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FOREWORD
 

The Deep Space Communications and Navigation Systems Center of Excellence 
(DESCANSO) was established in 1998 by the National Aeronautics and Space 
Administration (NASA) at the California Institute of Technology’s Jet Propulsion 
Laboratory (JPL). DESCANSO is chartered to harness and promote excellence and 
innovation to meet the communications and navigation needs of future deep-space 
exploration. 

DESCANSO’s vision is to achieve continuous communications and precise navi­
gation—any time, anywhere. In support of that vision, DESCANSO aims to seek out 
and advocate new concepts, systems, and technologies; foster key technical talents; 
and sponsor seminars, workshops, and symposia to facilitate interaction and idea 
exchange. 

The Deep Space Communications and Navigation Series, authored by scientists 
and engineers with many years of experience in their respective fields, lays a foun­
dation for innovation by communicating state-of-the-art knowledge in key technolo­
gies. The series also captures fundamental principles and practices developed during 
decades of deep-space exploration at JPL. In addition, it celebrates successes and 
imparts lessons learned. Finally, the series will serve to guide a new generation of 
scientists and engineers. 

Joseph H. Yuen, DESCANSO Leader 

xi 





PREFACE
 

The purpose of this book is to provide high-level information to mission managers 
and detailed information to mission designers about low-energy transfers between 
the Earth and the Moon. This book surveys thousands of trajectories that one can 
use to transfer spacecraft between the Earth and various locations near the Moon, 
including lunar libration orbits, low lunar orbits, and the lunar surface. These surveys 
include conventional, direct transfers that require 3–6 days as well as more efficient, 
low-energy transfers that require more transfer time but which require less fuel. 
Low-energy transfers have been shown to be very useful in many circumstances and 
have recently been used to send satellites to the Moon, including the two ARTEMIS 
spacecraft and the two GRAIL spacecraft. This book illuminates the trade space of 
low-energy transfers and illustrates the techniques that may be used to build them. 
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