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Chapter 7  

Perturbation Models for Stability, Phase 

Noise, and Modulation 

The complex dynamics of coupled-oscillator arrays lead to the existence of a 

multitude of steady-state solutions. In addition to finding or selecting a desired 

steady-state solution, one further needs to guarantee its stability. In this section, 

perturbation methods are described that allow the designer to examine both the 

existence as well as the local stability of the various steady-state solutions of 

coupled oscillator arrays. An introduction to stability analysis of nonlinear 

dynamical systems is presented [94], followed by its application to coupled 

oscillator systems [95] [96].  

 

The perturbation nature of noise, leads to phase-noise analysis methods that are 

closely related to the formulation used in the stability analysis. Analytical 

models are presented that demonstrate the attractive properties of coupled inter-

injection locked oscillator systems, among them improved phase-noise 

performance compared to single elements [97].  

 

A straightforward application of coupled-oscillator arrays has been in power-

combining arrays where, by controlling the phase shift within an array of 

synchronized oscillator elements, one can direct the radiated beam towards a 

desired direction taking advantage of free-space power combining and 

eliminating the use of lossy power-combining networks. The simple topologies 

associated with such arrays have led to their consideration in communication 
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system applications where one introduces modulation into the oscillator signals 

[98,99]. Thus, methods to introduce modulation in such arrays are presented. 

These architectures are distinguished from mixer-oscillator arrays where the 

modulation is not applied in the oscillator signal. Finally, an introduction to the 

analysis of coupled phase-locked loops is provided.  

7.1 Preliminaries of Dynamical Systems 

We have demonstrated in Part I of this book that coupled-oscillator arrays are 

able to synchronize in frequency while maintaining a fixed distribution of the 

relative phases between their elements, and that, despite the complex nature of 

their dynamics, there are simple methods to control the phase relationships 

among the array elements, which require a small number of control parameters. 

It was also demonstrated that as the number of elements increases, there exist 

many different synchronized solutions, with different ensemble frequency 

values and different phase distributions. In order to be able to study the 

behavior of the various solutions as selected parameters of the array are varied, 

we must first provide a theoretical framework from nonlinear dynamical system 

theory. This will allow us to classify the types of the solutions and the 

phenomena that lead to creation or elimination of solutions as well as to 

changes in the solution stability. 

 

In this section, principles of stability analysis of nonlinear dynamical systems 

are presented. The theory can be found in standard literature on dynamical 

systems [100] [101] and nonlinear differential equations [94]. 

 

Following Parker and Chua [101] an autonomous continuous time dynamical 

system is described by the system of differential equations 

  ̇       (7.1-1) 

where the N-dimensional vector      contains the state variables of the 

system, and            is the vector field describing the dynamics of the 

system. The order of system Eq. (7.1-1) is  . An initial condition          is 

assumed, where typically      is set, since the vector field does not depend 

explicitly on time.  

 

In contrast, a non-autonomous continuous time dynamical system is described 

by a system of equations of the form 

  ̇         (7.1-2) 

where the vector field depends explicitly on time. A non-autonomous system 

with period T can be expressed in the format of Eq. (7.1-1) by extending the 

state vector by one more dimension   defined by  ̇      , with  
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            . In the following a dynamical system defined by Eq. (7.1-1) 

will be considered. A solution of Eq. (7.1-1) for a given initial condition is 

called a trajectory or orbit. 

 

A free-running oscillator and a coupled-oscillator array are autonomous 

dynamical systems. They become non-autonomous when an external injection 

source is present. 

 

A steady state is the asymptotic behavior of a dynamical system governed by 

(7.1-1) when    , when the transient behavior has decayed to zero. A steady 

state is also called a limit set. The mathematical definition of a limit set 

includes the asymptotic behavior of a dynamical system both as time progresses 

forward (    ) and backward (    ), distinguishing between  -limit 

sets and  -limit sets, respectively. 

 

Steady states can be classified into four different types, equilibrium points, 

periodic solutions, quasi-periodic solutions, and chaotic solutions. 

 

Equilibrium points    correspond to the solution of 

         (7.1-3) 

An equilibrium point is the DC solution of an oscillator circuit. 

 

A periodic solution      , is a solution of Eq. (7.1-1) that has a minimum 

period  , such as 

               (7.1-4) 

for every t. A periodic solution of an autonomous system is also called a limit 

cycle. 

 

A quasi-periodic solution is a solution that is equal to a countable sum of 

periodic solutions with non-commensurate periods, in other words: 

       ∑     

 

   

 (7.1-5) 

where       are periodic solutions with minimum period   . The various 

frequencies         form a linearly independent set of dimension p with 

     . 

 

Finally, any bounded steady-state behavior that cannot be classified in one of 

the previous types is a chaotic steady state. 
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An  -dimensional dynamical system can be efficiently analyzed using a 

Poincare map [101] [102]. The Poincare map is a transform that maps an  
 -dimensional continuous system to an (   ) dimensional discrete time 

system. This is illustrated in Fig. 7-1. Let us consider a continuous time 

autonomous dynamical system described by Eq. (7.1-1), which has a periodic 

solution denoted by  . At some point    of the periodic orbit, we define locally 

a cross-section   that is a surface of dimension     intersecting   at a non-

zero angle. The periodic orbit returns to the point    on the cross-section 

  every T second. The sequence of points on the cross-section defines a discrete 

time system, which is equivalent to the original continuous time system. 

Furthermore, the limit cycle of an  -dimensional dynamical system is 

represented by a point on an     dimensional surface. The reader is referred 

to the literature for a precise mathematical definition of a Poincare map for both 

cases of an autonomous and a non-autonomous system [101] [102]. It should be 

noted that the computation of a Poincare map for autonomous systems is 

complicated by the fact that the period of the limit cycle is not known a-priori; 

whereas in the case of non-autonomous systems, the sampling period   is 

known in advance due to the explicit dependence of Eq. (7.1-2) in time.  

 

Having provided the fundamental definitions related to dynamical systems, and 

the various types of existing solutions, the stability analysis of these solutions is 

presented in the next section. 

 

 

 

 

 

Fig. 7-1. Poincare map of a periodic orbit. 
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7.1.1 Introduction to Stability Analysis of Nonlinear Dynamical 
Systems 

There exist different types of stability. For the precise mathematical definitions 

and types of stability, the reader is referred to the literature [94] [101]. For the 

purposes of this work, a rather qualitative definition is provided. A steady state 

   is (Lyapunov) stable if and only if there exists a neighborhood   of    such 

that every trajectory with initial condition     remains within   at all 

times    . Furthermore, a steady state is asymptotically stable if and only if 

there exists a neighborhood   of    such that every trajectory with initial 

condition     reaches arbitrarily close to    given enough time    . In 

other words, the  -limit set of any initial condition within   is   . Conversely, 

a steady state    is unstable if there exists a neighborhood  of    such that    

is the  -limit set of all initial conditions in  . Finally, a steady state    is called 

non-stable if for every neighborhood  , there exists at least one point whose  

 -limit set is    and one point whose  -limit set is   . 

7.1.2 Equilibrium Point 

The stability of an equilibrium point    is examined by considering the linear 

perturbation of the vector field      at   . The eigenvalues of the Jacobian 

      of the vector field determine the stability of the solution. 

   ̇  
  

   
           (7.1-6) 

with            representing an initial perturbation from   . The solution of 

the linear differential equation Eq. (7.1-6) generally takes the form 

       ∑   
     

 

   

 (7.1-7) 

where    and    are the eigenvalues and eigenvectors of        respectively. 

The constants   are determined by the initial condition    . 

 

For a given  -dimensional vector field      the     Jacobian matrix   has 

  eigenvalues. An equilibrium point whose eigenvalues do not have a real part 

equal to zero is called hyperbolic. If all eigenvalues have negative real parts, the 

point    is asymptotically stable. Correspondingly, if there exists one 

eigenvalue with a positive real part,    is unstable. Finally, if there exists one 

eigenvalue with a real part equal to zero, the equilibrium point is non-

hyperbolic, a condition that is equivalent to the determinant of   being equal to 

zero, and the eigenvalues of   are not sufficient to determine its stability.  
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In the case of an    -dimensional system, the Jacobian matrix has two 

eigenvalues  , which satisfy the following characteristic equation [102] 

           (7.1-8) 

where   is the sum and   the product of the two eigenvalues. The classification 

of the hyperbolic equilibrium points and their stability for different values of   

is shown in Fig. 7-2 [102]. 

7.1.3 Periodic Steady State 

In order to determine the stability of a periodic solution       the linear 

perturbation of Eq. (7.1-1), also called a linear variational equation, with 

respect to the time varying       is formed, leading to a system of linear 

differential equations with periodic coefficients.  

   ̇  
     

   
    [     ]   (7.1-9) 

with            and for  [       ]   [     ]. 
 

 

 

 

Fig. 7-2. Hyperbolic equilibria of a  
two-dimensional system. 
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The solution of Eq. (7.1-6) is derived using Floquet theory [94]  

       ∑     

 
      

 

   

 ∑   
        

 

   

 (7.1-10) 

where    are the Floquet multipliers and       are periodic vector functions. 

The Floquet exponents    are related to the multipliers by  

         (7.1-11) 

It is seen from Eq. (7.1-11) that there is not a unique mapping between 

multipliers and exponents, as adding to any exponent a complex factor      ⁄  

with   an arbitrary integer results in the same multiplier. 

 

The stability of       is determined by the Floquet multipliers   . They can be 

calculated by direct integration of Eq. (7.1-9) for one period   with initial 

condition          where    is the identity diagonal square matrix of 

dimension  . The result of the integration is the monodromy matrix   whose 

eigenvalues are the desired Floquet mutlipliers    [94].  

 

A periodic solution       of an autonomous system has at least one Floquet 

multiplier with magnitude equal to 1, or equivalently a Floquet exponent equal 

to zero. Furthermore, a periodic solution       is stable if the remaining 

multipliers have a magnitude less than one (|  |<1). Correspondingly, if one 

multiplier with magnitude larger than 1 exists, the solution is unstable. 

7.1.4 Lyapunov Exponents 

The Lyapunov exponents are defined as follows 

       
   

 

 
  |    | (7.1-12) 

and can be considered a generalization of both the characteristic eigenvalues of 

the equilibrium point and the Floquet multipliers of the periodic steady state 

[101]. In fact, the Lyapunov exponents can be used to determine the stability of 

quasi-periodic and chaotic steady-state solutions. 

 

One can easily see from Eq. (7.1-7) that the Lyapunov exponents of the 

equilibrium point correspond to the real part of the characteristic eigenvalues.  

         {  } (7.1-13) 

Correspondingly the Lyapunov exponents of the periodic steady state are equal 

to the natural logarithm of the magnitude of the Floquet multipliers divided by 
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the period of the solution which is equal to the real part of the Floquet 

exponents. 

        
  |  |

 
   {  } (7.1-14) 

7.2 Bifurcations of Nonlinear Dynamical Systems 

A dynamical system described by Eq. (7.1-1), in practice depends on a set of 

parameters   of dimension   (    ) which enter the definition of the vector 

field 

  ̇         (7.2-1) 

A parameter corresponds to some circuit control voltage or bias voltage/current 

or any other physical parameter such as the dimension of a transmission line. 

As the parameter vector varies, the solutions of Eq. (7.2-1) change. The change 

of stability of a specific steady-state solution, the creation of new steady-state 

solutions or elimination of existing ones, as one or more parameters of a 

nonlinear system vary is called a bifurcation [100,102]. The corresponding 

parameter values for which a bifurcation occurs are called bifurcation values. A 

bifurcation diagram is a plot of a selected state variable(s) corresponding to a 

limit set versus the system parameter(s). An example of a bifurcation diagram 

is the plot of the DC voltage at a selected circuit node or the oscillation 

amplitude versus the external bias voltage of the oscillator. Bifurcations are 

classified into local and global. Local bifurcations are detected by studying the 

vector field f in a neighborhood of a limit set. In contrast, local information is 

not sufficient to detect global bifurcations. Typically in this book we study 

systems where one parameter is varied (   ).  

7.2.1 Bifurcations of Equilibrium Points 

Let us consider such a continuous time system with one parameter that has a 

hyperbolic equilibrium point. As the parameter varies, there are two ways that a 

hyperbolic point can become non-hyperbolic. In the first one, a simple real 

eigenvalue becomes zero (    ). In this case the system is going through a 

bifurcation known as fold bifurcation. Fold bifurcation is also known as 

turning-point or saddle-node bifurcation. In a fold bifurcation the equilibrium 

point curve presents an infinite slope at the parameter value      where one 

real eigenvalue becomes zero. This is seen in the bifurcation diagram of a one-

dimensional system shown in Fig. 7-3.  
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Fig. 7-3. Fold bifurcation. 

 

The infinite slope at    corresponding to a real zero eigenvalue leads to a 

folding, a turning point of the solution curve. For larger values of the parameter 

     no solutions exist, whereas for      two solutions exist. In fact, one 

solution branch contains stable nodes indicated by a solid line, whereas the 

other unstable (saddle) solutions, and this is indicated by a dotted line [102]. In 

the case of a one-dimensional system, the unstable solution is a node, whereas 

in the general case it is a saddle. At the critical value     , the node and 

saddle collide, hence the name saddle-node bifurcation. 

 

In the second case, a pair of simple complex eigenvalues fall on the imaginary 

axis (        with     ). In this case, the system undergoes a Hopf 

bifurcation, and a limit cycle is born or is extinguished. It is straightforward to 

see that a Hopf bifurcation requires that the system be at least second order 

(   ).  

 

An example of a Hopf bifurcation in a two-dimensional system is shown in 

Fig. 7-4. In a supercritical Hopf bifurcation (Fig. 7-4 a), a stable limit cycle is 

born as the parameter goes through the bifurcation value   . At the same time 

the stable equilibrium solution becomes unstable. In subcritical Hopf 

bifurcation (Fig. 7-4 b), an unstable limit cycle is created while an unstable 

equilibrium point becomes stable. 
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Fig. 7-4. Hopf bifurcation, a) 
supercritical, b) subcritical. 

7.2.2 Bifurcations of Periodic Orbits 

Correspondingly, a hyperbolic limit cycle is a limit cycle that does not have any 

Floquet multipliers with magnitude equal to one [102]. A periodic steady state 

of an autonomous system has one Floquet multiplier equal to one, and 

therefore, it is hyperbolic if the remaining multipliers do not have magnitude 

equal to one.  

 

Given a periodic steady state with frequency      ⁄ , there exist three types 

of bifurcations for one-parameter systems [102], corresponding to three distinct 

possibilities that a multiplier crosses the unit cycle as the parameter is varied, 

shown in Fig. 7-5.  

 

In the fold bifurcation (Fig. 7-5 a), a real multiplier takes the value      . In 

this case the frequency of the limit cycle remains the same, something that can 

be inferred from Fig. 7-5 a) and Eq. (7.1-10), which describes the linear 

perturbation of the dynamical system around the periodic steady state. A 

Floquet multiplier equal to 1 leads to a perturbation that evolves as 

 

                 (7.2-2) 

with   integer and therefore it does not perturb the oscillation frequency of the 

system. A fold bifurcation leads to a change in the stability of the periodic 

steady-state solution, much as the fold bifurcation of an equilibrium point does 

for the equilibrium point. 
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Fig. 7-5. Bifurcations of periodic orbits, a) fold, b) flip, and  
c) Neimark-Sacker bifurcation. 

 

A flip bifurcation occurs when the multiplier becomes       (Fig. 7-5 b). In 

contrast to the fold bifurcation a flip bifurcation leads to the existence of a new 

limit cycle whose oscillation frequency is half of the original one. Due to this 

fact, a flip bifurcation is also known as a period-doubling bifurcation. The 

contribution to the linear variational equation of the       multiplier is 

          
 
 
      (7.2-3) 

where one can observe the appearance of a term with a frequency half of the 

original one. 

 

Finally, in a Neimark-Sacker or torus bifurcation, a pair of complex conjugate 

multipliers appear on the unit cycle (Fig. 7-5 c). As a result a new frequency, 

which is not harmonically related to the orininal one, appears in the system, 

leading to the onset of a quasi-periodic solution. The contribution to the linear 

variational equation of this Floquet multiplier is expressed as 

                  (7.2-4) 

where   is not an integer. 
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7.3 The Averaging Method and Multiple Time Scales 

The averaging method is typically used to analyze the periodic steady-state 

solutions of weakly nonlinear systems  

  ̇          (7.3-1) 

and perturbations of the linear oscillator systems [103] [100], with  

   . It was originally developed by Krylov and Bogoliubov [104]. The 

method is particularly suitable to analyze the perturbed linear oscillator 

problem described by 

  ̈            (7.3-2) 

where        . The van der Pol differential equation belongs to this class of 

systems with             ̇. In the case of weakly coupled oscillators, an 

equation of the form Eq. (7.3-2) is used to describe each oscillator, and      
contains the nonlinear term of the free-running (uncoupled) oscillator as well as 

contributions from external coupled signals from other oscillators, which can be 

linear or nonlinear. The averaging theorem [100] Uc585947 states that there 

exists a change of coordinates             which transforms Eq. (7.3-1) 

to the averaged system  

  ̇    ̅    (7.3-3) 

where  

  ̅    
 

  
∫            

  

 

 (7.3-4) 

The system given by Eq. (7.3-3) is an autonomous system, whereas Eq. (7.3-1) 

can be non-autonomous. The essential property of the averaged system that is 

extensively applied in the study of coupled oscillator systems is that a 

hyperbolic periodic steady state of Eq. (7.3-3) corresponds to a hyperbolic 

equilibrium point of Eq. (7.3-1) and that both steady states have the same 

stability [100]. This essentially means that the eigenvalues of the linearized 

system of an equilibrium point of Eq. (7.3-3) determine its stability. This is 

quite useful as obtaining the Floquet multipliers of a microwave oscillator may 

not be a trivial task. Furthermore, for the cases that are considered in this book, 

the bifurcations of the averaged system are the same as those of the original 

system [100].  

 

In order to transform the perturbed linear oscillator problem in the standard 

form Eq. (7.3-1), the following transformation (known as the van der Pol 

transformation [100] [103]) is commonly applied to Eq. (7.3-2) before 

averaging,  
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              (7.3-5) 

  ̇                

In this case Eq. (7.3-2) becomes 

  ̇   
 

 
                             (7.3-6) 

  ̇   
 

  
                              

Applying Eq. (7.3-4), the averaged solution is obtained 

  ̇̅    ̅   ̅  ̅  (7.3-7) 

  ̇̅    ̅   ̅  ̅   

It should be noted that the transformation given by Eq. (7.3-5) and subsequent 

application of the perturbation method limits the analysis of the system given 

by Eq. (7.3-2) locally near the oscillation frequency   in the frequency domain. 

The system can be studied near a different harmonic by modifying 

appropriately the transformation, that is, setting    in place of   where   is the 

desired harmonic order. In practice, considering the oscillator behavior near the 

fundamental frequency is sufficient for the study of high Q oscillators because 

higher harmonics are small and therefore can be ignored in the analysis. 

Specifically, the averaged Van del Pol differential equation for which  

            ̇ becomes [103] 

  ̇̅  
 

 
 ̅ (  

 ̅ 

 
) (7.3-8) 

  ̇̅     

The above system leads to a nontrivial steady-state oscillation with amplitude 

 ̅    obtained by requiring that  ̇̅   .  

7.4 Averaging Theory in Coupled Oscillator Systems 

Kurokawa considered the oscillator equivalent of a series resistance, 

inductance, capacitance (RLC) resonator connected in series with a negative 

resistance and applied the averaging theory to study the properties of noisy 

oscillators and injection locked oscillators [105].  
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The theory of Kurokawa applied to the study of coupled oscillator arrays was 

introduced to the antennas and microwaves communities by Stephan [1] with 

an aim towards antenna-array applications such as power-combining arrays and 

phased arrays. The work of Stephan focused on taking advantage of the 

dynamical properties of coupled oscillator array topologies in order to generate 

constant phase shift distributions among the array elements in a continuously 

variable manner. A parallel RLC resonator in parallel with a negative resistance 

was used to model each oscillator, leading to a dual form of the one used by 

Kurokawa. 

 

It should be noted that there is significant theoretical work in the literature 

regarding coupled oscillator systems, also called distributed and ladder 

oscillators, considering the various operating modes and stability of one- and 

two-dimensional arrays. Notable references are [106] [107] [108] [109]. The 

latter work by Endo and Mori [109] presented an elegant way to obtain a 

formulation equivalent to a perturbed van der Pol equation in vector form for an 

array of coupled oscillators modeled as a parallel RLC resonator with a 

negative resistance, and it will be given in the next section. An efficient 

analysis of coupled oscillator arrays for quasi-optical power combining and the 

stability of the various existing operating modes was proposed by York and 

Compton [110] utilizing only the phase dynamics of the array, or in other words 

the second equation of Eq. (7.3-7). 

 

We may distinguish among power-combining applications where the stability 

of the various operating modes of coupled oscillator systems is with an aim to 

secure excitation of only the in-phase mode, and applications where an arbitrary 

phase distribution among the oscillator elements is required (such as 

beamforming and phased arrays). The latter may be viewed as a generalization 

of the former. 

 

Following their initial work, York produced a general formulation for coupled-

oscillator arrays based on the fundamental harmonic approximation and the 

averaging method that is essentially used to date in most approximate analysis 

methods for such systems [111], [95]. Furthermore, York introduced an elegant 

way to achieve constant progressive phase shifts among the array oscillator 

elements in a continuous fashion by only modifying the oscillation frequency of 

the end elements of the array. In 2004, Heath presented an elegant and unifying 

formulation of the application of the method of averaging (specifically the 

Lindstedt method was used to derive the slow time differential equations [94]) 

in coupled-oscillator arrays along with a detailed stability analysis of various 

different coupling network topologies [112]. The latter formulation is given 

here 
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 ̇       
    

    

 ∑                   

 

   

 (7.4-1) 

 

   ̇       

 ∑                   

 

   

  

where an array of   oscillators is assumed. The variable    represents the 

slowly varying averaged amplitude of oscillator  , as given in Eq. (7.3-7) with 

the bar suppressed for simplicity. Correspondingly, the phase of oscillator   is 

given by           where    is the averaged time varying component 

of the oscillator phase corresponding to Eq. (7.3-7) (with the bar suppressed). 

When uncoupled to the rest of the array elements, each oscillator   has a 

periodic steady state with amplitude     and frequency          . 

Furthermore, each individual oscillator satisfies a van der Pol differential 

equation of nonlinearity constant  , which appears in Eq. (7.4-1) through 

         ⁄  where   is the external quality factor of the resonator of each 

oscillator element calculated using a reference load admittance   . Coupling 

among the oscillator elements is included in the form of a square complex 

matrix   [   ] of dimension  , with         
    . Note that   is a 

transfer function (unitless). If for example an admittance matrix is used to 

express the coupling among oscillator elements, then   is the admittance matrix 

normalized to the reference load admittance   . In Eq. (7.4-1) the coupling 

coefficients also appear in normalized form setting  

   [   ]   [    
    ]  [        ] (7.4-2) 

Finally, Eq. (7.4-1) can be written in a complex valued compact format letting 

          

  ̇              
  |  |     ∑     

 

   

 (7.4-3) 

Under weak coupling conditions, the phase dynamics alone are sufficient to 

analyze the behavior of the coupled oscillator system. We may then consider 

only the second equation of Eq. (7.4-1) and assume that the oscillator 

amplitudes are approximately equal to their uncoupled values      . The 

system of equations pertaining to the phase dynamics provide significant 

insight and a very computationally efficient method to analyze arrays with a 



228 Chapter 7 

large number of elements. In fact, the analysis results of Part I of this book have 

focused on the phase dynamics of coupled oscillator arrays. The system of 

equations limited to the phase dynamics was introduced as the “generalized 

phase model” by Heath in [112]: 

  ̇      ∑                 

 

   

 (7.4-4) 

When no coupling phase     is considered, the model is the well known 

Kuramoto model [113]. In the special case where a bi-directional symmetrical 

coupling matrix with     =     is considered, the generalized phase model 

coincides with the phase model introduced by York in [111].  

 

A fixed point of Eq. (7.4-1) corresponds to a periodic steady-state solution, 

defined for  ̇    and  ̇    with   an arbitrary constant. Letting   take 

nonzero values still corresponds to synchronized solutions of the array but for a 

different frequency than   . 

 
     

    
     ∑                   

 

   

   

(7.4-5) 

 
          ∑                   

 

   

   

 

Every set         that satisfies the above conditions corresponds to an 

oscillating mode of the array. In principle there exist up to      modes [111]. It 

should be emphasized that, due to the autonomous nature of the coupled 

oscillator system, it is possible to translate all oscillator phases    by the same 

arbitrarily large value and still obtain the same steady-state solution. This is 

evidenced by the fact that only phase differences appear in Eq. (7.4-5). In other 

words, the steady state is defined by the oscillator phase differences and not 

their absolute phase. 

 

The stability of the oscillating modes is examined by considering the linear 

perturbation                 of Eq. (7.4-1), which leads to a system 

of linear differential equations 
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  ̇       
     

     

 ∑                    

 

   

 ∑                       

 

   

      

(7.4-6) 

 

    ̇    ̇     ∑                    

 

   

 ∑                       

 

   

      

 

In the case of the generalized phase model one has 

   ̇  ∑                          

 

   

 (7.4-7) 

Because the steady state is defined by phase differences and not absolute phase 

values, the perturbation phase values     of the steady state may not be small. 

Their differences, however, are assumed to be small, and this allows one to take 

the linear approximation of the cosine and sine terms in Eq. (7.4-1) and obtain 

Eq. (7.4-6).  

7.5 Obtaining the Parameters of the van der Pol 
Oscillator Model 

A useful analytical method is presented, that allows one to obtain the van der 

Pol differential equation from a parallel resonator with a nonlinear voltage 

dependent current source. The procedure follows the development presented by 

Endo and Mori in [108], and it represents a time-domain formulation of van der 

Pol’s model described in Section 1.2. This model has very low complexity, and 

it can be easily incorporated into analysis of large arrays or proof of concept for 

various topologies of coupled oscillators. In addition, it can be easily 

introduced into circuit simulators.  
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Given a nonlinear voltage dependent current source         with time 

derivative     ⁄        ̇, where                  is a nonlinear 

conductance and applying Kirchhoff’s current law in the circuit of Fig. 7-6, one 

has

 
   ̇      

 

 
             (7.5-1) 

which, after differentiating becomes 

   ̈          ̇  
 

 
        (7.5-2) 

Defining the natural frequency of the tank   
      , setting              

and scaling time         the differential equation takes the form 

      (  
  

  
)      

 

  
        (7.5-3) 

where     indicates the scaled time derivative     .  

 

If we consider a nonlinear current source modeled by a third order polynomial, 

the equation corresponding to the free-running oscillator          can be 

transformed to the van der Pol equation. Let a voltage-dependent current source 

be of the form 

                 
  (7.5-4) 

so that 

               
  (7.5-5) 

Setting  

    
     

  
 

     

   
 

 

 
 (7.5-6) 

one obtains: 

 

 

Fig. 7-6. Oscillator model consisting of a parallel RLC resonator  
and a nonlinear voltage dependent current source. 
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      (  
   

     
  )      

 

     
        (7.5-7) 

The parameter λ is equal to the inverse of the loaded quality factor, Q, of the 

oscillator circuit of Fig. 7-6.  

 

Finally, scaling the voltage as 

 
  √   √

   

     
  

  

(7.5-8) 

the differential equation takes the desired form: 

                  √
   

       
 
        (7.5-9) 

When no injection signal is present,       , and this equation becomes the 

well known van der Pol equation. 

                   (7.5-10) 

The approximate solution to the van der Pol oscillation is [94] 

           
 

√ 
       (7.5-11) 

which is identical to the solution provided by the averaging method in 

Section 7.3. 

 

The approximate parallel model for the oscillator can be extracted using a 

nonlinear simulator and calculating the admittance at a selected circuit node 

[114]. Several authors have proposed experimental techniques to evaluate the 

model parameters [114,115]. Measurement of the oscillator amplitude can be 

used to obtain the scaling parameter  . Injection locking the oscillator to an 

external signal and measuring the locking bandwidth can be used to estimate 

the Q and subsequently the second parameter   of the van der Pol model [114]. 

Alternatively, a low-frequency sinusoidal modulating signal can be introduced 

in the bias circuitry of the oscillator, resulting in a phase modulated oscillator 

output. The parameter   can then be obtained by measuring the relative 

amplitude of the modulation sidebands [115].  
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7.6 An Alternative Perturbation Model for Coupled-
Oscillator Systems 

It is possible to formulate an alternative practical model for analyzing coupled 

oscillator arrays by considering that the periodic steady state of the coupled 

system is a perturbation of the free running steady state of the individual 

oscillator elements when they are uncoupled to each other. This assumption 

holds when the coupling is weak, as is typically the case when designing such 

systems. The model described in this section was proposed in Ref. [116]. 

 

An advantage of this formulation is that there is no underlying assumption 

about the oscillator nonlinearity model, such as for example a third-order 

nonlinearity used in the van der Pol model, and each individual oscillator can 

be designed using any numerical technique. The uncoupled free-running steady 

state is expressed in the slow time (at the fundamental frequency component) as 

             
      (7.6-1) 

where    is the admittance looking into a properly selected node of the circuit 

and    the oscillation amplitude at that node (Fig. 7-7).  

 

This is merely application of Kirchhoff’s current law at the node under 

consideration.     typically contains both linear and nonlinear terms, and 

depends on the oscillation frequency      and amplitude     . Generally, 

one may assume that    depends on a number of additional circuit parameters, 

such as bias voltages. In Eq. (7.6-1) a single parameter      is considered 

which corresponds to some DC voltage that allows for frequency tuning. 

Assuming a nonzero periodic steady-state amplitude   , Eq. (7.6-1) is satisfied 

for     . A free-running oscillator is an autonomous system characterized by 

an arbitrary time reference, which translates in an arbitrary phase reference in 

the frequency domain. As a result      maybe set without loss of generality. 

 

A coupled oscillator array of   elements is then described by 

 

 

Fig. 7-7. Oscillator 1-port equivalent circuit.  
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          ∑       
   

 

   

   (7.6-2) 

where the coupling is represented by the admittance matrix       [       ] 
which typically is frequency dependent. The coupling results in a steady state 

that can be expressed as a perturbation of the individual oscillator free-running 

steady state as follows:  

              (7.6-3) 

                

             

       ̇     
  ̇ 
  

  

                  
     

   

        

 

          
   
   

        
   
   

      

 
   
   

        
 

The perturbation assumption has been used in the first place by York, Liao, and 

Lynch [33], and it is described in Section 1.3dealing with the injection-locked 

oscillator. However, in their analysis they proceed to assume a specific 

nonlinear dependence of the adminttance on the amplitude    whereas here no 

such assumption is made. Furthermore, it should be noted that the frequency 

expansion has been done using the well known Kurokawa transformation [105] 

introduced in Section 1.3. The commonly used coupling networks have a 

broadband frequency response relative to the oscillator locking bandwidth, 

which allows us to consider a constant coupling term                 . 

Narrowband coupling networks were studied by Lynch and York [117]. After 

some straightforward manipulation, one obtains 
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[   ̇     ̇ ]  
   
   

     

 
   
   

         

 ∑           
        

 

   

   

(7.6-4) 

This system of differential equations represents the basis for an alternative 

model formulation for a system of coupled oscillators. This formulation has 

been essentially introduced in Ref. [116] and refined in Ref. [118] as well as 

subsequent works as a basis to study several properties of coupled oscillator 

arrays.  

 

In order to appreciate the similarities and differences with the original model of 

Section 7.4, the amplitude and phase equations are decoupled by first dividing 

with       ⁄  and then considering real and imaginary parts. Let for 

simplicity 

     
  

   

    

   
   

     
  (7.6-5) 

     
  

   

    

   
   

     
   

 
   [    ]  * 

  

   

  

       +  [|    | 
    ]

 [    
       

 ] 
 

Using the above, Eq. (7.6-4) becomes 

  

 ̇    
             

      

 ∑|    |                  

 

   

   

(7.6-6) 
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   ̇    
             

      

 ∑|    |                  

 

   

   

 

Furthermore, letting           it is possible to express Eq. (7.6-6) in a 

compact complex form  

  ̇     |  |                ∑      

 

   

   (7.6-7) 

The corresponding generalized phase model associated with this formulation is 

obtained considering only the phase dynamics which results in 

  ̇    
     ∑|    |                 

 

   

   (7.6-8) 

The periodic steady-state solution is obtained by setting  ̇    and  ̇     

leading to 

 

  
             

      

 ∑|    |                  

 

   

   

(7.6-9) 

 

       
             

      

 ∑|    |                  

 

   

   

 

or in complex notation 

 

                         

 ∑       
          

 

   

   (7.6-10) 
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As was the case with the model represented by Eq. (7.4-1) the steady state of 

the array is defined by phase differences and not absolute phases. In order to 

study the stability of the steady-state solution, we form the linear perturbation 

of Eq. (7.6-4) using                , where small-amplitude 

perturbations     and small-phase perturbation differences           are 

considered leading to 

 

  ̇  [  
            

        ]   

 ∑|    |                    

 

   

 ∑|    |                      

 

   

        

 

(7.6-11) 

 

    ̇  [     
            

        ]   

 ∑|    |                    

 

   

 ∑|    |                      

 

   

        

 

Correspondingly, the generalized phase model stability is then determined by 

   ̇  ∑|    |                          

 

   

   (7.6-12) 

The eigenvalues of the linear variational equation determine the stability of the 

steady-state solutions. In practice, it is more computationally efficient to 

formulate and process the array equations as matrix equations, and this is the 

topic of the next section.  

7.7 Matrix Equations for the Steady State and Stability 
Analysis 

It is easier from a computational point of view to express the various systems of 

equations of the previous sections in matrix form. In order to do so, the 
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following notation and properties are used. Bold letterface indicates a column 

vector or a matrix. The dimension of the vector or square matrix is   unless 

noted otherwise,   and   indicate a vector of zeros and a vector of ones, 

respectively. The notation [  ] and [   ] define a vector and a matrix    
respectively. The function       converts a vector to a square diagonal matrix 

of size  . It is straightforward to show that for any two vectors   and  , 

               . The superscript      indicates the conjugate transpose of a 

matrix or vector, whereas superscripts      and      indicate real and imaginary 

part. One can then rewrite Eq. (7.4-1) in matrix form  

  ̇         ̇                       (7.7-1) 

where     [    ]. The system given by Eq. (7.7-1) can be integrated 

numerically after separating real and imaginary parts, 

 [
  
      

] [
 ̇
 ̇
]  [

  (     )  (    )
 
 

        (    )
 
 

] (7.7-2) 

where the vector function       is defined as       [     
    

  ]. The 

generalized phase model (7.4-4) is then given by 

  ̇     (    )
 
  (7.7-3) 

The steady state of Eq. (7.7-2) is computed by setting  ̇    and  ̇     

which, when substituted in (7.7-2), result in the trivial solution     or 

 [
  (     )  (    )

 

          (    )
 ]  [

 
 
] (7.7-4) 

The linear variational equation of Eq. (7.7-1) is also written as a matrix linear 

differential equation as follows 

   ̇          ̇             (7.7-5) 

with 

      (              )       (7.7-6) 

     [                     ]  

where       [     
     

  ]. The complex system of Eq. (7.7-5) is 

separated into real and imaginary parts as  

 [
  
      

] [
  ̇
  ̇

]  *
  

   
 

  
   

 
+ [

  
  

] (7.7-7) 
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or  

 [
  ̇
  ̇

]   [
  
  

]  *
  

   
 

         
          

 
+ [

  
  

] (7.7-8) 

where         is a diagonal matrix with the inverse of the steady-state 

oscillator amplitudes in its diagonal. The inversion operation is guaranteed to 

exist under the assumption that the steady-state solution corresponds to nonzero 

amplitudes for all oscillators.  

 

Correspondingly, the linear variational equation of the generalized phase model 

is  

   ̇       [                ]    (7.7-9) 

The matrix differential equation pertaining to the coupled-oscillator dynamics 

according to the alternative model Eq. (7.6-4) becomes 

  ̇         ̇                             (7.7-10) 

where                   . After separating into real and imaginary parts 

one obtains 

 

[
  
      

] [
 ̇
 ̇
]

 [
  

         
         (     )

 
  

  
         

         (     )
 
 

] 
(7.7-11) 

The steady-state solution is then given by the nonlinear system of algebraic 

equations 

 

[
  

         
         (     )

 
 

           
         

         (     )
 
 
]

 [
 
 
] 

(7.7-12) 

Due to the perturbation assumption, one may consider a linear approximation of 

the steady state as follows 
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(     )
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]  [
(     )

 
 

    (     )
 
 
]

 [
 
 
] 

(7.7-13) 

For a given frequency offset    and phase distribution along the array elements 

contained in  , one may solve the above linear system of    equations for the 

  steady-state oscillator amplitudes and   control perturbations. Alternatively, 

one may fix the control parameter of one arbitrarily selected oscillator and 

solve the steady-state system for the   steady-state oscillator amplitudes,     

remaining control perturbations and frequency offset   . 

 

The stability of the steady-state solution is obtained taking the linear variational 

equation of Eq. (7.7-10) leading to the following linearized system of 

differential equations 

   ̇          ̇             (7.7-14) 

where  

            (          
   )        (7.7-15) 

      [                     ]  

where             . One then separates real from imaginary parts to 

obtain the desired system of linear differential equations 

 [
  
      

] [
  ̇
  ̇

]  *
  

   
 

  
   

 
+ [

  
  

] (7.7-16) 

or  

 [
  ̇
  ̇

]   [
  
  

]  *
  

   
 

         
          

 
+ [

  
  

] (7.7-17) 

The    eigenvalues of the square matrix   determine the stability of the 

solution. It should be noted that due to the autonomous nature of the coupled-

oscillator array one eigenvalue of   is always zero. The solution is stable if all 

remaining eigenvalues of   have negative real parts.  

 

One can easily verify that   is unchanged to phase shifts that are common to all 

oscillators. This is due to the fact that matrix      
       

  contains only 
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phase differences between the various elements. It is then possible to reduce the 

system by one, thus eliminating the zero eigenvalue. Selecting an arbitrary 

element (for example, element  ) as a reference, the   phase equations of 

Eq. (7.7-17) can be reduced by one by subtracting row      , the equation 

which corresponds to the phase of oscillator  , from every other equation. The 

equation that corresponds to the phase of oscillator   can then be eliminated. 

Furthermore, the elements of column       from row       to      are 

multiplied by zero. In addition, in the amplitude equations, due to the fact that 

  
  contains only phase differences, it is possible to subtract     from all 

phases forming   
      

          . As a result column       can 

also be eliminated because it is being multiplied by zero. The remaining square 

matrix  ̃ of dimension     has the same eigenvalues with   minus the zero 

eigenvalue. Matrix  ̃ corresponds to the system of      linear differential 

equations 

 *
  ̇

  ̇̃
+   ̃ [

  
  ̃

] (7.7-18) 

where the vector   ̃ of dimension     contains phase difference terms 

relative to oscillator  . The spectral abscissa of a square matrix is the maximum 

real part of its eigenvalues [119]. Therefore a steady-state solution is stable if 

the spectral abscissa of  ̃ is negative.  

7.8 A Comparison between the Two Perturbation 
Models for Coupled Oscillator Systems 

The similarity of the two models is made obvious by comparing the two 

expressions corresponding to the generalized phase model Eq. (7.4-4) and 

Eq. (7.6-8). The first model is defined for a parallel RLC tank with a nonlinear 

voltage-dependent current source that exhibits a third-order nonlinearity similar 

to the one described in Section 7.5 and shown in Fig. 7-6. In this case, the 

admittance looking at the output node of the circuit is given by  

                   
 

   
     (7.8-1) 

where       contains the nonlinear admittance of the current source at the 

fundamental frequency component. The total admittance contains a real 

nonlinear admittance term that is amplitude dependent, plus the load 

admittance, and an imaginary term which is frequency dependent. As a result, a 

real derivative versus the amplitude and an imaginary admittance derivative 

versus the frequency are obtained: 
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 (7.8-2) 

 
  

  
      

Furthermore, if we consider that for a parallel resonant circuit the external 

quality factor is given by 

   
   

  
 (7.8-3) 

it is straightforward to verify that the Eqs. (7.4-4) and (7.6-8) are identical. 

 

In general, active devices in microwave frequencies exhibit nonlinear 

susceptance as well as admittance, in addition to a nonlinear admittance that is 

frequency dependent. In other words a more general expression for the 

admittance at an oscillator circuit node is 

                         (7.8-4) 

As a result, it is possible to view the alternative model (7.6-4) using complex 

admittance derivatives as a generalized version of (7.4-1).  

7.9 Externally Injection-Locked COAs 

The coupled-oscillator array is an autonomous system that behaves like a single 

distributed oscillator. However, there are several applications that require the 

array to be injection-locked to an external signal. The reason can be to control 

the phase distribution among the array elements [1], to reduce the array phase 

noise [97], to fix the array frequency [120], or to introduce modulation to the 

array [121] [122]. 

 

An external injection signal introduces an additive forcing term in the time-

domain expression of the perturbed oscillator equation. In Section 7.5, it was 

demonstrated that the topology of a parallel RLC tank with a nonlinear voltage-

dependent current source and an external-injection current term leads to the 

forced van der Pol equation.  

 

The coupled-oscillator system of differential equations is derived by applying 

Kirchhoff’s current or voltage law at a selected circuit node or loop of each 

oscillator circuit in the array. Specifically, in the parallel-tank topology, the 

corresponding equations are obtained by applying Kirchhoff’s current law at 

the output nodes of each oscillator. In addition, these nodes correspond to the 

nodes where the coupling network is connected to each oscillator. However, 
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this does not always have to be the case, and the coupling network maybe 

connected to a different oscillator node. 

 

The external-injection signal typically may not be applied at the circuit node 

where the coupled oscillator system is derived. In this case it is necessary to 

derive analytically, or using a circuit simulator, a transfer function, which 

relates the applied injection signal to an induced current or voltage at the node 

or loop where the system equation is applied. Alternatively, it is possible to 

consider that the nonlinear-oscillator admittance is a function of the injection 

signal. It should be noted that in the general case there maybe more than one 

injection signal applied, and that the injection signal may be coupled to the 

coupled-oscillator array using different topologies, such as direct injection or 

radiation coupling, as shown in Fig.7-8 [123]. 

 

Following the formulation of Chang et al. [123] where the authors assume a 

parallel resonance model for the oscillator elements, and they consider the 

external injection signal in the form of an additional current source in parallel 

with the oscillator tank, one has 

 

Fig. 7-8. Externally injection-locked coupled-oscillator array 
topologies, a) globally injected array, b) middle element 
injection. 
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         (         ) 

(7.9-1) 

 
   ̇        ∑                   

 

   

          (          ) 

 

where it is assumed that oscillator   is being injected by an external source 

  . The transfer function                  
     consists of a 

complex normalized term     multiplied with a scaling factor       as is 

done for the coupling terms from the other oscillator elements in the array. For 

the case of an injection-current term in parallel with the oscillator tank  

     . Furthermore, when a single oscillator is considered, Eq. (7.9-1) 

reduces to Adler’s equation. 

 

Alternatively, it is possible to assume that the nonlinear oscillator admittance 

  (          ) at the node under consideration additionally depends on the 

injection signal         
        

      
  present at an arbitrary node 

of the oscillator circuit. Assuming a low amplitude-injection signal relative to 

the oscillator amplitude          ⁄   , a Taylor expansion of the 

oscillator admittance around the free running steady state gives, to first order, 

[124] 

   (          )                 (      ) (7.9-2) 

with  

 

   (      )  
    

    
       (      )

 
    

    
       (      ) 

(7.9-3) 

The first term            is the one considered in Eq. (7.6-3), where no 

external injection signal is present. The second term    (      ) is a linear 

perturbation term due to the external injection signal, which depends on the 

relative phase between the oscillator and the injection signal. The admittance 

expression is then introduced in the model presented in Section 7.6 and 

repeated here for convenience 
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          ∑       
   

 

   

   (7.9-4) 

in order to derive the desired system of equations. As the injection power 

increases, additional terms in the Taylor expansion can be included in order to 

improve the accuracy of the approximation [124]. 

7.10 Phase Noise 

Perturbation theory is applied in noise analysis of oscillators as typically noise 

is modeled as a stochastic forcing term in the oscillator differential equation. 

The stochastic nature of noise and the nonlinear nature of the oscillator circuits 

make noise analysis a challenging problem. Applying the averaging theory, 

Kurokawa [105] presented an elegant analysis of phase noise of free-running 

and externally injection locked oscillators. A fundamental assumption in his 

formulation is that noise, described by a time-domain stochastic process       

can be expanded in a Fourier series around the arbitrarily chosen fundamental 

frequency   as 

        ∑        
    

  

    

 (7.10-1) 

with                       a complex noise process. In the following it 

is assumed that       is a zero-mean white Gaussian process, which results in 

       and        being uncorrelated white zero-mean Gaussian processes as 

well [105]. 

 

Extending the work of Kurokawa, Chang et al. [97] studied phase noise in 

mutually injection-locked coupled-oscillator arrays. Application of the noise 

expansion and averaging allows us to include the effect of noise in the 

oscillator formulation Eq. (7.4-1) in terms of                      . In 

the following, the subscript 1 is dropped for simplicity.  

 

 ̇       
    

     ∑                   

 

   

 
  

    
      

(7.10-2) 
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The solution of Eq. (7.10-2) is found in the form of a perturbation  
                where         is the solution to the noise-free system 

of Eq. (7.4-1), leading to a forced variational system, which is the same as was 

considered in the study of the stability of the steady state with the addition of a 

noise-forcing term. As before, small amplitude-noise perturbations     and 

small phase-noise- perturbation differences           result in the forced 

linear system of differential equations 

 

  ̇       
     

     

 ∑                    

 

   

 ∑                       

 

   

      
  

    
      

(7.10-3) 
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Correspondingly, the alternative model in the presence of noise is modified by 

including an additive complex noise term                    in 

Eq. (7.6-4), which leads to forcing terms       and       in the left hand side 

of the first and second equations of Eq. (7.6-11), respectively. For compactness, 

the formulation is not repeated here. 
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Following Chang [97], we proceed to solve Eq. (7.10-3) by first applying a 

Fourier transform 

 

    ̌       
     

    ̌ 

 ∑                   ̌ 

 

   

 ∑                   (  ̌ 

 

   

   ̌ )  
  

    
 ̌  

(7.10-4) 
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 ∑                   ̌ 

 

   

 ∑                   (  ̌ 

 

   

   ̌ )  
  

    
 ̌  

 

The frequency   indicates offset from the fundamental   , and the hat 

indicates a Fourier transformed variable. The linear system of Eq. (7.10-4) is 

processed easier in matrix form. Using the formulation of Section 7.7, it is 

possible to write Eq. (7.10-4) in the form 

 {     } [
  ̌
  ̌

]   [
  ̌
  ̌

]  *
 ̌ 

 ̌ 

+ (7.10-5) 

or 

 [
  ̌
  ̌

]   *
 ̌ 

 ̌ 

+ (7.10-6) 

with       [     ]   where the noise terms have been normalized as 

 ̌   
  

    
[ ̌ ] and  ̌   

  

    
[ ̌ ] for compactness. It should be 

clarified that the identity matrix in Eq. (7.10-5) is of dimension   . 

Correspondingly, the formulation pertaining to the generalized phase model is  

 {      }  ̌      ̌   ̌  (7.10-7) 
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or 

   ̌     ̌  (7.10-8) 

with      
   [      ]

  . 

 

The noise correlation matrix  ( ) of the oscillator array is given by 

      〈[
  ̌
  ̌

] [  ̌   ̌ ]〉  [
      

      
] (7.10-9) 

where the superscript ()H denotes the conjugate transpose operation. The 

various noise contributions AM-AM AM-PM, PM-AM, and PM-PM are easily 

identified.1 The operator 〈 〉 denotes ensemble average, and following [97], for 

white Gaussian processes one has  

 〈 ̌  ̌ 
 〉  〈 ̌  ̌ 

 〉  (
   

    
)
 

  (7.10-10) 

 〈 ̌  ̌ 
 〉  〈 ̌  ̌ 

 〉     

with    as the noise variance. Identical oscillators have been assumed and 

identical noise sources have been applied at each oscillator for simplicity. The 

spectral density of the oscillator array is given by the diagonal of  ( ). 

 

The noise correlation matrix is then given by 

      (
   

    
)
 

       (7.10-11) 

 

  

The generalized phase model expression can be used to obtain an approximate, 

more simplified, expression for the correlation matrix      , without 

considering amplitude noise: 

       (
   

    
)
 

    
  (7.10-12) 

 

  

Note that       is a square matrix of dimension   containing all correlation 

terms among the noise quantities of the individual oscillators. The phase noise 

spectra        of the individual oscillators in the array are given by the 

diagonal elements of      , or 

        (
   

    
)
 

  {    
 }  (7.10-13) 

 

  

                                                 
1 AM is amplitude modulation, and PM is phase modulation. 
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The phase noise spectrum        of a single oscillator element uncoupled to 

the rest of the array corresponds to     , and is given by 

        (
   

    
)
  

  
 (7.10-14) 

 

  

This expression is in agreement with the one given by Kurokawa in Ref. [105] 

and demonstrates the dependence of    of the phase-noise spectrum for the 

case of white Gaussian noise sources. 

 

The expression for the phase noise spectrum vector        of each oscillator 

element in the array finally can be written 

                 {    
 }  (7.10-15) 

 

  

In addition to the phase noise of the individual coupled oscillator elements 

   , in quasi optical power combining applications, one is also interested in 

the phase noise of the combined output of the oscillators    . Assuming small 

perturbations, one may write the combined far-field amplitude      as [97] 
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(7.10-16) 

 

  

with 
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     (7.10-17) 

 

  

The phase noise spectrum        of the combined output is given by 

        〈  ̌   ̌ 
 〉  

 

  
〈    ̌  ̌  〉 (7.10-18) 

 

  

which, with the help of Eq. (7.10-15) becomes 

        
       

  
      

   (7.10-19) 

 

  

Evaluation of the individual oscillator phase noise and the combined output 

phase noise is generally possible only by numerically evaluating Eqs. (7.10-15) 

and (7.10-19) respectively. Nonetheless, Chang et. al. [97] were able to 

analytically study several cases commonly found in the literature. 
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One of the results obtained by Chang, et al. [97] corresponds to the case where 

   [              ] , repeated here for convenience, is a 

symmetric matrix    
     . As one can see,    depends both on the 

coupling network through  , and on the steady-state phase distribution of the 

various oscillator array elements, through  . It can be easily verified that 

     , which reflects the fact that the steady state is unchanged to within a 

common constant phase term added to all oscillator elements, or in other words, 

the fact that the steady state is defined by the phase differences of the various 

elements. Using the above two properties, Chang et al. [97] have shown by 

analytically evaluating     
  that       

       , which results in  

        
     

 
 (7.10-20) 

 

  

This is an important result indicating that the phase noise of the combined array 

output is reduced by a factor   compared to the individual free-running 

oscillator phase noise (as indicated in Section 6.4). It remains to identify under 

which conditions    is symmetric. One characteristic example is when an in-

phase steady-state solution is assumed (     and a reciprocal coupling 

network matrix with zero coupling phase        .  

 

In the case of a reciprocal coupling network of near-neighbor bilateral coupling 

with zero coupling phase,    is symmetric for any constant phase distribution 

among the oscillator elements. It was also shown that in this case the individual 

oscillator phase noise is also reduced by a factor   when the oscillators are in-

phase. The oscillator phase noise for steady states with phase distributions with 

non-zero progressive phase     degrades with increasing     up to the point 

where the array loses stability and the phase noise becomes equal to the free-

running oscillator phase-noise value. 

 

Finally, it was shown by Chang et al. [97] that there is no phase noise 

improvement in the case of unilaterally coupled oscillators, both for the 

individual elements and the combined-array output (as indicated in Section 

6.4). 

 

The phase noise of externally injection-locked oscillators has been investigated 

by Kurokawa in [105], where it was shown that the injected oscillator phase-

noise spectrum follows the phase-noise profile of the injection-locking signal 

for small frequency offsets near the carrier, and it converges to the free-running 

oscillator phase-noise spectrum for large frequency offsets. The formulation of 

Kurokawa [105] was extended to externally injection locked coupled oscillator 

arrays by Chang, et al. [123]. It is straightforward to obtain the formulation 

pertaining to the externally injection-locked coupled-oscillator arrays by 
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properly including in Eq. (7.10-2) terms due to injection sources as shown in 

(7.9-1). Chang et al. [123] investigated several topologies including a globally 

injected linear array, and arrays where a different single elements within the 

array are injected. In summary, the results showed that for small offsets the 

array phase-noise profile follows the injection-locking source phase-noise 

profile. However, for large offsets from the carrier the globally illuminated case 

showed a different behavior than the single-element illumination topology. In 

the former, the phase noise improves with increasing number of array elements, 

whereas in the latter the phase noise degrades with increasing number of 

elements. Furthermore, the array phase-noise performance of the single-element 

injection case improves as one injects an element closer to the array center. 

7.11 Modulation 

Several authors have considered the use of coupled-oscillator arrays in 

communication system applications. It is possible to distinguish among 

architectures where the coupled-oscillator array signal is modulated or 

architectures employing a coupled-oscillator array as the local oscillator in a 

multi-antenna up-converting or down-converting transceiver. The first topology 

has been studied by Kykkotis et. al. in [99]. Due to the limiting properties of 

oscillators, modulation formats that lead to large variations in the signal 

envelope are not recommended as the oscillator dynamics will tend to smooth 

these variations and introduce distortion. However, constant envelope 

modulation formats (such as constant phase modulation (CPM) and Gaussian 

minimum shift keying (GMSK)) represent excellent candidates to be employed 

in such systems. In Ref. [99], the modulation is applied in the coupled-

oscillator array through an external injection signal. Additionally, it is possible 

to introduce modulation through the frequency-tuning bias voltage of the 

individual oscillators, as was proposed by Pogorzelski in Ref. [63].  

 

A formulation based on Eq. (7.9-3) where the effect of the external-injection 

signal is included in the oscillator admittance was used by Collado and 

Georgiadis [124] to analyze the performance of such systems as the modulation 

bandwidth increases. The effect of the modulation on the maximum stable 

progressive constant phase shift among the oscillator elements was 

investigated, and it was shown that the presence of modulation leads to a 

reduction of the maximum achievable scanning range. In Fig. 7-9, the effect of 

sinusoidal phase modulation in the maximum scanning range of a two-element 

coupled oscillator array is shown. The maximum stable phase difference 

between the first harmonics of the two oscillators is obtained using the 

aforementioned model (denoted by RoM in Fig. 7-9), in good agreement with 

measurements as well as simulation results obtained using a commercial 

envelope transient circuit simulator. (The principles of nonlinear-circuit 
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simulation methods, such the envelope transient, are described in Chapter 8.) In 

addition, measurements of the maximum phase difference of the second 

harmonics of the oscillators are presented, and compared with the results using 

the envelope transient simulator. As can be seen from Fig. 7-9, extended 

scanning range can be obtained by considering the phase variation of an 

oscillator harmonic frequency rather than the fundamental frequency. Such 

architectures used to provide extended phase-scanning range are described in 

Section 8.6. 

 

On the other hand, the use of coupled-oscillator arrays to provide the local 

oscillator signal in multi-element communication transceivers has been studied 

by Pogorzelski and Chiha in Ref. [74] and Pogorzelski in Ref. [125]. The 

coupled-oscillator array is used to provide a local-oscillator signal to a mixer 

with a desired phase distribution in order to appropriately steer the array 

beam without the need for phase shifters and a complex local-oscillator 

distributed feed network. In addition, more compact front ends can be 

implemented employing an array of coupled self-oscillating mixers as was 

proposed by ver Hoeye et al. [79]. 

 

 

Fig. 7-9. Two-element coupled-oscillator array. Effect of 
phase modulation index   on stable phase shift among the 
oscillator elements. Sinusoidal phase modulation of 1 MHz 
frequency is applied by external injection locking to the one 
oscillator of the array. The results of the model developed 
based on Eq. (7.9-3) are denoted by RoM. (Reprinted with 
permission from [124], ©2001 IEEE.)  
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7.12 Coupled Phase-Locked Loops 

A phase-locked loop (PLL) is typically used in frequency-generation 

applications, as well as in phase recovery and phase/frequency modu-

lation/demodulation applications where one oscillator is required to track the 

phase of a signal present at its input. Therefore, it presents an excellent 

candidate for generating phase distributions among oscillator elements, which 

are required in electronic beam-steering applications. Martinez and Compton 

[126] first proposed the use of a coupled phase-locked loop for phased arrays. 

Subsequently, Buckwalter et. al. [127] extended their work to study the 

synchronization properties of such loops, and Chang presented a phase noise 

analysis [128].  

 

The topology of a coupled PLL system is shown in Fig. 7-10, where a linear 

array of oscillators is considered. An error signal   is formed by a mixing 

operation where the outputs of adjacent oscillators are multiplied together. The 

mixers are used as phase detectors; however, other more sophisticated 

topologies can also be used where the oscillator outputs are first passed through 

a frequency divider and are subsequently fed to a digital phase detector, as is 

typically done in PLL architectures. Finally, the loop is closed by feeding the 

error signal to each oscillator-control input after it has passed through a loop 

filter. The relative phases between the oscillator elements are controlled by 

introducing additional external signals in the error signal path such as x1 and 

  , shown in Fig. 7-10.  

 

In the following, an introduction to the equations describing the dynamics of a 

two-element coupled PLL system is presented, following the formulation by 

Buckwalter et al. [127], and based on the topology indicated in Fig. 7-10. 

Identical oscillators are assumed where, for simplicity, a linear voltage-to-

frequency model relation is considered 

  ̇          (7.12-1) 
 

  

The index         runs through the set of two oscillators. Furthermore, a first-

order loop filter is assumed with gain  , one zero   , and one pole   , having a 

transfer function given by  

       
      
      

 (7.12-2) 

 

  

Identical loop filters are considered for both oscillators.  
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Fig. 7-10. Coupled phase-locked loop architecture. 

 
Based on Fig. 7-10, and considering two oscillators the following system of 

equations is derived 

    ̇      [    ̇   ̇          ] (7.12-3) 
 

  

    ̇      [    ̇   ̇          ] (7.12-4) 
 

  

  ̇          (7.12-5) 

  ̇          (7.12-6) 
 

  

                 
 

 
             (7.12-7) 

 

  

It should be noted that for the sake of simplicity the higher frequency mixing 

product is not considered in the error signal    as it is assumed that it will be 

greatly attenuated by the loop filter.  

 

Using the above equations, it is possible to derive one equation governing the 

dynamics of the phase difference         . The external signals    and 

   can be used to introduce modulation to the loop or simply set some desired 

phase difference by introducing some offset to the equilibrium point of the 

loop. Setting external signals equal to zero           it is straightforward 

to derive the differential equation that the phase difference between the 

oscillators satisfies 
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     ̈  [          ]  ̇              (7.12-8) 
 

  

where          and        . The equilibrium points of the coupled 

PLL correspond to   ̈     ̇    and are derived by solving  

             (7.12-9) 
 

  

It is easy to verify that two solutions exist within the phase interval [     , and 

perturbation analysis of Eq. (7.12-8) can be used to show that only the one of 

the two that falls in the interval [     is stable [127]. This fact implies that the 

phase difference of the two oscillators for the topology under consideration can 

be tuned in the range [    , by varying the relative frequencies of the two 

oscillators   .  

 

The hold-in range    of the coupled PLL is the range of the frequency 

difference among the oscillator elements for which the system remains in a 

stable equilibrium. The pull-in range on the other hand, is the range of the 

frequency difference for which the system will eventually evolve to a stable 

equilibrium. The hold-in range presents an upper bound to the pull-in range. 

Based on the above analysis and the stability analysis of the equilibrium points, 

it was determined by Buckwalter, et al. [127] that the hold-in range is equal to 

       (7.12-10) 
 

  

Furthermore, they calculated an approximate value for the pull-in range as 

given by Eq. 7.12-11 [127]  

 
    

√
√     

     

   
  

(7.12-11) 

 

  

Finally, Buckwalter, et al. [127] studied the effect of circuit delay on the hold-

in and pull-in range of the system. Such delays are present in the system due to 

the filter characteristics of the circuit, and they result in complex dynamic 

behavior and instabilities. We remark that such filter characteristics may be 

fruitfully interpreted as time delays if the delay is small. Unlike Chapter 5 of 

this book, the analysis of Buckwalter, et al. does include the nonlinear behavior. 

Recall that in Chapter 5 we introduced coupling delay in oscillator arrays via an 

exponential of the Laplace transform variable. There the analysis was done in 

the linear approximation, and thus the solutions did not exhibit any of the 

complex dynamical behavior arising from nonlinearity. The delay introduced 

was a true time delay due to propagation through the coupling lines and was not 

constrained to be small. However, the late time behavior in that situation 
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corresponds to solution at time equal to many delay times, a condition which 

may be satisfied either by large t or small delay or both. 

 

The model described in this section can be made progressively more complex, 

by taking into account the high-frequency mixing product at the output of the 

phase detector in the formulation, or by using a higher order loop filter and 

digital phase detectors.  

7.13 Conclusion 

In this chapter we revisited the analysis of coupled-oscillator arrays and 

presented two approximate models that describe the amplitude and phase 

dynamics at the fundamental frequency of oscillation of the coupled oscillator 

arrays. We presented a compact matrix formulation of the models, which can be 

used to efficiently analyze the transient behavior of the arrays, determine the 

various steady-state solutions, and examine their stability. In addition we 

provided a formulation that enables one to consider external injection-locking 

signals to the array, which can be used to introduce modulation into the array. 

These models were used to provide an overview of the phase-noise analysis of 

coupled-oscillator arrays. Such approximate models can be used to simulate 

large coupled-oscillator arrays in a computationally efficient manner. Finally, it 

was pointed out that PLLs can be substituted for VCOs in coupled systems, 

resulting in behavior quite similar to that of the arrays discussed previously. In 

the next chapter we describe nonlinear simulation methods that can be used to 

accurately simulate and design oscillator circuits and coupled-oscillator arrays.  
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