector and the ecliptic inclination of the LEO parking orbit. One can 
clearly see that there is an evolution of the inclination from one month to the next. 
Figure 3-76 shows the same plot, but this time presenting the relationship between 
the lunar orbit pole vector and the equatorial inclination of the LEO parking orbit. 

3.4.6.3 Annual Variations Much of the monthly variation observed in families 
of low-energy lunar transfers is caused by the Moon’s noncircular, inclined orbit 
relative to the Earth. Other variations in the Solar System change over the course of 
several years, evident in the analysis in Section 2.5.3. It is therefore of interest to 
ensure that the relationships observed here hold over the course of several years. The 
same analyses performed in the previous section have been performed again on a set 
of transfers constructed with reference dates spanning the year 2021, four years after 
the previous study. The results of this new examination coincide very well with the 
previous study. Not all of the results will be shown here for brevity. 

Figure 3-77 shows the relationship between Tref and τ , where the lighter shaded 
points are low-energy transfers that exist in 2017 and the darker points are low-energy 
transfers that exist in 2021. One can see that the combinations of the two parameters 
are very similar for both years. Figure 3-78 shows a similar comparison between the 
injection C3 and duration of the transfers in both 2017 and 2021. One can see that 
there is very little noticeable difference between the points in 2017 and 2021. 

The transfers that exist in 2021 have been filtered in the same way as the transfers 
presented in Section 3.4.6.2 in order to observe how the family might change during 
the course of four years. Figures 3-79 and 3-80 show the same relationships as shown 
in Figs. 3-72 and 3-75, except now for filtered transfers in 2017 and 2021. One can 
see that the 2021 parameters overlap the 2017 data very well, including the dramatic 
monthly variations observed in the data. 

The evidence suggests that the yearly variations are much more subtle than the 
monthly variations that exist. 

3.4.7 Transfers to Other Three-Body Orbits 

All of the analyses performed in Sections 3.4.3 through 3.4.6 have used the family of 
halo orbits about the LL2 point as the example destination, but these analyses work 
for any unstable three-body orbit in the Earth–Moon system. 

Section 3.4.7.1 explores low-energy lunar transfers that target an example lunar 
L1 halo orbit. Since this orbit is on the interior side of the Moon, the trajectories that 
target it must transfer from the lunar L2 region past the Moon before encountering 
the target orbit. 

Section 3.4.7.2 explores low-energy lunar transfers that target an example distant 
prograde orbit about the Moon. Orbits in this family traverse both the near and 
far sides of the Moon. Hence, transfers that target these orbits may demonstrate 
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Figure 3-74 The relationship between the reference date of the lunar halo orbit and the 
equatorial inclination of the LEO parking orbit needed to perform the transfer. From lightest 
to darkest, the shading corresponds to reference dates from 1/1/2017 to 1/1/2018. This 
relationship is shown for each EL1 (top) and EL2 (bottom) transfer in the 12-month survey 
that satisfies the filter criteria [47] (first published by the American Astronautical Society). 
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Figure 3-75 The relationship between the right ascension of the lunar orbit pole vector 
and the ecliptic inclination of the LEO parking orbit. From lightest to darkest, the shading 
corresponds to reference dates from 1/1/2017 to 1/1/2018. This relationship is shown for each 
EL1 (top) and EL2 (bottom) transfer in the 12-month survey that satisfies the filter criteria [47] 
(first published by the American Astronautical Society). 
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Figure 3-76 The relationship between the right ascension of the lunar orbit pole vector 
and the equatorial inclination of the LEO parking orbit. From lightest to darkest, the shading 
corresponds to reference dates from 1/1/2017 to 1/1/2018. This relationship is shown for each 
EL1 (top) and EL2 (bottom) transfer in the 12-month survey that satisfies the filter criteria [47] 
(first published by the American Astronautical Society). 
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Figure 3-77 The combinations of Tref and τ that yield low-energy transfers between 185-km 
LEO parking orbits and the target lunar libration orbit during 2017 (gray points) and 2021 
(black points) [47] (first published by the American Astronautical Society). 

characteristics similar to low-energy lunar transfers that target either L1 or L2 halo 
orbits. 

These analyses are merely additional examples to demonstrate these analysis 
techniques. All analyses will likely need to be repeated given specific mission 
design requirements. That is, a given mission may require a spacecraft to transfer 
to a particular unstable three-body orbit, perhaps for communication, staging, or 
rendezvous reasons, and a new BLT map will need to be generated to study the 
trajectory options that exist. 

3.4.7.1 Low-Energy Transfers to a Lunar L1 Halo Orbit This section ex
plores low-energy ballistic transfers to an example lunar L1 halo orbit. For simplicity 
in this example analysis, the Patched Three-Body Model is used; hence, the L1 halo 
orbit is perfectly periodic. 

In order to reach a halo orbit about the L1 point via a typical low-energy transfer, a 
spacecraft must depart the Earth and arrive in the lunar L2 vicinity in much the same 
way as a spacecraft following a low-energy transfer to a lunar L2 halo orbit. Then 
from the vicinity of L2, the spacecraft must transfer past the Moon before arriving 
at its target L1 halo orbit. As usual, there are two types of transfers: transfers that 
implement either the exterior or the interior stable manifold of the L1 halo orbit. 
Interior transfers may arrive on the L1 halo orbit immediately after passing by the 
Moon since the interior stable manifold is propagated in that direction. Exterior 
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Figure 3-78 The combinations of injection C3 and transfer duration that yield viable low-
energy lunar transfers in 2017 (gray points) and 2021 (black points) [44] (Copyright © 2009c
by American Astronautical Society Publications Office, San Diego, California (Web Site: 
http://www.univelt.com), all rights reserved; reprinted with permission of the AAS). 

transfers to most L1 halo orbits must first traverse some sort of Earth staging orbit 
prior to arriving on the L1 halo orbit. 

Figure 3-81 shows an example interior low-energy transfer to a lunar L1 halo orbit 
in the Sun–Earth synodic reference frame. Figure 3-82 shows the same transfer in the 
Earth–Moon synodic reference frame. The characteristics of this example transfer 
are very similar to many of the low-energy transfers previously studied in this work 
that have transferred to L2 halo orbits. The only major difference is that this example 
low-energy transfer passes through the L2 region en route to the L1 region, where it 
encounters its target L1 halo orbit. 

Figures 3-83 and 3-84 show an example exterior low-energy transfer to a lunar L1 

halo orbit in the Sun–Earth and Earth–Moon synodic reference frames, respectively. 
One can see that the transfer involves an Earth staging orbit, which permits it to 
encounter the L1 halo orbit along the orbit’s exterior stable manifold. Every exterior 
low-energy transfer that has been constructed in this work between the Earth and this 
L1 halo orbit requires the use of at least one Earth staging orbit. When propagated 
backward in time, the exterior lunar transfers depart the L1 halo orbit away from the 
Moon; hence, they must return to the Moon via an Earth staging orbit in order to 
transfer out of the Earth–Moon system and into the Sun–Earth system. 

Figures 3-85 and 3-86 show the interior and exterior BLT maps, respectively, 
for low-energy transfers to this halo orbit, making it possible to characterize many 
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Figure 3-79 The relationship between the right ascension of the lunar orbit pole vector and 
the declination of the apogee vector at the time of injection. This relationship is shown for 
each EL1 (top) and EL2 (bottom) transfer in both the 2017 (light) and 2021 (dark) surveys that 
satisfies the filter criteria [47] (first published by the American Astronautical Society). 

transfers to this orbit simultaneously. Each figure also shows eight example transfers 
to display some of the available transfer options that exist to this halo orbit. The BLT 
maps are colored according to the altitude of closest approach that each trajectory 
makes, given the values of θ and τ , when propagated backward in time at most 



LOW-ENERGY TRANSFERS BETWEEN EARTH AND LUNAR LIBRATION ORBITS 215 

Figure 3-80 The relationship between the right ascension of the lunar orbit pole vector and 
the ecliptic inclination of the LEO parking orbit. This relationship is shown for each EL1 (top) 
and EL2 (bottom) transfer in both the 2017 (light) and 2021 (dark) surveys that satisfies the 
filter criteria [47] (first published by the American Astronautical Society). 



216 TRANSFERS TO LUNAR LIBRATION ORBITS 

Figure 3-81 An example interior low-energy transfer to a lunar L1 halo orbit, shown in the 
Sun–Earth synodic reference frame from above the ecliptic. 

Figure 3-82 The same low-energy transfer presented in Fig. 3-81, but now shown in the 
Earth–Moon synodic reference frame from above the ecliptic. 

195 days. Points colored black in each BLT map correspond to transfers that may be 
used to depart the Earth from a low-altitude orbit, or from the surface directly. The 
lightest colors correspond to transfers that do not approach any closer to the Earth 
than the L1 orbit itself when propagated backward in time. As usual, we are only 
interested in the darkest regions of the BLT maps because those regions correspond 
with trajectories that depart from practical low Earth orbits. 
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Figure 3-83 An example exterior low-energy transfer to a lunar L1 halo orbit, shown in the 
Sun–Earth synodic reference frame from above the ecliptic. 

Figure 3-84 The same low-energy transfer presented in Fig. 3-83, but now shown in the 
Earth–Moon synodic reference frame from above the ecliptic. 

One can see that the two BLT maps shown in Figs. 3-85 and 3-86 are very complex. 
This makes sense because the only ways to construct ballistic transfers between the 
Earth and this lunar L1 halo orbit require some combination of lunar passages and 
Earth staging orbits. 
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Figure 3-85 The interior BLT map for low-energy transfers to the example lunar L1 halo 
orbit. Eight example low-energy transfers are shown around the BLT map to demonstrate 
some of the types of transfers that may be constructed between 185-km LEO orbits and this 
halo orbit. (See insert for color representation of this figure.) 

When studying Fig. 3-85, one notices many things. First, the BLT map is rather 
simple in the range of τ -values between 0.4 and 0.7. This region of τ -values includes 
ballistic lunar transfers that make only a single lunar passage en route to the L1 

halo orbit. These transfers resemble the simplest low-energy transfers to lunar L2 

halo orbits and have very similar performance parameters. Somewhat more complex 
transfers are shown in the BLT map for τ -values between 0.7 and 0.96: most of these 
involve several close lunar passages en route to the L1 halo orbit. Every transfer 
constructed with a τ -value between 0 and 0.35 involves at least one Earth staging 
orbit, as may be seen in the two example transfers shown on the lower-left edge of 
the figure. 

The exterior BLT map shown in Fig. 3-86 is more complex than the interior BLT 
map. This is because each transfer must implement at least one Earth staging orbit in 
addition to whatever lunar passages are required to complete the low-energy transfer. 
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Figure 3-86 The exterior BLT map for low-energy transfers to the example lunar L1 halo 
orbit. Eight example low-energy transfers are shown around the BLT map to demonstrate 
some of the types of transfers that may be constructed between 185-km LEO orbits and this 
halo orbit. (See insert for color representation of this figure.) 

One may verify this by observing that every example trajectory shown around the 
edge of Fig. 3-86 includes at least one Earth staging orbit. Otherwise, these transfers 
are very similar to other lunar transfers previously studied. 

3.4.7.2 Low-Energy Transfers to a Distant Prograde Orbit This section 
explores low-energy ballistic transfers to an example distant prograde orbit (DPO) 
about the Moon. Like the previous section, this analysis is performed using the 
Patched Three-Body Model, making the DPO perfectly periodic. Distant prograde 
orbits are interesting because they traverse both the near and far sides of the Moon. 
One might suspect that the qualitative nature of a low-energy transfer to such an orbit 
might take on characteristics of transfers to either L1 or L2 halo orbits, depending on 
how the specific transfer arrives at the orbit. 

An example DPO has been generated here that has fairly large lobes and is easy 
to view in the example transfers presented here. Figure 3-87 shows an example 



220 TRANSFERS TO LUNAR LIBRATION ORBITS 

Figure 3-87 An example low-energy transfer to a distant prograde orbit, shown in the 
Sun–Earth synodic reference frame from above the ecliptic. 

low-energy transfer to this distant prograde orbit in the Sun–Earth synodic reference 
frame. Figure 3-88 shows the same example transfer in the Earth–Moon synodic 
reference frame. One can see that this transfer does not enter any staging orbits, nor 
make any lunar flybys, but rather injects immediately into the distant prograde orbit. 
Other ballistic transfers may be produced that do use staging orbits or other complex 
lunar flybys en route to the orbit. 

Because of the symmetry in the distant prograde orbit’s shape, the two halves 
of the orbit’s stable manifold are not clearly identifiable based on their immediate 
motion. That is, both halves of the stable manifold include both interior and exterior 
trajectories. However, the majority of one half of the distant prograde orbit’s stable 
manifold propagates toward the Earth, and the majority of the other half propagates 
away from the Earth. This discussion refers to the half that propagates toward the 
Earth as the interior stable manifold and the other half as the exterior manifold. 
Using this nomenclature, Figs. 3-89 and 3-90 show the exterior and interior BLT 
maps, respectively, for low-energy transfers to this distant prograde orbit. 

Along with the exterior BLT map, Fig. 3-89 also shows eight example exterior 
transfers that exist to this distant prograde orbit. One can see that these transfers 
are very simple—they don’t require any lunar flybys or staging orbits to reach the 
target orbit. Because such simple transfers are prevalent in this exterior BLT map, 
the map is consequently not nearly as chaotic as some of the previous BLT maps 
studied in this chapter. The interior BLT map shown in Fig. 3-90, however, presents 
more complex transfers to this distant prograde orbit, including several examples of 
low-energy transfers that require Earth staging orbits. 
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Figure 3-88 The same transfer presented in Fig. 3-87, but now shown in the Earth–Moon 
synodic reference frame from above the ecliptic. 

The characteristics of the exterior transfers shown in Fig. 3-89 resemble the 
characteristics of the exterior transfers to the lunar L2 halo orbit. The only real 
complexity that may be introduced into the majority of such transfers is the addition of 
a lunar flyby en route to the transfers’ apogee passages. Conversely, the characteristics 
of many of the interior transfers shown in Fig. 3-90 resemble the characteristics of 
the exterior transfers to the lunar L1 halo orbit shown in Fig. 3-86. This makes sense 
because the majority of both types of transfers involve Earth staging orbits, among 
other features. 

3.4.7.3 Discussion This section has demonstrated that the methodology pre
sented in this examination may be applied to many different families of unstable 
three-body orbits. The same techniques may be applied to quasiperiodic and aperi
odic orbits as well, such as Lissajous orbits, though the parameters that generate the 
BLT maps will not be perfectly cyclical. The low-energy transfers and BLT maps 
constructed using different target orbits may appear very different. Nonetheless, 
families of low-energy transfers may still be identified and systematically evaluated 
in order to identify good candidates for practical lunar missions. 

3.5 THREE-BODY ORBIT TRANSFERS 

Once a spacecraft has arrived at a lunar three-body orbit, the spacecraft has several 
options. First, it may remain there for as long as desired, or at least until its station-
keeping fuel budget is exhausted (which may be years). Lunar halo orbits may be a 
desirable location for communication and/or navigation satellites; they may also be 
a desirable location for space stations or servicing satellites. 
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Figure 3-89 The exterior BLT map for low-energy transfers to the example distant prograde 
orbit about the Moon. Eight example low-energy transfers are shown around the BLT map 
to demonstrate some of the types of transfers that may be constructed between 185-km LEO 
orbits and this lunar orbit. (See insert for color representation of this figure.) 

The spacecraft may transfer from the three-body orbit to a different three-body 
orbit in the Earth–Moon system for very little energy, provided that both orbits 
are unstable and have the same Jacobi constant [162, 185, 186]. For instance, the 
spacecraft might arrive at a lunar L2 halo orbit and then later transfer to a lunar L1 

halo orbit. Section 2.6.11 presents several methods that one may use to identify and 
construct such transfers. 

The spacecraft may also transfer from the nominal three-body orbit onto its unsta
ble manifold and follow that trajectory to a desirable stable lunar orbit. It has been 
found that nearly any low lunar orbit is accessible in this way, and every transfer 
studied has required a smaller orbit-insertion maneuver than any conventional, direct 
transfer to the same low lunar orbit [46]. An example of such a transfer will be 
described in more detail below. 

Similarly, the spacecraft may follow the unstable manifold of the three-body orbit 
down to the surface of the Moon. It has been found that any point on the surface 
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Figure 3-90 The interior BLT map for low-energy transfers to the example distant prograde 
orbit about the Moon. Eight example low-energy transfers are shown around the BLT map 
to demonstrate some of the types of transfers that may be constructed between 185-km LEO 
orbits and this lunar orbit. (See insert for color representation of this figure.) 

of the Moon may be reached, although some points require several orbits about the 
Moon prior to touch-down [11, 46]. Again, the required ΔV to land from the lunar 
three-body orbit is smaller than the required ΔV to land following a conventional, 
direct transfer from the Earth. 

Finally, the spacecraft has the option to return to the Earth following a low-energy 
Earth-return trajectory. Every low-energy lunar transfer has a symmetric Earth-
return counterpart; the Earth-return trajectory does not need to be a mirror image of 
the trajectory used to arrive at the lunar orbit. 

If the spacecraft’s final destination is not the lunar three-body orbit, then the 
spacecraft does not need to inject into that orbit. Instead, the orbit’s stable manifold 
may be used to guide the spacecraft to its final destination rather than to inject the 
spacecraft onto the three-body orbit. The stable manifold may be used as an initial 
guess into a trajectory optimization routine, such as a multiple-shooting differential 
corrector (Section 2.6.5.2). 
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3.5.1 Transfers from an LL2 Halo Orbit to a Low Lunar Orbit 

The discussion henceforth graphically illustrates some example options that a space
craft has upon arriving at a lunar halo orbit. Figure 3-91 shows one such lunar halo 
staging orbit and its unstable manifold. A spacecraft on this halo orbit may depart 
along any one of these trajectories. These trajectories fly by the Moon at different 
radii and inclinations, indicating that many different final lunar orbits are accessible 
from this staging orbit. When one considers all halo orbits in the family of L2 halo 
orbits, one finds that nearly any low lunar orbit may be accessed by a low-energy 
lunar transfer. Figure 3-92 shows the available options that have been identified for 

Figure 3-91 An example lunar halo staging orbit and its unstable manifold, viewed in the 
Earth–Moon rotating frame from above (top) and from the side (bottom). A spacecraft on this 
halo orbit may depart along any one of the trajectories shown. 
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Figure 3-92 Available options identified for the radius and inclination of lunar orbits accessed 
by southern lunar L2 halo orbits. Top: The radii and inclination combinations that may be 
obtained at perilune of the unstable manifolds of six different lunar L2 halo orbits, where 
each orbit’s available options are labeled with that orbit’s Jacobi constant. Bottom: The radii 
and inclination combinations that may be obtained at perilune of the unstable manifolds of 
many orbits in the family of southern halo orbits. The highlighted options in the plot at right 
correspond to the available options for the halo orbit shown in Fig. 3-91. 
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the radius and inclination of lunar orbits that may be accessed by southern lunar L2 

halo orbits. The shaded field in the right plot has been constructed by sampling the 
unstable manifolds of hundreds of halo orbits and interpolating between the results. 
The highlighted points in the plot on the right are those points that are accessible from 
the example southern halo staging orbit shown in Fig. 3-91. Northern halo orbits can 
access the same set of lunar orbits except with a negative inclination. In each case, 
it is assumed that the orbit-insertion maneuver is performed at the perilune of the 
unstable manifold, but this is not required. 



CHAPTER 4
 

TRANSFERS TO LOW LUNAR ORBITS
 

4.1 EXECUTIVE SUMMARY 

This chapter examines low-energy transfers that target low, 100-kilometer (km), polar 
lunar orbits. The analyses presented here may be applied to any lunar orbit insertion; 
polar orbits are used as examples since mapping missions have historically been 
frequently sent to near-polar orbits about the Moon. This chapter presents surveys 
of direct transfers as well as low-energy transfers to low lunar orbits, and provides 
details about how to construct a desirable transfer, be it a short-duration direct transfer 
or a longer duration low-energy transfer. 

Figure 4-1 shows an example direct transfer, compared with an example low-
energy transfer to low lunar orbits. Much like the transfers presented in Chapter 3, 
these trajectories are ballistic in nature; they require a standard trans-lunar injection 
(TLI) maneuver, a few trajectory correction maneuvers, and an orbit insertion maneu
ver. One may again add Earth phasing orbits and/or lunar flybys to the trajectories, 
if needed, which change their performance characteristics. 

Many thousands of direct and low-energy trajectories are surveyed in this chapter. 
Table 4-1 provides a quick guide for several types of transfers that are presented here, 
much like Table 3-1 from Chapter 3, comparing their launch energy costs, the breadth 
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Figure 4-1 The profiles for both a direct and a low-energy transfer from the Earth to a low 
lunar orbit. 

Table 4-1 A summary of several parameters that are typical for different mission 
scenarios to low lunar orbits. EPOs = Earth Phasing Orbits, BLT = Low-Energy 
Ballistic Lunar Transfer. 

Mission Direct Direct Simple BLT w/Outbound BLT 
Element Transfer w/EPOs BLT Lunar Flyby w/EPOs 

Launch C3 −2.2 to −1.5 < −1.5 −0.7 to −0.4 −2.1 to −0.7 < −1.5 
(km2/s2) 
Launch Period Short Extended Extended Short Extended 
Transfer Duration 2–6 13+ 70–120+ 70–120+ 80–130+ 
(days) 
Outbound Lunar No No No Yes Yes 
Flyby 
Lunar Orbit ∼820+ ∼820+ ∼640+ ∼640+ ∼640+ 
Insertion ΔV (m/s) 

of their launch period, that is, the number of consecutive days they may be launched, 
their transfer duration, and the relative magnitude of the orbit insertion change in 
velocity (ΔV) upon arriving at the lunar orbit. The performance parameters are very 
similar to low-energy transfers to lunar libration orbits, except for the orbit insertion 
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ΔV. These parameters are representative and may be used for high-level mission 
design judgements, though the details will likely vary from mission to mission. 

Conventional lunar mission design is presented in Section 4.3 as a reference for the 
analyses of low-energy lunar transfers. The trajectories shown in that section require 
trans-lunar injection parameter (C3) values of at least −2.06 kilometers squared per 
second squared (km2/s2), realistic transfer durations between 2 and 6 days, and lunar 
orbit insertion ΔV values of at least 813 m/s. One can certainly construct quicker 
or longer transfers, but the injection C3 and lunar orbit insertion ΔV values increase 
rapidly. 

Direct transfers and low-energy transfers to low lunar orbits are directly compared 
and analyzed in Section 4.4. The surveys include many thousands of lunar transfers, 
arriving at the Moon in any orientation and arriving at different times. The surveys 
demonstrate that direct transfers must arrive at the Moon in a geometry such that the 
orbital plane is roughly normal to the Earth–Moon line at the time of arrival. Whereas 
low-energy transfers may be constructed that arrive at any orbital plane. If a mission 
must enter a lunar orbit with a particular node, then only certain values of the orbit’s 
argument of periapse may be targeted, depending on the lunar arrival date; further, 
those values are different for low-energy transfers than they are for direct lunar 
transfers. It has been found that low-energy transfers require trans-lunar injection 
C3 values of about −0.6 km2/s2, compared with typical direct transfers that require 
C3 values of about −2.0 km2/s2 . Low-energy transfers require about 70–120 days 
of transfer duration, compared with direct transfers that require 2–6 days, though 
either type of transfer may be designed to take more time. The lunar orbit insertion 
ΔV is at least 640 m/s for low-energy transfers, assuming an impulsive maneuver 
to immediately target a 100-km circular lunar orbit. Direct lunar transfers require 
at least 120 m/s more ΔV, and often significantly more ΔV than that to target the 
same arrival conditions. Finally, low-energy lunar transfers exist in families, such 
that very similar transfers exist to neighboring libration orbits. Very similar transfers 
also exist to the same orbit when the arrival time or arrival geometry is adjusted. 

4.2 INTRODUCTION 

This chapter is devoted to the analysis and construction of low-energy transfers 
to low lunar orbit. This is a rich problem; it is far too complex to present all 
possible examinations of such transfers in a concise form. To simplify the problem, 
while retaining a connection to practical spacecraft mission design, this book limits 
the scope of this study and only examines low-energy transfers to low-altitude, 
100-km circular, polar orbits about the Moon. These orbits are very similar to 
many mapping orbits flown by historical lunar missions, including Lunar Prospector 
[56], Kaguya/SELENE [187], Chang’e 1 [58], Chandrayaan-1 (CH-1) [3], the Lunar 
Reconnaissance Orbiter (LRO) [188], and Gravity Recovery and Interior Laboratory 
(GRAIL) [83]. The procedures presented in this chapter may easily be applied to 
transfers that implement an eccentric capture orbit about the Moon: in that case the 
argument of periapse of the target orbit becomes a design constraint and the orbit 
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insertion ΔV is reduced appropriately. This chapter contains all of the information to 
design such orbit insertions, assuming that the mission performs lunar orbit insertion 
(LOI) at an altitude of 100 km and an inclination of 90 degrees (deg). Even so, the 
procedures presented here may be applied to orbit insertions at other altitudes and in 
other inclinations, though in those cases the design space will have to be reconstructed 
by the mission designer. The surveys presented here provide a good representation 
of the trade space of any direct and low-energy transfer to any low orbit about the 
Moon. 

Although the general characteristics of low-energy transfers to low lunar orbits 
are similar to the characteristics of low-energy transfers to lunar libration orbits, such 
as those presented in Chapter 3, the geometry of transfers that arrive at polar orbits 
is still significantly different. Therefore, the analysis in this chapter is independent 
of Chapter 3 and specifically tailored to study missions to low lunar orbit. 

The GRAIL mission is the only mission in history, prior to 2012, to implement 
a low-energy transfer to a low-altitude orbit about the Moon as part of its primary 
mission. Its design features will be used as a reference in many of the discussions in 
this chapter [83–85]. GRAIL’s trajectory design is illustrated in Fig. 4-2, including 
the first and last launch opportunity in a 21-day launch period. This is the launch 
period published in Ref. 83; however, it was actually extended by many days as 
the mission developed. The GRAIL mission launched on September 10, 2011, on 
the third day of its launch period. GRAIL’s mission design includes two significant 

Figure 4-2 An illustration of GRAIL’s mission design, including a 26-day launch period and 
two deterministic maneuvers for both GRAIL-A and GRAIL-B, designed to separate their lunar 
orbit insertion times by 25 hours [83] (Originally published by the American Astronautical 
Society). 
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deterministic maneuvers performed per spacecraft during the cruise, performed pri
marily to separate their lunar orbit insertion dates. The trajectories generated in this 
chapter do not include these sorts of maneuvers. Chapter 6 explores the addition of 
maneuvers like those in GRAIL’s design. 

4.3 DIRECT TRANSFERS BETWEEN EARTH AND LOW LUNAR ORBIT 

The purpose of this book is to illustrate the costs, benefits, and characteristics of 
low-energy lunar transfers; the primary referent is the direct lunar transfer, which 
has been used so frequently in lunar missions that it is known as the conventional 
method. The first spacecraft launched toward the Moon, Luna 1, followed a direct 
transfer: a trajectory that required only 34 hours to reach the Moon, passing by within 
6000 km of the surface. Since then, dozens of missions have implemented direct 
lunar transfers with durations ranging from 1.4 to 5.5 days, not including any staging 
orbits. Table 1-2 on page 16 summarize many example missions that implemented 
such direct transfers. Many resources exist that describe these direct lunar transfers in 
great detail [189]. This section only considers the ΔV of basic transfers as a function 
of the transfer duration to be used as a reference when describing low-energy lunar 
transfers. 

Direct lunar transfers are trajectories that depend only on the gravity of the Earth 
and Moon. The Sun’s gravity is accounted for, but only as a perturbation to the 
transfer. A very short-duration direct transfer departs the Earth on a hyperbola that 
encounters the Moon. The most efficient direct transfers typically require 4–5 days, 
depending on the location of the Moon in its elliptical orbit, and resemble Hohmann 
transfers. Figure 4-3 illustrates several direct lunar transfers that have varying transfer 
durations. 

Figure 4-3 illustrates how the ΔV cost of a direct transfer increases away from 
the optimal transfer duration. But the cost doesn’t rise very rapidly until the transfer 
duration has changed by several days. Recent spacecraft have taken advantage 
of the optimal transfer durations to maximize the amount of payload sent to the 
Moon. Conversely, it is apparent why the Apollo mission planners opted for a shorter 
transfer: the ΔV cost does not rise very much by decreasing the transfer duration 
from 4.5 days to 3.0 days, but the other consumables (including items such as food, 
water, and electrical power) required 1.5 days less support time on both the outbound 
and return transfer segments. 

Since a spacecraft following a direct transfer only requires a few days to reach 
the Moon, it must be prepared to perform a maneuver within hours, or perhaps at 
most a day, to perform a trajectory correction maneuver. If this is an undesirably 
short amount of time, the mission may implement an Earth phasing orbit to extend 
the transfer duration. The spacecraft would be launched into an orbit that does not 
encounter the Moon, and only after one or more perigee passages would the trajectory 
finally arrive at the Moon. 

The launch periods for many historical direct transfers were very short: only 
a handful of opportunities to launch per month, when the geometry was aligned 
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Figure 4-3 Five example direct transfers from 185-km circular Earth orbits to 100-km 
prograde lunar orbits, shown in the rotating frame (top) and inertial frame (bottom). These 
trajectories have been generated in the planar circular restricted three-body system. The 
following information applies to the labeled trajectories: 

Traj. Duration 
(days) 

C3 

(km2/s2) 
ΔVTLI 
(km/s) 

ΔVLOI 
(km/s) 

Total ΔV 
(km/s) 

(a) 
(b) 
(c) 
(d) 
(e) 

6.0 
4.5 
3.0 
2.0 
1.0 

−1.976 
−2.064 
−1.670 

0.264 
13.654 

3.138 
3.134 
3.152 
3.240 
3.831 

0.829 
0.813 
0.893 
1.248 
3.024 

3.966 
3.948 
4.045 
4.488 
6.854 
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properly. The Clementine and Chandrayaan-1 missions implemented Earth phasing 
orbits, which extended the launch periods. Chandrayaan-1’s nominal mission profile 
included half a dozen Earth orbits prior to the lunar encounter. If the mission launched 
a day late, then the orbital period of one or more of these orbits would be adjusted 
to compensate for the change in transfer duration. The drawbacks of Earth phasing 
orbits include an extended operational timeline, which may add to the costs of the 
mission, and an increased dose of radiation as the spacecraft passes through the Van 
Allen Belts multiple times. 

4.4	 LOW-ENERGY TRANSFERS BETWEEN EARTH AND LOW LUNAR 
ORBIT 

This section discusses how to build a low-energy ballistic transfer between the Earth 
and a low lunar orbit. The algorithms and methodology used to build a low-energy 
transfer are first described. Then, several example surveys are conducted, examining 
low-energy transfers that arrive at the Moon in some particular geometry at some 
given arrival time. The surveys become more general as this analysis continues. It 
then shows how to construct a map that tracks the minimum transfer ΔV cost required 
for a spacecraft to target any lunar orbit at a particular arrival time. Finally, the arrival 
time is opened up and transfers are examined that arrive at the Moon at many different 
times. The goal is to capture the transfer ΔV cost for transfers to any polar orbit 
about the Moon at any given arrival time in order to guide mission planners as they 
define the orbits and timeline for a given mission. 

4.4.1 Methodology 

Each transfer in the surveys presented here departs the Earth, coasts to the Moon, and 
injects directly into a low lunar orbit. To reduce the scope of the problem while still 
yielding practical data, the surveys presented here assume that the mission targets a 
circular 100-km polar orbit about the Moon. This lunar orbit is akin to the mapping 
orbits of several spacecraft, including Lunar Prospector [56], Kaguya/SELENE [187], 
Chang’e 1 [58], Chandrayaan-1 [3], the LRO [188], and GRAIL [83]. 

The LOI is modeled as a single impulsive maneuver that is performed at the 
periapse point and places the vehicle directly into a circular orbit. This is not a 
realistic maneuver, but it is useful to directly compare the total insertion cost of one 
transfer to another. The orbit insertion cost needed to place a satellite into an elliptical 
orbit, rather than a circular orbit, may be determined via the Vis-Viva equation [97]. 

The surveys presented here have been generated using a method that does not 
make many assumptions about what the lunar transfers look like. This permits each 
survey to reveal trajectories that may not have been expected. Each trajectory in each 
survey is constructed using the following procedure: 

1. Construct the target lunar orbit.	 The following parameters are used in this 
study, specified in the International Astronomical Union (IAU) Moon Pole 
coordinate frame (see Section 2.4.4). 
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Periapse radius, rp : 1837.4 km (∼100-km altitude) 
Eccentricity, e : E 

Equatorial inclination, i : 90 deg 
Argument of periapse, ω : Specified value 

Longitude of the ascending node, Ω : Specified value 
True anomaly, ν : 0 deg 

The argument of periapse is undefined for a circular orbit. However, since all 
practical missions to date have inserted into elliptical orbits, and some missions 
remain in a highly elliptical orbit, the target orbit’s argument of periapse, ω, is 
presented here rather than the true anomaly, which is kept at 0 deg to indicate 
that LOI is performed at periapse. The orbit’s eccentricity is given as E: it is 
approximately zero (1 × 10−9) while permitting ω to be defined. One may 
also use the argument of latitude, which is defined for a circular orbit. 

2. Construct the LOI state. 

(a) Specify the date of the LOI, tLOI. Dates are given here in Ephemeris 
Time (ET). 

(b) Specify the magnitude of the impulsive orbit insertion maneuver, ΔVLOI. 
Apply the ΔV in a tangential fashion to the LOI state. 

3. Propagate the state backward in time for 160 days. 

4. Identify the perigee and perilune passages that exist in the trajectory. 

(a) If the trajectory flies by the Moon within 500 km, label the trajectory as 
undesirable. 

(b) The latest perigee passage that approaches within 500 km of the Earth is 
considered the earliest opportunity to inject into that trajectory. 

(c) If no low perigees are observed, then the lowest perigee is identified as 
the trans-lunar injection (TLI) location. 

5. Characterize the performance of the trajectory, making note of the following 
values: • TLI altitude, inclination, and C3; 

• Duration of the transfer; 
• Periapse altitude of any/all Earth and Moon flybys; and 
• LOI ΔV magnitude. 

This procedure requires four inputs: the longitude of the ascending node of the target 
orbit (Ω), the argument of periapse of the target orbit (ω), the ΔV of the impulsive LOI 
(ΔVLOI), and the date of the LOI (tLOI). Figures 4-4 and 4-5 show two examples 
of lunar transfers generated with this procedure using the inputs summarized in 
Table 4-2. Figure 4-4 illustrates a direct 4-day transfer and Fig. 4-5 illustrates an 
84-day low-energy transfer. 
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c
Astronautical Society Publications Office, all rights reserved, reprinted with permission of the 
AAS). 

Figure 4-4 An example 4-day direct lunar transfer [2] (Copyright © 2011 by American 

All integrations performed here have been performed using a DIVA integrator 
(Section 2.7.1) with tolerance set to 1 × 10−10; the force model includes the Sun, 
Earth, Moon, and each of the planets, all configured as point-mass gravitating bodies 
whose positions are estimated from JPL’s DE421 Planetary and Lunar Ephemeris 
(Section 2.5.3). 

Many surveys have been conducted, searching for practical lunar transfers. In 
general, a survey fixes the parameters Ω and tLOI and systematically varies the 
other two parameters. This process generates a two-dimensional map displaying a 
parameter—typically the TLI altitude—which changes smoothly as either Ω or tLOI 
shift. These surveys are described in more detail in the next sections. 

4.4.2 Example Survey 

Figure 4-6 shows the results of an example survey of lunar transfers. In this example, 
Ω is set to 120 deg, the LOI date is set to 18 July 2010 09:50:08 ET, the value 
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c
American Astronautical Society Publications Office, all rights reserved, reprinted with 
permission of the AAS). 

Figure 4-5 An example 84-day low-energy lunar transfer [2] (Copyright © 2011 by 

Table 4-2 The inputs and performance parameters of the two example lunar transfers 
shown in Figs. 4-4 and 4-5. Both transfers begin in a 185-km circular low Earth orbit 
(LEO) parking orbit before their injections, and both transfers arrive at the Moon at a 
time tLOI of 18 July 2010 9:50:08 ET. 

Figure Ω ω ΔVLOI Duration LEO Inclination (deg) C3 

# (deg) (deg) (m/s) (days) Equatorial Ecliptic (km2/s2) 

4-4 120.0 310.0 839.878 4.036 62.114 39.761 −2.064 
4-5 120.0 160.0 669.543 83.706 28.093 5.921 −0.725 

of ω is systematically varied from 0–360 deg, and ΔVLOI is systematically varied 
from 650–1050 meters per second (m/s), a range empirically determined to generate 
practical transfers. Figure 4-6 shows the altitude of the trans-lunar injection point 
for each combination of ω and ΔVLOI, assuming a spherical Earth with radius of 
6378.136 km. The points shaded white correspond to trajectories that arrive at the 
Moon such that when propagated backward in time they never come any closer to 
the Earth than the orbit of the Moon itself. The points shaded black correspond to 
trajectories that arrive at the Moon such that when propagated backward in time they 
approach within 10,000 km of the Earth: trajectories that may be used to generate 
real missions [183, 184, 190, 191], assuming the departure time and geometry are 
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Figure 4-6 The altitude of the TLI location for each combination of ν and ΔVLOI, given a 
lunar orbit insertion on July 18, 2010 into a lunar orbit with Ω equal to 120 deg [2] (Copyright 
c© 2011 by American Astronautical Society Publications Office, all rights reserved, reprinted 

with permission of the AAS). 

acceptable (see Section 6.5 for more information about generating a real mission 
using a ballistic guess). 

The plot shown in Fig. 4-6 contains many interesting features. First, roughly 
half of the state space is white, corresponding to trajectories that arrive at the Moon 
from heliocentric orbits. With a quick investigation, one finds that the large black 
field toward the top of the plot corresponds to direct transfers to the Moon, that is, 
trajectories that take 2–12 days to reach the Moon, in family with the transfers that 
were implemented by the Apollo program and LRO; though most of the trajectories 
include Earth phasing orbits that extend the transfer’s duration. The black curve that 
outlines the large white field corresponds to low-energy lunar transfers that require 
80–120 days. There are many other curves throughout the plot that correspond to 
trajectories that enter some sort of large Earth orbit, or perform a combination of one 
or more flybys. 

The direct transfers that are observed in the upper part of the plot shown in Fig. 4-6 
require ΔVLOI values from 760 m/s to 1000 m/s or more. The direct transfers that 
don’t involve any Earth phasing orbits or any sort of lunar flyby require at least 
818 m/s, though nearly all require 845 m/s or more. Figure 4-7 explores the structure 
of the direct transfer state space, presenting two additional maps that only show those 
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trajectories that approach within 1000 km of the Earth; the two maps are shaded 
according to the number of Earth perigee passages (top) and lunar flybys (bottom) 
that they make before arriving at their target orbit. One notices that direct transfers 
with more phasing orbits and/or lunar flybys may require less orbit insertion ΔV 
than the most basic lunar transfers. In any case, simple low-energy trajectories exist 
that require as little as 669 m/s, ∼100 m/s less than most multi-rev direct transfers 
observed and ∼170 m/s less than most simple direct transfers. 

Tables 4-3 and 4-4 summarize the performance parameters of several example 
direct lunar transfers and low-energy lunar transfers, respectively. Several examples 
of these trajectories are shown in Figs. 4-8 and 4-9, respectively. One can see that 
the value of ΔVLOI is generally over 100 m/s lower for low-energy transfers in 
nearly all examples, though the TLI injection energy, C3, is higher. The injection 
energy of direct lunar transfers is very close to −2.0 km2/s2, compared to a value of 
approximately −0.7 km2/s2 for low-energy transfers. Both types of transfers include 
missions with a wide range of TLI inclinations, both relative to the Earth’s Equator 
and to the ecliptic. This suggests that transfers can begin from any inclination about 
the Earth. Section 6.5 demonstrates that one can add one to three maneuvers and 
adjust a trajectory to depart from a specified TLI inclination rather than the ballistic 
inclination value shown in the tables for a very modest ΔV cost. The total ΔV required 
to make this adjustment is on the order of 1 m/s per degree of inclination change. 

4.4.3 Arriving at a First-Quarter Moon 

All of the transfers presented in the previous section arrive at the Moon at a particular 
time into a particular orbit, namely, a circular, polar orbit with a longitude of the 
ascending node, Ω, of 120 deg and a time of arrival, tLOI, of 18 July 2010 at 
9:50:08 ET. This time of arrival corresponds to a moment in time when the Sun– 

Table 4-3 A summary of the performance parameters of several direct lunar transfers 
shown in Fig. 4-6 and illustrated in Fig. 4-8 [2] (Copyright c© 2011 by American 
Astronautical Society Publications Office, all rights reserved, reprinted with permission 
of the AAS). 

Traj Ω ω ΔVLOI Duration LEO Inclination (deg) C3 # Earth # Moon 

# (deg) (deg) (m/s) (days) Equatorial Ecliptic (km2/s2) Flybys Flybys 

D1 120.0 321.3 818.0 4.111 22.147 8.551 −2.078 0 0 
D2 120.0 326.4 860.4 4.155 43.459 62.667 −2.058 0 0 
D3 120.0 304.8 867.5 4.004 85.516 63.963 −2.045 0 0 
D4 120.0 301.5 947.7 3.942 142.173 123.280 −2.006 0 0 
D5 120.0 311.7 971.8 4.009 131.320 154.340 −2.002 0 0 
D6 120.0 321.0 813.3 13.941 24.717 6.435 −2.095 1 0 
D7 120.0 326.4 868.0 14.005 52.683 72.504 −2.071 1 0 
D8 120.0 279.0 870.0 32.759 19.407 31.944 −2.046 2 1 
D9 120.0 325.5 758.0 67.175 37.135 13.784 −2.292 6 1 
D10 120.0 327.0 810.1 84.747 62.694 39.723 −2.055 7 3 
D11 120.0 354.9 828.8 85.441 75.489 54.465 −2.061 7 1 
D12 120.0 268.2 861.4 141.341 46.894 63.333 −2.054 8 1 
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Table 4-4 A summary of the performance parameters of several low-energy lunar 
transfers shown in Fig. 4-6 and illustrated in Fig. 4-9 [2] (Copyright © 2011 by c
American Astronautical Society Publications Office, all rights reserved, reprinted with 
permission of the AAS). 

Traj Ω ω ΔVLOI Duration LEO Inclination (deg) C3 # Earth # Moon 

# (deg) (deg) (m/s) (days) Equatorial Ecliptic (km2/s2) Flybys Flybys 

L1 120.0 169.2 669.3 83.483 29.441 6.129 −0.723 0 0 
L2 120.0 103.8 692.1 85.287 25.688 34.778 −0.723 0 0 
L3 120.0 70.2 743.9 93.598 57.654 74.955 −0.667 0 0 
L4 120.0 225.3 716.0 93.621 134.322 112.840 −0.657 0 0 
L5 120.0 99.9 697.5 110.060 83.127 61.624 −0.697 0 0 
L6 120.0 186.9 673.2 122.715 23.941 3.088 −0.712 0 0 
L7 120.0 61.5 660.4 143.360 18.624 35.412 −0.572 0 1 
L8 120.0 59.7 651.3 129.422 73.143 96.544 −0.612 0 3 
L9 120.0 36.3 661.5 144.417 146.592 138.491 −0.658 0 1 
L10 120.0 348.6 675.1 155.107 36.598 16.583 −0.645 5 1 
L11 120.0 262.2 656.1 141.982 153.641 176.867 −0.608 0 3 
L12 120.0 244.2 657.8 136.687 179.084 156.890 −0.640 0 6 

Figure 4-8 Example plots of several of the transfers summarized in Table 4-3. The 
trajectories are shown in the Sun–Earth rotating frame, such that the Sun is fixed on the 
x-axis toward the left [2] (Copyright © 2011 by American Astronautical Society Publications c
Office, all rights reserved, reprinted with permission of the AAS). 
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Figure 4-9 Example plots of several of the transfers summarized in Table 4-4. The 
trajectories are shown in the Sun–Earth rotating frame, such that the Sun is fixed on the 
x-axis toward the left [2] (Copyright c© 2011 by American Astronautical Society Publications 
Office, all rights reserved, reprinted with permission of the AAS). 

Earth–Moon angle is approximately equal to 90 deg at the Moon’s first quarter. This 
is very similar to the arrival geometry of the two GRAIL spacecraft, though in a 
different month. In addition, the plane of the target orbit is nearly orthogonal to the 
Earth–Moon line. A polar orbit with an Ω-value of 111.9 deg (also 291.9 deg) is in 
a plane that is as close to orthogonal to the Earth–Moon line as a polar orbit can get 
on this date. The surveys presented in this section keep the time of arrival the same 
and explore the changes to the lunar transfers that occur as the target orbit’s Ω-value 
is varied. 

Figures 4-10 and 4-11 show surveys of the lunar transfer state space as Ω varies 
from 0–80 deg and 160–270 deg, respectively. There is a clear progression of the 
state space as Ω varies. Locations where direct and low-energy transfers exist are 
indicated. The state space varies much less discernibly when Ω is within ∼30 deg 
of 111.9 deg or 291.9 deg, namely, when the orbit is close to being orthogonal to the 
Earth–Moon line. 

Many features are quickly apparent when studying the maps shown in Figs. 4-10 
and 4-11. First, a large portion of each map is white, corresponding to combinations 
of ΔVLOI and ω that result in trajectories that depart the Moon backward in time and 
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Figure 4-10 Nine surveys of trajectories that arrive at the first-quarter Moon, where the 
target orbit’s Ω varies from 0–80 deg. Points in black originate from the Earth; other points 
are shaded according to how close they come to the Earth when propagated backward, using 
the light–dark shading scheme presented in Fig. 4-6 [2] (Copyright c© 2011 by American 
Astronautical Society Publications Office, all rights reserved, reprinted with permission of the 
AAS). 

traverse away from the Earth–Moon system. At lower ΔVLOI-values, the trajectories 
depart the Moon backward in time and later impact the Moon or remain very near 
the Moon. One can see curves of black in each map, corresponding to trajectories 
that depart the Moon backward in time and eventually come very near the Earth; 
hence, making viable Earth–Moon transfers. The features are observed to shift in a 
continuous fashion across the range of Ω-values. 

If one surveys these maps, one finds that low-energy transfers exist to any lunar 
orbit plane, but simple direct transfers only exist for certain ranges of Ω-values. 
Direct transfers can only reach orbits with Ω-values between approximately 50 deg 
and 170 deg and between approximately 230 deg and 350 deg for this particular 
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Figure 4-11 Twelve surveys of missions that arrive at the first-quarter Moon, where the 
target orbit’s Ω varies from 160–270 deg. The maps are shaded according to the closest 
approach distance that the trajectories make with the Earth, as illustrated in Figs. 4-6 and 
4-10 [2] (Copyright c© 2011 by American Astronautical Society Publications Office, all rights 
reserved, reprinted with permission of the AAS). 

arrival date. These orbit planes are within about 60 deg of being orthogonal to the 
Earth–Moon line; furthermore, direct lunar transfers require less ΔV for their orbit 
insertions the closer they are to being orthogonal to the Earth–Moon line. 

Figure 4-12 captures the least-expensive ΔVLOI for simple direct lunar transfers, 
as well as simple low-energy lunar transfers (that is, transfers that do not involve 
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Figure 4-12 The minimum lunar orbit insertion ΔV for direct and low-energy (L.E.) lunar 
transfers, requiring no Earth phasing orbits nor lunar flybys for transfers to a first-quarter 
Moon. Polar orbits with Ω-values of 111.9 deg and 291.9 deg are very close to orthogonal to 
the Earth–Moon line on this arrival date [2] (Copyright c© 2011 by American Astronautical 
Society Publications Office, all rights reserved, reprinted with permission of the AAS). 

lunar flybys or Earth phasing orbits) for any target orbit plane studied. Three curves 
are presented: direct transfers involve transfers that require less than 40 days to 
achieve (most require less than 10 days), fast low-energy transfers require less than 
95 days, and long low-energy transfers require more than 95 days to achieve. The 
transfer durations are not permitted to exceed 160 days in this study. There are many 
trajectories that require more ΔV than what is shown in Fig. 4-12; the illustration 
tracks the least expensive transfer in each case. Trajectories with Earth phasing orbits 
and/or lunar flybys may require even less ΔV, but those are not tracked here since there 
are so many paths that a spacecraft can take through the system. One observes that 
low-energy transfers do indeed reach any target orbit, though the insertion ΔV costs 
vary as the orbit plane changes. Direct lunar transfers are indeed limited to certain 
orbital planes, and they require at least 120 m/s more LOI ΔV than a low-energy 
transfer to the same orbit. Further, the cost of longer low-energy transfers remains 
very constant—within 50 m/s of ΔV—for any target lunar orbit plane. 

The lunar transfers with the least LOI ΔV and no low Earth or lunar periapse 
passages have been identified for each combination of Ω and ω; their performance 
parameters are plotted in Fig. 4-13. The left plot shows a map of the LOI ΔV cost 
of these transfers; the plot on the right shows the corresponding transfer duration for 
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Figure 4-13 The combinations of Ω and ω that yield simple lunar transfers, that is, those 
without low Earth or lunar periapse passages. If multiple transfers exist for the same 
combination, then the one with the least LOI ΔV is shown. All of these transfers arrive 
at a first-quarter Moon. The low-ΔV transfers shown in Fig. 4-12 are indicated by dots in each 
map [2] (Copyright c© 2011 by American Astronautical Society Publications Office, all rights 
reserved, reprinted with permission of the AAS). (See insert for color representation of this 
figure.) 

each trajectory. The low-ΔV solutions identified in Fig. 4-12 are plotted in these 
maps for reference, and to identify their ω-values and durations. Direct transfers are 
easily discerned by observing the dark fields in the plot on the right, corresponding 
to short-duration transfers. One can see that there are large fields of combinations 
of Ω and ω that yield low-energy transfers, though the costs increase as one moves 
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away from the low-ΔV curves. One can see that the combinations of Ω and ω that 
yield practical direct transfers are much more limited. 

The maps shown in Fig. 4-13 are very useful: they illustrate what sorts of transfers 
may be used to reach any given polar orbit at the Moon, given that the transfers must 
arrive at the Moon at this particular arrival time. Missions that target an elliptical 
orbit must consider which argument of periapsis value to target; missions that aim to 
enter a circular orbit may likely use any ω for the initial orbit insertion, simplifying 
the trade space. Similar maps may be generated for any lunar arrival time: two 
different arrival times will be considered in the next sections. 

4.4.4 Arriving at a Third-Quarter Moon 

All of the transfers studied so far have arrived at the Moon at the same time, when the 
Moon is at its first quarter. Yet spacecraft missions may need to arrive at the Moon 
at any time of the month. As a second step in this survey, lunar transfers are studied 
that arrive at the Moon on 3 August 2010 at 04:38:29 ET: a time when the Moon has 
reached its third quarter. Figure 4-14 shows two example transfers that arrive at the 
third-quarter Moon, where the trajectory on the left is a direct lunar transfer and the 
trajectory on the right is a low-energy transfer. Neither transfer requires any extra 
Earth phasing orbits or lunar flybys. One notices that the low-energy transfer extends 
away from the Sun rather than toward it as seen in Figs. 4-5 and 4-9. Otherwise the 
transfers appear very similar to those studied previously. The symmetry observed 
here is expected according to the nearly symmetrical dynamics in the Sun–Earth 
system [86]. The Sun–Earth L1 and L2 points are located nearly the same distance 
from the Earth, and three-body libration orbits about those Lagrange points behave 
in a very similar fashion [46]. 

Figure 4-14 Two example lunar transfers that arrive at a third-quarter Moon. The transfers 
are simple, direct (left) and low-energy (right) lunar transfers with no Earth phasing orbits 
nor lunar flybys. The transfers are viewed from above in the Sun–Earth rotating frame of 
reference [2] (Copyright © 2011 by American Astronautical Society Publications Office, all c
rights reserved, reprinted with permission of the AAS). 
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One may construct state space maps for transfers to a third-quarter Moon in 
the same way that maps have been constructed previously to a first-quarter Moon. 
Figures 4-15 and 4-16 plot state space maps for transfers to target orbits with Ω-values 
of 0–80 deg and 180–260 deg, respectively. These ranges of Ω-values track the 
interesting features as the orbit plane changes; the maps of the Ω-values between 
those plotted in the figures vary little across the range. An orbit with an Ω-value 
of 126.9 deg (also 306.9 deg) is as close to orthogonal to the Earth–Moon axis as a 
polar orbit can be at this time. Transfers within about 60 deg of this angle are all very 
similar, though the cost of those transfers rises as the orbital plane moves away from 
this optimal Ω-value. When one compares the maps shown in Figs. 4-15 and 4-16 
to those constructed earlier in Figs. 4-10 and 4-11, one sees that the maps are very 

Figure 4-15 Nine surveys of missions that arrive at the third-quarter Moon, where the target 
orbit’s Ω varies from 0–80 deg. The points are again shaded according to how close they 
approach to the Earth when propagated backward in time, using the same light–dark shading 
scheme applied in previous maps [2] (Copyright © 2011 by American Astronautical Society c
Publications Office, all rights reserved, reprinted with permission of the AAS). 
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Figure 4-16 Nine surveys of missions that arrive at the third-quarter Moon, where the target 
orbit’s Ω varies from 180–260 deg [2] (Copyright c© 2011 by American Astronautical Society 
Publications Office, all rights reserved, reprinted with permission of the AAS). 

similar with a 195 deg plane change. The transfers are arriving at the Moon when 
it is 180 deg further along in its orbit in the Sun–Earth synodic frame and 195 deg 
further in its orbit inertially, while the inertial coordinate axes that define Ω and ω 
have not changed. 

Figure 4-17 shows the same two plots as shown in Fig. 4-13 for these third-quarter 
lunar arrival transfers. The maps show the LOI ΔV cost and transfer duration for 
simple lunar transfers that target different lunar orbits. As before, if there are multiple 
lunar transfers that may be used to arrive at the same lunar orbit, then the maps present 
the parameters for the transfer with the least LOI ΔV. The maps illustrate that the 
same trends exist to third-quarter lunar arrivals as do to first-quarter lunar arrivals, 
but with a 195-deg shift in Ω. 



LOW-ENERGY TRANSFERS BETWEEN EARTH AND LOW LUNAR ORBIT 249 

Figure 4-17 The combinations of Ω and ω that yield simple lunar transfers, that is, 
those without low Earth or lunar periapse passages. If multiple transfers exist for the same 
combination, then the one with the least LOI ΔV is shown. All of these transfers arrive at a 
third-quarter Moon [2] (Copyright © 2011 by American Astronautical Society Publications c
Office, all rights reserved, reprinted with permission of the AAS). 
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4.4.5 Arriving at a Full Moon 

Trajectories have been studied that arrive at the Moon when the Sun–Earth–Moon 
angle is near 90 deg; this section briefly considers trajectories that arrive at a full 
Moon, when the Sun–Earth–Moon angle is approximately 180 deg. Lunar transfers 
that arrive at a new Moon have much the same characteristics as those that arrive at a 
full Moon, but with a familiar 180 deg ± 15 deg shift in Ω; for brevity they will not 
be shown here. 

Figures 4-18 and 4-19 present state space maps for trajectories that arrive at the 
full Moon in polar orbits with Ω-values in the ranges 90–170 deg and 270–350 deg, 
respectively. The maps not shown vary only gradually between these maps. One 
observes that direct lunar transfers arrive at the full Moon with low-ΔV insertions at 
Ω-values approximately 90 deg apart from those that arrive at the first-quarter and 

Figure 4-18 Nine surveys of missions that arrive at a full Moon, where the target orbit’s 
Ω varies from 90–170 deg [2] (Copyright © 2011 by American Astronautical Society c
Publications Office, all rights reserved, reprinted with permission of the AAS). 



LOW-ENERGY TRANSFERS BETWEEN EARTH AND LOW LUNAR ORBIT 251 

Figure 4-19 Nine surveys of missions that arrive at a full Moon, where the target orbit’s 
Ω varies from 270–350 deg [2] (Copyright c© 2011 by American Astronautical Society 
Publications Office, all rights reserved, reprinted with permission of the AAS). 

third-quarter Moons. This demonstrates additional evidence that the minimum orbit 
insertion ΔV requirements for direct lunar transfers occurs when the orbit’s plane is 
nearly orthogonal to the Earth–Moon line. 

The low-energy lunar transfers’ locations in the full-Moon state space maps evolve 
somewhat differently as Ω varies compared with their evolutions in the state space 
maps for first- and third-quarter Moons. Low-energy transfers still arrive at the Moon 
for any Ω-value, but the range of ω-values that may be used are bifurcated along the 
range of Ω-values. Many of the low-energy transfers that require the least LOI ΔV 
arrive at the full Moon at ω-values near 75 deg and 255 deg. These transfers fly 
further out of the plane of the Moon’s orbit than others; those transfers that remain 
closer to the Moon’s orbital plane require more ΔV and target ω-values near 165 deg 
and 345 deg. These characteristics are also apparent in Fig. 4-20, which shows the 
LOI ΔV and transfer duration state space maps for lunar transfers to this arrival time. 
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Figure 4-20 The combinations of Ω and ω that yield simple lunar transfers, that is, those 
without low Earth or lunar periapse passages. If multiple transfers exist for the same 
combination, then the one with the least LOI ΔV is shown. All of these transfers arrive 
at a full Moon [2] (Copyright © 2011 by American Astronautical Society Publications Office, c
all rights reserved, reprinted with permission of the AAS). 
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4.4.6 Monthly Trends 

The work presented here describing transfers between the Earth and low lunar polar 
orbits has been extended, surveying transfers that arrive at the Moon at eight points 
in its orbit for several consecutive months. This section first presents results from 
surveys throughout one month and then considers similarities and variations that 
exist in lunar transfers across multiple months. The goal is to be able to predict the 
performance of lunar transfers for any given month. 

Figure 4-21 shows eight state space maps, including those previously studied in 
Figs. 4-13, 4-17, and 4-20. These maps include simple transfers that arrive at the 
Moon at eight different points in a synodic month. Each map only tracks lunar 
transfers with no close lunar flybys or Earth phasing orbits, though each map does 
include both direct and low-energy transfers. 

These maps are very useful to identify the combinations of Ω and ω that may 
be accessed via direct or low-energy transfers for a particular lunar arrival time. 
Similarly, the collection of these maps may be used to identify when to perform the 
lunar orbit insertion for a transfer to a particular combination of Ω and ω. One can see 
that low-energy transfers with LOI ΔV values below 700 m/s may be constructed that 
arrive at the Moon at any time. One also observes strong symmetry in the state space 
maps. First, each map shows a strong symmetrical mapping by shifting both Ω and ω 
by ±180 deg. This shift corresponds to the difference between arriving at the Moon 
over the North Pole and arriving at the Moon over the South Pole. Second, a strong 
symmetry appears between two maps that correspond to arrivals ±180 deg apart 
in the Moon’s orbit: the maps show very similar characteristics when their arrival 
position and their Ω-values are both shifted by ±180 deg. This shift corresponds 
to the symmetry that exists in the Sun–Earth three-body system: the dynamics are 
very similar, with a 180 deg rotation about the Earth, for the case where a spacecraft 
traverses from the Earth toward the Sun and for the case where a spacecraft traverses 
away from the Sun. 

Figure 4-22 shows eight scatter plots, corresponding to the same arrival times 
presented in Fig. 4-21. The plots illustrate the relationships between each transfer’s 
duration and its lunar orbit insertion ΔV. One can clearly see that direct transfers 
and low-energy transfers exist at every arrival time: direct transfers are shown on the 
far left of each plot, corresponding with short transfer durations and raised LOI ΔV 
requirements; low-energy transfers are similarly shown toward the bottom-right of 
each plot, corresponding with longer transfers and lower LOI ΔV requirements. 
Intermediate transfers exist for some arrival times, with transfer durations on the 
order of 60 days. One can see the same symmetry described above, between a given 
plot and the one that corresponds to a lunar arrival ±180 deg apart. These plots are 
useful to quickly identify the limits of transfer duration and LOI ΔV for each type of 
transfer at any given lunar arrival time. 

Most characteristics of ballistic two-burn lunar transfers repeat from one month 
to the next. The Moon’s orbital plane is nearly coplanar to the Earth’s, and the orbits 
of the bodies involved are nearly circular. However, since these conditions are not 
perfectly met, the characteristics of these lunar transfers do vary from one month 
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Figure 4-23 State space maps that illustrate the LOI ΔV for transfers to each combination 
of Ω and ω that arrive at the Moon at its first quarter in each of six consecutive months [2] 
(Copyright c© 2011 by American Astronautical Society Publications Office, all rights reserved, 
reprinted with permission of the AAS). 
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to the next. The Moon’s orbital plane and equatorial plane are tilted approximately 
5.1 deg and 1.5 deg, respectively, relative to the ecliptic. One may therefore assume 
that the characteristics observed in the state space maps presented here vary by 
several degrees in their ω-values in a given month. The inclination of the trans-lunar 
departure state for a given type of lunar transfer may vary by many degrees from one 
month to the next, particularly on account of the obliquity of the Earth’s spin axis. 

It has been found that most types of simple lunar transfers appear in any given 
month and their characteristics remain relatively constant relative to the ecliptic. 
Figure 4-23 illustrates how little the state space maps vary from one month to the 
next, when evaluating simple lunar transfers. The six state space maps shown capture 
the LOI ΔV for transfers to each combination of Ω and ω that arrive at the Moon at 
its first quarter in each of six consecutive months. The only major apparent variation 
is that the features in each map shift approximately 30 deg in Ω from one month to 
the next. This is because Ω is defined inertially and the Earth moves approximately 
30 deg in its orbit from one month to the next, rotating the Sun–Earth geometry. The 
more complex lunar transfers, such as those with multiple lunar flybys, vary much 
more on a monthly basis and may not even appear at all in a given month. 

4.4.7 Practical Considerations 

The surveys presented here study trajectories that are entirely ballistic—they do 
not contain any correction maneuvers or targeting maneuvers of any sort. When 
propagated backward in time from the Moon, if a trajectory arrives at the Earth 
without impacting the Moon, then it is considered a viable Earth–Moon transfer. 
However, the trajectory may have arrived at the Earth with an inclination that is 
unsuitable for a mission that launches from a particular launch site. Ideally, a 
mission would start in a low-Earth parking orbit with an inclination very close to 
that of the latitude of the launch site, for example, near 28.5 deg for missions that 
launch from Cape Canaveral, Florida. It is undesirable to perform a large plane 
change during launch and trans-lunar injection. Section 6.5 shows that one can add 
1–3 small trajectory correction maneuvers to depart the Earth from a particular LEO 
parking orbit and transfer onto a desirable low-energy transfer to the Moon; and 
doing so requires only about 1 m/s per degree of inclination change. This works for 
low-energy transfers particularly well since low-energy transfers travel far from the 
Earth and spend many weeks doing so. This method does not work well for direct 
lunar transfers, which require far more ΔV to change planes. 

Mid-course maneuvers may also be implemented to establish a launch period 
for a low-energy transfer to the Moon, extending or shrinking its transfer duration. 
Missions that implement direct lunar transfers may establish a launch period using 
Earth phasing orbits, making those sorts of transfers more desirable in the surveys 
presented here. 
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4.4.8	 Conclusions for Low-Energy Transfers Between Earth and Low 

Lunar Orbit 

The surveys presented in this section characterize two-burn lunar transfers that arrive 
at the Moon, targeting 100-km polar orbits with any orientation. Transfers are studied 
that arrive at an example first-quarter Moon, an example full Moon, and an example 
third-quarter Moon. Additional results are also presented for transfers that arrive 
at eight different times during a month and for several consecutive months. Many 
types of transfers are observed, including low-energy transfers, short-duration direct 
transfers, and variations that involve any number of lunar flybys and Earth phasing 
orbits, provided that they do not involve any deterministic maneuvers. The only two 
burns considered are the trans-lunar injection maneuver and orbit insertion maneuver. 

It has been found that lunar transfers consistently require trans-lunar injection C3 

values on the order of −2.0 km2/s2 for direct transfers and −0.6 km2/s2 for low-
energy transfers. Simple transfers typically require 2–12 days for direct transfers 
and 70–120 days for low-energy transfers, though both types can require more time. 
The low-energy transfers that require the least LOI ΔV require 640 m/s, or more 
depending on the target orbit and the arrival time; direct lunar transfers require at 
least 120 m/s more ΔV than low-energy transfers to the same arrival conditions. 
Further, low-energy transfers can reach many arrival conditions that direct transfers 
cannot reach without additional maneuvers. Practical simple direct transfers only 
exist that target a lunar orbit that is within 60 deg of being orthogonal to the Earth– 
Moon line, though the ΔV cost rises significantly when the orbit is beyond 30 deg 
of orthogonal. Low-energy transfers can target polar orbits with any argument of 
periapse, ω, or with any longitude of ascending node, Ω; targeting one such parameter 
restricts the other for a particular arrival date as illustrated in the state space maps 
presented here. 

4.5	 TRANSFERS BETWEEN LUNAR LIBRATION ORBITS AND LOW 
LUNAR ORBITS 

Many mission designs may benefit by transferring a spacecraft from the Earth to a 
lunar libration orbit prior to descending to a low lunar orbit. For instance, Hill et 
al. [11], designed a mission where two satellites transferred to a halo orbit about 
the lunar L2 point. One satellite remained there as a navigation and communication 
relay and the other satellite transferred to a low lunar orbit. Information about such 
transfers is summarized in Section 3.5.1 on page 224. 

4.6	 TRANSFERS BETWEEN LOW LUNAR ORBITS AND THE LUNAR 
SURFACE 

Many historical missions have performed maneuvers to transfer a spacecraft from a 
low lunar orbit to the lunar surface, for example, the Apollo missions [1]. A few 
spacecraft, including Apollo missions, have then risen from the lunar surface and 
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returned to lunar orbit. These maneuvers are very straightforward and may even be 
well approximated by conic sections; nevertheless, it is useful to briefly describe their 
designs here. 

Let’s assume we have a spacecraft in a 100-km circular lunar orbit. That spacecraft 
is traveling approximately 1633.5 m/s in its orbit and revolves about the Moon once 
every 117.8 minutes. The minimum ΔV required to place the spacecraft on a collision 
course with the Moon would reduce the spacecraft’s orbital periapse to an altitude of 
0 km, at which point it would just graze the surface, that is, a Hohmann transfer. This 
transfer requires a ΔV of approximately 23 m/s, sending the spacecraft on a 180-deg 
transfer in about 56.5 minutes. The spacecraft’s grazing velocity upon arriving at 
its orbital periapse is approximately 1703.2 m/s. If the spacecraft performs a larger 
braking burn from its 100 km orbit, then its transfer orbit will strike the surface of 
the Moon at a steeper flight path angle in less time. 

Figure 4-24 illustrates the flight path angles that may be achieved at the mean 
radius of the Moon as a function of the de-orbit burn ΔV for trajectories starting from 
an altitude of 100 km. One can see that a ΔV of 23 m/s is indeed required to obtain a 
flight path angle of 0 deg, which is the limit of trajectories that have a passive abort 
option, not including local geometry variations. Of course, by performing a braking 
burn ΔV of 1633.5 m/s, the spacecraft completely removes its orbital velocity and 
falls straight down to the surface, achieving a vertical impact. 

Figure 4-25 illustrates the velocities that the spacecraft will have at the impact 
point, assuming the impact point occurs at a radius of 1737.4 km, for example, the 
mean radius of the Moon. Figure 4-26 shows the duration of time required to reach 
the impact point. 
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Figure 4-24 The flight path angles that may be achieved at the mean surface of the Moon as 
a function of the de-orbit burn ΔV for trajectories starting from a circular orbit at an altitude 
of 100 km. 
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Figure 4-25 The impact velocity values that may be achieved at the mean surface of the 
Moon as a function of the de-orbit burn ΔV for trajectories starting from a circular orbit at an 
altitude of 100 km. 
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Figure 4-26 The duration of time required to reach the mean surface of the Moon as a 
function of the de-orbit burn ΔV for trajectories starting from a circular orbit at an altitude of 
100 km. 



CHAPTER 5
 

TRANSFERS TO THE LUNAR SURFACE
 

5.1 EXECUTIVE SUMMARY 

In this chapter techniques are developed that allow an analysis of a range of different 
types of transfer trajectories from the Earth to the lunar surface. Trajectories ranging 
from those obtained using the invariant manifolds of unstable orbits to those derived 
from collision orbits are analyzed. These techniques allow the computation of 
trajectories encompassing low-energy trajectories as well as more direct transfers. A 
conceptual illustration of the types of trajectories discussed in this chapter is given in 
Fig. 5-1. The range of possible trajectory options is summarized, and a broad range 
of trajectories that exist as a result of the Sun’s influence are computed and analyzed. 
The results are classified by type, and trades between different measures of cost are 
discussed. The information in this chapter is largely derived from papers presented 
by Anderson and Parker [192–195], and the results as presented here are oriented as 
a guide for mission design. 

The problem of designing transfers to the lunar surface is approached here as fol
lows. First, an analysis is given showing the types of trajectories that exist as a result 
of the Sun’s influence in both the planar and spatial problems. A significant set of 
trajectories at high Jacobi constants, or low energies, is found to exist when the Sun’s 
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Figure 5-1 The profiles for both a direct and a low-energy transfer from the Earth to the 
lunar surface. 

influence is taken into account. This result indicates that for trajectory design in this 
energy regime, trajectories traveling to the Sun–Earth Lagrange points and following 
the invariant manifolds of orbits around these points deserve careful consideration. 
Monthly variations are examined, and it is determined that the monthly variations 
capture the majority of the variations seen in the studied transfer trajectories. The 
greatest variation over a month occurs between the cases traveling to the Moon when 
it is at its apoapse and periapse. These trajectories are described for the spatial case 
initially with trajectories normal to the surface, which illustrates in a succinct man
ner the types of options available. A more detailed analysis of trajectories arriving 
at various angles to the surface is also presented, and these trajectory options are 
summarized using several different plots of various parameters. These trajectories 
may serve as initial guesses for future mission design, and they provide a general 
overview of the range of trajectory options. Invariant manifold trajectories traveling 
to the lunar surface are also described, and some sample trajectory options traveling 
from libration orbits to the lunar surface are given. 

The numerical results presented in this chapter are given primarily relative to the 
Jacobi constant (C) of trajectories encountering the lunar surface. The velocity of the 
trajectories varies little over the surface of the Moon for each Jacobi constant, and in 
each case an approximate value of the velocity corresponding to each Jacobi constant 
may be obtained by referring to Fig. 5-2. From this plot, a Jacobi constant of 2.5 gives 
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Figure 5-2 Mean inertial velocities relative to the Moon at each Jacobi constant for the cases 
with velocities normal to the surface [192] (Copyright © 2011 by American Astronautical c
Society Publications Office, San Diego, California (Web Site: http://www.univelt.com), all 
rights reserved; reprinted with permission of the AAS). 

a mean velocity at the Moon of approximately 2473.3 meters per second (m/s), while 
a Jacobi constant of 3.0 gives a mean velocity of 2365.0 m/s. In the planar analysis it 
is shown that trajectories from the Earth to the Moon exist without the Sun’s influence 
up to a Jacobi constant of 2.78, while they exist up to a Jacobi constant of 3.16 when 
the Sun’s influence is included in the computations. As expected, the time of flight 
of the trajectories generally increased and the launch injection energy parameter 
(C3) generally decreased as the Jacobi constant increased. For the spatial case with 
trajectories encountering the Moon perpendicular to the surface, the minimum time 
of flight varied from approximately 3.4 days at C = 2.2 to around 101.0 days and 
78.7 days at C = 3.0 and 3.1, respectively. The range of possible elevation angles 
that generate missions to the surface is very dependent on the Jacobi constant and 
the target location on the surface. For the selected grid size, the maximum elevation 
angle range for points on the surface changed from 0 deg to 90 deg at C = 2.6 to 
between 57 deg and 90 deg at C = 3.1. Likewise the minimum elevation angle 
range decreased from 0 deg to 72 deg at C = 2.6 to between 0 deg and 15 deg at 
C = 3.1. These numbers are given to present a rough idea of the kinds of results that 
are discussed in this chapter. The details of these cases along with a wide variety of 
launch and approach parameters are contained in the plots presented throughout the 
chapter. 

5.2 INTRODUCTION FOR TRANSFERS TO THE LUNAR SURFACE 

A wide variety of Earth–Moon trajectories have been employed for past missions, 
ranging from the more direct transfers used for the Apollo missions [196] to more 
recent missions such as ARTEMIS [4] that make use of the multi-body dynamics 
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of the Earth–Moon and Sun–Earth–Moon systems. The design of trajectories in 
multi-body systems is a particularly rich problem because the two-body model is 
often insufficient to compute accurate trajectories, and the gravity of the Sun, Earth, 
and Moon combine to form a highly nonlinear dynamical environment. These facts 
limit the applicability of traditional patched-conic techniques commonly used for 
interplanetary missions, and the three-dimensional aspects of the problem further 
complicate real-world missions. Mission designers must take into account the orien
tation of each body in addition to the relative orientations of the orbits of the Earth 
and the Moon over time. Parker et al. [44, 47, 183] have studied trajectories that 
include many of these complicating factors for insertion into a variety of orbit types 
near the Moon. This chapter focuses on an analysis including these types of effects 
with a focus on trajectories traveling to the lunar surface. 

Lunar landing trajectories often have a different set of constraints from those of 
orbiters, and the nature of this problem makes it possible to approach it with a different 
set of techniques. Indeed, a theoretical basis for analyzing lunar landing trajectories 
may be found in the computation of collision orbits. Collision orbits have been 
studied extensively in the mathematical community by Easton [197] and McGehee 
[198]. Anderson and Lo [199], Villac and Scheeres [200], and Von Kirchbach et 
al. [201] have previously analyzed collision orbit trajectories for the Jupiter–Europa 
system and categorized the different regions and trajectories that exist for orbits that 
terminate or originate at Europa’s surface. While the theoretical basis for collision 
orbits is focused on trajectories that intersect the surface of the selected body normal 
to the surface, this type of analysis can be extended to trajectories coming in at 
the various flight path angles and declinations of interest to mission designers. A 
study of these trajectories is almost directly applicable to impactor missions such as 
the Lunar Crater Observation and Sensing Satellite (LCROSS) [202]. This mission 
used an 86 deg impact angle relative to the lunar surface for the impact trajectory. 
The techniques developed here are also easily applied to systems including the full 
ephemeris and multiple bodies. Much of the work to design low-energy trajectories 
from the Earth to the Moon has focused on the use of libration point orbits along with 
their stable and unstable manifolds [39, 45, 51, 203]. These techniques have proven 
to be quite successful, and they are increasingly used for the design of Earth–Moon 
trajectories. The invariant manifolds of libration orbit trajectories are also studied 
here with an emphasis on their applicability to landing trajectories. 

A wide range of trajectory types for lunar landing trajectories were computed for 
the results given here, and presenting a complete picture of the possible trajectory 
categories while remaining easily accessible was a goal of this research. In keeping 
with this goal, the problem is approached and presented using several different levels 
of analysis with increasing complexity. Presenting all different combinations of 
velocities encountering the surface of the Moon with all different magnitudes and 
orientations makes it difficult to see the relevant structures in the solution space, so two 
divisions were made in the approach to the analysis. The problem is first approached 
by analyzing planar cases covering selected velocities or energies with the trajectories 
encountering the Moon at various angles relative to the surface. The characteristics 
of these trajectories are observed to lay the groundwork for understanding the spatial 
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trajectory cases. The spatial case is then attacked using the results from the planar 
analysis to understand the dynamics in this more complex model. These trajectories 
are categorized with the goal of providing a broad survey of the trajectory types 
that may be available for transfers to the lunar surface from the Earth. The specific 
trades between launch costs and time of flight (TOF) are quantified and summarized 
in addition to the topological characteristics of the trajectories. Other parameters 
relevant to mission design such as the launch orientation are computed. The regions 
of the Moon attainable using different types of trajectories are also characterized. 
These results are summarized with the goal of providing a tool for mission designers 
to quickly understand the trades between various measures of cost and time when a 
particular mission is being designed to land on the Moon. 

The results in this chapter are also presented using two key concepts. The first 
is to view the problem in terms of the limiting bounds that a mission designer 
could use to refine the search space. This practically takes the form of computing 
parameters such as the velocities for which trajectories exist that travel from the 
Earth to the Moon or the launch energies required to reach such trajectories. The 
second, which is an overall theme of this work and one of the primary results, is 
related to computationally examining in a more comprehensive sense the trajectories 
available when the Sun’s perturbations are taken into account. To achieve this 
objective, comparisons involving several different models are made. Many traditional 
trajectories were computed using the Earth–Moon model or the circular restricted 
three-body problem (CRTBP), and in general, similar types of trajectories exist in 
the full ephemeris model. If simpler models are used, however, some solutions in 
the full problem may be ignored. Some particular solutions employing the effects of 
the Sun for transfers in the Earth–Moon system have been examined more recently. 
The 1991 Japanese mission MUSES-A (Hiten) used the effects of the Earth, Moon, 
and Sun for its transfer to the Moon [30]. Koon et al. provided techniques for 
systematically reproducing missions similar to Hiten using the invariant manifolds 
of libration orbits [38]. In each of these techniques the Sun’s effects were included in 
the mission design. Parker and Lo examined trajectories within the Sun–Earth–Moon 
spatial problem and looked at multiple trajectories for transfer to lunar halo orbits 
[39, 46]. The work here seeks to broaden the search space for landing trajectories 
traveling to the Moon and characterize the effects of the fourth-body perturbations 
of the Sun on the potential trajectories that may be used. A direct approach isolating 
the effects of the Sun is taken here by comparing trajectories in the CRTBP, the 
Earth–Moon system, and the Sun–Earth–Moon system. 

5.3 METHODOLOGY 

Two primary models are used for the analyses contained in this chapter. The first 
model, the CRTBP, closely approximates real world systems, and a significant set of 
tools exists within this model to bring to bear on the problem. The qualitative insights 
gained in this model are very helpful in providing an overview of the categories of 
trajectories that are available. The trajectories developed within the CRTBP are 
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also generally transferable to the full ephemeris although trajectories developed with 
the effects of other bodies may not be transferable to the CRTBP. Refer back to 
Section 2.5.1 for a more complete description of the CRTBP. The ephemeris model, 
implemented using point masses, is used to capture additional types of trajectories 
that are not found using the CRTBP model. Although the variations in the orbits of 
the Earth and Moon are important, this model is primarily used to search for members 
of the broad category of trajectories utilizing the Sun’s perturbation for Earth–Moon 
transfers. See Section 2.5.3 for more details on the use of the ephemeris. 

5.4	 ANALYSIS OF PLANAR TRANSFERS BETWEEN THE EARTH AND 
THE LUNAR SURFACE 

The procedure described next involves varying the location of the landing site on 
the Moon, the orientation of the incoming trajectory, and the energy/velocity of 
the trajectory. Each trajectory must also be characterized or evaluated using some 
figure of merit. While this can provide a relatively complete picture of the potential 
trajectory options, it is helpful to first gain insight into the dynamics by limiting the 
scope of the problem to allow the results to be easily visualized. 

Several different techniques have been used to achieve this goal in the Jupiter– 
Europa system, and it is useful to consider their application here. One technique used 
by Anderson and Lo [199] varied the Jacobi constant for trajectories intersecting 
Europa on a sphere for several different trajectory orientations and characterized the 
origin of the trajectories. Von Kirchbach et al. [201] examined the planar case for the 
Jupiter–Europa system for additional velocity orientations leaving the surface. Both 
of these techniques are applied here to the Earth–Moon system, and it is interesting 
to start with the planar problem in order to gain some initial insight. First, the planar 
results are computed in the Earth–Moon CRTBP system to allow for a comparison 
with the results from Von Kirchbach et al. [201] in the Jupiter–Europa system. This 
technique is then used to extend the analysis to the ephemeris case with the Earth and 
Moon and then to the case where the Sun is included. The effect of adding the Sun 
is examined in detail over a range of Jacobi constants. 

For this planar analysis, a set of trajectories was integrated backward in time from 
the surface of the Moon. Specifying the Jacobi constant gives the velocity magnitude 
for each trajectory, while the location of the trajectory and the orientation of the 
velocity are specified using α and θ as shown in Fig. 5-3. Multiple simulations have 
been performed using these techniques, and the results for several selected Jacobi 
constant values are given in Fig. 5-4. The resulting points are colored according to 
the original location of each trajectory. Note that if a trajectory integrated backward 
in time were to intersect the Moon and then encounter the Earth at an earlier time, 
the trajectory would be gray. The (α, θ) point corresponding to the intermediate 
intersection of the Moon would then be blue. The fact that points with only slightly 
different initial conditions in the plot can travel to either the Earth or the Moon 
confirms the known existence of chaos in this problem. Comparison with the results 
from the Jupiter–Europa system in Von Kirchbach et al. [201] reveals that the divid
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Figure 5-3 Diagram showing location and orientation of the velocity vector as it intersects 
the lunar surface. The xy axes shown here are centered on the Moon in the same orientation 
as the axes in the rotating frame [192] (Copyright © 2011 by American Astronautical Society c
Publications Office, San Diego, California (Web Site: http://www.univelt.com), all rights 
reserved; reprinted with permission of the AAS). 

ing lines between different regimes of motion are less distinct at equivalent Jacobi 
constants for the Earth–Moon system. This existence of chaos indicates that it may 
be possible to design trajectories that cover a relatively wide range of the surface 
by carefully selecting landing sites. It is useful to note here again that Moon–Earth 
transfers may be derived from Earth–Moon transfers, and the plot corresponding to 
these trajectories may be obtained from Fig. 5-4 for the planar problem using x → x, 
y → −y, ẋ → − ẋ, and ẏ → ẏ. The transformation in position gives α → 2π − α 
and then from examination of the transformed velocity vector, θ → −θ. 

As can also be seen from the results, a significant percentage of the trajectories do 
not encounter either the primary or the secondary over the given time span. However, 
it is useful to note that for low Jacobi constants (higher energies), a significant 
percentage of the trajectories do originate at the Earth. Determining the Jacobi 
constant where Earth–Moon transfer trajectories no longer exist in the planar problem 
can help provide a rough limit on energies or velocities for these trajectories and 
provide a method for determining the potential benefits of perturbations from other 
bodies in trajectory design. To determine the approximate Jacobi constant above 
which Earth–Moon trajectories computed in this simulation no longer exist, a series 
of runs were made in parallel to step through the Jacobi constant. The grid resolution 
used for this step was one degree in both α and θ. The percent of the total number 
of trajectories that encountered the Earth for each Jacobi constant was computed and 
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Figure 5-4 Plots showing the origin of each trajectory as a function of the position and 
orientation of the velocity vectors as the trajectories encounter the Moon’s surface. Blue 
points indicate that the trajectory originated at the Earth and gray that it originated at the 
Moon. If no point is plotted the integrated trajectory did not encounter the surface of either 
body over the given time span of 200 days (Earth–Moon CRTBP) [192] (Copyright c© 2011 
by American Astronautical Society Publications Office, San Diego, California (Web Site: 
http://www.univelt.com), all rights reserved; reprinted with permission of the AAS). (See 
insert for color representation of this figure.) 

plotted in Fig. 5-5. As expected from the previous plots, the number of trajectories 
originating at the Earth generally decreases with increasing Jacobi constant, but it is 
interesting that the slope of the curve varies significantly over the plotted range. It is 
also interesting that although the curve approaches zero percent near a Jacobi constant 
of 2.7, for Jacobi constants as high as 2.78, the percent of trajectories originating at 
the Earth remains at approximately 0.03 percent or approximately 19 out of 64800 
trajectories. So even for this relatively low energy, some trajectories manage to travel 
from the Earth to the Moon. 

For mission design, it is helpful to be aware of the velocities of the trajectories as 
they intersect the surface. They will actually vary somewhat as the constant for the 
computations so far has been the Jacobi constant rather than velocity. In general the 
inertial velocities relative to the Moon only vary at the m/s level. Figure 5-2 shows 
the average velocities for the case with velocities normal to the surface as a reference 
for each Jacobi constant. 
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Figure 5-5 Percent of trajectories originating at the Earth for each Jacobi constant (CRTBP) 
[192] (Copyright c© 2011 by American Astronautical Society Publications Office, San Diego, 
California (Web Site: http://www.univelt.com), all rights reserved; reprinted with permission 
of the AAS). 

Although the CRTBP is known to provide an accurate approximation to real-world 
trajectories, an obvious question for mission designers is related to how much the 
inclusion of real-world effects would affect selected trajectories. This question can 
be addressed by using planetary ephemerides and replicating the analysis for the 
CRTBP in this model. This analysis was first performed in the ephemeris model 
initially including only the gravity of the Earth and Moon. The initial velocities were 
computed for a given Jacobi constant in the CRTBP in the rotating frame, and then 
the states were initialized in the integrator relative to the Moon in an instantaneous 
rotating frame aligned with the Earth–Moon frame on an epoch of January 1, 2015. 
As the distance between the Earth and the Moon varies over the course of the orbit, it is 
difficult to obtain a direct comparison to the results from the CRTBP, but this method 
was selected because it was found to provide a good approximate comparison using 
the important mission design parameter of velocity at the lunar surface. Although 
the Jacobi constant will vary along the trajectory in this model, the final impact 
velocities at the Moon will be the same in each system. So the Jacobi constant 
labels in the ephemeris model plots in this study serve to indicate the velocities that 
were used at the lunar surface as they were computed in the CRTBP. The initial 
conditions were originally planar for this case, but the trajectory was free to vary in 
three dimensions for this problem. Using this method for a system including the Earth 
and Moon ephemerides, the trajectories were integrated, and the results are plotted 
in Fig. 5-6. Comparing the results for this system with the results in Fig. 5-4 reveals 
few obvious differences. The Earth impacting cases for C = 2.6 have some slight 
differences, but in general the trajectories match the expectation that the CRTBP is 
a good approximation to the three-body problem including the ephemerides. If the 
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Figure 5-6 Plots showing the origin of each trajectory as a function of the position and 
orientation of the velocity vectors as the trajectories encounter the Moon. Blue points 
indicate that the trajectory originated at the Earth and gray that it originated at the Moon. 
If no point is plotted the integrated trajectory did not encounter either body over the given 
time span of 200 days (Earth–Moon only Ephemeris system) [192] (Copyright © 2011c
by American Astronautical Society Publications Office, San Diego, California (Web Site: 
http://www.univelt.com), all rights reserved; reprinted with permission of the AAS). (See 
insert for color representation of this figure.) 

percent of trajectories originating at the Earth are compared, some differences in the 
shape of the curve can be found, but the overall trends are very similar. In this case, 
the percent of trajectories in Fig. 5-7 originating at the Earth decreases down to 0.006 
percent at C = 2.76, approximately the same Jacobi constant cutoff as the CRTBP. 

Next, the same procedure was performed including the Sun in the integration, 
and the results are plotted in Fig. 5-8. Now, comparison with the results in both 
the CRTBP and the Earth–Moon systems reveal some obvious differences. Several 
new bands of trajectories originating at the Earth spring into existence. The overall 
structure remains generally similar, but the points appear chaotic. A new band of 
solutions remains for C = 2.8 and a significant number of Earth origin trajectories 
still exist at C = 3.0. Remember that the final velocities at the Moon are the same as 
the other models, but the Jacobi constant will vary as a result of the Sun’s influence. 
In this sense, the Sun may be thought of as changing the trajectory’s energy or Jacobi 
constant to provide the transfer. If the percent of trajectories originating at the Earth 
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Figure 5-7 Percent of trajectories originating at the Earth for each Jacobi constant (Earth– 
Moon only Ephemeris system) [192] (Copyright c© 2011 by American Astronautical Society 
Publications Office, San Diego, California (Web Site: http://www.univelt.com), all rights 
reserved; reprinted with permission of the AAS). 

is examined in Fig. 5-9(a), it can be seen that at C = 3.0, 0.3 percent of the trajectories 
still originate at the Earth. Indeed, as high as C = 3.16, 0.15 percent of the trajectories 
still originate at Earth. 

One immediate question that arises is whether the selected epoch for lunar arrival 
would significantly affect these results, so three additional cases seven days apart were 
computed and plotted in Fig. 5-9(b). Some variation is observed as the Moon travels 
through its orbit with one case starting with a lower percent of trajectories for low 
Jacobi constants and two of them possessing peaks just before C = 3.0. However, all 
of them have approximately the same upper Jacobi constant cutoff of approximately 
C = 3.16 where the percent of trajectories drops to near zero. The existence of 
the additional bands of trajectories and the increase in the Jacobi constant where 
trajectories connecting the Earth and Moon exist in this system raises the question 
as to where these trajectories come from. These trajectories were plotted in both the 
Earth–Moon system and the Sun–Earth–Moon system to examine the differences, 
and a sample of one of these trajectories plotted in both rotating frames is given in 
Fig. 5-10. As can be seen from the plots, the trajectory ends up in very different 
places depending on whether the Sun is included in the integration or not. In the 
Earth–Moon rotating frame with the Sun included, the trajectory travels far away 
from the system with no close periapses until it approaches the Earth, while the case 
without the Sun has two relatively close periapses at approximately the lunar distance 
and ends up far from the Earth. The most telling plots, however, are in the Sun– 
Earth rotating frame. Here, the characteristic shape of a trajectory using the libration 
point dynamics of the Sun–Earth system is apparent when the Sun is included. The 
trajectory travels out toward the L1 point, lingers there, and then finally falls back 
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Figure 5-8 Plots showing the origin of each trajectory as a function of the position and 
orientation of the velocity vectors as the trajectories encounter the Moon. Blue points 
indicate that the trajectory originated at the Earth and gray that it originated at the Moon. 
If no point is plotted the integrated trajectory did not encounter either body over the given 
time span of 200 days (Sun–Earth–Moon Ephemeris system) [192] (Copyright c© 2011 
by American Astronautical Society Publications Office, San Diego, California (Web Site: 
http://www.univelt.com), all rights reserved; reprinted with permission of the AAS). (See 
insert for color representation of this figure.) 

toward the Earth. Without the Sun, the trajectory stays out near the Moon until it 
eventually wanders further away from the system, unless there is a lunar flyby. 
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Figure 5-9 Percent of trajectories originating at the Earth for each Jacobi constant (Sun– 
Earth–Moon Ephemeris system) [192] (Copyright c© 2011 by American Astronautical Society 
Publications Office, San Diego, California (Web Site: http://www.univelt.com), all rights 
reserved; reprinted with permission of the AAS). 
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Figure 5-10 Comparison of a single trajectory at C = 2.8 (α ≈ 197.5 deg, θ ≈ 9.5 deg) 
integrated with and without the Sun’s gravity in different rotating frames [192] (Copyright 
c© 2011 by American Astronautical Society Publications Office, San Diego, California (Web 

Site: http://www.univelt.com), all rights reserved; reprinted with permission of the AAS). 
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5.5	 LOW-ENERGY SPATIAL TRANSFERS BETWEEN THE EARTH AND 
THE LUNAR SURFACE 

5.5.1 Trajectories Normal to the Surface 

While the planar cases discussed up to this point are quite complicated, it is still 
possible to plot many of the salient features of the design space given the relatively 
small dimension of the problem. With the increase in dimension that occurs for the 
spatial problem, the visualization of the resulting trajectories and their characteristics 
becomes an even more difficult issue. One of the stated objectives of this analysis is 
to capture the characteristics of the major trajectory categories while also providing 
adequate information to evaluate the usefulness of each trajectory. With this objective 
in mind it is worth noting that if the plots in Figs. 5-4, 5-6, and 5-8 are examined, it can 
be seen that the majority of the dominant types of trajectories seen in the figures may 
be captured by making a particular cut at θ = 0. The trajectories obtained with θ = 0 
correspond to those trajectories impacting the Moon normal to the lunar surface. 
As previously mentioned, these types of trajectories are particularly applicable to 
impactor missions similar to LCROSS. Given the results from the planar case, they 
can also provide a good initial overview of the different categories of Earth–Moon 
landing trajectories, including those with different flight path angles. The results 
presented next are restricted to those computed using impacts normal to the surface 
for an epoch of January 1, 2015. They provide accurate results for impactor-type 
trajectories, and they also give a good indication of the types of trajectories that may 
exist for trajectories coming in at other flight path angles. 

To allow for easy visualization of the trajectory characteristics, the results are 
presented for each energy level, which corresponds to a slightly varying velocity 
magnitude relative to the Moon that depends on the location of the final point on the 
trajectory at the Moon’s surface. The velocity can be used to provide an indication 
of the change in velocity (ΔV) required for landing, although the specific ΔV 
will depend on the particular landing trajectory. The regions of the Moon that 
are accessible for each energy level can be evaluated for particular mission design 
requirements by using the desired parameters plotted over the surface of the Moon 
in α and β. α and β are measured in the rotating frame with α positive in the same 
direction as shown in Fig. 5-3. β is measured like latitude and is positive above the 
xy plane. Understanding how to connect the trajectory to the Earth becomes more of 
a challenge in the spatial problem because a large number of possible Earth-relative 
orientations and methods of injection onto the trans-lunar trajectory are possible. 
For this reason, a specific set of trajectory characteristics was selected for plotting. 
The procedure in each case was to begin with the final point on the trajectory with 
a velocity normal to the lunar surface at the given α and β. The trajectory was then 
propagated backward in time until it either encountered the Earth or the Moon, or 
the trajectory duration reached 200 days. For those trajectories not encountering the 
Earth or the Moon in this time period, a search was then made for the periapse closest 
to the Earth. Several quantities were then computed using the point at encounter 
or periapse. They included the periapse radius relative to the Earth, the TOF, the 
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launch energy (C3), and inclination in the Earth Mean Equator and Equinox of J2000 
(EME2000) frame. 

Results showing the origin of each trajectory encountering the Moon are given 
in Fig. 5-11. For these cases three-dimensional effects are included, and it is now 
possible for the trajectory to miss encounters with the Earth and Moon by traveling 
above or below them. A significant number of encounters are still observed though, 
and the features seen for the θ = 0 cases in the planar model may still be observed 
here where β is 0 deg. Although a significant number of Earth-origin trajectories 
are observed for low Jacobi constants, as the Jacobi constant increases (energy 
decreases), the number of Earth–Moon transfers decreases. Once a Jacobi constant 
of 2.8 is reached, there are no more of these types of trajectories in the Earth–Moon 
ephemeris model. However, there are still a significant number of Earth–Moon 
trajectories in the Sun–Earth–Moon ephemeris model. Indeed, a significant number 
still exist as the Jacobi constant is increased, even above 3.1. As in the planar case, 
the Sun may be thought of as changing the energy or Jacobi constant of the trajectory 
while the velocities at the Moon remain the same in each model. This observation 
emphasizes the need to include the Sun’s influence in the trajectory design process, 
but it raises the question as to what types of Earth–Moon trajectories exist at these 
energies and how long are their times of flight? It is difficult to answer these questions 
completely since trajectories are constantly changing with energy, but it is interesting 
to observe some of the trajectories that exist in the Sun–Earth–Moon system with no 
corollary in the Earth–Moon system. Two sample trajectories from the line of Earth 
origin trajectories at C = 2.6 that do not exist in the Earth–Moon system are given 
in Fig. 5-12. The majority of cases found in this line are similar to the trajectory in 
Fig. 5-12(a), and they exhibit the characteristics of known trajectories designed to 
utilize the dynamics of the invariant manifolds of libration orbits. They approach the 
L1 Lagrange point from the Earth in the Sun–Earth system and then fall away toward 
the Moon. Although almost all of the trajectories follow this type of orbit, some do 
have characteristics similar to the trajectory in Fig. 5-12(b). In this case, the Sun’s 
gravity is still influential, but an intermediate flyby is inserted. 

It is also interesting to observe the types of trajectories that exist for higher Jacobi 
constants, or lower velocities, at the lunar surface in the Sun–Earth–Moon system 
where no analogues in the Earth–Moon system have been found. Several samples 
are shown along with the trajectory origin plots in Fig. 5-13 to provide an overview 
of these types of trajectories. Here, an interesting phenomenon occurs. As the Jacobi 
constant increases to 3.0, the trajectories originating at the Earth are scattered across 
the map. The majority of the Earth-origin trajectories seem to require multiple flybys 
of the Earth or the Moon. The sample trajectories shown in Fig. 5-13(a) are intended 
to be representative of the types of trajectories found across the map. Although a few 
trajectories, such as those found in the lower left corner of the map, utilize the libration 
dynamics more directly, the majority seem to require variations on different phasing 
flybys as shown by the various trajectories. As the Jacobi constant is increased further 
to a value of 3.1 in Fig. 5-13(b), a line of trajectories appear. These trajectories, as 
shown in the figure, once again utilize the libration orbit dynamics more directly, 
sometimes making use of a single flyby along the trajectory. The remaining scattered 
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Figure 5-11 Plots showing the origin of the spatial collision trajectories. Black indicates 
the trajectory originated at the Earth, and gray indicates it originated at the Moon. If it is 
white, no encounter occurred within 200 days (for epoch of January 1, 2015) [192] (Copyright 
c© 2011 by American Astronautical Society Publications Office, San Diego, California (Web 

Site: http://www.univelt.com), all rights reserved; reprinted with permission of the AAS, 2006) 

http:http://www.univelt.com
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Figure 5-12 Sample trajectories at C = 2.6 for the Sun–Earth–Moon system. The 
trajectories correspond to the line of trajectories not found in the Earth–Moon plots [192] 
(Copyright © 2011 by American Astronautical Society Publications Office, San Diego, c
California (Web Site: http://www.univelt.com), all rights reserved; reprinted with permission 
of the AAS). 

http:http://www.univelt.com
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Figure 5-13 Plots showing the origin of the spatial collision trajectories. Black indicates 
the trajectory originated at the Earth, and gray indicates it originated at the Moon. If it is 
white, no impact occurred within 200 days. Trajectories are shown for select points in the 
Earth-centered Sun–Earth rotating frame. The gray circular orbit is the Moon’s orbit while 
the Sun is in the indicated direction. The scale is the same for all trajectories shown, and 
the trajectories all originate at the Earth [192] (Copyright © 2011 by American Astronautical c
Society Publications Office, San Diego, California (Web Site: http://www.univelt.com), all 
rights reserved; reprinted with permission of the AAS). 

trajectories found near the center of the plot continue to use multiple gravity flybys 
to connect the Earth and the Moon. 

Another interesting characteristic to include in the analysis is the TOF required 
for each trajectory originating at the Earth. More specifically, what are the minimum 
TOF values that may be achieved at each energy? The TOF values provide an 
indication of whether the trajectories at each Jacobi constant fall more in the category 
of direct transfers, low-energy transfers, or somewhere in between. The existence 

http:http://www.univelt.com
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of trajectories in the Sun–Earth–Moon system that do not exist in the Earth–Moon 
system already indicates the presence of trajectories utilizing multi-body effects that 
would be expected to fall more in the low-energy category. The minimum TOF values 
for selected Jacobi constants are listed in Table 5-1. These values were computed 
using a grid with the points spaced at one-degree intervals in each variable. As 
expected, the TOFs start near the 3-day values seen for the Apollo program’s direct 
transfers for a Jacobi constant of 2.2, and climb to over 100 days for a Jacobi constant 
of 3.0. It is surprising though that the minimum TOF at a Jacobi constant of 3.1 drops 
to 78.7 days. Although this point is lower than most of the others at this energy, 
a number of trajectories still exist in the 90-day time range. The reasons behind 
this drop in the TOF may be more clearly understood by reexamining the typical 
trajectories plotted for the Jacobi constants of 3.0 and 3.1 in Fig. 5-13. As mentioned 
previously, the majority of the trajectories computed for the Jacobi constant of 3.0 
required multiple phasing flybys, while the C = 3.1 trajectories typically utilize the 
libration dynamics without these phasing loops. This phenomenon would explain the 
lower minimum TOF value at C = 3.1, since many of the trajectories at this energy 
actually use a more direct approach. 

The analysis so far has focused on categories of trajectories originating at the 
Earth, with the expectation that trajectories from a given category may often be 
modified to meet the particular requirements of a mission when they are supplied. 
Often, however, trajectories that originate within some distance of the Earth may be 
used by targeting them from low Earth orbit. It is also important to quantify the 
orbital parameters of the initial conditions of the analyzed trajectories relative to the 
Earth in order to determine the suitability of the trajectories for particular missions. 
For example, if a launch from Cape Canaveral is selected, an inclination relative to 
the Earth’s pole of 28.5 deg would be desirable. Particular quantities relevant to 
mission design are presented next with the objective of presenting an overview of the 
possible trajectories so that initial estimates may be made for future mission design. 

Table 5-1 Minimum TOF values from the computed trajectories originating at the 
Earth for selected Jacobi constants. 

C TOF (days) 

2.2 3.4 
2.4 29.8 
2.6 58.3 
2.7 57.8 
2.8 74.0 
2.9 94.9 
3.0 101.0 
3.1 78.7 
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The analysis here focuses on the Sun–Earth–Moon system so as to encompass the 
complete range of trajectories. 

The closest periapse values obtained over 200 days for selected Jacobi constants 
in the Sun–Earth–Moon system are plotted in Fig. 5-14. Note that some of the gaps in 
(a) are Earth intersection trajectories as can be seen be reexamining Fig. 5-13. It can 

Figure 5-14 Periapse radius values for the computed trajectories plotted over the surface 
for a range of Jacobi constant values [192] (Copyright c© 2011 by American Astronautical 
Society Publications Office, San Diego, California (Web Site: http://www.univelt.com), all 
rights reserved; reprinted with permission of the AAS). 

http:http://www.univelt.com


284 TRANSFERS TO THE LUNAR SURFACE 

immediately be seen from the plots that the majority of the trajectories never come 
near the Earth. In general, the trajectories originating near α = 90 deg produce the 
most trajectories with periapses closer to Earth. This does shift with Jacobi constant, 
as was seen in the earlier Europa study [199]. As the Jacobi constant increases and 
energy decreases, it appears that fewer trajectories come as close to the Earth, but 
the majority stay near the system. The chaos present in the system can especially be 
observed for C = 3.0, where trajectories very close to each other alternate with low 
and high periapses. 

From the analysis so far, it appears that a large portion of the lunar surface may 
be physically accessible to trajectories coming from the Earth or near the Earth, but 
the feasibility of flying these trajectories will depend on mission design parameters 
such as TOF, launch energy (C3) at Earth, and inclination. It is uncertain what two-
body orbital element parameters (such as C3 and inclination) mean when they are 
computed where multi-body perturbations are significant, but this problem may be 
alleviated by computing these parameters where multi-body effects are minimized. 
With this objective in mind, only parameters for trajectories with periapses lower 
than geosynchronous radius are plotted in the following figures. For these plots, 
the parameters are now included for those trajectories originating at the Earth, and 
in those cases their values are computed using the initial conditions at the Earth’s 
surface. 

The TOFs and C3 values are plotted in Fig. 5-15 for those trajectories with periapsis 
relative to the Earth of less than geosynchronous radius. The immediate feature that 
can be noticed is the sparsity of points compared to the previous plots, confirming that 
a large number of trajectories ending at the lunar surface never come near the Earth. 
Indeed, for lower Jacobi constants, the locations between approximately 180 deg and 
360 deg have almost no trajectories originating near the Earth. Curiously, around 
a Jacobi constant of 3.0, the trajectories are more randomly distributed across the 
surface with a combination of C3 values. This feature may be partly explained by 
returning to the TOF values. From the plots, it can be confirmed that the minimum 
TOFs generally increase with Jacobi constant. The minimum TOF values at C = 3.0 
are significantly larger, indicating that low-energy trajectories under the influence of 
chaos are beginning to be more common. Given the variety of trajectory types and 
the TOFs involved, it is not surprising that more of the lunar surface is potentially 
covered. Examining the trends in the TOF plots, it may also be observed that 
longer TOF trajectories appear to exist at each energy level. The lines of long TOF 
trajectories correspond to low-energy trajectories using the Sun’s perturbations and 
approaching the libration points of the Sun–Earth system. It is also worth noting that a 
variety of C3 options are available at each energy level for transfers to the Moon. Even 
for low Jacobi constants, there still exist some relatively low C3 options, although 
the minimum is higher than that found for the higher Jacobi constant cases. It is 
important to realize that a small change in the landing location can result in a drastic 
change in the required C3 even with similar TOFs and the same velocity at the Moon. 
This fact is important for mission designers, as it may sometimes be possible to 
move the landing site slightly to improve ΔV, or a similar effect may be obtained by 
targeting with maneuvers along the trajectory. Trajectory correction maneuvers may 
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Figure 5-15 TOF and C3 for each trajectory plotted over the surface for a range of Jacobi 
constants [192] (Copyright © 2011 by American Astronautical Society Publications Office, c
San Diego, California (Web Site: http://www.univelt.com), all rights reserved; reprinted with 
permission of the AAS). 
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also help aid in reducing the ΔV. In general, it is useful to be aware of the chaotic 
nature of the design space as seen from these plots. 

Finally, it is important for most mission designs to consider the inclination. The 
inclination results in the EME2000 coordinate frame are given in Fig. 5-16. One of 
the important features to notice here is that a variety of inclinations are possible. A 
choice of trajectories exist with the lower inclinations suitable for launch from Cape 

Figure 5-16 Inclination computed relative to the Earth in the EME2000 coordinate frame 
[192] (Copyright c© 2011 by American Astronautical Society Publications Office, San Diego, 
California (Web Site: http://www.univelt.com), all rights reserved; reprinted with permission 
of the AAS). 

http:http://www.univelt.com
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Canaveral. The particular inclinations needed for a mission will depend on the target 
location on the Moon and the particular constraints of the mission. They are provided 
here as a sample of the range of the values that are possible. 

5.5.2 Trajectories Arriving at Various Angles to the Lunar Surface 

The planar CRTBP provides a convenient framework in which to understand and 
visualize the relationship between invariant manifolds and lunar approach trajectories, 
but the design of real-world equivalent trajectories often requires a landing at either 
higher or lower latitudes. Indeed, many of the recently proposed landing sites at 
the Moon are at northern or southern latitudes [204], and one of the locations that is 
currently a focus for a lunar lander is more southern latitudes in the Aitken Basin. 
In this analysis, lunar landing trajectories are analyzed over the three-dimensional 
surface of the Moon, and the approach geometry of the trajectories in three dimensions 
is also analyzed. 

The landing geometry of trajectories traveling from the Earth to the Moon is of 
particular importance for mission design. In the previous section and in Anderson and 
Parker [192, 195] we analyzed trajectories encountering the Moon normal to the sur
face to determine whether these trajectories originated at the Earth within the previous 
200 days. Given this elevation angle constraint, only some locations of the Moon’s 
surface were found to be accessible from the Earth. For this analysis, trajectories 
were allowed to approach each point on the lunar surface from all directions. These 
directions were specified relative to the surface at each point. The azimuth angle (Ω) 
is measured clockwise from north where north is the lunar orbit’s North Pole, rather 
than the Moon’s North Pole, to be consistent with the results from the CRTBP. The 
elevation angle (φ) is measured positive above the Moon’s surface, with a trajectory 
encountering the Moon’s surface normal to the surface having an elevation angle of 
90 deg. (Note that this is different from θ used for the planar case, but it was chosen 
to be more consistent with typical mission design parameters.) While the previous 
analysis was ideal for impactors, the trajectories computed here are applicable for 
a wide range of mission types traveling to the lunar surface. Additional parameters 
for each trajectory related to the original characteristics relative to the Earth may be 
computed, but the focus here is on characterizing the approach geometry. For the 
following analysis the trajectories were computed over the surface of the Moon using 
1-deg increments in α and β. The same definition is used for α that is used in the 
planar problem in Fig. 5-3. As described earlier, β is measured like latitude and 
is positive above the xy plane. Two different grids were used for the azimuth and 
elevation angles. In each case, the elevation angle was varied in even increments, 
and the steps taken in azimuth angle were specified initially for an elevation angle of 
0 deg. The number of azimuth points were then decreased with cos(φ) so that the 
number of points decreased with elevation angle. Both a fine grid and a coarser grid 
were used in this analysis. For the fine grid case, 1-deg increments were taken at 
0-deg elevation for Ω, and 1-deg increments were used for elevation. For the coarser 
grid, 10-deg increments were used for Ω at 0-deg elevation, and 3-deg increments 
were used for elevation. This coarser grid was found to provide a good approximation 
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that conveyed the overall trends of the fine grid, while allowing for a more reasonable 
computation time. Even with this coarser grid, computing trajectories over the entire 
surface in the ephemeris problem for each Jacobi constant required approximately 
seven days running in parallel on 40 processors. Unless otherwise stated, this coarser 
grid is the one used throughout the analysis. 

As an initial step in the analysis, the set of trajectories was computed in the 
CRTBP for a Jacobi constant of 2.6. The trajectories were computed for both the 
fine grid and the coarser grid. Comparing the maximum and minimum elevation 
angles resulted in trajectories that originate at the Earth as shown in Fig. 5-17. 
Using the symmetry about the xy plane mentioned earlier, it can be seen that the 
northern and southern latitudes will be reflected for the elevation plots in the CRTBP. 
Note that the azimuth angles would need to account for the reflection if they are 

Figure 5-17 Maximum and minimum elevation angles for trajectories originating at the 
Earth and encountering the Moon at each point on the surface. These cases are computed in 
the CRTBP for C = 2.6. Results from two different grids (in elevation and azimuth angle) 
are shown [193] (Copyright © 2011 by American Astronautical Society Publications Office, c
San Diego, California (Web Site: http://www.univelt.com), all rights reserved; reprinted with 
permission of the AAS). (See insert for color representation of this figure.) 

http:http://www.univelt.com


LOW-ENERGY SPATIAL TRANSFERS BETWEEN THE EARTH AND THE LUNAR SURFACE 289 

plotted, and although similar results would be expected in the ephemeris problem, 
the variations in the ephemeris require that the northern and southern hemispheres be 
computed independently. Using this symmetry the values computed for the northern 
and southern hemispheres were reflected in Fig. 5-17 to save computation time. By 
comparing the plots, it can be seen that, as might be expected, the finer grid captures 
more trajectories at higher and lower elevation angles that originate at the Earth, 
however, the overall trends in the data remain the same for both grids. In each 
case the range of elevation angles from minimum to maximum is shifted higher near 
α = 90 deg and lower near α = 270 deg. Referring back to Fig. 5-3, the 90-deg 
direction corresponds to the leading edge of the Moon, and the 270-deg direction to 
the trailing edge. The coarser grid is used in the remainder of this analysis, so it 
should be remembered that details in the plots may change with a finer grid, but the 
overall trends can still be observed. 

An analysis of trajectories for a Jacobi constant of C = 2.8 confirmed our earlier 
result for trajectories encountering the Moon normal to the surface of the Moon 
that no Earth-return trajectories were found for this Jacobi constant or higher ones 
in the CRTBP. However, it is expected that Earth-origin trajectories with velocities 
consistent with higher Jacobi constants in the CRTBP will exist in the ephemeris 
problem because these trajectories may use the Sun’s perturbations to travel from 
the Earth to the Moon. Those higher Jacobi constants, especially those approaching 
the values near CL1 and CL2 are especially relevant for the computation of the 
invariant manifolds of libration point orbits, which is useful for the comparison later 
in this study. The elevation angle range results are shown in Fig. 5-18 for Jacobi 
constants ranging from C = 2.6 to 3.1 in the ephemeris problem. Note that, as in 
Anderson and Parker [192, 195], the Jacobi constant for the ephemeris plots is used 
as a shorthand for a particular set of velocities computed around the Moon in the 
CRTBP. These same velocities are attached to the Moon in the ephemeris problem 
referenced to the instantaneous orbital plane of the Moon’s orbit around the Earth. 
The symmetry used to simplify the computations in the CRTBP is no longer present 
for the ephemeris problem, and trajectories were directly computed for the entire 
plot. Once the trajectory is integrated backward from the Moon, the Jacobi constant 
of the trajectory will vary in both the Earth–Moon and Sun–Earth systems. 

Comparing the results from Fig. 5-17 for the Jacobi constant case of 2.6 in 
the CRTBP and the ephemeris problem results reveals that they are quite similar. 
The maximum and minimum elevation values still occur at approximately the same 
locations on the surface for each case. However, several new bands of high-elevation
angle cases occur for the ephemeris case near α = 180 deg for the maximum elevation 
angle case and from approximately α = 290 deg to 360 deg. Additional bands also 
seem to exist for the minimum elevation angle case, especially for high and low 
latitudes. It is natural to expect from past work that these bands may represent 
trajectory options that exist as a result of the Sun’s influence, and it is interesting that 
these types of bands remain up through C = 2.8 (Figs. 5-18(a) through 5-18(d)). An 
interesting topic planned for future study is to determine how these characteristics 
vary with a finer grid. However, the comparison performed here is with the same 
grid in each case, indicating that these additional trajectories exist. 
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Figure 5-18 The minimum and maximum elevation angles of trajectories originating at 
the Earth for each point on the lunar surface. These trajectories are computed in the 
Earth–Moon ephemeris system including the Sun’s perturbations [193] (Copyright © 2011c
by American Astronautical Society Publications Office, San Diego, California (Web Site: 
http://www.univelt.com), all rights reserved; reprinted with permission of the AAS). (See 
insert for color representation of this figure.) 
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As the Jacobi constant increases even more as seen in Figs. 5-18(e) through 
5-18(h), the range of elevation angles for lunar landing at each point seems to increase 
even more. The location of the peaks also seems to shift, and for the maximum 
elevation angle plots, the peaks move to the right or eastward with increasing Jacobi 
constant. When a Jacobi constant of 3.1 is reached, the maximum elevation angle 
for points containing a trajectory originating at the Earth never drops below 57 deg, 
and the minimum elevation angle for the same points never goes over 15 deg. It 
is important to mention that although the points look dense across the surface in 
the plots, this is because of the size of the plot and the points used for plotting. 
There are individual points on the surface where no Earth-origin trajectory exists 
for this grid, but there are always nearby points where such a trajectory exists. For 
real-world mission design, a small ΔV can be used to target slightly different points, 
and the surface of the Moon is covered in practice for mission design purposes. It 
has also been found for particular points that if a much finer grid is used, typically 
some Earth-origin trajectories are found, and these points will be included in future 
studies. The points with no Earth-origin trajectories for this grid are not included in 
the elevation angle ranges listed in the plots. These results for higher Jacobi constants 
agree generally with the normal trajectory cases seen in our previous work [192, 195]. 
The additional range of geometries available for landing at these energies appears 
to be a result of the increasingly chaotic nature of the system as the Jacobi constant 
approaches the values at the L1 and L2 libration points. In other words, the trajectories 
are more able to take advantage of chaos to arrive at different elevation and azimuth 
angles. This also indicates that these Jacobi constants are of particular interest for 
comparison with the invariant manifolds of libration orbits. One interesting statistic 
to examine with a fixed grid is the maximum number of trajectories at a particular 
point that originate at the Earth. Although this number is generally quite low, there 
are some points where it peaks. The maximum number of trajectories at a particular 
point is listed in Table 5-2 for different Jacobi constants. The higher values are 
found for a Jacobi constant of 2.6 and 3.1. The C = 2.6 results include more direct 
trajectories that still exist in the CRTBP and do not require the Sun’s influence, and 
the C = 3.1 results include those trajectories that are heavily influenced by the Sun. 
The total number of Earth-origin trajectories follows the same trend. These numbers 

Table 5-2 Maximum number of Earth-origin trajectories at a single point on the lunar 
surface for a fixed grid including the corresponding location and the total number of 
Earth-origin trajectories for various values of Jacobi constant. 

Jacobi Constant Maximum at a Point Location (α, β) Total Number 

2.6 
2.8 
3.0 
3.1 

27 
16 
14 
36 

(193 deg, −36 deg) 
(213 deg, −18 deg) 
(225 deg, −11 deg) 

(192 deg, 7 deg) 

290,672 
114,684 
162,061 
298,621 
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are a function of the grid that is being used and can be refined by using a denser grid; 
however, they do align with the results from the trajectories computed normal to the 
lunar surface seen in our earlier work. 

Because the trajectories are computed in the ephemeris problem for the cases just 
discussed, the results will naturally vary with the initial epoch of the integration. 
A sample of the results was computed for four different epochs around the Moon’s 
orbit (with the time intervals each at approximately one-quarter of the Moon’s orbit) 
to determine how they might vary with the initial epoch. Representative results for 
a Jacobi constant of 2.8 are shown in Fig. 5-19. The salient features of the plots 
remain generally the same for each epoch in that the maximum values still occur near 
α = 90 deg and the minimum values occur near α = 270 deg. The January 7 and 21 
cases have more locations with higher elevation angles, especially near α = 270 deg, 
mixed in with lower elevation angle points. These two cases appear better positioned 
to take advantage of the Sun–Earth libration point dynamics, which could increase 

Figure 5-19 Comparison of maximum elevation angle results around the lunar orbit at 
seven day intervals for C = 2.8 [193] (Copyright © 2011 by American Astronautical Society c
Publications Office, San Diego, California (Web Site: http://www.univelt.com), all rights 
reserved; reprinted with permission of the AAS). (See insert for color representation of this 
figure.) 
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the range of elevation angles that may be obtained for approaching the Moon. Overall 
though, given this comparison, it is expected that the results from this study may be 
extrapolated to other epochs without drastically changing the outcome. 

Another important aspect of the approach for mission design is, of course, the 
azimuth angle of the trajectory. Plotting this information in a global sense is difficult, 
but a sample of the types of results obtained for each Jacobi constant may be visualized 
in Fig. 5-20 for a subset of the points. The azimuth angles are plotted for each point on 
a grid computed at 30-deg intervals in both α and β. For these plots, the fine grid was 
used at each point on the surface (which of course produced more trajectory options), 
and the trajectories were limited to those with C3 < 0.0 km2/s2 at the Earth. The 
orientation of the lines centered on each point indicates the azimuth angle, and the 
color is used to designate the corresponding elevation angle of each trajectory. Note 
that the ± 90-deg cases used azimuths that were rotated differently at each elevation 
as a result of the transformation used to compute them. So the specific results differ, 
but they generally show similar trends. It is interesting that there are definite regions 

Figure 5-20 Azimuth angles at points on a 30-deg grid on the lunar surface. The plotted lines 
at each gridpoint are oriented in the proper azimuth direction for each individual trajectory. 
The color corresponds to the elevation angle of that trajectory. The trajectories shown here 
are limited to those with C3 < 0.0 km2/s2 at the Earth [194] (first published in Ref. [194]; 
reproduced with kind permission from Springer Science+Business Media B.V.). (See insert 
for color representation of this figure.) 
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where the majority of Earth-origin trajectories appear to have similar elevation angles. 
In each case though, there are often just a few high or low trajectories that result in 
the extremes seen in the elevation angles plots. This fact is worth keeping in mind 
for mission design since a particular elevation angle may be available in combination 
with only a few azimuth angles. In general it appears that higher-elevation options 
are more available as the Jacobi constant increases, although there are typically at 
least a few low elevation angle options at each point. The combinations of available 
elevation and azimuth angles are evaluated in more detail for C = 3.1 in the following 
comparison with invariant manifolds, which helps explain the features seen in these 
plots a little more directly. In general, these plots can provide a broad overview of 
the available trajectory options. 

5.6	 TRANSFERS BETWEEN LUNAR LIBRATION ORBITS AND THE 
LUNAR SURFACE 

A general framework and understanding does exist in regard to the relationship 
between invariant manifolds of unstable orbits and the Moon. (Refer to Section 
2.6.10 for more background on invariant manifolds.) Much of the work to design 
low-energy trajectories from the Earth to the Moon has focused on the use of libration 
point orbits along with their stable and unstable manifolds [39, 45, 51, 203]. Koon, Lo, 
Marsden, and Ross examined this problem for the planar case [37], and Parker studied 
approach cases to lunar libration orbits using invariant manifolds in his dissertation 
[46]. Baoyin and McInnes analyzed some specific cases of transfers from libration 
points and planar Lyapunov orbits to the lunar surface [205]. In particular, they 
searched for the Jacobi constant that would provide complete coverage of the lunar 
surface by the invariant manifolds of the selected Lyapunov orbit. Von Kirchbach 
et al. [201] looked at the characteristics of the invariant manifolds of a Lyapunov 
orbit as they intersected the surface of Europa in the context of the escape problem. 
Alessi, G ́omez, and Masdemont [206] examined the locations of the Moon reachable 
by the stable manifolds of a range of halo orbits and square Lissajous orbits. They 
computed the intersections of these invariant manifolds with the surface of the Moon 
with the expectation that they could be used for astronauts to escape to a libration 
point orbit if necessary. Anderson [207] examined the approach problem within the 
context of the invariant manifolds of unstable resonant and Lyapunov orbits as the 
trajectory ties into the resonances of the Jupiter–Europa endgame problem following 
invariant manifolds [158, 208–210]. 

One focus of the transfer to the lunar surface using invariant manifolds is on 
the final approach from a desired libration orbit to the lunar surface. The problem 
may be most easily approached using the planar CRTBP and Lyapunov orbits. Two 
sample Lyapunov orbits found in Anderson and Parker [192, 195] are replotted here 
in Fig. 5-21. The Jacobi constants for these orbits were chosen so that the invariant 
manifolds of the Lyapunov orbits just graze the surface of the Moon. The Jacobi 
constants where the Lyapunov orbits cover the surface of the Moon were computed 
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Figure 5-21 Invariant manifolds of libration orbits computed for Jacobi constants where 
the manifolds are tangent to the surface of the Moon [193] (Copyright c 2011 by © 
American Astronautical Society Publications Office, San Diego, California (Web Site: 
http://www.univelt.com), all rights reserved; reprinted with permission of the AAS). (See 
insert for color representation of this figure.) 

by Baoyin and McInnes [205] as approximately C = 3.12185282430647 for an L1 

Lyapunov orbit and C = 3.09762627497867 for an L2 Lyapunov orbit. 
As a first step in the comparison, the lunar landing geometry of the invariant 

manifolds of various halo orbits is analyzed. Alessi, G ́omez, and Masdemont [206] 
examined similar trajectories for escaping the surface of the Moon to various halo 
orbits and summarized the areas on the Moon from which such escape trajectories 
are possible. We are concerned here with a combination of the landing location along 
with the landing geometry, therefore, a similar technique to that used in Fig. 5-20 is 
employed here. In subsequent figures, the intersections of the unstable manifolds of 
the L1 halo orbits are indicated by a red point, and the intersections for the L2 halo 
orbits are orange points. The azimuth angle and the elevation angle are indicated by 
the direction and the color of the line segments, respectively. 

The results for a halo orbit at C = 3.1 are shown in Fig. 5-22. It can be immediately 
seen that for this energy, the L1 halo orbit invariant manifolds generally fall on the 
leading edge of the Moon in its orbit, and the L2 halo orbit invariant manifolds fall 
on the trailing edge of the Moon. As expected, the intersections of the northern 
and southern halo orbits are reflected about β = 0. The elevation angles are some
what lower for the L1 halo orbits than the L2 halo orbits. All together, the unstable 
manifolds provide relatively broad coverage of much of the lunar surface, although 
significant regions are still not intersected by the invariant manifolds. This may be 
remedied by examining the invariant manifolds at additional energies. The unstable 
manifold intersections with the Moon can change significantly with the Jacobi con
stant as can be seen for the intersections plotted with a Jacobi constant of 3.08 in 
Fig. 5-23. The intersections for the L1 case have divided into two different regions, 
and the L2 intersection case has grown tighter together. It should be reiterated that 
the unstable manifold intersections can increase if larger time intervals are used for 

http:http://www.univelt.com
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Figure 5-22 Unstable manifold intersections of the specified orbits with the Moon for 
C = c3.1 [193] (Copyright © 2011 by American Astronautical Society Publications Office, 
San Diego, California (Web Site: http://www.univelt.com), all rights reserved; reprinted with 
permission of the AAS). (See insert for color representation of this figure.) 

http:http://www.univelt.com
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Figure 5-23 Unstable manifold intersections of the specified orbits with the Moon for 
C = 3.08 [193] (Copyright c© 2011 by American Astronautical Society Publications Office, 
San Diego, California (Web Site: http://www.univelt.com), all rights reserved; reprinted with 
permission of the AAS). (See insert for color representation of this figure.) 

the integration, and these plots focus on short-duration trajectories. The unstable 
manifold intersections also change even more as energy continues to change, but 
these energies appear to provide some of the most direct transfers. 

This analysis shows that the unstable manifolds of halo orbits can provide broad 
coverage for landing at various points on the Moon, although not with the nearly 
complete coverage found from the previous results. It is also interesting to explore 
the relationship between the unstable manifolds and these Earth-origin trajectories 
from the general analysis. A similar examination to the one made for the planar 
problem would be desired, but the nature of the three-dimensional problem makes 
this drastically more complex. One possible method for performing this comparison 
is to examine the origin of the trajectories coming from all azimuth and elevation 
angles at each point that the unstable manifolds intersect the surface of the Moon. In 
this case, only one unstable manifold intersection is plotted for each location on the 
Moon relative to the trajectories coming in from all angles, but it still allows this point 
to be placed in context of the dynamics indicated by the source of each trajectory. 

http:http://www.univelt.com
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5.7	 TRANSFERS BETWEEN LOW LUNAR ORBITS AND THE LUNAR 
SURFACE 

Information about transfers from low lunar orbits to the lunar surface is provided in 
Section 4.6 on page 258. 

5.8	 CONCLUSIONS REGARDING TRANSFERS TO THE LUNAR 
SURFACE 

A wide variety of trajectory options exist for transfer to the lunar surface. These range 
from more direct trajectories that may be primarily computed using just the influence 
of the Earth and Moon, to those at lower energies that require the influence of the Sun 
to compute. The invariant manifolds of libration orbits may be used for transfers to 
the lunar surface, and in combination with transfers to these libration orbits from the 
Earth, can be used as a complete transfer from the Earth. The trajectories computed 
for various Jacobi constants shown in the selected plots in this chapter may be used 
to obtain an initial idea of the types of trajectories available for different energy 
regimes. These energy regimes correspond to the constraints dictated by a particular 
mission, such as the available launch vehicle. Once the general type of trajectory that 
may be of interest is selected, more detailed initial guesses for particular trajectories 
may be obtained from the various plots showing trajectories coming in at various 
angles to the surface or from the invariant manifolds results. A mission designer may 
then modify and constrain these trajectories, while incorporating the mission design 
constraints of interest, to compute the final desired trajectory. 



CHAPTER 6
 

OPERATIONS
 

6.1 OPERATIONS EXECUTIVE SUMMARY 

The purpose of this chapter is to address different ways that a low-energy transfer 
may impact the operations of a spacecraft, compared to conventional lunar transfers. 
Most conclusions are very straightforward consequences of the fact that low-energy 
transfers require less change in velocity (ΔV), more time, and have longer link 
distances during the transfer than direct lunar transfers. For instance, there are fewer 
demands on the spacecraft’s propulsion system and operational schedule, but more 
demands on the spacecraft’s communication capabilities due to the longer distances. 
The operations team must be able to perform several trajectory correction maneuvers 
(TCMs) during the trans-lunar cruise, but these maneuvers are typically much more 
separated in time from launch, lunar arrival, and other maneuvers than they are on 
conventional lunar transfers. 

The majority of discussion in this chapter is devoted to studying the availability 
and ΔV cost of establishing an extended 21-day launch period for a lunar mis
sion. Conventional lunar missions typically have very constrained launch periods, 
reflecting the geometry in the Sun–Earth–Moon system. However, low-energy lunar 
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transfers are very flexible and may be adjusted in many ways to accommodate an 
extended launch period. Several conclusions are drawn from these examinations. 

First, the cost of a launch period is dependent on the number of launch days 
in the period. The examination performed in Section 6.5 estimates that it costs 
on average 2.5 meters per second (m/s) of ΔV per day added to a launch period; 
hence, the average 21-day launch period requires about 50 m/s more deterministic 
ΔV than a 1-day launch period for a given transfer. The cost of the 1-day launch 
period is dependent on the inclination change that must be performed to inject onto 
the desirable low-energy transfer from a constrained low Earth orbit (LEO) parking 
orbit. Section 6.5.7 estimates that it costs approximately 0.97 m/s more transfer ΔV 
per degree of inclination change that must be performed. The total cost of establishing 
a 21-day launch period from a 28.5-degree (deg) LEO parking orbit to a given lunar 
orbit is approximately 71.7 ± 29.7 m/s (1σ). Thus, to be very conservative when 
estimating a preliminary ΔV budget for a mission, one may estimate that the ΔV cost 
to transfer from a 28.5-deg LEO parking orbit to a particular lunar orbit, including 
a 21-day launch period, will cost approximately 161 m/s, not including statistical 
costs and/or other deterministic costs. Of course, the 161 m/s accounts for a 3-sigma 
high value, evaluated from a large set of random mission designs; it is likely that a 
practical mission may be constructed for significantly less ΔV. 

A 21-day launch period does not necessarily have to include 21 consecutive days; 
in fact, most launch periods constructed in this examination include one or two gaps 
when the launch operations would have to stand down. The average launch period 
for the sample set used here requires a total of 27 days; the vast majority of the launch 
periods may be contained within 40 days. 

Finally, it has been found that there is no significant trend between the total 
launch period ΔV for the sample missions studied here and their reference departure 
inclination values or their reference transfer durations, except that missions with short 
durations (< 90 days) require more ΔV to establish an extended launch period, on 
account of the reduced flexibility of a shorter transfer. 

6.2 OPERATIONS INTRODUCTION 

This chapter discusses several aspects of a spacecraft mission that must be considered 
for the low-energy transfers presented in this book to be used in a real mission. 
Numerous discussions throughout Chapters 3–5 have considered the latitude of the 
mission’s launch site, since that strongly influences the inclination of the parking 
orbit that may be used in a mission. But other aspects have not been fully discussed, 
such as which launch vehicle may be used, how to establish a launch period, and what 
considerations must be made to a spacecraft’s design to fly a low-energy transfer. 

Sections 6.3 and 6.4 provide information and discussion about which launch sites 
and launch vehicles are typically used and/or available for lunar missions. Section 6.5 
provides a lengthy discussion, analysis, and several algorithms that may be used to 
generate a 21-day launch period for a given low-energy transfer. The results indicate 
that simple low-energy transfers may be targeted from nearly any LEO parking 
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orbit with a 21-day launch period for a modest fuel cost on the order of 72 m/s. 
Section 6.6 discusses issues relevant to navigating a spacecraft while on a low-energy 
transfer, including the costs of station-keeping and the benefits of having 3–4 months 
to perform the transfer instead of the conventional 3–6 days. Finally, Section 6.7 
presents several considerations that must be made to the spacecraft systems and 
operations design to accommodate a low-energy lunar transfer. 

6.3 LAUNCH SITES 

Chapters 3–5 illustrated that low-energy ballistic transfers may be constructed that 
depart the Earth from parking orbits or direct departures with any orbital inclination. 
By carefully selecting a particular transfer, one may build a mission that launches from 
any given launch site and efficiently injects into the ballistic lunar transfer. While this 
is very important for conventional mission design, Section 6.5 later demonstrates that 
a mission can actually depart the Earth from virtually any inclination and transfer 
to a particular lunar arrival for a modest ΔV cost. Still, it is of interest to build 
a low-energy transfer that is designed to depart the Earth with an inclination that 
is very similar to the latitude of the mission’s launch site so that no sizable orbital 
plane changes are needed. This is particularly useful for missions with a brief launch 
period. 

Table 6-1 provides a summary of the launch sites that have demonstrated the 
capability of placing large payloads into orbit. This is not a complete list, but 
provides a good review of the latitude and longitude of several sites for reference. 

6.4 LAUNCH VEHICLES 

Many launch vehicles are available to place spacecraft on low-energy lunar transfers. 
The NASA Launch Services Program (LSP) at Kennedy Space Center coordinates 
contracts with several launch vehicle providers using NASA Launch Services (NLS) 
contracts [211]. On September 16, 2010, NASA released the details about the 
NLS II contacts that were awarded to four launch vehicle providers: Lockheed 
Martin Space Systems Company of Denver, Colorado; Orbital Sciences Corporation 
of Dulles, Virginia; Space Exploration Technologies of Hawthorne, California; and 
United Launch Services, LLC of Littleton, Colorado. This contract includes several 
families of launch vehicles, including Atlas V, Falcon 9, Pegasus XL, Taurus XL, 
Athena I, and Athena II. The NLS II contract provides the minimum performance that 
is contractually obligated by the launch vehicle; a mission may be able to negotiate 
with the launch vehicle provider to increase the performance of the launch vehicle 
depending on the mission’s requirements [211]. 

Table 6-2 summarizes the maximum payload capabilities of several launch vehicles 
injected from Cape Canaveral, Florida, onto low-energy lunar transfers with and 
without an outbound lunar flyby. The table captures two extreme cases: first, the 
case where the transfer includes an outbound lunar flyby and requires an injection 
C3 of −2.1 kilometers squared over seconds squared (km2/s2), which is near the 
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Table 6-1 The locations of several launch sites that have been used to launch large 
payloads into orbit, toward the Moon, and/or into Interplanetary space. This is not a 
complete list, the locations are approximate, and some are representative of several 
particular launch sites. 

Latitude Longitude
Country Location	 Comments 

(deg) (deg) 

USA Cape Canaveral Air Force Station, 28.47 N 80.56 W Interplanetary 
Florida 

USA Kennedy Space Center, Florida 28.61 N 80.60 W Lunar 
USA Vandenberg Air Force Base, 34.77 N 120.60 W High 

California inclinations 
USA Kodiak Launch Complex, Alaska 57.44 N 152.34 W Orbital 
USA	 Mid-Atlantic Regional Spaceport 37.83 N 75.48 W Orbital 

(MARS), Delmarva Peninsula, 
Virginia 

USA	 Kwajalein Atoll 9.00 N 167.65 E Orbital 

Brazil	 Alĉantara Launch Center, 2.32 S 44.37 W Orbital 
Maranhão 

China	 Jiuquan Satellite Launch Center 41.12 N 100.46 E Orbital 
China	 Xichang Satellite Launch Center 28.25 N 102.03 E Lunar 
French	 Guiana Space Centre, Kourou 5.24 N 52.77 W Interplanetary 
Guiana 
India Satish Dhawan Space Centre 13.74 N 80.24 E Lunar 

(Sriharikota), Andhra Pradesh 
Israel	 Palmachim Air Force Base 31.88 N 34.68 E Orbital 
Japan	 Uchinoura Space Center 31.25 N 131.08 E Orbital 
Japan	 Tanegashima Space Center, 30.39 N 130.97 E Orbital 

Tanegashima Island 
Kazakhstan	 Baikonur Cosmodrome, Tyuratam 45.96 N 63.35 E Interplanetary 
Marshall	 Omelek 9.05 N 167.74 E Orbital 
Island 
Russia	 Svobodny Cosmodrome, Amur 51.83 N 128.28 E Orbital 

Oblast 
Russia	 Yasny Cosmodrome, Orenburn 51.21 N 59.85 E Orbital 

Oblast 
Russia	 Kapustin Yar Cosmodrome, 48.58 N 46.25 E Orbital 

Astrakhan Oblast 
Sweden	 Esrange, Kiruna 67.89 N 21.10 E Orbital 
Several	 Sea Launch / Ocean Odyssey 0.0 N Varies Orbital 

complex 
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Table 6-2 The payload capabilities of several launch vehicles injected from Cape 
Canaveral, Florida, onto low-energy lunar transfers with and without an outbound lunar 
flyby. This information has been captured from the NASA Launch Services (NLS) 
Program’s Launch Vehicle Performance site under the NLS II contract [211]. 

Launch Vehicle Maximum Payload Performance (kg) 

C3 = −2.1 km2/s2 C3 = −0.3 km2/s2 

Athena II 395.0 375.0 

Falcon 9 Block 1 2125.0 1995.0 
Falcon 9 Block 2 2645.0 2515.0 

Atlas V 401 3170.0 3050.0 
Atlas V 411 4095.0 3955.0 
Atlas V 421 4845.0 4680.0 
Atlas V 431 5445.0 5265.0 

Atlas V 501 2215.0 2110.0 
Atlas V 511 3410.0 3285.0 
Atlas V 521 4365.0 4215.0 
Atlas V 531 5135.0 4965.0 
Atlas V 541 5815.0 5625.0 
Atlas V 551 6340.0 6140.0 

minimum injection energy typically required. The second case presented requires a 
C3 of −0.3 km2/s2, which is near the maximum injection energy typically required 
without a lunar flyby. Most missions will fall between these two values: closer to one 
depending on whether or not the mission aims to fly past the Moon on the outbound 
segment. 

As of September 2011, Orbital Sciences estimates that the Taurus XL may be used 
to inject as much as 425 kilograms (kg) to a C3 of 0 km2/s2, and presumably more to a 
low-energy lunar transfer. Further, although it is not currently in the NLS II contract, 
Orbital Sciences estimates that the Taurus II launch vehicle may be able to inject 
between 920 kg and 1120 kg to a C3 of −2.1 km2/s2 depending on its configuration. 
The Taurus II’s performance drops about 40 kg when injecting payloads to a C3 of 
−0.3 km2/s2 . 

In addition, the Pegasus XL launch vehicle may be used to place up to about 
470 kg of payload into a 200-km circular parking orbit [212]. A spacecraft could 
then perform its own trans-lunar injection to transfer to the Moon, much like the 
proposed Dust Near Earth (DUNE) mission [146, 213], or similar to the Interstellar 
Boundary Explorer (IBEX) mission [214–216]. 

Other launch vehicles may also be used to inject a spacecraft onto a low-energy 
lunar transfer, though they do not have a contract with NASA, including the Delta IV 
family of vehicles. Certainly several international vehicles may be used, assuming the 
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vehicles’ guidance algorithms have the capability of targeting such orbital parameters, 
including the Russian Soyuz and Proton vehicles, Arianespace’s Ariane V, China’s 
Long March and CZ vehicles, Japan’s H-IIA and H-IIB, and Ukraine’s Zenit-3SL, 
among others. The Indian Space Research Organization’s (ISRO’s) Polar Satellite 
Launch Vehicle (PSLV-C11) was used to launch the Chandrayaan-1 mission to the 
Moon, though the launch vehicle only injected the spacecraft into a 6-hour orbit about 
the Earth and the spacecraft performed the remainder of the lunar injection. 

6.5 DESIGNING A LAUNCH PERIOD 

This section considers how to construct an extended launch period for a low-energy 
transfer to the Moon. The discussion begins by reviewing several interesting features 
that exist in the Earth–Moon system and how historical launch periods have been 
constructed around those features. This provides context for future discussions about 
designing launch periods for low-energy transfers. 

First, the Moon’s orbit is nearly circular about the Earth. This means that one 
may theoretically launch a spacecraft on a conventional, direct transfer with very 
similar characteristics on any given day. The Moon’s elliptical orbit means that the 
launch energy and transfer duration will vary across the month to some degree, but 
this is a second-order effect. The largest variation from one day to the next when 
injecting into a direct direct transfer arises from the obliquity of the Earth relative to 
the Moon’s orbit. The Earth’s spin axis is tilted approximately 23.5 deg relative to the 
ecliptic, and the Moon’s orbit has an inclination of about 5.15 deg with respect to the 
ecliptic. Together, this means that the relative orientation of the Earth’s spin axis and 
the orbit of the Moon may be anywhere from 18.35 deg to 28.65 deg; the orientation 
of the parking orbit must be adjusted to accommodate this shift. Ultimately this 
means that the time of day that one must launch shifts from one day to the next, as 
does the duration of time that the spacecraft coasts in a low Earth parking orbit prior 
to injecting toward the Moon. 

Next, a lunar day is approximately 29.5 Earth days long, which means that the 
lighting conditions on the Moon roughly repeat every 29.5 days. There are variations 
on top of this cycle that correspond with where the Moon is in its orbit about the 
Earth relative to its perigee, and where the Earth is in its orbit about the Sun. The 
net effect is that if one is interested in viewing a particular lighting condition as one 
flies by the Moon or impacts the Moon, then one may only be able to launch on a 
direct transfer one or two days every month. This is very important for missions that 
aim to land on the surface, including the Apollo missions. The Apollo missions were 
designed to land on the surface soon after sunrise at the landing site to maximize 
the amount of sunlit time they had on the surface before needing to ascend. These 
considerations have a direct effect on the time of arrival at the Moon for any mission, 
though missions that go into orbit prior to landing/impact can arrive early. The time 
of arrival is highly correlated with the launch time for direct transfers, since direct 
transfers have a short transfer duration that cannot be varied much. The time of arrival 
is loosely correlated with the launch time for low-energy transfers, since low-energy 
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transfers can vary their transfer durations by many days without a large penalty in 
transfer ΔV. 

Another consideration for a mission planner is that many lunar spacecraft are not 
designed to survive a long eclipse. Lunar eclipses occur roughly every 6 months when 
the Earth comes directly between the Sun and Moon. The Moon’s nonzero orbital 
inclination relative to the ecliptic means that a lunar eclipse does not occur each and 
every month, but only occurs when the Moon is near its ascending or descending 
node when it traverses behind the Earth. Since the Moon’s orbit is fixed in inertial 
space, though subject to perturbations, one of the nodes traverses directly behind the 
Earth twice per year. If the Moon is near that point in its orbit at that time, then the 
eclipse will be a full lunar eclipse and any spacecraft on the surface or in a low orbit 
will traverse through the umbra of the Earth. If the Moon is not near that point in 
its orbit, then the spacecraft may be able to avoid the shadow, or at least avoid the 
umbra of the Earth. The Gravity Recovery and Interior Laboratory (GRAIL) mission 
was designed with lunar eclipses in mind, since the two GRAIL spacecraft were not 
originally designed to survive an extended passage through shadow. GRAIL’s entire 
science phase was designed to occur between two lunar eclipses in case one of the 
spacecraft did not survive the following eclipse. This means that GRAIL’s launch 
opportunities do not repeat every month, but only repeat once every six months. 

6.5.1 Low-Energy Launch Periods 

Low-energy lunar transfers are more flexible than direct lunar transfers since their 
transfer durations are longer; hence, it is possible to build an extended, 21-day launch 
period such that every launch opportunity yields a trajectory that a spacecraft can 
follow that arrives at the Moon at the same time. This is very useful for missions 
such as GRAIL that depend on arriving at the Moon at a particular time of the year or 
month. 

There are often many ways to adjust a trajectory’s design so that it may depart 
the Earth on multiple days, in order to establish a launch period. For this discussion 
we assume that the trajectory begins with a launch from a particular site into a low, 
near-circular parking orbit; coasts in the parking orbit for some duration; performs 
a trans-lunar injection; and then follows a ballistic transfer to the Moon using one 
or two trajectory correction maneuvers en route to the Moon. Given this trajectory 
design, several examples of controls include the following: 

•	 Adjust the launch time. By launching at a different time of day, one can change 
the longitude of the ascending node of the parking orbit that the spacecraft uses 
prior to its trans-lunar injection. 

•	 Adjust the launch and parking orbit geometry. One may be able to reduce the 
total transfer ΔV cost and ultimately transfer more payload mass to the Moon 
by changing the parking orbit’s inclination. This reduces the launch vehicle’s 
performance, but it may be worthwhile. 

•	 Adjust the location of the trans-lunar injection maneuver in the parking orbit. 
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•	 Adjust the trans-lunar injection maneuver. The maneuver magnitude and/or 
direction may be adjusted, depending on the control algorithm that operates 
the maneuver. In the studies presented in this chapter, only the maneuver 
magnitude is adjusted. 

•	 Add one or more trajectory correction maneuvers in the trans-lunar cruise. 
These maneuvers may be performed in any direction, though some missions 
may place constraints on the magnitude or direction of these maneuvers. In the 
studies presented here, two maneuvers are introduced that may be performed 
in any direction with any maneuver magnitude, though no two maneuvers may 
be placed within four days of each other to reduce operations complexity. 

•	 Adjust the lunar arrival conditions as described below. 

The available controls upon arriving at the Moon depend on the arrival orbit/geometry 
and the mission design. Some examples of different missions and their controls 
include: 

Arriving at a lunar libration orbit. Arriving at a lunar libration orbit typically in
volves a ballistic, asymptotic arrival with a final correction maneuver to ensure 
that the spacecraft is placed in the target orbit. Controls include: 

•	 Adjust the date/time of arrival. This may vary by mere seconds or by days, 
depending on the mission’s requirements. 

•	 Vary the target libration orbit. It is typically more desirable to maintain a single 
target libration orbit throughout the launch period, though that depends on the 
mission. 

•	 Add a libration orbit insertion maneuver, which may vary in magnitude/direction. 
This is typically much more useful if the target libration orbit is held fixed across 
a launch period. 

Arriving at a low lunar orbit. Arriving at a low lunar orbit typically involves a 
time-critical lunar-orbit insertion (LOI) maneuver that places the spacecraft 
into a capture orbit. Controls include: 

•	 Adjust the date/time of the LOI. This may vary by mere seconds or by days, 
depending on the mission’s requirements. 

•	 Adjust the LOI’s magnitude and/or direction. Some spacecraft designs require 
that the maneuver be a fixed-attitude maneuver, a pitch-over maneuver, or a 
maneuver that rotates about a specified axis at a constant rate. The studies 
presented here model the maneuver using an impulsive burn and frequently 
permit the burn to vary in both magnitude and direction. 

•	 Adjust the location of the LOI within the target orbit. This is typically held 
constant, or varied only a small amount, since the maneuver is much more 
efficient when performed at the orbit’s periapse. 
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•	 Adjust the geometry of the capture orbit. The spacecraft’s mission design 
may permit the orbit’s argument of periapse to vary, particularly if the goal 
is to eventually enter a circular orbit. It may also be permissible to vary 
the inclination or longitude of ascending node of the orbit, though those are 
typically not varied more than a small amount. 

Arriving at the lunar surface. A mission to the lunar surface may be targeting a 
shallow flight path angle with the goal to land softly, or it may be targeting a 
steep flight path angle for a targeted impact, similar to the design of the Lunar 
Crater Observatory and Sensing Satellite (LCROSS) mission. Some examples 
of trajectory controls include: 

•	 Adjust the date/time of arrival. This may vary by mere seconds or by days, 
depending on the mission’s requirements. 

•	 Adjust the arrival velocity. 

•	 Adjust the arrival geometry. It may be permissible to vary the flight path angle 
and/or azimuth of the arrival. 

•	 Adjust the arrival location on the lunar surface. 

In addition, it may be possible to incorporate a dramatic shift in a mission’s 
trajectory. For instance, it may be preferable to break a 21-day launch period into 
two halves, where the early portion of the launch period sends the spacecraft toward 
the Sun–Earth L1 vicinity and the second portion implements trajectories that travel 
near the Sun–Earth L2 vicinity. 

One can see that there are many ways to adjust a trajectory from one launch 
opportunity to the next in order to establish a launch period. This section presents 
several scenarios and their corresponding algorithms that may be used to establish a 
launch period. The algorithms presented here may need to be adjusted for a particular 
mission, though the results presented here are certainly useful for guiding the early 
trades for a mission. 

6.5.2 An Example Mission Scenario 

There are many ways to construct an extended launch period for a low-energy lunar 
transfer, some of which are outlined above. This section studies one mission design 
architecture and applies that to a large number of practical cases, in order to generate 
some useful statistics about that architecture. The design studied here is similar to 
GRAIL’s mission: a spacecraft is launched from a parking orbit that has an inclination 
of 28.5 deg, for example, one that effectively supports launches from Cape Canaveral, 
and uses a near-ballistic low-energy transfer to target a low, 100-km, polar orbit about 
the Moon. The trajectory includes as many as two deterministic trajectory correction 
maneuvers (TCMs) to assist the construction of a 21-day launch period. The results 
of the studies presented here for this architecture are (of course) only relevant to 
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very similar missions, but hopefully they shed some light on other low-energy lunar 
architectures. 

Figure 6-1 illustrates one example trajectory taken from the surveys presented in 
Section 4.4. This trajectory departs the Earth on April 1, 2010, at 05:27 Coordinated 
Universal Time (UTC) from a 185-km parking orbit with an inclination of approx
imately 38.3 deg and transfers to the Moon using no maneuvers at all. It arrives at 
a polar orbit 100 km above the mean radius of the Moon. A launch vehicle may 
certainly target an outbound inclination of 38.3 deg on that date to inject a spacecraft 
onto this transfer, but it would suffer a large penalty to its lift capability if it did 
so from Cape Canaveral, compared to the vehicle’s capability to lift payloads to an 
inclination of 28.5 deg. Further, the launch may slip. This section studies how to 
adjust the transfer to permit it to depart the Earth from an inclination of 28.5 deg on 
multiple days. As an example, a new trajectory has been generated using the ballistic 
transfer shown in Fig. 6-1 as a reference. The new trajectory departs the Earth a full 
day after the reference, on April 2, 2010, and departs from a 28.5 deg parking orbit. 
Two maneuvers are required to correct this new outbound trajectory so that it arrives 
at the same lunar orbit as the reference. Figure 6-2 illustrates the difference between 

Figure 6-1 An illustration of the example reference low-energy lunar transfer, shown in 
the Sun–Earth rotating frame from above the ecliptic, where the Sun is fixed to the left 

c
California (Web Site: http://www.univelt.com), all rights reserved; reprinted with permission 
of the AAS). 

[190] (Copyright © 2012 by American Astronautical Society Publications Office, San Diego, 
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Figure 6-2 The targeted Earth departure compared with the reference Earth departure [191] 
(Acta Astronautica by International Academy of Astronautics, reproduced with permission of 
Pergamon in the format reuse in a book/textbook via Copyright Clearance Center). (See insert 
for color representation of this figure.) 

the Earth departures of the reference trajectory and the newly adjusted trajectory. 
Figure 6-3 shows the difference between these transfers, as viewed from above in the 
Sun–Earth rotating reference frame. Finally, Fig. 6-4 shows a top-level view of 21 
such trajectories that depart the Earth on 21 different days and all arrive at the Moon 
at the same time at the same orbit. The details of these trajectories, and whether or 
not they should vary in any given way, is described later. 

The performance of the launch period for this example mission depends on which 
controls are available. For instance, if one is only permitted to vary the launch time 
and the trans-lunar injection, while keeping the dates of the trajectory correction 
maneuvers constant and keeping the geometry of the lunar orbit insertion constant, 
then the spacecraft must be capable of performing at least 730 m/s of ΔV to reach 
a 100-km circular polar orbit about the Moon. But if the dates of the TCMs are 
permitted to vary as well as the magnitude and direction of the lunar orbit insertion, 
then the spacecraft’s fuel budget may be reduced such that it must perform only 
706 m/s of ΔV on the most challenging launch day of a 21-day launch period. 
However, these controls may not be available to the mission. Figure 6-5 illustrates 
the total Δ V that must be performed for a spacecraft in each of five different 
launch period configurations. One can see that the launch period ΔV cost may be 
reduced even by adjusting a single parameter; for instance, Launch Period 3 requires 
approximately 10.7 m/s less ΔV than Launch Period 2 and the only thing different is 
that the date of the second TCM is performed 10 days later in each trajectory. 

The illustrations shown here are representative of one example lunar mission. 
This section explores several hundred such missions and characterizes any statistical 
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Figure 6-3 The final targeted lunar transfer compared to the reference transfer, viewed in 
the Sun–Earth rotating frame from above the ecliptic [191] (Acta Astronautica by International 
Academy of Astronautics, reproduced with permission of Pergamon in the format reuse in a 
book/textbook via Copyright Clearance Center). 

Figure 6-4 An example of 21 trajectories that depart the Earth from 21 different days and 
all arrive at the Moon at the same time, inserting into the same lunar orbit. The trajectories are 
viewed in the Sun–Earth rotating frame from above the ecliptic. 
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Figure 6-5 Several example launch periods for the example lunar mission, depending on 
which controls are fixed, their fixed values, and which controls are permitted to vary. (See 
insert for color representation of this figure.) 

findings that provide mission managers rules of thumb for estimating the costs of 
establishing a launch period for a given low-energy transfer. 

6.5.3 Targeting Algorithm 

Each lunar mission and its corresponding launch period is constructed here using a 
straightforward procedure that is described as follows. Once again, this algorithm 
is formulated for missions to low lunar orbits, though it may be easily modified for 
other destinations. 

Step 1. First, a target lunar orbit is selected and a reference low-energy lunar transfer 
is constructed. The transfers used here have been taken from the surveys pre
sented in Section 4.4, which provides many more details about these transfers, 
but to summarize, each transfer targets a low lunar orbit that is constructed 
by setting its semi-major axis to 1837.4 km, its eccentricity to zero, and its 
inclination to 90 deg in the International Astronomical Union (IAU) Moon 
Pole coordinate frame. This defines a circular, polar orbit with an altitude of 
approximately 100 km. Its longitude of ascending node, Ω, and argument of 
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periapse, ω, are selected from the surveys and can take on a wide variety of 
combinations. 

An impulsive, tangential LOI is applied at the orbit’s periapse point on a 
specified date. The LOI ΔV magnitude is taken from the surveys. It is set 
to generate a trajectory that originates at the Earth via a simple low-energy 
transfer: one that contains no close lunar encounters or Earth-phasing orbits. 
The ΔV value is at least 640 m/s and is the least ΔV needed to construct a 
transfer that requires fewer than 160 days to reach an altitude of 1000 km or 
less above the Earth when propagated backward in time. Table 6-3 summarizes 
several example transfers that target low lunar orbits that each have an Ω of 
120 deg; these may be seen in the surveys illustrated in Figs. 4-6, 4-7, and 4-8 
and in Table 4-4 in Section 4.4. 

Each reference trajectory generated in this study has no maneuvers and does 
not target any particular Earth orbit when propagated backward in time. 

Step 2. Second, the mission’s LEO parking orbit and trans-lunar injection time are 
specified. The LEO parking orbits used in this study are all 185-km circular 
orbits with inclinations of 28.5 deg, as previously described. The orbit’s node, 
ΩLEO, and the location of the trans-lunar injection (TLI) maneuver about the 
orbit, νLEO, are permitted to vary; the TLI is performed impulsively and tangent 
to the orbit. The values of Ω and νLEO may initially be set to any arbitrary 
angle, for example, to 0 deg. 

Step 3. If the LOI maneuver is permitted to vary, which it is in the majority of the 
missions studied here, then the third step is to adjust the low-energy transfer 
such that its perigee passage occurs at the time of the TLI. This is performed 

−→ 
by searching for the smallest change in the LOI ΔV that results in a new 
low-energy transfer that originates at the Earth on the date of the TLI, or at 

Table 6-3 A summary of the performance parameters of several example simple 
low-energy lunar transfers. None of these transfers includes any Earth phasing orbits or 
lunar flybys [190] (Copyright c© 2012 by American Astronautical Society Publications 
Office, San Diego, California (Web Site: http://www.univelt.com), all rights reserved; 
reprinted with permission of the AAS). 

Traj 
# 

Ω 
(deg) 

ω 
(deg) 

ΔVLOI 

(m/s) 
Duration 

(days) 
LEO Inclination (deg) 
Equatorial Ecliptic 

C3 

(km2/s2) 

1 120.0 169.2 669.3 83.483 29.441 6.129 −0.723 
2 120.0 103.8 692.1 85.287 25.688 34.778 −0.723 
3 120.0 70.2 743.9 93.598 57.654 74.955 −0.667 
4 120.0 225.3 716.0 93.621 134.322 112.840 −0.657 
5 120.0 99.9 697.5 110.060 83.127 61.624 −0.697 
6 120.0 186.9 673.2 122.715 23.941 3.088 −0.712 
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least one that has a perigee on that date even if the perigee altitude is higher 
than 1000 km. The optimization package sparse nonlinear optimizer (SNOPT) 
was used for the missions presented here, but other algorithms may certainly 
be used. 

Step 4. The radius of the low-energy transfer with respect to the Earth at a time 
20 days after the TLI is noted. The TLI ΔV magnitude, ΔVTLI, is set to a 
value that takes the Earth-departure trajectory out to that distance at that time. 
The spacecraft is beyond the orbit of the Moon by that time, assuming no 
Earth-phasing orbits, and not yet at its apogee. 

Step 5. The values of ΩLEO and νLEO are adjusted to minimize the difference in 
position between the Earth-departure and the target low-energy transfer at a 
time 20 days after TLI. After convergence, the algorithm is repeated, this time 
permitting Δ VTLI to vary as well. It is typically the case that the Earth-
departure trajectory will intersect the target low-energy transfer at that time 
when all three variables are permitted to vary, though it is not necessary. Once 
again this study implemented the SNOPT package to perform the optimization. 

Step 6. Two deterministic maneuvers are added to the trajectory: TCM1 at a time 
21 days after TLI, and TCM2 at a time halfway between TCM1 and LOI. It is 
intentional that the first maneuver be placed near 20 days but not at a value of 
20 days in order to improve the performance of the optimization algorithm in 
the next step [183]. A single-shooting differential corrector (Section 2.6.5.1) 
may be used to target the values of Δ VTCM1 and Δ VTCM2 to generate a 
continuous end-to-end trajectory. 

Step 7. Finally, all control parameters are varied using an optimizer to minimize the 
total transfer ΔV of the trajectory. This study again used the SNOPT package 
to perform the optimization. The missions generated here permitted eight 
control variables to vary: the three Earth-departure parameters ΩLEO, νLEO, 
and ΔVTLI; the dates of the two trans-lunar maneuvers tTCM1 and tTCM2; and 
the three components of the LOI ΔV, namely, ΔVx 

LOI, and ΔVz 
LOI. When LOI, ΔVy 

the eight parameters are adjusted, an Earth-departure trajectory is generated 
out to the time of TCM1, a lunar-arrival trajectory is generated backward in 
time from LOI to the time of TCM2, and a bridge trajectory is generated 
connecting TCM1 and TCM2 using a single-shooting differential corrector 
(Section 2.6.5.1). The total transfer ΔV that is minimized includes the sum of 
the maneuvers that are typically required by the spacecraft, namely, the sum of 
ΔVTCM1, ΔVTCM2, and ΔVLOI, but not the TLI ΔV. The dates of the TLI and 
LOI are fixed, and the dates of TCM1 and TCM2 are constrained to be at least 
four days from any other maneuver to facilitate relaxed spaceflight operations. 

When the optimizer has converged, the performance of the trajectory compared 
with the reference low-energy transfer is recorded. It is often the case that the 
differential corrector will converge on a local minimum and not the global minimum; 
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hence, this process is repeated with adjustments in the eight parameters to identify 
the lowest local minimum possible. This will be discussed more later. 

To summarize, this procedure constructs a practical, two-burn, low-energy lunar 
transfer between a specified Earth departure and a specified lunar arrival. The altitude, 
eccentricity, and inclination of the Earth parking orbit are specified and fixed, as is the 
date of the trans-lunar injection maneuver. The target lunar orbit, the LOI position, 
and the LOI date are all specified and fixed. The TLI maneuver is constrained to 
be tangential to the parking orbit, though the orientation of the parking orbit may 
vary; the LOI maneuver is not constrained to be tangential. Finally, the dates of 
two trans-lunar maneuvers are permitted to vary, which therefore changes their ΔV 
values. 

To illustrate this entire targeting process, Table 6-4 tracks the eight control vari
ables that have been used to generate the adjusted trajectory shown in Figs. 6-2 
and 6-3. That is, Table 6-4 shows the steps that were taken to adjust the trajec
tory from the reference ballistic transfer, which has an Earth departure inclination 
of 38.3 deg on April 1, 2010, to the desired transfer, which has an Earth departure 
inclination of 28.5 deg on April 2, 2010. The reference trajectory is summarized in 
Step 1: the only control variables set are the components of the LOI ΔV. Step 2 does 
not change any control variables and is hence not shown. Step 3 illustrates the small 
change in the components of the LOI ΔV vector that are required to shift the timing of 
the trajectory’s perigee from April 1, 2010 to April 2, 2010, coinciding with the TLI 
maneuver, though the perigee altitude is now 5200 km. The adjustment amounts to a 
difference of only 3.3 centimeter per second (cm/s) in the LOI ΔV magnitude. Steps 
4–6 construct initial guesses for the departure parameters and place two deterministic 
maneuvers en route to construct a complete end-to-end trajectory. Finally, Step 7 
includes the full optimization, where all eight parameters are permitted to vary and 
the transfer ΔV is minimized. 

During Step 4, initial guesses for ΩTLI and νTLI are needed. In this example they 
are both set to 0 deg; however, it has been observed that the entire procedure may 
converge to different local minima using different combinations of initial guesses for 
these parameters. There are often two local minima that correspond to the typical 
short and long coasts for the Earth departure. In addition, the process often converges 
on different local minima depending on the propagation duration of the initial Earth 
departure. Research indicates that it is typically computationally efficient to perform 
Steps 4–6 numerous times with different initial guesses and then send only the best 
one or two trajectories into Step 7 [190, 191]. This process ensures that the majority 
of local minima are explored without spending too much time in Step 7, which is 
by far the most computationally demanding step. It is likely that additional small 
improvements may be made, but this procedure generates a reliable estimate of the 
minimum transfer ΔV given a reference lunar transfer. 

Taking the preceding into account, this targeting algorithm yields a trajectory that 
requires only 24.1 m/s of deterministic ΔV to compensate for the change in departure 
inclination and departure date. This deterministic ΔV will vary throughout a full 
launch period, but this is a small ΔV penalty compared to the cost of launching into 
parking orbits at widely varying inclinations. 



Ta
bl

e 
6-

4 
T

he
 h

is
to

ry
 o

f t
he

 e
xa

m
pl

e 
lu

na
r t

ra
ns

fe
r’

s 
co

nt
ro

l v
ar

ia
bl

es
 a

s 
th

e 
m

is
si

on
 is

 c
on

st
ru

ct
ed

, w
he

re
 Δ

t T
C

M
1 

is
 th

e 
du

ra
tio

n 
of

 ti
m

e
be

tw
ee

n 
T

L
I a

nd
 T

C
M

1 
an

d 
Δ
t T

C
M

2 
is

 th
e 

du
ra

tio
n 

of
 ti

m
e 

be
tw

ee
n 

T
C

M
1 

an
d 

T
C

M
2 

[1
90

] (
C

op
yr

ig
ht

 c ©
 2

01
2 

by
 A

m
er

ic
an

 A
st

ro
na

ut
ic

al
So

ci
et

y 
Pu

bl
ic

at
io

ns
 O

ffi
ce

, S
an

 D
ie

go
, C

al
if

or
ni

a 
(W

eb
 S

ite
: 

ht
tp

://
w

w
w

.u
ni

ve
lt.

co
m

), 
al

l r
ig

ht
s 

re
se

rv
ed

; r
ep

ri
nt

ed
 w

ith
 p

er
m

is
si

on
 o

f t
he

A
A

S)
. 

T
L

I P
ar

am
et

er
s 

T
C

M
1 

T
C

M
2 

L
O

I 
To

ta
l 

St
ep

 
Ω

 
ν 

Δ
V

 
Δ
t 

Δ
V

 
Δ
t 

Δ
V

 
Δ

V
x

 , 
Δ

V
y

 , 
an

d 
Δ

V
z

 
Tr

an
sf

er
 

# 
de

g 
de

g 
m

/s
 

da
ys

 
m

/s
 

da
ys

 
m

/s
 

m
/s

, E
M

E
20

00
 

Δ
V,

 m
/s

 

1 
-

-
-

-
-

-
-

−
87

.7
28

, −
27

1.
09

0,
 −

58
3.

10
8 


3 

-
-

-
-

-
-

-
−

87
.7

32
, −

27
1.

10
3,

 −
58

3.
13

8 


4 
0.

00
 

0.
00

 
31

97
.4

4 
-

-
-

-
−

87
.7

32
, −

27
1.

10
3,

 −
58

3.
13

8 


5 
−

25
.0

0 
27

.1
8 

31
96

.7
7 

-
-

-
-

−
87

.7
32

, −
27

1.
10

3,
 −

58
3.

13
8 


6 

−
25

.0
0 

27
.1

8 
31

96
.7

7 
21

.0
0 

26
.1

0 
34

.8
4 

6.
37

 
−

87
.7

32
, −

27
1.

10
3,

 −
58

3.
13

8 
68

1.
50

0 
7 

−
25

.0
8 

27
.3

2 
31

96
.7

9 
20

.6
3 

24
.0

9 
34

.8
6 

0.
00

 
−

87
.7

36
, −

27
1.

11
8,

 −
58

3.
16

7 
67

3.
15

5 

DESIGNING A LAUNCH PERIOD 315 

http:http://www.univelt.com


316 OPERATIONS 

6.5.4 Building a Launch Period 

The process described in 6.5.1 may be repeated for each day in a wide range of dates 
to identify a practical launch period. The total transfer ΔV typically rises as the TLI 
date is adjusted further from a reference trajectory’s TLI date. For the purpose of 
these studies, a search is conducted that extends 30 days on either side of the reference 
trajectory’s TLI date and the best, practical, 21-day launch period is identified within 
those 61 days. The 21 days of opportunities do not have to be consecutive, though 
they are typically collected in either one or two segments. Since low-energy transfers 
travel beyond the orbit of the Moon, they may interact with the Moon as they pass 
by, even if they pass by at a great distance. The Moon may boost or reduce the 
spacecraft’s energy as it passes by, depending on the geometry; typically there is a 
point in a launch period where the geometry switches and it is often beneficial to 
avoid launching on one or several days when the geometry is not ideal. 

Figure 6-6 illustrates the transfer ΔV cost required to target the reference lunar 
transfer studied in the previous section as a function of TLI date. Each transfer has 
been generated using the procedure outlined previously, but with a different TLI date. 
The trajectories that launch 5–6 days prior to the reference transfer are significantly 
perturbed by the Moon, though not perturbed enough to break the launch period into 
two segments. This perturbation is also visible in Fig. 6-4, where a sudden change 
in the geometry of the transfers appears. One can see that the least expensive 21-day 
launch period requires a transfer ΔV of approximately 706.2 m/s. 

Figure 6-6 An example 21-day launch period, constructed using the reference lunar transfer 
presented in Fig. 6-1 [190] (Copyright c© 2012 by American Astronautical Society Publications 
Office, San Diego, California (Web Site: http://www.univelt.com), all rights reserved; reprinted 
with permission of the AAS). 
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6.5.5 Reference Transfers 

A total of 288 reference transfers have been used to generate lunar missions with 
realistic, 21-day launch periods, each starting from a 28.5-deg LEO parking orbit. 
These reference trajectories have been randomly sampled from low-ΔV, simple, 
low-energy transfers presented in the surveys found in Section 4.4. The trajectories 
target low lunar orbits with any longitude of ascending node and with any argument 
of periapsis, though the combination of those parameters must yield a satisfactory 
reference transfer. The transfers arrive at the Moon at any of eight arrival times 
evenly distributed across a synodic month between July 11, 2010 at 19:41 UTC and 
August 6, 2010 at 20:37 UTC. The majority of the reference transfers sampled here 
implement lunar orbit insertion maneuvers with magnitudes between 640 m/s and 
750 m/s, though reference transfers have been sampled with LOI ΔV values as high 
as 1080 m/s. These ΔV values correspond with the full cost of capturing and reducing 
the orbit to a 100-km circular orbit; although that process typically involves many 
maneuvers, in this study it will be performed by one maneuver. Finally, reference 
transfers have been sampled with transfer durations between 65 and 160 days. This 
collection of reference transfers makes no assumptions about what sort of mission a 
designer may be interested in, except that each transfer is simple, that is, it includes 
no Earth-phasing orbits nor lunar flybys, and each transfer targets a polar lunar orbit. 

6.5.6 Statistical Costs of Desirable Missions to Low Lunar Orbit 

In general, the algorithms described in this section generate successful launch periods 
with similar characteristics. Figure 6-7 illustrates the total transfer ΔV of several 
example launch periods that have been generated from these reference transfers. One 
notices that many of these launch periods include a single main convex ΔV minimum, 
from which a 21-day launch period is easily identified. Other ΔV curves include two 
or more local minima. The launch periods are designed to have at most two gaps, 
where each gap must be less than 14 days in extent. A particular lunar mission may 
have different requirements dictating the breadth of each segment and/or gap, which 
will likely change the launch period’s cost; the requirements used here are simply 
representative of a real mission. 

It has been found that most 21-day launch periods among the 288 missions studied 
include the reference launch date, though there are many examples that do not, 
including two of those shown in Fig. 6-7. In some cases a practical launch period 
may have extended further than 30 days from the reference launch date and required 
less total ΔV. A particular lunar mission may certainly relax this constraint, but 
these extended launch periods are not explored here in order to keep the constraints 
consistent across every mission studied. 

Once again, one also sees frequent lunar perturbations in the 288 launch periods 
studied, much like the example launch period shown in Section 6.5.4. Since each 
transfer in a particular launch period departs the Earth in approximately the same 
direction, the Moon passes near the transfer’s outbound leg about once every synodic 
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Figure 6-7 Several example curves that illustrate the post-TLI ΔV cost of transferring 
from a 28.5-deg LEO parking orbit at different TLI dates to a given reference low-energy 
transfer, including a highlighted 21-day launch period in each case [190] (Copyright c© 2012 
by American Astronautical Society Publications Office, San Diego, California (Web Site: 
http://www.univelt.com), all rights reserved; reprinted with permission of the AAS). 

month. This causes a brief jump in the launch period. Some transfers do not 
experience any significant perturbations due to their out-of-plane motion. 

Figures 6-8 and 6-9 illustrate two additional views of the six example launch 
periods shown in Fig. 6-7. Figure 6-8 shows the view of each trajectory in each of 
the six launch periods as if viewed from above the ecliptic in the Sun–Earth rotating 
frame, such that the Sun is toward the left in each plot. One notices that some of 
these launch periods traverse toward the Sun and others traverse away from the Sun. 
The transfers arrive at the Moon at the exact same point in each mission, but each 
mission arrives at the Moon at different points in its orbit. The reference transfers are 
sampled randomly to include a wide variety of different target lunar orbit geometries, 
arrival times, and transfer durations. Figure 6-9 illustrates the profile of a spacecraft’s 
distance from the Earth over time while traversing each trajectory in each of the six 
launch periods. One can see that each design involves trajectories with different 
transfer durations, and trajectories that traverse to different maximum distances. The 
optimization processes often shift the epochs of the trajectory correction maneuvers, 
though one can see that the TCM epochs are sometimes shifted more on one trajectory 
than on its neighbors, depending on the sensitivity of that variable on the trajectory’s 
ΔV costs. Similarly, some TLI parameters are shifted more in one trajectory than its 

http:http://www.univelt.com
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Figure 6-8 Each trajectory in each of the six launch periods illustrated in Fig. 6-7, viewed 
from above the ecliptic in the Sun–Earth rotating frame. The Moon’s orbit is shown for 
reference. 

neighbors. It is likely that a mission designer would use these results to guide further 
refinements in the optimization of a real mission. 

The examples shown in Figs. 6-7–6-9 illustrate six missions; the remainder of this 
discussion focuses on the random sample of 288 similar missions. Figure 6-10 shows 
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Figure 6-9 The distance from Earth over time for each transfer in the six launch periods 
shown in Figs. 6-7 and 6-8. The distance to the Moon over time is shown for reference. 

the range of the transfer ΔV values that are contained in each 21-day launch period 
in these 288 missions as a function of their reference transfer ΔV. As an example, 
the launch period illustrated in Fig. 6-6 was generated using a reference transfer with 
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Figure 6-10 The range of transfer ΔV values contained in each 21-day launch period as a 
function of the reference transfer ΔV shown in normal view (top) and exploded view (bottom) 
[190] (Copyright c© 2012 by American Astronautical Society Publications Office, San Diego, 
California (Web Site: http://www.univelt.com), all rights reserved; reprinted with permission 
of the AAS). 

a ΔV of 649 m/s (the ordinate of the plots in Fig. 6-10), and the resulting launch 
period included missions that had transfer ΔV values between 670.6 and 706.2 m/s. 
One can see that the majority of transfers studied here have reference transfer ΔV 
values less than 750 m/s, though the transfers sampled include those with reference 
ΔV values as great as 1080 m/s. The launch period ΔV range often starts above the 

http:http://www.univelt.com
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mission’s reference ΔV, since each mission starts from a 28.5-deg LEO parking orbit 
and the reference transfer typically departs from some other inclination. In a few 
cases, and one extreme case, the launch period ΔV range starts below the reference 
ΔV. This is often possible when the reference transfer has a natural Earth departure 
far from 28.5 deg and a change in the transfer duration reduces the total ΔV. The plots 
in Fig. 6-10 clearly illustrate that the ΔV cost of establishing a 21-day launch period 
is highly dependent on the reference transfer’s total ΔV. The launch period ΔV cost 
of these 288 example transfers requires approximately 71.67 ± 29.71 m/s (1σ) more 
deterministic ΔV than the transfer’s reference ΔV. 

The launch periods studied here include missions that depart the Earth on 21 
different days, and the launch period ΔV cost is the ΔV of the most expensive 
transfer in that set. The departure days do not need to be consecutive, as described 
earlier. In general, increasing the number of launch days included in a launch period 
increases the ΔV cost of the mission. Figure 6-11 shows a plot of the change in 
the launch period ΔV cost of the 288 missions studied here as one adds more days 
to each mission’s launch period, relative to the case where each mission has only a 
single launch day. The line of best fit through these data indicates that on average it 
requires approximately 2.480 m/s per launch day to add days to a mission’s launch 

Figure 6-11 The change in the launch period ΔV cost of the 288 missions studied here as a 
function of the number of days in the launch period. The linear trend has a slope of 2.480 m/s per 
launch day [190] (Copyright © 2012 by American Astronautical Society Publications Office, c
San Diego, California (Web Site: http://www.univelt.com), all rights reserved; reprinted with 
permission of the AAS). 
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period. There is a significant jump in the launch period ΔV when one moves from 
a 1-day launch period to a 2-day launch period. This is due to the fact that the 
Moon’s perturbations often produce a single launch day with remarkably low ΔV 
requirements. The change in a launch period’s required ΔV would be more smooth 
if the effects of lunar perturbations on the Earth-departure leg were ignored. 

It has been noted, when studying Fig. 6-7, that a launch period does not necessarily 
include the reference launch date. However, it is expected that the transfer duration 
of a reference trajectory may be used to predict a mission’s actual transfer duration. 
Figure 6-12 tracks the range of transfer durations within each 21-day launch period 
studied here as a function of the mission’s reference transfer duration. One can see 
that the range of transfer durations is indeed correlated with the reference transfer 
duration. Furthermore, it has been found that the maximum transfer duration of the 
288 launch periods is approximately 15.95 ± 8.66 days longer than the mission’s 
reference duration, the minimum transfer duration is approximately 10.91 ± 7.75 
days shorter than the reference duration, and the total number of days between the 
first and final launch date of a given launch period may be estimated at approximately 
26.86 ± 6.95 days. Hence, one may predict that a mission’s launch period will 
include 21 of about 27 days, centered on a date several days earlier than the reference 
launch date, if one constructs a 21-day launch period using the same rules invoked 
here. 

Figure 6-13 tracks the range of ΔV costs associated with each launch period as a 
function of the duration of the mission’s reference transfer. One can see that there is 
a wide spread of transfer ΔV across the range of durations. As the reference transfer 
duration drops below 90 days, the launch period ΔV cost climbs, which makes sense 
because there is less time to perform maneuvers during the shorter transfers. Beyond 
90 days, there are launch periods with low ΔV requirements for any transfer duration. 

It is expected that the launch period’s ΔV cost is dependent upon the reference 
transfer’s natural Earth departure inclination. It is hypothesized that a reference 
transfer that departs the Earth with an inclination near 28.5 deg will generate a launch 
period that requires less total ΔV than a reference transfer that departs the Earth 
with a far different inclination. Figure 6-14 tracks the launch period ΔV cost of the 
288 missions constructed here as a function of their reference departure inclination 
values. The bottom plot in Fig. 6-14 observes the range of transfer ΔV values as a 
function of the difference between the reference departure inclination value and the 
target 28.5-deg value. A line has been fit to the maximum ΔV for each launch period 
using a least-squares approach, which yields the relationship: 

Launch Period ΔV ∼ (0.470 m/s/deg) × x + 756.5 m/s 

where x is equal to the absolute value of the difference between the reference departure 
inclination and 28.5 deg. The sample set of lunar transfers includes low-ΔV and high
ΔV missions, which may swamp any significant relationship between the launch 
period’s ΔV cost and the reference departure inclination. Nevertheless, it is very 
interesting to observe that the launch period’s ΔV cost does not present a strong 
correlation with the reference departure inclination. 



324 OPERATIONS 

Figure 6-12 The range of transfer durations contained in each 21-day launch period as 
a function of the reference transfer duration. The plot at the bottom shows an exploded 
view, focused on transfer durations between 75 and 115 days [190] (Copyright © 2012c
by American Astronautical Society Publications Office, San Diego, California (Web Site: 
http://www.univelt.com), all rights reserved; reprinted with permission of the AAS). 

To further test the relationship of a launch period to the reference LEO inclination, 
each launch period’s ΔV has been reduced by its reference ΔV so that each launch 
period may be more closely compared. Figure 6-15 shows the same two plots as 
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Figure 6-13 The range of transfer Δ V costs contained in each 21-day launch 
period as a function of the reference transfer’s duration [190] (Copyright © 2012 by c
American Astronautical Society Publications Office, San Diego, California (Web Site: 
http://www.univelt.com), all rights reserved; reprinted with permission of the AAS). 

shown in Fig. 6-14, but with each mission’s reference ΔV subtracted from its launch 
period ΔV range. One can see that the launch period ΔV is not well correlated with the 
reference departure inclination. The linear fit has a slope of only 0.206 m/s per degree 
of inclination away from 28.5 deg. It appears that a 21-day launch period absorbs 
most of the ΔV penalty associated with inclination variations. The natural Earth 
departure inclination of a transfer certainly varies with transfer duration, and it has 
already been noticed that the launch period is often not centered about the reference 
transfer’s TLI date. This result is useful, because it indicates that the natural Earth 
departure inclination is not a good predictor of the launch period ΔV requirement 
of a reference transfer. The relationship of the low-energy transfer ΔV and the TLI 
inclination is further explored in the next section. 

6.5.7 Varying the LEO Inclination 

The results presented previously in this section have only considered missions that 
begin in a LEO parking orbit at an inclination of 28.5 deg relative to the Equator, 
corresponding to launch sites such as Cape Canaveral, Florida. Spacecraft missions 
certainly depart the Earth from other launch sites; launch vehicles from those sites 
typically deliver the most mass to low Earth orbit if they launch into a parking 
orbit at an inclination approximately equal to their launch site’s latitude. Hence, it 
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Figure 6-14 The range of transfer ΔV costs contained in each 21-day launch period as a 
function of the reference transfer’s Earth departure inclination (top) and the absolute value 
of the difference between the reference inclination and 28.5 deg (bottom) [190] (Copyright 
c© 2012 by American Astronautical Society Publications Office, San Diego, California (Web 

Site: http://www.univelt.com), all rights reserved; reprinted with permission of the AAS). 

is of interest to determine the ΔV cost required to depart the Earth from any LEO 
inclination and transfer to the same lunar orbit using a particular low-energy reference 
transfer. 

http:http://www.univelt.com


DESIGNING A LAUNCH PERIOD 327 

Figure 6-15 The same two plots as shown in Fig. 6-14, but with each mission’s reference 
ΔV subtracted from its 21-day launch period ΔV range [190] (Copyright c© 2012 by 
American Astronautical Society Publications Office, San Diego, California (Web Site: 
http://www.univelt.com), all rights reserved; reprinted with permission of the AAS). 

The algorithms described here have been used to generate missions that depart 
the Earth from LEO parking orbits at a wide range of inclinations and then target 
the same reference low-energy transfer discussed earlier (described in Section 6.5.2 
and illustrated in Fig. 6-1). The reference trajectory naturally departs the Earth on 
April 1, 2010, from an orbital inclination of approximately 38.3 deg; hence, a mission 
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that departs the Earth at that time from that orbit requires no deterministic maneuvers 
en route to the Moon. Upon arrival at the Moon, the reference trajectory requires a 
649.0-m/s orbit insertion maneuver to impulsively enter the desired 100-km circular 
lunar orbit. Any mission that departs the Earth from a different inclination will 
require deterministic TCMs and/or a different orbit insertion maneuver. 

Figure 6-16 illustrates how the deterministic ΔV varies for missions that depart 
the Earth at different LEO inclination values and target the same lunar orbit. The 
dates and times of the trans-lunar injection and lunar orbit insertion are fixed. The 
total transfer ΔV is shown on the top, and the difference between each mission’s 
total ΔV compared to the reference transfer’s total ΔV is shown on the bottom. One 
can see that the ΔV cost of the mission rises as a function of the difference between 
the mission’s departure inclination and the reference transfer’s departure inclination. 
The cost is approximately 0.97 m/s per degree of inclination change for missions with 
LEO inclinations greater than 20 deg. The transfer cost increases much more rapidly 
as a mission’s departure approaches equatorial. As the departure inclination drops, 
the system gradually loses a degree of freedom: the LEO parking orbit’s ascending 
node becomes less influential on the geometry of the departure. The ascending node 
is no longer defined for equatorial departures, and the lunar transfer requires greater 
than 120 m/s more deterministic ΔV than the reference transfer. 

As Fig. 6-16 illustrates, the total ΔV of a mission to the reference lunar orbit is 
minimized if the LEO parking orbit has an inclination of 38.3 deg, provided that the 
trans-lunar injection is performed on April 1, 2010. If the TLI date is shifted, then the 
optimal LEO inclination is likely to shift as well. Hence, the ΔV cost of a full 21-day 
launch period cannot be strictly predicted by observing the difference in inclination 
between a desired LEO parking orbit and the reference departure. 

Figure 6-17 illustrates three launch periods, corresponding to missions that depart 
from LEO parking orbits with inclinations of 20, 50, and 80 deg. One can see that the 
launch period shifts in time, illustrating that the transfer duration may significantly 
alter the reference trajectory’s natural departure inclination. Figure 6-18 illustrates 
the total transfer ΔV for each launch opportunity of a 21-day launch period departing 
from a wide range of departure inclinations. One can see that the launch period ΔV is 
dramatically higher for low inclinations and that the ΔV changes very little from one 
inclination to another for higher inclination values. It is interesting that the missions 
with higher inclinations require less ΔV than missions near the reference transfer’s 
departure inclination. The low-ΔV points in the lower left part of the plot correspond 
to brief opportunities in those launch periods when the Moon passes through an ideal 
location in its orbit to reduce the transfer ΔV. 

6.5.8 Targeting a Realistic Mission to Other Destinations 

The algorithms presented in Section 6.5.3 have been applied to the problem of 
constructing realistic missions to low lunar orbit. The algorithms require little mod
ification for missions to other destinations, such as lunar libration orbits or the lunar 
surface. 
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Figure 6-16 How deterministic ΔV varies for different LEO inclination values. Top: The 
total transfer ΔV for missions that depart the Earth on April 1, 2010, at different inclinations 
and arrive at the same reference lunar orbit. Bottom: The difference in the total transfer 
ΔV for these missions compared with the reference low-energy transfer, which departs at 
an inclination of ∼38.3 deg [190] (Copyright c© 2012 by American Astronautical Society 
Publications Office, San Diego, California (Web Site: http://www.univelt.com), all rights 
reserved; reprinted with permission of the AAS). 

Missions to the Lunar Surface. Certainly a mission to the lunar surface may first 
target an intermediate lunar orbit, such as a low lunar orbit or a lunar libration orbit. 
Intermediate orbits provide some risk-reduction in the case of a contingency, because 
one may postpone the landing until the system is fully prepared to land. Alternatively, 
one may construct a mission that is designed to land immediately upon arrival at the 
Moon, with the option to divert into a parking orbit of some kind in the event of a 
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Figure 6-17 Three launch periods for missions to the reference lunar orbit, where each 
launch period is designed to accommodate a specific LEO inclination; namely, 20 deg (top), 
50 deg (middle), and 80 deg (bottom). The Moon perturbs the outbound trajectories for those 
missions that launch about 5 days before the reference transfer [190] (Copyright c© 2012 
by American Astronautical Society Publications Office, San Diego, California (Web Site: 
http://www.univelt.com), all rights reserved; reprinted with permission of the AAS). 

contingency. In this scenario, or in the scenario where the mission design has no 
option but to land immediately, the targeting algorithms described in Section 6.5.3 
may be easily modified to accommodate a lander instead of an orbiter. 

A lander may be able to adjust its time of arrival or its incoming velocity magnitude, 
flight path angle, or flight path azimuth. If these parameters must be held fixed, for 
example, to reduce the complexity, risk, or cost of the design, then one may instead 
introduce a third trajectory correction maneuver, performed some significant amount 
of time prior to landing, in order to minimize the total launch period ΔV. 

Missions to Lunar Libration Orbits. There are many reasons why a mission to a 
lunar libration orbit, or other three-body orbit, would benefit by designing a single 
libration orbit and constructing a launch period that inserted the spacecraft into that 
same libration orbit. For instance, a mission design team building a lunar lander 
and/or sample return mission may be interested in focusing their efforts to validate 
one specific landing sequence, and would have to spend a great deal more effort to 
support 21 different landing sequences, with varying geometry and timing. It may 
therefore be less expensive and more reliable to implement a mission that targets 
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Figure 6-18 The total transfer ΔV for each opportunity of a 21-day launch period for missions 
to the reference lunar orbit, departing from LEO parking orbits with varying inclination values 
[190] (Copyright c© 2012 by American Astronautical Society Publications Office, San Diego, 
California (Web Site: http://www.univelt.com), all rights reserved; reprinted with permission 
of the AAS). 

a particular lunar libration orbit, no matter which day it launches on, even if that 
mission design required slightly higher ΔV budget. 

Studies have demonstrated that the algorithms presented here may be used very 
successfully in conjunction with a libration orbit insertion maneuver [183, 184]. 

6.5.9 Launch Period Design Summary 

The goal of this section is to characterize the ΔV costs associated with building a 
21-day launch period for a practical mission to the Moon via a low-energy transfer. 
We have sampled 288 different low-energy transfers between the Earth and polar 
orbits about the Moon and have constructed practical 21-day launch periods for each 
of them, using a 28.5-deg LEO parking orbit and no more than two deterministic 
maneuvers. The lunar orbits have a wide range of geometries, though they are all 
polar and have an altitude of approximately 100 km. The reference low-energy 
transfers include no Earth-phasing orbits nor close lunar flybys, and they require 
between 65 and 160 days of transfer duration. Each mission has been constructed 
by using a sequence of steps, varying eight parameters to minimize the transfer ΔV 
cost. The eight variable parameters include the parking orbit’s ascending node, the 
trans-lunar injection’s location in the parking orbit, the trans-lunar injection’s ΔV, the 

http:http://www.univelt.com


332 OPERATIONS 

times of two deterministic maneuvers en route to the Moon, and three components 
of the lunar orbit insertion maneuver. All other aspects of the transfer are fixed when 
building a particular mission. 

Several conclusions may be easily drawn from the results presented here. First of 
all, the cost of a launch period is obviously dependent on the number of launch days 
in the period. The transfers constructed here demonstrate that it costs on average 
approximately 2.5 m/s per day added to a launch period; hence, the average 21-day 
launch period requires about 50 m/s more deterministic ΔV than a 1-day launch period 
for a given transfer. The cost of a particular launch period may rise nonlinearly as 
one adds days to the launch period, such that it may be the case that additional days 
cost exponentially more ΔV or perhaps that additional days do not cost any additional 
ΔV. The statistical cost of establishing a 21-day launch period to the 288 reference 
transfers studied in this section is approximately 71.7 ± 29.7 m/s (1σ), where the 
additional ΔV of more than the 50 m/s is required to accommodate a departure from 
a 28.5-deg LEO parking orbit. The 21 opportunities in the launch period may be 
on 21 consecutive days, and frequently are, but typically include one or two gaps. 
The average launch period for these 288 missions requires a total of 27 days; the 
vast majority of the launch periods may be contained within 40 days. Finally, we 
have shown that there is no significant trend between the total launch period ΔV for 
these 288 missions and their reference departure inclination values or their reference 
transfer durations, except for short transfers with durations below 90 days. 

An additional study has been performed to observe how a mission’s ΔV changes 
as a function of the particular LEO inclination selected. A mission that departs 
at a particular time requires approximately 0.97 m/s more transfer ΔV per degree 
of inclination change performed, assuming that the departure inclination is greater 
than 20 deg. The total transfer ΔV cost increases dramatically as the departure 
inclination approaches 0 deg. These trends change when considering a full 21-day 
launch period. The required launch period ΔV is still high for missions that depart 
from nearly equatorial LEO parking orbits, but the variation in the launch period ΔV 
is reduced for missions that depart at higher inclinations. 

6.6 NAVIGATION 

Spacecraft traversing low-energy lunar transfers may be navigated in very similar 
fashions to those following interplanetary transfers. Indeed, there are many sim
ilarities: the trajectories require many weeks, they traverse well beyond the orbit 
of the Moon, they require trajectory correction maneuvers, etc. There are several 
differences, including the fact that low-energy lunar transfers remain captured by 
the Earth, they are not well-modeled by conic sections, and they are unstable. This 
section discusses how these similarities and differences impact the navigation and 
operation of the spacecraft during such transfers. 
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6.6.1 Launch Targets 

Launch vehicle operators typically target three parameters when injecting spacecraft 
onto interplanetary trajectories: one describing the target energy, namely, C3, and 
two angular measurements describing the orientation of the departure asymptote, 
namely, the right ascension and declination of the launch asymptote, RLA and DLA, 
respectively. Low-energy lunar transfers, conversely, remain captured by the Earth 
and do not have launch asymptotes. The GRAIL project used two similar target 
parameters to describe the orientation of the departure ellipse—the right ascension 
and declination of the instantaneous apogee vector (RAV and DAV, respectively) 
at the time of the launch vehicle’s target interface point (TIP). Combined with the 
target C3 parameter, these three targets describe a departure that keeps the expected 
correction ΔV after the TIP to a minimum. 

6.6.2 Station-Keeping 

As illustrated in Chapter 2, low-energy lunar transfers are unstable; they depend 
on a careful balance of the gravitational attraction of the Sun, Earth, and Moon. 
Any random deviation from the designed trajectories will grow exponentially over 
time. Therefore, a spacecraft traversing a low-energy lunar transfer in the presence of 
realistic uncertainties will require TCMs to remain on a desirable course. Fortunately, 
low-energy lunar transfers are stable enough that maneuvers are typically only needed 
every 4–8 weeks, though more are needed to support any lunar approach and/or lunar 
flybys. 

The cost of performing statistical corrections on a low-energy lunar transfer may 
be estimated by considering the stability of trajectories in each region of space that 
the transfer passes through. First, typical spacecraft missions plan to perform a 
maneuver soon after the trans-lunar injection in order to clean up any injection errors. 
For instance, the GRAIL mission planned to have both spacecraft perform a maneuver 
within a week after injection. Next, the spacecraft spend 1–3 months traversing a 
region of space far from the Earth, typically near the Sun–Earth L1 or L2 points. 
The stability of this portion of the trajectory may be approximated by measuring the 
stability of typical Sun–Earth libration orbits—as illustrated in Section 3.4.1. As the 
spacecraft approach the Moon either for a lunar flyby or for their final lunar approach, 
the trajectories become more unstable. The stability of the trajectories near the Moon 
may be approximated by measuring the stability of typical Earth–Moon libration 
orbits. 

There are many ways to measure the stability of a trajectory, but a rather intuitive 
way is to consider the trajectory’s perturbation doubling time, that is, the amount of 
time it takes for a spacecraft to double its distance away from a reference trajectory 
(see Section 2.6.8.3 on page 80). If at time t0 a spacecraft is 100 km away from its 
reference trajectory, then at time t0 + τ̂ the spacecraft will be approximately 200 km 
away from its reference, and at time t0 + 2τ̂ the spacecraft will be approximately 
400 km away from its reference, and so on, where τ̂ is the perturbation doubling 
time. 
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Typical halo orbits about the Sun–Earth L1 and L2 points have τ̂ values of about 
17 days. Hence, one may assume that the position error of a spacecraft traversing 
a low-energy lunar transfer near those orbits will double roughly every ∼17 days. 
Fortunately, this is a rather long time for most spacecraft operations unless the space
craft has particularly strict flight path requirements. The GRAIL mission scheduled 
two trajectory correction maneuvers per spacecraft while they traversed the region of 
space near EL1, though there were deterministic needs for those maneuvers as well. 
The Genesis mission performed maneuvers every couple of months while traversing 
its EL1 orbit, requiring only about 10 m/s per year of station-keeping [87]. The Solar 
and Heliospheric Observer’s (SOHO) spacecraft has demonstrated the ability to re
main in orbit about the EL1 point for even less ΔV. SOHO’s first eight station-keeping 
maneuvers (SKMs) were executed between May 1996 and April 1998, imparting a 
total ΔV of approximately 4.77 m/s: an average of one maneuver per 99 days with 
an average maneuver ΔV of only 0.596 m/s [217]. 

As a spacecraft approaches the Moon, either for the targeted arrival or for a 
lunar flyby, its trajectory becomes more unstable and the perturbation doubling time 
shrinks. If the spacecraft arrives at a lunar libration orbit via a transfer such as 
those presented in Chapter 3 then its stability may be measured by the perturbation 
doubling time of typical halo orbits about the Earth–Moon libration points. If the 
spacecraft’s destination is a low lunar orbit, the lunar surface, or a flyby, then this 
measurement is only an approximation and more analysis is needed. Nevertheless, 
typical halo orbits about the Earth–Moon L1 and L2 points have τ̂ values of about 1.4 
days. Not surprisingly, a spacecraft’s position error doubles about twelve times faster 
in the Earth–Moon system than it does in the Sun–Earth system. Depending on the 
mission, it may be necessary to perform maneuvers as often as 1–2 times per week to 
traverse Earth–Moon libration orbits. Even so, the two Acceleration, Reconnection, 
Turbulence, and Electrodynamics of the Moon’s Interaction with the Sun (ARTEMIS) 
spacecraft successfully navigated several months of libration orbits about both the 
Earth–Moon L1 and L2 points, demonstrating that such operations are viable. 

There are two fundamentally different strategies that have been implemented 
when designing the SKMs of historical missions, namely, tight control and loose 
control. The term tight control describes a strategy where each SKM is designed 
to bring the spacecraft’s trajectory back to a designed reference trajectory. The 
International Sun–Earth Explorer-3 (ISEE-3) and Genesis spacecraft maneuvers are 
good examples of missions that implemented tight station-keeping control [218, 219]. 
This strategy is used when the spacecraft’s trajectory has particular requirements; for 
the case of Genesis, the trajectory ultimately placed the spacecraft on a course to 
enter the atmosphere for a landing in Utah. Each SKM is designed such that the 
resulting trajectory intersects the reference trajectory at the time of the next planned 
SKM. Conversely, a loose station-keeping strategy describes one where a spacecraft 
may travel anywhere within some wide corridor and the particular route taken is 
not important. For instance, the SOHO spacecraft must remain in orbit about the 
Sun–Earth L1 point, but the particular path about the L1 point is not important. Thus, 
SOHO’s trajectory is re-optimized each time an SKM is designed [217]. SOHO’s 
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loose control has resulted in station-keeping ΔV costs just over 2 m/s per year, nearly 
four times lower than ISEE-3’s tight station-keeping control costs. 

In summary, one may expect to perform a TCM soon after launch in order to 
clean up injection errors, followed by TCMs every 4–8 weeks when the spacecraft is 
traversing the cruise phase far from the Earth or Moon, followed by one or two TCMs 
per lunar approach. If the spacecraft’s itinerary includes lunar libration orbits, or other 
unstable three-body orbits, then one may expect to perform TCMs every 3–7 days 
during those phases. The total navigation ΔV cost depends on the spacecraft and 
its propulsion system’s performance, but it is certainly possible to navigate such 
trajectories for a modest ΔV – on the order of 1–10 m/s per year. 

6.6.2.1 Station-Keeping Strategies Numerous station-keeping strategies have 
been formulated since investigators began applying libration orbits to practical space
craft mission designs [6, 119]. Most developments have been in support of flight 
projects and proposals that involved trajectories in the Sun–Earth system [218, 220– 
230]. More recent investigations have examined station-keeping strategies within the 
Earth–Moon system, especially with the development and success of the ARTEMIS 
mission [17, 186, 231–234]. Folta et al., surveyed a wide variety of station-keeping 
strategies with the purpose of applying a desirable strategy to the ARTEMIS mission 
[231]. Ultimately, each of the ARTEMIS station-keeping maneuvers was designed 
using a gradient-based optimizer that ensured the spacecraft would remain on the li
bration orbit for the next few revolutions. This method kept the total station-keeping 
fuel cost low without requiring the generation of a reference trajectory. After the ma
neuvers were designed, a later study found that each of the maneuvers closely aligned 
with the local stable eigenvector at that point of the spacecraft’s orbit [235]. This 
conclusion has certainly prompted researchers to investigate if the stable eigenvector 
is a good initial guess for a near-optimal station-keeping strategy. 

While ARTEMIS employed a loose station-keeping strategy very successfully, its 
strategy was focused on the short term: ensuring that the spacecraft remained on 
a desirable trajectory for the next few revolutions about the Lagrange point. There 
is concern that any short-term strategy may fail over the long term, resulting in a 
trajectory that diverges from the desired orbit. Recent work has applied tools such as 
the multiple-shooting differential corrector to the goal of achieving a minimum-ΔV 
long-term station-keeping strategy [234]. This goal is a rich, challenging problem 
with a wide variety of possible constraints and degrees of freedom available. The 
solution may differ for each spacecraft mission, with its own operational constraints 
and desirable mission characteristics. 

In the following sections, we study several aspects of the station-keeping problem 
in order to provide a background for the general problem of station-keeping on a 
libration orbit. The reader is encouraged to explore different strategies, particularly 
those surveyed by Folta et al. [231]. We present the results of several analyses, in
cluding tight and loose station-keeping strategies. Typical low-energy lunar transfers 
are highly constrained, such that there are often not enough degrees of freedom avail
able to the mission designer to employ a loose station-keeping strategy. However, if 
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the goal of the low-energy lunar transfer is to enter a libration orbit and to remain 
there, then a loose strategy may be beneficial. 

6.6.2.2 Station-Keeping Simulations Each of the simulations studied here 
uses the same set of assumptions, varying only one or two aspects of the station-
keeping problem in order to keep the results as comparable as possible. The sim
ulations employ models that are representative of the real solar system, with some 
simplifications to speed up the computations. The DE421 ephemerides are used to 
approximate the motion of the Sun, Moon, and planets (Section 2.5.3) and each of the 
bodies is approximated as a point-mass using the masses presented in Section 2.2. So
lar radiation pressure is modeled using a constant solar flux of 1.019794376×1017 N 
and a flat plate model where the mass of the spacecraft is 1000 kg and the surface area 
is 10 m2 . The trajectories are integrated using JPL’s Mission-Analysis, Operations, 
and Navigation Toolkit Environment (MONTE) software (Section 2.7.1). 

Each simulation includes a truth set of dynamics and an estimated set of dynamics, 
which differ enough to introduce dynamical errors into the navigation problem. The 
truth set includes the gravitational forces of the Earth, Sun, and Moon and uses a 
value of 1.00 for the coefficient of radiation of the solar pressure. The estimated set of 
dynamics also includes the gravitational forces of all of the other planets in the Solar 
System and uses a value of 1.03 for the coefficient of radiation. These perturbations 
are somewhat arbitrary and have been selected to approximate the level of accuracy 
of flight operations. 

The reference trajectory for the simulations is a southern halo orbit about the 
Earth–Moon L2 point with a z-axis amplitude of approximately 10,000 km (see 
Section 2.6.6.3 and Section 2.6.9.4). The reference epoch is January 1, 2017. The 
perturbations depend on the reference epoch, though they will not likely impact the 
results very much. It is more likely that the choice of orbit will change the results of 
the simulations. 

Each SKM in each of these simulations is generated using a similar process. 
First, the state of the spacecraft is propagated from one time to the next using the 
truth dynamics. At the time of a station-keeping maneuver, the estimated state of 
the spacecraft at that maneuver is computed by taking the truth state at that time 
and perturbing it with orbit determination errors. The resulting state is used as 
the initial state for the station-keeping strategy, whatever it may be. Each station-
keeping strategy studied here involves propagating estimated trajectories into the 
future. These trajectories are propagated using the estimated dynamics, which again 
differ from the truth dynamics. Once a station-keeping ΔV is determined, that ΔV is 
applied to the true spacecraft state. Finally, a maneuver execution error is added to 
the state as well, and the resulting state is propagated using the truth dynamics. This 
process is repeated for each station-keeping maneuver in the simulation. 

The orbit determination errors are modeled as spherically symmetric distributions, 
such that each of the three Cartesian position coordinates and each of the three 
Cartesian velocity components is perturbed using independent Gaussian errors, with 
zero mean and standard deviations of 100 meters (m) for position and 1 millimeter 
per second (mm/s) for velocity. Hence, the orbit determination errors may be in 
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any direction, with net 1-σ position uncertainties of approximately 173 m and net 
1-σ velocity uncertainties of approximately 1.73 mm/s. These errors are similar 
in magnitude to those observed by the ARTEMIS mission navigators [235]. The 
maneuver execution error model applies a similar spherically distributed error, such 
that a Gaussian perturbation of zero mean and 2 mm/s is applied to each of the three 
components, no matter what size of maneuver it is. Hence, the net 1-σ uncertainty 
is approximately 3.46 mm/s. The maneuver execution error could be a realization 
of a burn duration error, an efficiency error, a pressure regulation error, etc. Since it 
is not clear what is causing the error, the execution error component of the net ΔV 
is not included in any computation of the average or total station-keeping maneuver 
ΔV cost presented below. 

Finally, each simulation is repeated at least 30 times to generate statistical results. 

6.6.2.3 Tight Station-Keeping A very common tight station-keeping strategy 
is to correct a spacecraft’s trajectory in the presence of errors by building each station-
keeping maneuver to target the position of the spacecraft’s reference trajectory at the 
time of the following station-keeping maneuver. If all goes well, the station-keeping 
maneuver will execute perfectly, and the modeled dynamics will perfectly match the 
true dynamics. In that case, the spacecraft would arrive at the reference trajectory at 
the time of the next maneuver and perform that maneuver to match its velocity with 
the reference trajectory. Of course, in reality the spacecraft never arrives precisely 
on the reference, but must perform another maneuver to correct for additional errors. 

Figures 6-19 and 6-20 illustrate this strategy. Figure 6-19 shows a top-down view 
of the reference halo orbit with a very exaggerated trajectory attempting to follow it. 
In this case, the SKM are performed at 1-day intervals and the errors are huge, just 
for visualization purposes. The illustration in Fig. 6-20 shows the difference between 
the estimated and reference trajectory for a simulation that uses the proper error 
distributions. The black curve is the truth trajectory, the “x”s indicate the estimated 
state of the spacecraft at the time of each SKM, and the gray curves illustrate the 
target trajectories built with the intention to return the spacecraft to the reference. 

This tight station-keeping strategy has been applied to a wide range of SKM 
periods, including periods as short as 0.5 days and as long as 12 days. Figures 6-21 
and 6-22 present the resulting range of maneuver ΔV costs. One can see many 
interesting features in the results. First, Fig. 6-21 presents a clear trend such that the 
average SKM magnitude grows as the duration of time between maneuvers grows. 
One exception to this is that if the maneuvers are performed too frequently, the average 
maneuver magnitude rises as the frequent maneuvers fight their collective execution 
errors. Second, Fig. 6-22 illustrates that there is a minimum in the total expected 
station-keeping ΔV cost that occurs at a period of approximately 3 days, requiring 
slightly less than 2 m/s per year. If maneuvers are performed more frequently, fuel is 
wasted combating frequent maneuver execution errors. If maneuvers are performed 
less frequently, then the spacecraft has more time to drift exponentially away from the 
reference. Third, the relationships between station-keeping ΔV cost and maneuver 
execution period are very smooth until the maneuvers are executed approximately 
7–10 days apart. This duration is slightly longer than half of a revolution period 
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Figure 6-19 A top-down view of a spacecraft following a reference halo orbit using a tight 
station-keeping strategy in the presence of very large, exaggerated errors. Station-keeping 
maneuvers are executed once per day. 

Figure 6-20 The distance between a spacecraft’s trajectory and its reference trajectory for 
an example tight station-keeping scenario, with maneuvers performed once per day. 
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Figure 6-21 The average station-keeping ΔV cost as a function of the duration of time 
between maneuvers. 

Figure 6-22 The total annual station-keeping ΔV cost as a function of the duration of time 
between maneuvers. 

about the halo orbit. It is hypothesized that the station-keeping sensitivity grows 
significantly when the target is on the opposite side of the orbit. 

Figure 6-22 clearly indicates that if a navigation team intends to reduce the station-
keeping cost of a spacecraft on this halo orbit then it is best to perform maneuvers 
every 2–6 days. From an operational perspective, it is convenient to work on a 
schedule where a maneuver design cycle is performed every seven days. If the team 
can support the operational pace, the best strategy may be to design maneuvers every 
3.5 days, knowing that if a maneuver is missed then the cost will not grow too high 
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after 7 days. If this is the case, then it is desirable to estimate the total station-keeping 
cost of a mission performing approximately two maneuvers per orbit. 

The next question is to decide where in the orbit to perform those two maneuvers. 
Recall from Section 2.6.2.3 that the parameter τ may be used to specify a location 
about a halo orbit, much like the mean anomaly of a conic orbit. We will refer to 
τ = 0 deg to be at the y = 0 plane crossing with positive y-velocity (in the synodic 
reference frame), and τ increases at a constant rate as the spacecraft traverses the orbit. 
We have simulated scenarios where we have placed one station-keeping maneuver at 
a τ value anywhere from 0 deg to 180 deg and the other station-keeping maneuver 
at a τ value of 180 deg greater than the first. Figures 6-23 and 6-24 illustrate the 
resulting station-keeping ΔV cost of each of these scenarios. 

One can draw several conclusions after observing the relationships presented in 
Figs. 6-23 and 6-24. First, the overall station-keeping cost is roughly the same 
order of magnitude anywhere around the orbit, except for the spikes observed near 
τ = 10 deg and τ = 170 deg. These spikes are rather unexpected features of these 
curves. The SKMs become very sensitive to variations at those points in the orbit. In 
contrast, the best places to perform SKMs on this particular halo orbit are at τ values 
near 30 deg and 150 deg, where the total cost is below 6 m/s per year. Apart from 
the spikes, the worst locations to perform maneuvers are at τ values of 90 deg and 
270 deg, namely, where the orbits extend the furthest from the y = 0 plane. It is of 
interest to note that the station-keeping cost is relatively low at τ values of 0 deg and 
180 deg, namely, where the orbits cross the y = 0 plane, where they approach the 
closest and furthest from the Moon, and also where they have their greatest z-axis 
excursions. 

If the mission operations plan calls for frequent small maneuvers, such that it is 
okay—and perhaps even expected—to skip a maneuver from time to time, then it is 

Figure 6-23 The average station-keeping ΔV cost for two maneuvers performed per 
revolution 180 deg apart in τ , as a function of the τ value of the first maneuver. 
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Figure 6-24 The total annual station-keeping ΔV cost for two maneuvers performed per 
revolution 180 deg apart in τ , as a function of the τ value of the first maneuver. 

of interest to measure the station-keeping cost of a slightly different scenario. In this 
variation, station-keeping maneuvers are planned every 7 days, but each maneuver 
is targeted to generate a trajectory that would bring the spacecraft to the reference 
trajectory in only 3.5 days. In a perfect situation, the trajectory would fly past the 
reference trajectory halfway between each station-keeping maneuver. In reality it 
will likely fly past the reference trajectory, though at some distance. Figure 6-25 
illustrates the distance between the trajectory and reference of one example instance 
of this scenario. One can see that the position differences pass very close to zero 
after most of the maneuvers. Further, the maximum excursions from the reference 
trajectory rise over time. The figure includes a linear fit and a quadratic fit of the 
maximum excursions over time, and it is clear that both trends are growing. 

This strategy may be generalized in order to understand how the cost of station-
keeping depends on the station-keeping period and the duration of time between 
each SKM and the target state. Numerous simulations are studied here, varying the 
station-keeping period and the target duration in order to study these relationships. 
Figure 6-26 illustrates a few example scenarios where the SKMs are performed every 
day, while their targets are 1, 2, 4, and 5 days into the future. This station-keeping 
period is likely to be far too rapid for any realistic flight operations, but it is easier to 
see the features of the plots. One can see that the strategy converges for the cases of 
1, 2, and 4, but it does not converge if the target is 5 days into the future. In addition, 
there is a trend that the spacecraft remains further from the reference trajectory if the 
SKM targets a point further into the future. 

Figures 6-27–6-29 illustrate the results of a wide range of scenarios, where the 
station-keeping period varies from 1 day to 13 days and the target duration varies from 
0.5 days to 24 days. Figure 6-27 presents the total annual station-keeping ΔV cost for 
each combination. Figure 6-28 illustrates the average station-keeping magnitude for 
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Figure 6-25 The position difference between the simulated trajectory and the reference 
trajectory for a scenario where SKMs are performed every 7 days, targeting to the reference 
trajectory at a point 3.5 days later. 

each scenario. Figure 6-29 summarizes the average distance between the resulting 
trajectory and the reference trajectory for each scenario. In each case, the scenarios 
shaded white exceed the data range and are not viable station-keeping strategies. 

One can draw many conclusions studying these charts. First, if one studies the 
line of solutions that corresponds to the scenarios where the station-keeping period 
is equal to the target time, one recovers the results shown in Figs. 6-21 and 6-22. 
These figures also provide further evidence that the station-keeping performance 
degrades when the station-keeping period and target time are both around 9 days. 
It is interesting that there are periodic bands of target durations that converge to 
successful station-keeping strategies for a given station-keeping period, that is, the 
three near-vertical dark stripes in each figure. When looking back at Fig. 6-26, it 
is apparent that some target durations yield scenarios where the trajectories must 
travel farther from the reference trajectory before returning to the reference. If the 
station-keeping period is too rapid, or set at an undesirable resonant period, then the 
distance from the reference trajectory at one SKM is greater than the distance at the 
previous maneuver, and the strategy diverges. 

Nevertheless, the performance of the station-keeping strategy does not signifi
cantly improve by targeting a point 10 or more days beyond the given SKM. Statis
tically there is some benefit derived by permitting the target time to be different than 
the station-keeping period, though it is typically not far from being equal. Figure 6-30 
illustrates this by plotting three curves, tracking the station-keeping performance for 
1-, 3-, and 7-day station-keeping periods. One can see that the global minimum of 
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Figure 6-26 The progression in the position difference between the simulated trajectory and 
the reference trajectory for scenarios where SKMs are performed every day, but their targets 
are 1, 2, 4, and 5 days into the future. 

each curve shown indeed exists toward the right, where the target duration is around 
27 days. But the benefits are slight compared to targeting a few days downstream, 
which is also a more stable and computationally-efficient station-keeping strategy. 

6.6.2.4 Loose Station-Keeping A large number of different strategies have 
been investigated by researchers in order to attempt to reduce the station-keeping ΔV 
cost. We present one such loose strategy, namely, a strategy that keeps the spacecraft 
in the desired region of space without targeting any sort of reference trajectory. For 
additional strategies, see for example, Folta et al. [231]. 

The strategy studied here is designed to work for libration orbits and other tra
jectories that pierce the y = 0 plane with an x-velocity of approximately zero in 
the synodic reference frame. Halo orbits pierce the y = 0 plane orthogonally in 
the circular restricted three-body problem (CRTBP) and nearly orthogonally in a 
high-fidelity model of the Solar System. Lissajous orbits are permitted to have some 
nonzero velocity in the z-axis at those crossings. The loose station-keeping strategy 
is designed to take advantage of these orbital features. 
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Figure 6-27 The total annual station-keeping cost for a wide range of scenarios, where the 
x-axis sets the amount of time between each SKM and its target point along the reference 
trajectory, and the y-axis sets the amount of time between each maneuver and the next. 

Figure 6-28 The average SKM magnitude for the same trade space given in Fig. 6-27. 

The idea is that a given SKM is designed to target a trajectory that pierces the 
y = 0 plane orthogonally at either the next crossing or a subsequent crossing. Doing 
this ensures that the spacecraft remains in the vicinity of its libration orbit for at 
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Figure 6-29 The average distance between the trajectory and the reference trajectory for the 
same trade space given in Fig. 6-27. 

Figure 6-30 The annual station-keeping ΔV cost for three station-keeping periods as 
functions of the duration between each SKM and the target point along the reference trajectory 
for that maneuver. 
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least some time, given the size of the orbit determination and maneuver execution 
errors. Mission designers typically start the design by targeting the next y = 0 
plane crossing to have zero velocity in the x-axis; once that design is complete it 
is used to seed a search for a maneuver that pierces the following y = 0 plane 
crossing with zero velocity in the x-axis. When targeting the second y = 0 plane 
crossing, all constraints on the first y = 0 plane crossing are removed. This may 
be repeated a few times, but modern integrators cannot typically integrate more than 
two revolutions about a libration orbit (four y = 0 plane crossings) into the future 
accurately enough to achieve further targets. The further this process extends into the 
future, the more likely it is that the spacecraft will remain on the particular libration 
orbit of interest. This algorithm permits the spacecraft’s Jacobi constant to change; 
hence, the spacecraft may wander from one orbit to a neighboring orbit in the state 
space. 

This algorithm has been implemented and tested on scenarios that target the first 
through fourth y = 0 plane crossing. In each case, each SKM is performed at a y = 0 
plane crossing and targets a future y = 0 plane crossing. There may be benefit to 
placing the SKMs at different τ values, or even permitting each maneuver’s τ value 
to vary. But these strategies have not been explored here for brevity. 

It has been found that a modified single-shooting differential corrector (Sec
tion 2.6.5.1 and Section 2.6.6.2) works very well to generate each SKM rapidly. One 
formulates the problem by permitting the SKM to be in any direction, targeting a 
state on the subsequent y = 0 plane crossing such that its x-velocity is zero. The 
following equation is very similar to Eq. (2.40), modified for this application 

⎡⎤ 

≈ 

⎡ ⎢⎢⎢⎣
 

⎤ ⎥⎥⎥⎥⎦
 

⎡ ⎤ ⎤⎡0δxT /2 φ11 φ12 φ13 φ14 φ15 φ16 ẋ0 
0 
δẋ0 
δẏ0 

0⎢⎢⎢⎢⎣ 

⎢⎢⎢⎢⎣ 

⎥⎥⎥⎥⎦ 

φ21 φ22 φ23 φ24 φ25 φ26 ẏ⎥⎥⎥⎦ 

⎢⎢⎢⎣ 

⎥⎥⎥⎦ 
δ(T /2) 

¨

δzT /2 φ31 φ32 φ33 φ34 φ35 φ36 ż (6.1)tT /2, t0 +−ẋT /2 ¨φ41 φ42 φ43 φ44 φ45 φ46 x 
φ51 φ52 φ53 φ54 φ55 φ56δẏT /2 yδż0 ¨φ61 φ62 φ63 φ64 φ65 φ66 zδżT /2 0 

In this application, the value of δ(T /2) may be determined from the second line 
of Eq. (6.1) to be 

−φ24δẋ0 − φ25δẏ0 − φ26δż0
δ(T /2) = (6.2) 

ẏ

Substituting this value into the fourth line of Eq. (6.1) yields 

ẍ ẍ ẍ−ẋT /2 ≈ φ44 − φ24 δẋ0 + φ45 − φ25 δẏ0 + φ46 − φ26 δż0 (6.3) 
ẏ ẏ ẏ

One now has a choice about how to construct the SKM. Since there are three 
degrees of freedom and one control, this algorithm works very well for a mission 
whose maneuvers are constrained. If there are no further constraints, it is typically 
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best to build the maneuver that minimizes the ΔV. We construct the least squares 
solution as follows 

M = φ44 − φ24 
ẍ 
ẏ 
, φ45 − φ25 

ẍ 
ẏ 
, φ46 − φ26 

ẍ 
ẏ 

(6.4) 

δ ẋ0 
δ ẏ0 = MT M M T −1 − ̇xT /2 (6.5) 
δ ̇z0 

Table 6-5 summarizes the performance of this loose station-keeping strategy for 
different combinations of maneuver parameters, including the least squares solution
−→ 
ΔV0, and each case where the maneuver is constrained to be in one Cartesian 
direction (in the Earth–Moon rotating coordinate frame). Further, Table 6-5 includes 
information for scenarios that target different target y = 0 plane crossings. One can 
see that the least squares solution performs better than any single-component solution. 
The z-axis burns did not converge often enough to characterize their performance 
for the case when the target was the first y = 0 plane crossing. The table illustrates 
very clearly that it is significantly better to target the second or third y = 0 plane 
crossing rather than the first. This makes sense given the amount of oscillation that 
exists in the system on account of the Moon’s noncircular orbit about the Earth–Moon 
barycenter. These results suggest that targeting the second y = 0 plane crossing is 
the most optimal of these loose station-keeping strategies, applied to these particular 
constraints, errors, and dynamics. 

Table 6-5 A summary of the results of the loose station-keeping strategy 
explored here. 

y = 0 ΔV Avg SKM ΔV (m/s) Annual SKM ΔV (m/s) Avg Slope from 
Target Type Mean 1-σ Mean 1-σ Ref (km/day) 

1 
−→ 
ΔV0 0.5317 0.3547 25.6863 0.4614 7.9279 

1 ΔVx 
0 0.6116 0.4880 29.3714 0.5992 4.3580 

1 ΔVy 
0 1.2691 0.7243 61.2268 1.2253 22.4134 

1 ΔVz 
0 Failed to converge 

2 
−→ 
ΔV0 0.0643 0.0525 3.1067 0.1557 1.9986 

2 ΔVx 
0 0.0793 0.0613 3.8287 0.1828 1.7720 

2 ΔVy 
0 0.1512 0.1455 7.2116 0.3583 2.7830 

2 ΔVz 
0 1.2563 1.0133 60.2222 3.7733 12.8971 

3 
−→ 
ΔV0 0.0667 0.0522 3.2276 0.1837 1.9252 

3 ΔVx 
0 0.0846 0.0600 4.0560 0.2046 1.4319 

3 ΔVy 
0 0.1536 0.1567 7.3782 0.4482 3.2306 

3 ΔVz 
0 1.1862 0.9755 56.6230 2.6863 14.4563 
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If we compare the loose station-keeping strategy studied here with the tight station-
keeping strategy considered earlier, we see that the loose strategy performs better for 
similar station-keeping periods. However, the tight strategy performs better if a 
mission can perform maneuvers more frequently, on the order of 3–4 days between 
maneuvers. 

6.6.2.5 Maneuver Execution Errors All of the results presented previously 
have kept the spacecraft maneuver execution error model the same, namely, set such 
that each coordinate of a maneuver’s execution is perturbed by an error taken from 
a normal distribution with mean zero and standard deviation of 2 mm/s. This error 
model is consistent with the errors observed from the ARTEMIS mission. Naturally, 
the station-keeping ΔV budget is dependent on this execution error model. Figure 6-31 
presents the annual station-keeping ΔV budget as a function of maneuver execution 
error for a scenario where SKMs are performed at each y = 0 plane crossing, and 
each maneuver targets the subsequent plane crossing of the reference trajectory. One 
can see a very linear relationship between the annual ΔV cost and maneuver execution 
error. The line of best fit of this data is equal to 

ΔV = 1.8705x + 1.9267 m/s 

The curve’s linearity is promising in the sense that the station-keeping strategy 
has kept the trajectory within the vicinity of the reference trajectory enough that 
linear approximations are valid. One notices also that the curve does flatten out 
as the maneuver execution error gets very small. It is in this regime that the orbit 
determination errors begin to dominate the station-keeping performance. 

Figure 6-31 The annual station-keeping ΔV cost as a function of maneuver execution errors. 
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6.7 SPACECRAFT SYSTEMS DESIGN 

Several considerations must be made to a spacecraft’s design when evaluating low-
energy lunar transfers compared to conventional lunar transfers. This discussion is 
meant to guide further analysis and not to reveal a full list of potential issues that one 
may have with a low-energy transfer, compared with a conventional transfer. 

First, low-energy transfers require much more time than conventional transfers 
between the Earth and the Moon. This impacts the operations schedule, its risk, 
and its cost. A low-energy transfer’s schedule is typically much more relaxed than 
a conventional transfer’s schedule, which must perform a maneuver within a day or 
even within hours of injection. A spacecraft operations team has much more time 
to recover from anomalies and safe-mode events when flying a low-energy transfer. 
The spacecraft team also has more time to characterize the spacecraft, check out 
the instruments, outgas, and so forth. The mission may even delay maneuvers as 
needed. In addition, there is much more time to ensure that a spacecraft is on a 
proper approach vector when arriving at the Moon via a low-energy transfer than a 
conventional transfer. 

The communications systems for spacecraft traversing low-energy transfers must 
be capable of reaching out to 1–2 million kilometers, depending on the transfer. 
This is 3–5 times further than a conventional transfer. This long link distance 
may require larger ground station antennas, larger spacecraft antennas, and/or more 
communications power. However, a spacecraft intending to perform its mission 
objectives at the Moon may not have much data to transmit at its apogee passage, 
alleviating some of the pressures caused by the long link distance. 

A low-energy transfer requires a smaller maneuver when arriving at the Moon, 
compared with a conventional transfer to the same destination. This fact may benefit 
a lunar mission in many ways. First, the spacecraft does not require as much fuel and 
can put more of the ΔV requirements on the launch vehicle rather than the spacecraft. 
Second, the spacecraft may reduce the amount of gravity losses when performing an 
insertion into a low lunar orbit using small engines. This was the case for the two 
GRAIL spacecraft, and it could be the case for any lunar landers. Finally, a mission to 
a lunar libration orbit does not even require a large orbit insertion maneuver, which 
may open up many design options. 

Low-energy transfers commonly traverse through regions of space where the 
Sun–Earth–spacecraft angle and/or the Sun–spacecraft–Earth angle drops near zero 
degrees. This characteristic may be detrimental to the communications system on 
board the spacecraft, though it may only impact the mission for a day or two. 

The final consideration presented here is that low-energy transfers typically do not 
pass through the Van Allen Belts more than once, which may reduce the radiation risks 
for a lunar spacecraft, compared with a conventional transfer that may implement 
Earth-phasing orbits. 





APPENDIX A 

LOCATING THE LAGRANGE POINTS 

A.1 INTRODUCTION 

The discussion given here, previously authored by Parker [46], is devoted to deriving 
analytical expressions for the Lagrange points in the circular restricted three-body 
problem (CRTBP). Szebehely provides more details and a clear description of this 
derivation [86]. Other authors have provided similar derivations, including Moulton 
[106] and Broucke et al. [236]. 

A.2 SETTING UP THE SYSTEM 

Let us begin with a system of two masses, m1 and m2, such that m1 ≥ m2. 
Furthermore, each of these masses is orbiting the center of mass of the system in 
a circle. Then there exist cases where a third body, m3, of negligible mass can be 
placed in the system in such a way that the force of gravity from both bodies and 
the rotational motion in the system balance to produce a configuration that does not 
change in time with respect to the rotating system. That is, each body rotates about 
the center of mass at exactly the same rate and is seemingly fixed in the rotating frame 
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of reference. Euler and Lagrange located five of these cases, and those locations have 
henceforth been known as the five Lagrange points in a three-body system. 

To locate the Lagrange points, we begin with the three bodies stationary in the 
corotating frame of reference. That is 

θ̇ 1 = θ̇ 2 = θ̇ 3 = θ̇(t) (A.1) 

where θ̇ i is the angular velocity of the body of mass mi about the center of mass. 
Furthermore, if the shape of the configuration does not alter over time, the relative 
distances r12(t), r23(t), and r31(t) are given by 

r12(t) r23(t) r31(t) 
= = = f(t) (A.2) 

r12(t0) r23(t0) r31(t0) 

So far, there are no constraints on the relative size of the configuration, only on the 
angular velocity and the shape of the configuration. 

Next, we move the origin to the center of mass of the configuration. Then RRi 

describes the vector position of the ith mass, satisfying the constraint 

33 
mi 

RRi = 0 (A.3) 
i=1 

Equation (A.3) may be written 

(m1 + m2 + m3)RR1 + m2(RR2 − RR1) + m3(RR3 − RR1) = 0, 

or 
MRR1 = −m2Rr12 − m3Rr13 (A.4) 

where M is equal to the sum of the masses in the system. Squaring this relationship 
produces 

2 2 2 2M 2R1 
2 = m2r12 + m3r13 + 2m2m3Rr12 • Rr13 (A.5) 

where Ri and ri denote the magnitudes of the vectors RRi and Rri, respectively. Since 
we know that the relative shape of the configuration does not change, as seen above, 
we may substitute in the relationships for the relative angles and distances (Eqs. (A.1) 
and (A.2)) into Eq. (A.5) to find that, in general 

Ri(t) = Ri(t0)f(t) (A.6) 

If Fi is the magnitude of the force per unit mass acting on the mass mi, then the 
total force acting on mi is miFi and the equation of motion of that mass along the 
direction of the force satisfies   

¨ θ̇2 miFi = mi Ri − Ri (A.7)i

Since all of the particles are rotating at the same rate, we can reduce this relationship 
to the following r 

θ̇2 miFi = mi Ri(t0)f ̈ (t) − Ri 
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or equivalently r 
¨ miFi = Rimi f(t)/f(t) − θ̇2 (A.8) 

Hence, we have the proportionality relationship 

F1 : F2 : F3 = R1 : R2 : R3 (A.9) 

There are two cases that will satisfy the conditions given in Eqs. (A.8) and (A.9). 
The two cases are 

¨ 
RR i × FRi = 0 or RR i × RR i = 0 (A.10) 

When we set i = 1 and look at the first particle, we have the following force function 

¨ m1m2 m1m3 
m1RR1 = G Rr12 + Rr13 (A.11)3 3r r12 13 

When we take the cross product of RR1 with each side of Eq. (A.11), we obtain the 
following expression 

m2 m3R RR2 + RR3 = 0 (A.12)R1 × 3 3r r12 13 

Using the center of mass relationship given in Eq. (A.3), this can be simplified to 

m2RR1 × RR2 
1 − 

1 
= 0 (A.13)3 3r r12 13 

Once, again, there are two similar equations for the other two particles. For Eq. (A.13) 
to hold, either of the following expressions must be true 

r12 = r23 = r31 = r (A.14) 

(the equilateral triangle solution), or 

RR1 × RR2 = RR2 × RR3 = RR3 × RR1 = 0 (A.15) 

(the collinear solution). 
The triangular and collinear cases are addressed separately in Sections A.3 and 

A.4. 

A.3 TRIANGULAR POINTS 

In the equilateral triangle case given in Eq. (A.14), we arrive at the following rela
tionship for the first particle 

R¨ R1
RR1 + GM1 = 0 (A.16)

R3 
1 
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where 
3/22 2m2 + m3 + m2m3 

M1 = (A.17)2
(m1 + m2 + m3)

This result is the familiar two-body equation of motion. In this case, the first particle 
moves about the center of mass of the system in any conic orbit as if it had unit mass 
and a mass of M1 were placed at the center of mass of the system. Each particle 
moves in a corresponding trajectory, and the figure remains in an equilateral triangle 
configuration (although its size may oscillate or grow indefinitely). 

A.4 COLLINEAR POINTS 

In the collinear case given in Eq. (A.15), we can also first show that each particle’s 
orbit is a conic section. Beginning with the first particle, we can take the collinear 
axis to be the x axis; the force acting on m1 is then 

(x2 − x1) (x3 − x1)
F1 = m2 + m3 (A.18)3 3x x12 13 

But we also know from Eq. (A.6) that 

xi(t) = xi(t0)f(t) 

so that 
1 (x2 − x1) (x3 − x1) constant 

F1 = m2 + m3 = (A.19)
f2 x3 x3 f2 

12 13 0 

Since f is proportional to distance, m1 is acted upon by an inverse-square-law central 
force. Hence, the particle’s orbit is a conic section. 

Now we will impose the condition from Eq. (A.9) that 

F1 : F2 : F3 = x1 : x2 : x3. 

This condition introduces the proportionality constant A, such that 

F1 = Ax1 

F2 = Ax2 (A.20) 
F3 = Ax3 

or equally 

Ax1 = m2 
x2 − x1 

x3 
12 

+ m3 
x3 − x1 

x3 
13 

Ax2 = m3 
x3 − x2 

x3 
23 

+ m1 
x1 − x2 

x3 
21 

(A.21) 

Ax3 = m1 
x1 − x3 

x3 
31 

+ m2 
x2 − x3 

x3 
32 
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We are looking for the placement of the particle of mass m3 with respect to the other 
two particles such that the relative positions are constant in the rotating frame. The 
equilibrium positions possible for m3 are in the arrangements m1 − m3 − m2 (case 
132), m1 − m2 − m3 (case 123), and m3 − m1 − m2 (case 312). Each case will be 
observed separately. 

A.4.1 Case 132: Identifying the L1 point 

For case 132, we are looking for a positive value of X such that 

x2 − x3 x32
X = = 

x3 − x1 x13 

x2 − x1 x12
X + 1 = = 

x3 − x1 x13 

⎫ ⎪⎬ ⎪⎭ 
(A.22) 

We identify X using a series of steps. We first subtract Ax1 from Ax3 and Ax3 from 
Ax2 from Eq. (A.21) to arrive at Ax13 and Ax32 

m1 + m3 1 1 
Ax13 = − + m2 −2 2 2x x x13 32 12 (A.23) 

m2 + m3 1 1 
Ax32 = − + m1 −2 2 2x x x32 13 12 

Using Eq. (A.22), we know that x32 = X x13 and x12 = (X + 1)x13. When we 
substitute these relationships into Eq. (A.23), we find two different relationships for 
the quantity Ax3 When we set them equal and arrange in powers of X , we arrive 13. 
at Lagrange’s quintic equation 

(m1 + m3)X
5 + (3m1 + 2m3)X

4 + (3m1 + m3)X
3 

(A.24)
− (3m2 + m3)X

2 − (3m2 + 2m3)X − (m2 + m3) = 0 

We can use a quintic solver to solve for X (see Section A.5). Since the coefficients 
of Eq. (A.24) change sign only once, there can be only one positive real root. We can 
then use that value for X to determine the relative location of the massless particle, 
that is, the location of L1, with respect to the other two particles by solving for x3 in 
Eq. (A.22) 

x2 − x3 x2 − x1
X = ⇒ x3 = x1 + (A.25) 

x3 − x1 X + 1 

A.4.2 Case 123: Identifying the L2 point 

For case 123, we are looking for a positive value of X such that 

x3 − x2 x23
X = = 

x2 − x1 x12 

x3 − x1 x13
X + 1 = = 

x2 − x1 x12 

⎫ ⎪⎬ ⎪⎭ 
(A.26) 
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In order to identify X , we follow a similar derivation as in case 132. We first subtract 
Ax2 from Ax3 and Ax1 from Ax2 from Eq. (A.21) to arrive at Ax23 and Ax12 

m2 + m3 1 1 
Ax23 = − + m1 −2 2 2x x x23 12 13 (A.27) 

m1 + m2 1 1 
Ax12 = − + m3 −2 2 2x x x12 23 13 

We then substitute in X and (X + 1) from Eq. (A.26) as before, eliminate Ax3 
12 

between the resulting equations and arrange in powers of X to produce Lagrange’s 
quintic equation 

(m1 + m2)X
5 + (3m1 + 2m2)X

4 + (3m1 + m2)X
3 

(A.28)
− (m2 + 3m3)X

2 − (2m2 + 3m3)X − (m2 + m3) = 0 

Once again, we can use a quintic solver to solve for X (see Section A.5), knowing 
that again there is only one real positive root. We can then use that value for X to 
determine the relative location of the massless particle, that is, the location of L2, 
with respect to the other two particles by solving for x3 in Eq. (A.26) 

x3 − x2
X = ⇒ x3 = x2 + X(x2 − x1) (A.29) 

x2 − x1 

A.4.3 Case 312: Identifying the L3 point 

For case 312, we are looking for a positive value of X such that 

x2 − x1 x12
X = = 

x1 − x3 x31 

x2 − x3 x32
X + 1 = = 

x1 − x3 x31 

⎫ ⎪⎬ ⎪⎭ 
(A.30) 

In order to identify X , we follow a similar derivation as in case 132. We first subtract 
Ax1 from Ax2 and Ax3 from Ax1 from Eq. (A.21) to arrive at Ax12 and Ax31 

m1 + m3 1 1 
Ax31 = − + m2 −2 2 2x x x31 12 32 (A.31) 

m1 + m2 1 1 
Ax12 = − + m3 −2 2 2x x x12 31 32 

We then substitute in X and (X + 1) from Eq. (A.30) as before, eliminate Ax3 
31 

between the resulting equations and arrange in powers of X to produce Lagrange’s 
quintic equation 

(m1 + m3)X
5 + (2m1 + 3m3)X

4 + (m1 + 3m3)X
3 

(A.32)
− (m1 + 3m2)X

2 − (2m1 + 3m2)X − (m1 + m2) = 0 
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Once again, we can use a quintic solver to solve for X (see Section A.5), knowing 
that again there is only one real positive root. We can then use that value for X to 
determine the relative location of the massless particle, that is, the location of L3, 
with respect to the other two particles by solving for x3 in Eq. (A.30) 

x2 − x1 x2 − x1
X = ⇒ x3 = x1 − (A.33) 

x1 − x3 X 

A.5 ALGORITHMS 

The quintics given in Eqs. (A.25), (A.29), and (A.33) provide analytic determinations 
of the locations of the first, second, and third Lagrange points, respectively, in 
the circular restricted three-body system. Szebehely outlines a fixed-point iterative 
scheme that may be implemented to identify the single positive real root of each of the 
quintic equations [86]. The fourth and fifth Lagrange points make equilateral triangles 
with the primaries; hence, their locations are easily determined using geometry. 

Sections A.5.1–A.5.3 provide pseudo-code that may be used to implement a 
fixed-point iterative scheme to find the x-coordinate of L1 – L3, respectively. The 
coordinate axis and the definition of µ are defined in Section 2.5.1. 

A.5.1 Numerical Determination of L1 

1/3 
µ(1 − µ)

γ0 = 
3
 

γ = γ0 + 1
 

while|γ − γ0| > tol
 
γ0 = γ 

µ(γ0 − 1)2 1/3 

γ = 
3 − 2µ − γ0(3 − µ − γ0) 

endwhile 
xL1 = 1 − µ − γ 



  

  

  

  

358 LOCATING THE LAGRANGE POINTS 

A.5.2 Numerical Determination of L2 

1/3 
µ(1 − µ)

γ0 = 
3 

γ = γ0 + 1 

while|γ − γ0| > tol 
γ0 = γ 

µ(γ0 + 1)2 1/3 

γ = 
3 − 2µ + γ0(3 − µ + γ0) 

endwhile 
xL2 = 1 − µ + γ 

A.5.3 Numerical Determination of L3 

1/3 
µ(1 − µ)

γ0 = 
3 

γ = γ0 + 1 

while|γ − γ0| > tol 
γ0 = γ 

(1 − µ)(γ0 + 1)2 1/3 

γ = 
1 + 2µ + γ0(2 + µ + γ0) 

endwhile 
xL3 = −µ − γ 
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TERMS
 

ΔV change in velocity, delta velocity 
Ω ascending node 
3BSOI three-body sphere of influence 
ACE	 Advanced Composition Explorer 
ACS attitude control system 
AAS American Astronautical Society 
AAS American Astronomical Society 
AIAA American Institute of Aeronautics and Astronautics 
AMMOS Advanced Multi-Mission Operations System 
ARTEMIS	 Acceleration, Reconnection, Turbulence and 

Electrodynamics of the Moon’s Interaction with the Sun 
AU	 astronomical unit, ∼149,600,000 kilometers 

BIPM Bureau International des Poids et Mesures 
BLT ballistic lunar transfer 
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378 ACRONYMS AND NOMENCLATURE 

C3	 launch injection energy parameter 
CH-1	 Chandrayaan-1 
cm/s centimeter per second 
CRTBP circular restricted three-body problem 

DAV declination of apogee vector 
DE developmental ephemerides, e.g., DE421 
deg degree 
DLA declination of launch asymptote 
DPO distant prograde orbit 
DRO distant retrograde orbit 
DSN Deep Space Network 
DUNE	 Dust Near Earth 

EDL entry, descent, and landing 
EL1 / EL2 Sun–Earth Lagrange point 1 / 2 
EM Earth–Moon 
EME2000 Earth Mean Equator and Equinox of J2000 
EMO2000 Earth Mean Orbit of J2000 
EPO Earth-phasing orbits 
ET Ephemeris Time, also called Dynamical Time 

FPA flight path angle 
FPAz flight path azimuth angle 

GEO geosynchronous Earth orbit 
GM gravitational constant × mass 
GPS Global Positioning System 
GRAIL	 Gravity Recovery and Interior Laboratory 

HGS-1	 name given to AsiaSat 3 after AsiaSat 3 failed to get a 
correct orbit and was transferred to Hughes Global 
Services, Inc. 
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IAG International Association of Geodesy 
IAU International Astronomical Union 
IBEX Interstellar Boundary Explorer 
ICE International Cometary Explorer 
ICRF International Celestial Reference Frame 
ISEE-3 International Sun–Earth Explorer-3 
ISRO Indian Space Research Organization 
ISTP International Solar Terrestrial Physics 

J2000 currently used standard equinox for January 1, 2000 
JPL Jet Propulsion Laboratory 
JSC Johnson Space Center 

km kilometer 
km/s kilometers per second 
km2/s2 kilometers squared per second squared 
km3/s2 cubic kilometer per second squared 
KSC Kennedy Space Center 

L1 Lagrange point 1, between the two primary bodies 
L2 Lagrange point 2, on the far side of the smaller primary 
L3 Lagrange point 3, on the far side of the larger primary 
L4 Lagrange point 4, leading the smaller primary in its orbit 

about the barycenter 
L5 Lagrange point 5, trailing the smaller primary in its orbit 

about the barycenter 
LCROSS Lunar Crater Observation and Sensing Satellite 
L.E. low energy 
LEO low-Earth orbit 
LL1 / LL2 Earth–Moon lunar Lagrange point 1 / 2 
LLO low-lunar orbit 
LOI lunar-orbit insertion 
LPABF lunar principal-axis body-fixed 
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LRO Lunar Reconnaissance Orbiter 
LPO libration-point orbit 
LSP Launch Services Program 
LST Local Solar Time 
LTool Libration Point Mission Design Tool 
LTST Local True Solar Time 

MARS Mid-Atlantic Regional Spaceport 
MGSS Multimission Ground System and Services Office 
MI manifold insertion 
mm/s millimeters per second 
mo month 
MONTE Mission-analysis, Operations, and Navigation Toolkit 

Environment 
m/s meters per second 
MUSES Mu Space Engineering Spacecraft (Hiten) A 

NASA National Aeronautics and Space Administration 
NLS NASA Launch Services 

OLST Orbit Local Solar Time 

PSLV Polar Satellite Launch Vehicle 

RAV right ascension of apogee vector 
RFK78 Runge-Kutta-Fehlberg seventh-order (integrator) 
RLA right ascension of launch asymptote 

SE Sun–Earth 
SELENE Selenological and Engineering Explorer 
SI Syst ̀eme International 
SKM station-keeping maneuver 
SMART-1 Small Missions for Advanced Research in Technology 1 
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SNOPT sparse nonlinear optimizer 
SOHO Solar and Heliospheric Observatory 
SOI sphere of influence 
SQP sequential quadratic programming 
SRM state relationship matrix 

TAI Temps Atomique International / International Atomic 
Time 

TCM trajectory correction maneuver 
TDB Barycentric Dynamic Time 
THEMIS Time History of Events and Macroscale Interactions 

during Substorms 
TIP targeting interface point 
TLC trans-lunar cruise 
TLI trans-lunar injection 
TOF time of flight 
TT Terrestrial Time 

USA United States of America 
USSR Union of Soviet Socialist Republics (Soviet Union) 
UT Universal Time 
UTC Coordinated Universal Time 
UTTR Utah Test and Training Range 

VLBI very long baseline interferometry 

WMAP Wilkinson Microwave Anistropy Probe 
WSB weak stability boundary 

yr year 



Constants 

AU	 astronomical unit 1.49597871×108 km 
c	 speed of light 299,792.458 km/s 
C	 Jacobi constant (see Eq. 2.6) 
Dm	 mean distance between the 384,400 km 

Earth and Moon 
Re	 mean equatorial radius of the 6378.1363 km 

Earth 
Rm	 mean equatorial radius of 1737.4 km 

the Moon 
G	 universal gravitational constant 6.67300×10−20 km3/s2/kg 

GMe	 gravitational parameter of 398,600.432897 km3/s2 

the Earth 
GMm	 gravitational parameter of 4902.800582 km3/s2 

the Moon 
GMem	 gravitational parameter of the 403,503.233479 km3/s2 

Earth–Moon Barycenter 
GMs	 gravitational parameter of the Sun 1.32712440×1011 km3/s2 

µem	 three-body constant of the 0.0121505856 
Earth–Moon system 

µse	 three-body constant of the 3.04042339×10−6 

Sun–Earth/Moon system 
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