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Chapter 9  

Beamforming in Coupled-Oscillator 

Arrays 

In this chapter, convex optimization and other global optimization techniques 

are used to demonstrate the beamforming capabilities of coupled-oscillator 

arrays and to optimize the stability of the coupled-oscillator array steady-state 

solution. An introduction to convex optimization is presented followed by 

several optimization problems showing the beamforming capabilities of such 

arrays, such as pattern-nulling, difference-beam generation, and multiple-beam 

generation [96,118,150,151,152]. A global optimization algorithm is also 

presented that permits one to optimize the stability of the steady-state solution, 

and therefore leads to more robust solutions and maximizes the obtained stable 

beam-scanning limits [153]. Finally, the operation of a coupled-oscillator array 

as an adaptive beamforming system is demonstrated [154]. 

9.1 Preliminary Concepts of Convex Optimization 

Convex optimization is a class of optimization problems that has enjoyed an 

increased scientific interest in the recent years due to the development of very 

efficient algorithms essentially rendering their solution as easy as the solution 

of linear programs [133]. As a result convex optimization problems have found 

wide application in fields such as control and signal processing, and among 

these, in the problem of antenna array beam-steering and beamforming. Due to 

this fact, in this chapter we first present a brief introduction to convex 

optimization and the mathematical framework required to express the 

beamforming problem as a convex optimization problem and additionally 
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introduce the coupled-oscillator array solutions presented in the previous 

chapters as constraints to the problem at hand. 

 

An optimization problem is expressed in the form 

 
minimize   ( ) 

subject to   ( )                 
(9.1-1) 

where   is the optimization variable, a vector of dimension  . The real function 

   is called the objective function of the problem, and real    are the 

  constraints of the problem with limits or bounds    [133]. The family of 

convex optimization problems consists of those optimization problems where 

both the objective and the constraints satisfy the property of convexity. In 

convex optimization problems, a local minimum is also a global minimum; and 

therefore, once a solution is found, it is guaranteed to be optimal. Additionally, 

there exist many computationally efficient algorithms for solving convex 

optimization problems, such as the interior point methods [155]. As a result, 

once an optimization problem is formulated as a convex one, its efficient 

resolution is guaranteed.  

 

A set   is convex if for every two points   and   of dimension   that belong to 

the set and any real number   such that      , the point  

     (   )  also belongs in  . Geometrically this means that any point 

  that lies on the line segment connecting   and   must belong to  . If, instead, 

  is allowed to take any real value, then the set   is called affine. 

Correspondingly, an affine set contains every point on the line that is defined 

by two points   and  . These concepts are illustrated in Fig. 9-1.  

 

 

 

Fig. 9-1. Geometric interpretation of convex  
and affine sets. 
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Some well known convex sets are line segments and half spaces [133]. A half-

space is the solution set of a linear inequality of the form 

  *       + (9.1-2) 

where    . The hyperplane defined by the linear equality  

  * |     + (9.1-3) 

is an affine set (   ) that separates the space of   dimensional real vectors 

into two convex half-spaces corresponding to the inequalities       and 

     . A hyperplane is defined by a point    and a nonzero vector  , and it 

contains all vectors   such that the difference vector      is orthogonal to   

(Fig. 9-2).  

 

A norm ball with center    and radius   is a convex set defined by 

  * |‖    ‖   + (9.1-4) 

where ‖ ‖ is a properly defined norm of  , such as for example the Euclidean 

norm. Furthermore, a norm cone is is a convex set defined as the set of (   ) 
pairs such that 

  *(   )|‖ ‖   + (9.1-5) 

If the Euclidean norm ‖ ‖  √∑   
  

    is considered then the corresponding 

norm cone is called a second-order cone, or ice-cream cone [133]. 

 

A real function    is convex if its domain is a convex set and if for any two 

vectors   and   in its domain, the following inequality holds  

    (     )     ( )     ( ) (9.1-6) 

 

 

 

Fig. 9-2. Geometric interpretation of hyperplane  
and hyperspace. 
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where   and   are non-negative real numbers such that      . One can 

easily verify from Eq. (9.1-6) that a linear function is convex. Another 

commonly used convex constraint is a linear matrix inequality [156] 

   ( )      ∑     
 
       (9.1-7) 

where   ,  - is a vector of dimension   and      
  are real symmetric 

matrices of dimension  . A real square matrix  ( ) is positive definite 

 ( )   , if for any nonzero vector  ,    ( )   . Many convex constraints 

such as linear inequalities, convex quadratic inequalities, and Lyapunov matrix 

inequalities can be cast in the form of a linear matrix inequality. According to 

Lyapunov theory, the system of differential equations  

   ̇     (9.1-8) 

is stable if and only if exists a positive definite matrix     such that 

           (9.1-9) 

The above inequality is known as a Lyapunov matrix inequality. The inequality 

of Eq. (9.1-9) with the matrix   as unknown can be cast in the form of a linear 

matrix inequality [156]. 

 

The minimization of the maximum eigenvalue of a matrix   subject to a linear 

matrix inequality constraint  ( )    is a convex problem defined as [156] 

 
minimize   

subject to      ( )      ( )    
(9.1-10) 

with   and   symmetric matrices that depend affinely on  . If one defines an 

extended unknown vector   ,  -  and   ,   -  the eigenvalue 

minimization problem can be written as minimization of a linear function 

subject to a linear matrix inequality  

 
minimize     

subject to  ( )    
(9.1-11) 

where  ( )    together with      ( )    have been formulated as a 

single linear matrix inequality  ( )   .  

 

Linear programming and least-squares optimization are two well known 

examples of convex optimization problems. In linear programming, both the 

objective and the constraints are linear functions 

 
minimize     

subject to   
                 

(9.1-12) 
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In least squares optimization the objective function is a sum of squares which is 

a convex function and there are no constraints 

 minimize ‖    ‖ 
  ∑ (  

     )
  

    (9.1-13) 

Where    ,   - is an M by   matrix, ai is a vector of dimension N 

containing the elements of column i of matrix A, and b is a vector of dimension 

M.  

 

Finally, the minimization of the maximum generalized eigenvalue of a pair of 

symmetric matrices   and   that depend affinely on  , subject to an additional 

linear matrix inequality constraint  ( )    is a quasi-convex optimization 

problem [156] expressed as 

 
minimize   

subject to   ( )   ( )      ( )      ( )    
(9.1-14) 

A real function   is quasi-convex if and only if its domain is a convex set, and 

for any two vectors   and   in its domain, and a real number    such that 

     , the following inequality holds [133] 

   (   (   ) )     * ( )  ( )+ (9.1-15) 

Convex functions are also quasi-convex but not vice-versa. The standard 

formulation of a quasi-convex optimization problem has a quasi-convex 

objective and convex constraints. The generalized eigenvalue minimization 

problem given by Eq. (9.1-14) can be written in the standard format [156,133]. 

Similarly to convex optimization problems, quasi-convex optimization 

problems can also be solved efficiently.  

9.2 Beamfoming in COAs 

The ability to generate constant phase distributions among the coupled-

oscillator array elements by tuning the frequency of only the edge array 

elements has been one of the most attractive properties of coupled-oscillator 

arrays as they can be used in beam-scanning applications eliminating the need 

for phase shifters or a complicated local-oscillator feed network. If, however, 

one is allowed to tune the frequency of more or all the array elements, then 

additional features maybe introduced in the radiated pattern such as placement 

of nulls at desired far-field angular directions. 

 

Once a constant progressive phase shift is established among the array 

elements, the main beam direction is steered towards a desired direction. In 

Ref. [157], Steyskal showed that additional nulls maybe formed in the radiation 

pattern at desired angular directions by introducing small perturbations to the 
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phases of the array elements. This method was used by Heath [96] in 

conjunction with the generalized phase model to demonstrate beamforming 

capabilities using coupled-oscillator arrays. Finally, Georgiadis et al. [118] 

extended Heath’s work by including both amplitude and phase perturbations. In 

the following, a description of this beamforming methodology is provided.  

 

The array factor of a uniform linear antenna-array of   elements is given by  

   ( )   ∑    
 (          ) 

    (9.2-1) 

where the element distance is    and the angular direction   is measured from 

broadside. The main beam is steered at   when the excitation amplitudes are 

equal       and the element phases are set as              . The array 

factor is then written in compact form 

   ( )     
    (9.2-2) 

where  ( )  [   (           )]. If one introduces a perturbation in the 

excitation amplitudes and phases   ,      -  the array factor is 

approximated to first order as 

   ( )     
     

 ,       -  (9.2-3) 

A constraint in the array factor at angle    is introduced by imposing | (  )|  
   where    is a desired maximum level at   . Given     level constraints, 

one may form a complex vector                , (  )  (  )  (  )-
  

containing all the constraints and a second one containing   ,        -
  

and combine them in a matrix inequality 

 

  [
        
      

]  [
     
    

]   [
        
      

] (9.2-4) 

which can be written in compact form  

          (9.2-5) 

The beamforming problem can be formulated as a convex optimization problem 

as follows 

 

   
 
  

subject to ‖ ‖     

                       

(9.2-6) 

where the linear objective is subject to a second-order cone constraint and a 

linear inequality. Minimizing the norm of   ensures that the perturbation 

approximation of the array factor is valid. 
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The problem given by Eq. (9.2-6) was analytically solved by Georgiadis et al. 

in Ref. [118] for the case where the inequality constraints are null constraints 

(       ). In fact, the analytical solution to this problem when considering 

phase perturbations only was given by [157]. In this case [157,118],  

      (   )
 (   )  (   ) (9.2-7) 

and  

         (   )  (   ) (9.2-8) 

It is interesting to study Eq. (9.2-7), for the simple case of main-beam direction 

at   with one nulling constraint at angle   . One then evaluates     as  

      
,∑    (    ) 

 - 

∑     (    ) 
 

 (9.2-9) 

where              . This shows that there exist combinations of    and 

  such that the required perturbation magnitude      goes to infinity, for which 

the optimization problem does not have a solution. These solutions correspond 

to           where   and   are integers. One such solution is for    , 

which corresponds to      ; or in other words, when the desired null is in the 

direction of the main lobe. A second solution is when  

             
 

  
 (9.2-10) 

which corresponds to a desired null direction    that depends on the main beam 

angle   . The existence of such points was also verified numerically for the 

case of a coupled-oscillator array in [118,150]. 

 

In order to apply the pattern constraints to the coupled oscillator array, one 

needs to limit the perturbation vectors   satisfying Eq. (9.2-6) to the set that 

corresponds to a coupled-oscillator array steady-state solution. Reference [118] 

introduced the coupled-oscillator array steady-state solution in Eq. (9.2-6) as an 

additional linear constraint maintaining the convexity of the optimization 

problem. The steady-state solution (7.7-12)is first reformulated to reflect the 

nature of perturbation  , which contains both amplitude           and 

phase perturbations                         . Due to the 

autonomous nature of the coupled oscillator array, the steady-state solution is 

defined by the relative phases of the oscillator elements. In other words, the 

phase of one oscillator maybe set to an arbitrary value, or alternatively the 

phases of all oscillators can be changed by an equal amount without affecting 

the steady state. This is verified by the steady-state expression Eq. (7.6-10) 

where only phase differences are present. Consequently, a perturbation of the 

steady state is set by considering the terms     such that even though 
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individually they may take large values, their relative differences are kept 

small. This argument was also used in the early works of Kurokawa [105] when 

modeling the externally injection-locked oscillator. It is, therefore, possible to 

approximate the phase exponents appearing in Eq. 7.6-10 as  

 

              (     )    (       ),   (       )-  

 

and obtain the perturbed steady state as 

 
[      

        ]              
      

   (9.2-11) 

with 

     ,        (        )- (9.2-12) 

The final system of equations is obtained by separating real and imaginary parts  

 

[
  
    ( 

      )
 

  
     

   

  
    ( 

      )
 

  
     

   
] [
 
  ]

  [
(       )

 

     ( 
      )

 ] 

(9.2-13) 

which is written in compact form 

 ,    - [
 
  ]    (9.2-14) 

Using the above linear constraint for the steady state, it is possible to formulate 

the beamforming optimization problem for coupled oscillator arrays [118] as 

follows 

 

   
    

  

subject to ‖ ‖  ‖  ‖    

               

            ,    - [
 
  ]    

(9.2-15) 

where the norm of the vector    is also minimized in order to enforce the 

perturbation condition pertaining to the derivation of the steady-state constraint. 

The above formulation was extended to planar arrays in Ref. [150]. 
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Once the steady state is obtained, its stability is examined by considering the 

linear variational system corresponding to the system of differential equations 

describing the coupled oscillator dynamics and evaluating the eigenvalues of 

matrix   or  ̃ in Eq. (7.7-17).  

 

We may further explore the arbitrary phase reference of the coupled oscillator 

array in order to minimize the number of optimization variables in Eq. (9.2-15). 

  is a square matrix of dimension   . It has one zero eigenvalue due to the fact 

that the array steady state is unaffected by applying an arbitrary but constant 

phase term to all elements. It is therefore possible, without loss of generality, to 

set the phase perturbation of an arbitrarily selected element   to zero       

and eliminate the column of   that corresponds to    . Then, a new steady-

state vector   [     ̃    ]
 

 of dimension    is constructed, where 

  ̃ contains all phase perturbations except    . Using  , Eq. (9.2-14) is 

rearranged in the form  

 [ ̃    ̃] [
 
  ̃]     ̃   ̃(  ̃) (9.2-16) 

where     is the control perturbation corresponding to the selected element  .  ̃ 

is a full rank square matrix of dimension    obtained from   by substituting its 

column corresponding to     with the column of     corresponding to    . 

Similarly    ̃, has dimension    by     and is obtained from     by 

eliminating the column that corresponds to    . The matrix  (  ̃) is linearly 

dependent on   ̃. The steady state   is therefore expressed as a function of the 

    independent control variables   ̃. Following Georgiadis et al. [153], the 

equality constraint of Eq. (9.2-16) is used to eliminate the    optimization 

variables included in  , and formulate Eq. (9.2-15) in terms of only the 

independent     control variables   ̃  

 

   
  ̃

  

subject to ‖ ̃   ̃(  ̃)‖  ‖  ̃‖    

         ̃     ̃  ̃     ̃  

(9.2-17) 

where the equality constraint is now eliminated and the inequality constraints 

on the array factor have been appropriately reformulated in terms of the 

independent control variables. As an example, let us consider the five-element 

coupled oscillator array of Section 8.4, assuming that each oscillator output is 

connected to an antenna, and the antenna elements are placed a half free-space 

wavelength apart (      ). The free-running oscillator steady state 

corresponds to an amplitude of          V (the output power is 2.9 dBm), 

and frequency          GHz obtained for a control voltage of       V. 
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The coupling network consists of a transmission line section of 360 deg 

electrical length at    and two series resistors        Ω  (Fig. 8-9). The 

optimization problem given by Eq. (9.2-17) was solved for the case of main 

beam direction at      deg (broadside) and an additional null constraint at 

       deg. The outcome of the optimization procedure is shown in 

Table 9-1. The phase perturbation of the middle array element 3 was arbitrarily 

set to zero. The steady-state vector   consisted of the five oscillator amplitude 

perturbations; the four phase perturbations of oscillators 1,2,4, and 5; and the 

control voltage of the middle oscillator 3. Correspondingly, the optimization 

variables were the control voltages of elements 1, 2, 4, and 5. 

 

The resulting array factor is shown in Fig. 9-3. In addition to the result of the 

optimization problem given by Eq. (9.2-17), the array factor corresponding to 

the solution of problem given by Eq. (9.2-6) (which does not contain the array 

steady-state constraint) was also included for comparison, as well as the array 

factor corresponding to uniform excitation without a null constraint. It can be 

verified that the null is successfully imposed in the array factor at the expense 

of higher side-lobe levels and a small shift in the main lobe direction. For this 

particular case, the solutions of Eqs. (9.2-17) and (9.2-6) overlap, which 

indicates that there exists a steady-state solution for the coupled-oscillator array 

that satisfies the pattern constraints given by Eq. (9.2-6). 

 

The optimization problem given by Eq. (9.2-17) was then solved for different 

values of the coupling resistor  , and the solution stability was examined by 

calculating the eigenvalues of the linear variational system of differential 

equations corresponding to the array steady state. The critical eigenvalue 

having the largest real part (spectral abscissa) is shown in Fig. 9-4 for different 

values of  . It is seen that, as coupling becomes weaker, the solution eventually 

becomes unstable. The change of stability occurs for a coupling resistor value 

of 178 Ω . 

 
Table 9-1. Pattern nulling optimization of Eq. (9.2-17) applied in a five-element 

linear coupled-oscillator array. The main beam direction is      deg (broadside). 

A null in the array factor is imposed at        deg. 

Element 
Amplitude 

   (Volt) 

Phase 

   (º) 

Control 

   (Volt) 

1 0.0026 –16.257 –0.093 

2 –0.0031 5.292 0.119 

3 –0.0001 0 0.004 

4 0.0033 –6.178 –0.127 

5 –0.0027 16.331 0.097 
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Fig. 9-3. Beamforming capabilities of coupled oscillator 
arrays. Array factor of five-element array of Section Error! 
Reference source not found. for main beam at broadside 
and one null constraint at  

       deg. The coupling resistor is        Ω. 

 

 

Fig. 9-4. Critical eigenvalue of the solution of the 
optimization problem of Eq. (9.2-17) versus the 
coupling resistor  . 
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9.3 Stability Optimization of the Coupled-Oscillator 
Steady-State Solution 

The stability of the coupled oscillator steady-state solution is verified by 

examining the linear variational equations corresponding to the system of 

nonlinear differential equations describing its dynamics. In Section 7.7, a 

procedure was described to remove the zero eigenvalue that appears due to the 

free-running nature of the oscillator array. The resulting square matrix  ̃ of 

dimension      was derived in Section7.7, where   is the size of the array. 

The linear variational equation for   ̃  ,     ̃ -  is repeated here for 

convenience, where   ̃ contains     phase differences with respect to an 

arbitrarily selected oscillator   as a reference 

  ̇̃   ̃  ̃  (9.3-1) 

By definition, a steady-state solution is stable if the spectral abscissa of  ̃ is 

negative. The decay rate of  ̃ is the negative of the spectral abscissa [156], and 

a steady state is stable if  ̃ has a positive decay rate. Maximizing the decay rate 

corresponds to a more robust steady-state solution, less likely to lose its 

stability due to the presence of noise or other perturbations. The matrix  ̃(  ̃) 

depends on the steady state defined by the perturbation vector  

  ,      -  of the array, which, following Eq. (9.2-16), is determined 

by the (perturbation) vector of     control voltages   ̃.   ̃ does not depend 

linearly on   ̃ due to the matrix inversion involved in its derivation and due to 

the fact that the phase terms appear in exponential terms. This can be easily 

verified following the formulation that leads to the definition of  ̃ in 

Section 7.7. However, due to the fundamental assumption that   and   ̃ are 

small, we may consider the first order expansion  ̃ (  ̃) of  ̃(  ̃). The 

derivation of  ̃ (  ̃) is straightforward. 

 

A lower bound on the decay rate can be obtained using Lyapunov theory as the 

maximum   that solves [156] 

 ̇ (  )       (  ) (9.3-2) 

for any   , where   ( ) is a scalar quadratic potential function defined by a 

0real symmetrix matrix   with dimension      such that 

  (  )         (9.3-3) 

Using Eqs. (9.3-1) and (9.3-3) in Eq. (9.3-2), one obtains a matrix inequality 

  ̃   ̃ 
         (9.3-4) 

For a given steady state   ̃, finding the symmetric positive definite matrix   

that maximizes the decay rate   is a generalized eigenvalue optimization 
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problem. Conversely, given a specific matrix   finding the steady state   ̃ that 

maximizes   is an eigenvalue optimization problem. As noted in Section 9.1, 

both such problems can be efficiently solved using convex optimization 

algorithms. However, finding the steady state   ̃ and matrix   that maximize   

is not a convex optimization problem due to the multiplicative terms that appear 

between the elements of   ̃ and  . 

 

It is possible to introduce the decay-rate optimization constraint in the coupled-

oscillator array beamforming optimization algorithm following the approach by 

Georgiadis and Slavakis [153], which is given below. The optimization 

problem including the stability constraint is written as follows 

 

 (   )       ̃  (   )       

subject to (i)  ‖ ̃   ̃(  ̃)‖  ‖  ̃‖    

(ii)     ̃  ̃     ̃    

               (iii)   ̃ (  ̃)   ̃ 
 (  ̃)        

 (iv)                        

(9.3-5) 

This is not a convex optimization problem, and its resolution is not 

straightforward. In Ref. [153], an algorithm was proposed to obtain a solution 

to the above problem by alternative minimization of two sub-problems, an 

eigenvalue and a generalized eigenvalue problem. The algorithm proceeds as 

follows 

 

Step 1: Let     be the algorithm termination tolerance and     be the 

iteration number. Find   ̃    ̃ , the vector of control variables that 

minimizes the perturbation vector norm     , subject to (i) and (ii). 

This is the original convex optimization problem of Eqs. (9.2-17) and 

(9.2-15) that does not include a stability constraint. Obtain the decay 

rate    corresponding to  ̃ (  ̃ ) by evaluating its eigenvalues. 

 

Step 2: Repeat {   

P1:  Find the real symmetric square matrix      that minimizes 

 (   )    , subject to (iii) and (iv) for a given   ̃ . This is a 

generalized eigenvalue optimization problem. The optimization 

objective provides a value of the decay rate       . 

P2:  Find the control vector   ̃    that minimizes  (   )      

using as input the matrix      obtained from the previous step. 

This is an eigenvalue optimization problem. Additional outputs 

of this step are the norm of the perturbation vector      and the 

decay rate       . 
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P3:           

    } until (             )    

 

The algorithm is demonstrated for the case of the five-element coupled-

oscillator array considered in Section 9.2, where the main beam was directed 

broadside (     deg) and a null in the array factor was placed at        

deg. For a coupling resistor        Ω the beamforming optimization problem 

in Eq. (9.2-17) obtained the stable solution indicated in Table 9-1. The decay 

rate of this solution was 3.83 Msec-1, as shown in Fig. 9-4. Using this solution 

as a starting point the above algorithm was run in order to find a solution of 

Eq. (9.3-5) with an optimum decay rate. The algorithm converged after 11 

iterations using a termination tolerance of 10–5. The result from P1 and P2 for 

the various steps of the algorithm is plotted in Fig. 9-5. The final solution of the 

algorithm had a decay rate of 13.2 Msec-1 (which is more than three times the 

initial value).  

 
The perturbation vector of this solution is indicated in Table 9-2, where one can 

verify that it is only slightly increased from the original solution of Table 9-1 

(        compared to the original perturbation of        ). Finally, the 

radiation pattern of the final solution is almost identical to the radiation pattern 

of the original starting point solution, shown in Fig. 9-3.  

 

 

Fig. 9-5. Decay rate of the optimization problem 
Eq. (9.3-5) versus the iteration number. 
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Table 9-2. Pattern nulling and stability optimization in Eq. (9.3-5) 
applied in a five-element linear coupled-oscillator array. The 

main beam direction is      deg (broadside). A null in the 

array factor is imposed at        deg. 

 

Element 
Amplitude 

   (Volt) 

Phase 

   (deg) 

Control 

   (V) 

1 0.0025 –17.870 –0.089 

2 –0.0027 2.868 0.105 

3 –0.0002 0 0.007 

4 0.0030 –4.354 –0.114 

5 –0.0026 17.033 0.092 

9.4 Multi-Beam Pattern Generation Using Coupled-
Oscillator Arrays 

The synthesis of antenna radiation patterns was formulated as a convex 

optimization problem by Lebret and Boyd [158]. Considering a uniform linear 

array for simplicity, its array factor is given by  

   ( )   ∑    
         

     ( )   (9.4-1) 

where the vector   ,  -  [   
   ] contains the complex excitations of each 

element, the element distance is  , and   is measured from broadside. This 

formulation is slightly different from the one used in the previous section in 

order to emphasize the fact that the array factor is a linear function of the 

complex element excitations. 

 

The pattern-synthesis convex optimization problem is written as [151,158] 

 

   
 
  

subject to | (  )|                  

          | (  )|                  

         | (  )|                 

(9.4-2) 

The above formulation contains   equality constraints corresponding to   array 

factor maxima at angular directions   . Moreover, there exist   maximum level 

   constraints and   array factor minimization constraints. As a result, it is 

possible to efficiently obtain the complex excitations required to synthesize 

arbitrary patterns, such as ones having multiple beams and other beam-shaping 

requirements. Furthermore, the number of the optimization variables maybe 
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minimized by using the equality constraints to solve for and eliminate  

 -dependent variables [158].  

 

Due to the fact that an arbitrary pattern synthesis problem cannot be considered 

as a perturbation of some initial reference pattern, such as for example the one 

corresponding to uniform in-phase excitation, the linear constraint for the 

coupled oscillator steady state given by Eq. (9.2-14) or (9.2-16) cannot not be 

used, as the desired steady state may require a large perturbation vector   or  , 

especially in terms of the oscillator phase differences. As a result, the general 

pattern synthesis problem applied to coupled-oscillator arrays may be 

approached in three steps. First one obtains the required complex excitations by 

solving the convex optimization problem Eq. (9.4-2). Second, once the desired 

amplitude and phase values are found, one uses the steady-state equations 

corresponding to the coupled-oscillator models in Eq. (7.4-4) or (7.7-12) 

(which do not assume a linear perturbation for the phase terms) in order to find 

the coupled-oscillator steady state that closely matches the required amplitude 

and phase distribution. For example, when using Eq. 7.7-12), one may 

substitute the phase values obtained by solving Eq. (9.4-2) in the previous step 

and solve Eq. (7.7-12) for the amplitude and control variables. Alternatively, a 

nonlinear simulator (such as harmonic-balance optimization) can be used, 

where the phase values are imposed and fixed, and the amplitude values 

obtained from convex optimization are used only to initialize the oscillator 

amplitudes in the simulation and are allowed to be optimized together with the 

control parameters in order to obtain the steady state. Third, once a coupled-

oscillator steady state has been selected, the stability of the solution must be 

verified, for example by calculating the eigenvalues corresponding to the linear 

variational system of the array dynamics around the steady state. In fact, as will 

be seen in the following examples, in this step the designer synthesizes the 

coupling network in order to guarantee the stability of the steady-state solution. 

 

Difference pattern generation using coupled-oscillator arrays was demonstrated 

by Heath in Ref. [31]. Heath considered a linear coupled oscillator array, and 

using the generalized phase model to describe its dynamics, extended the 

application of the beam-steering model initially introduced by York [111] to 

difference pattern generation and steering. He showed that a stable difference 

pattern maybe generated by a simple modification in the coupling network, that 

is, by introducing a 180-deg phase shift in the coupling between the central 

elements of the array, while maintaining a 0-deg phase shift between all 

remaining elements. In order to steer the difference beam pattern, the following 

phase distribution should be applied to the array elements [31].  

       (   )      (9.4-3) 
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where    is an arbitrary phase reference common to all elements, and    is the 

necessary phase shift that must be imposed to steer the main (difference) beam 

of the array at an angle           . The additional phase    should be 

applied only to half of the array elements 

    {
         
        

 (9.4-4) 

Assuming a linear coupled-oscillator array with adjacent element coupling, this 

is easily achieved by using an inter-element coupling network with coupling 

phase 0 deg between all elements except for the center elements where the 

coupling network phase is 180 deg. 

 

More importantly, it was further shown by Heath [31] that the difference 

pattern can be scanned by simply detuning the free-running frequencies of the 

edge array elements, in the same manner that the sum pattern is scanned 

(Fig. 9-6).  

 

In Ref. [151], Georgiadis and Collado applied the pattern synthesis 

optimization algorithm described in this section in a seven-element linear array, 

in order to synthesize a dual-beam pattern with beam directions at 15 deg and 

 

 

Fig. 9-6. Difference-pattern demonstration using a      
element coupled oscillator array. The beam is steered at 

      deg according to Eq. (9.4-3). (Reprinted with 
permission from [31], ©2001 IEEE.) 
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-25 deg  from broadside, while imposing a maximum level constraint 

of  -20 decibels relative to the carrier (dBc) between the two beams. The array 

factor is minimized in the remaining angular directions, imposing the first 

constraint given by Eq. (9.4-2). The resulting necessary complex element 

excitations are shown in Fig. 9-7.  

 

The desired phase differences are imposed on the coupled-oscillator array by 

allowing the free-running frequencies of all oscillators to be tuned. Amplitude 

control however, is imposed externally to the oscillator elements by employing 

variable attenuators (or variable gain amplifiers) at the oscillator outputs. The 

required excitations are introduced in a harmonic-balance simulator as follows. 

An ideal probe is connected to the output of each oscillator element, and the 

phase information is imposed in the probes. Harmonic balance optimization is 

then used to find the steady-state oscillator amplitudes and control voltages that 

correspond to the imposed phase distribution. Once the steady state is found, 

the oscillator output amplitudes are adjusted using attenuators so that the 

desired amplitude distribution is obtained. 

 

It should be noted that after examination of the required excitation phases 

obtained from the optimization algorithm (Fig. 9-7), a coupling network was 

designed such that the coupling phase between elements 2 and 3, and 5 and 6, is 

180 deg while the coupling phase of the remaining elements is 0 deg. The 

rationale behind this choice was that when the coupling network phase is 

360 deg, a stable solution with phase difference in the range [–90 deg, +90 deg] 

 

 

Fig. 9-7. Multi-beam pattern generation using a seven-element coupled oscillator 
array. Element excitations required to synthesize two main beams at  
15 and -25 deg from broadside, with a maximum level constraint of –20 dBc 
between the two beams. The required coupling network phase shift to ensure a 
stable solution is indicated. Taken from [151]; copyright EurAAP 2009; used with 
permission.  
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can be obtained, whereas if the coupling phase is 180 deg, the stable solutions 

can have a phase difference in the range of [+90 deg, +270 deg]. As the 

required phase difference among elements 2 and 3, and 5 and 6, is more than 

90 deg (see Fig. 9-7), a coupling network with phase of 180 deg was selected in 

order to ensure the existence of a stable solution. 

 

The array factor corresponding to the excitations resulting from the solution of 

the optimization problem given by Eq. (9.4-2) is shown in Fig. 9-8, where it is 

marked as the ideal pattern. The coupled-oscillator array amplitudes found after 

the application of the above solution in a harmonic-balance simulator, as 

described in the previous paragraphs, were used to compute the coupled-

oscillator array radiation pattern. The resulting pattern shows an excellent 

agreement with the ideal pattern. Finally, the array factor corresponding to 

uniform amplitude excitation and application of only the phase excitation 

values from Eq. (9.4-2) is superimposed in Fig. 9-8, showing that by imposing 

the phase condition only it is possible to successfully obtain the two desired 

main lobes, but it is not sufficient to maintain the sidelobe levels at a 

sufficiently low value.  

 

Furthermore, it was verified that the two beam patterns can be scanned while 

maintaining their angular distance of 40 deg by detuning only the free-running 

frequencies of the end elements. The result of the harmonic-balance simulation 

is shown in Fig. 9-9. This last example may be viewed as a generalization of 

the difference pattern synthesis work of Heath [31], in the sense that once a 

desired phase and amplitude distribution among the array elements is obtained, 

thus synthesizing a desired array factor, a progressive constant-phase shift 

distribution may be superimposed by detuning only the end array elements, 

thereby permitting one to scan the synthesized pattern accordingly.  

9.5 Control of the Amplitude Dynamics 

Oscillator amplitude control provides an additional degree of freedom in order 

to synthesize more complex radiation patterns with improved performance 

capabilities, such as reduced sidelobes. The possibility of controlling the 

oscillator free-running amplitudes in order to synthesize a desired pattern was 

investigated by Heath [159]. Furthermore, in the works of Georgiadis et al. 

[118,150,153] the oscillator amplitude dynamics are included in the 

beamforming problem formulation. Recently, control of the amplitude 

dynamics of the coupled oscillator array, was also addressed by Jiang et al. 

[160], where the generation of triangular amplitude distributions in linear 

coupled oscillator arrays was demonstrated.  
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Fig. 9-8. Dual beam pattern generation using an     element 
coupled-oscillator array. The solution of the optimization 
problem (ideal pattern) is compared with the final solution for 
the array using harmonic-balance optimization (amplitude and 
phase condition) and with a pattern obtained imposing the 
phase excitation and uniform magnitude excitation (phase 
condition). Taken from [151]; copyright EurAAP 2009; used with 
permission.  

 

Using a complex notation, the oscillator dynamics are described using either of 

the two models presented in Sections 7.4 and 7.6. The formulation of Heath 

[159] using the model of Section 7.4, is presented here  

 

  ̇          (   
  |  |

 )   ∑     

 

   

 (9.5-1) 

with       
   . The periodic steady-state solution is obtained by setting 

 ̇    and  ̇    with   an arbitrary constant, resulting in 
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Fig. 9-9. Dual beam pattern steering using an     element coupled-
oscillator array. Oscillator control voltages for different scanning 
angles. Taken from [151]; copyright EurAAP 2009; used with 
permission.  

                |  |
  ∑   

  
  

 

   

 (9.5-2) 

with         
 . Parameters    and     allow one to independently tune 

the free-running frequency and free-running amplitude of the oscillator 

elements in order to synthesize a desired pattern. In Ref. [159], near-neighbor 

coupling was considered simplifying the coupling network matrix  . Once a 

desired amplitude and phase distribution    is selected, one may separate the 

above equation into real and imaginary parts and solve for the tuning 

parameters,    and    . Finally, the stability of the solution must be 

examined through the eigenvalues of the linear variational equation given by 

Eq. (9.5-1), as was described in Section 7.4.  

9.6 Adaptive Coupled-Oscillator Array Beamformer 

In addition to the beamforming capabilities of coupled-oscillator arrays, an 

adaptive receive beamformer based on a coupled oscillator array was 

demonstrated by Ikuma et al. [154]. The steady-state expression of the coupled-

oscillator array provides a means for controlling the array-element amplitudes 
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and phases by adjusting the free-running oscillator frequencies and the coupling 

network. Similarly to the previous paragraph, a complex notation for the array 

dynamics pertaining to either of the two models of Sections 7.4 and 7.6 may be 

utilized.  

 

The formulation of Section 7.4, also shown in Eq. (9.5-1), was followed in 

Ref. [154]. The periodic steady-state solution is obtained by setting  ̇    

and  ̇    with   an arbitrary constant, resulting in  

      ∑     

 

   

    (9.6-1) 

where         

 
       

       

   ( |  |
    )   

(9.6-2) 

Finally, in matrix form one has 

 (   )   ( ) (9.6-3) 

where   is a diagonal matrix with    in its main diagonal and   is a vector 

with    in its main diagonal. Matrix   contains the oscillator parameters, the 

free-running amplitudes, and the free-running frequency offsets from   . The 

frequency offsets can be adjusted, whereas the free-running amplitudes are 

fixed and assumed equal for all oscillators. Amplitude control may also be 

achieved using, for example, a variable attenuator or variable-gain amplifier at 

each oscillator output. The matrix   contains the coupling-network gain and 

phase, and it may also be tunable. In Ref. [154], nearest neighbor coupling is 

assumed, which results in a bi-diagonal matrix  .  

 

There are many possible combinations of   and   that can lead to a desired 

complex amplitude vector  . Ikuma et al. [154] considered a reconfigurable 

coupling network   and identical oscillators without frequency tuning, leading 

to a fixed   matrix. As a result, the coupling matrix   is used to generate the 

desired amplitude distributions  .  

 

The proposed adaptive receiver of Ikuma et al. [154] is shown in Fig. 9-10. 

Assuming a receiving uniform linear-antenna array of   elements, the received 

signal vector from all antennas is  ( ). 
 

The received signal is split into two signal paths. The signal in the first path is 

mixed with a reference oscillator   ( ), and after passing through a low-pass 

filter to remove unwanted mixing products, it provides the reference vector 



Beamforming in COAs 313 

  ( ). In the second path, the received signal vector is mixed with the coupled-

oscillator array vector  ( ); and after low-pass filtering, it provides the 

demodulated scalar output signal   ( ) of the beamformer. The fixed oscillator 

is phase locked to the middle element of the coupled-oscillator array. It should 

be noted that in the block diagram of Fig. 9-10, the analytic representation 

[149] of the various signals is indicated. As an example, the analytic signal of 

the reference oscillator is 

   ( )     
     (9.6-4) 

with    the reference oscillator frequency and    its complex amplitude. 

 

The coupled-oscillator array complex amplitudes are adaptively controlled 

based on a least-mean-square (LMS) algorithm given by 

  ̇       ( )  
 ( ) (9.6-5) 

in order to minimize the effect of unwanted interfering signals present in the 

received array signal  ( ). The operator ()* denotes the complex conjugate. 

Matrix   depends on the desired fixed constraints of the beamformer, in other 

words, on a set of specified array-factor levels at a number of angular directions  

 

 

Fig. 9-10. Adaptive coupled-oscillator array receiver block diagram. 
(Reprinted with permission from Ref. [154], ©2001 IEEE.) 
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including the direction of arrival of the main beam [154]. Finally, the parameter 

  controls the convergence speed of the beamformer. The proposed 

beamformer operation was verified by computer simulation. 

9.7 Conclusion 

In this chapter we introduced several optimization problems, demonstrating the 

beamforming capabilities of coupled oscillator arrays. The beamforming 

problem has been formulated as a convex optimization problem, which includes 

the array steady state as a linear constraint. The results of Chapter 7 have been 

used to provide an expression for the steady state of the coupled-oscillator 

array. Additionally, the capability of generating and scanning multiple beams 

has been verified. Furthermore, a non-convex optimization algorithm, which 

optimizes the stability of the steady state solution, has been introduced, and an 

adaptive beamformer based on coupled oscillator arrays has been demonstrated. 

The combination of optimization and signal-processing techniques (together 

with the rich dynamical properties of coupled-oscillator arrays) reveal the 

potential and numerous applications of such arrays, which have yet to be 

explored.  
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