
 

Chapter 5  

Causality and Coupling Delay 

In the analysis presented in the preceding chapters, it was tacitly assumed that 

the coupling was implemented using nondispersive transmission lines 

characterized by a phase shift of   generally taken to be an integral multiple of 

2  (plus   in the case of series resonant oscillators). However, the theory 

made no provision for the transit time through the coupling line. As a result, the 

solutions were non-causal. That is, each oscillator in the array responded 

immediately upon changing the tuning of an oscillator or the phase of an 

injection signal no matter what the distance between the excitation and the 

response. This is characteristic of the diffusion equation that arises from the 

continuum model. Heat conduction analyzed in this manner is similarly non-

causal. Following Pogorzelski [47], we propose to remedy this situation by 

explicitly introducing time delay in the coupling. This time delay is determined 

by the physical length of the line and its propagation velocity.  

5.1 Coupling Delay 

A nondispersive transmission line introduces a pure time delay in that the signal 

applied at one end of the line is duplicated at the other end after the delay time. 

At that point the signal is reflected if the termination is not matched to the line 

impedance. For our analysis we will assume a matched termination. Now, if the 

analysis is done via Laplace transformation of the applied signal, the transform 

of the delayed signal is merely the original transform multiplied by sde  where 

d is the delay time and s is the transform variable conjugate to the time variable.  
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Suppose now that we envision an array of coupled oscillators and take the 

reference frequency to be the initial ensemble frequency of the array. We define 

the coupling phase delay using this reference frequency. That is, 

 
ref

ref
p

d
v


      (5.1-1) 

where   is the physical length of the line and vp is the phase velocity. The line 

length is chosen so that the coupling phase is a multiple of 2 (plus   in the 

case of series resonant oscillators). Now, using the reference frequency, we 

define the phase,  , of the phasor signal voltage, V, by 

 ( )( ) j tV A t e   (5.1-2) 

where, 

 ( ) ( )reft t t     (5.1-3) 

Recall from Chapter 1 that V can be written in the form, 

 

 [ ( ) ln ( )]j t j A tV e    
(5.1-4) 

so that, 

  Im ln( ) ( )refV t t    (5.1-5) 

Crucial to our analysis is the fact that any function of the input signal will be 

delayed by the nondispersive transmission line in the same manner as the signal 

itself so that the Laplace transform of any function of the input signal 

multiplied by sde  will be the transform of the same function delayed. Thus, 

we may apply this delay factor to the Laplace transform of ( )t given by 

Eq. (5.1-5) to obtain the transform of the phase delayed by the coupling line. 

This forms the basis of our introduction of coupling delay into the analysis of 

coupled oscillator arrays. 

 

The following question regarding this treatment of time delay was posed by a 

particularly astute student so we thought it appropriate to answer it here as you 

may be similarly puzzled. Slightly paraphrased, the student asked that we 

consider a linear array in which one of the oscillators is detuned upward, thus 

changing the ensemble frequency of the array. “Is it not then true,” he asked, 

“that the coupling phase produced by coupling lines of fixed length would be 
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changed and would thus be no longer a multiple of 2 ?” To clarify this point, 

recall that, assuming that the reference frequency is held constant, the solution 

for the time evolution of the oscillator phases will contain terms linear in time 

representing the shift in ensemble frequency (as in Eq. (3.1-51). The slope of 

this linear dependence relates the time delay to an equivalent phase shift 

through the transmission line. So, for example, if the phase at the input end of 

the line is, 

 ( )in t t   (5.1-6) 

then the phase at the output end of the line is, 

 ( ) ( ) ( ) ( )out in int t d t d t d           (5.1-7) 

an effective coupling phase delay of d  . Conversely, due to the linear time 

dependence, the new ensemble frequency will be  

 ens ref     (5.1-8) 

and the effective coupling phase will be, 

  ens
eff ens ref

p

d d d
v


             (5.1-9) 

So, we conclude that indeed the coupling phase has changed but, that change is 

embodied in the linear time dependence of the phases arising from the change 

in ensemble frequency and need not be explicitly imposed on the formulation 

by a change in the   parameter. 

5.2 The Discrete Model with Coupling Delay 

Returning to the linearized discrete model of a linear array of (2N + 1) 

oscillators discussed in Section 2.2 we have, 

 

  0 1 12i
i ref lock i i i

d

dt


            (5.2-1) 

  0 1
N

N ref lock N N

d

dt


    

       (5.2-2) 

  0 1
N

N ref lock N N

d

dt


         (5.2-3) 
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Laplace transformation with respect to lockt    results in, 

  , 1 12i tune i i i is          (5.2-4) 

  1N tune N Ns          (5.2-5) 

  1N tune N Ns         (5.2-6) 

and, introducing the coupling delay factors for delay of d inverse locking 

ranges, we have, 

  , 1 12sd sd
i tune i i i is e e    

       (5.2-7) 

  1
sd

N tune N Ns e  
        (5.2-8) 

  1
sd

N tune N Ns e   
      (5.2-9) 

Rearranging yields, 

 1 1 ,( 2)sd sd
i i i tune ie s e   
       (5.2-10) 

 1 ,( 1)sd
N N tune Ne s 

        (5.2-11) 

 1 ,( 1) sd
N N tune Ns e  

      (5.2-12) 

These equations may be written compactly in matrix form as, 

 [ [ ] [ ]][ ] [ ]tunes I M     (5.2-13) 

in which [M] is given by, 
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 (5.2-14) 

We now have two alternative approaches available for solving this system of 

linear equations. We can expand the solution as a sum of eigenvectors of the 

matrix [I]s – [M], or we can solve the system via Cramer’s rule. Following 

Pogorzelski [47], we choose the Cramer’s rule approach. The result is, 
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  (5.2-15) 

where U is the Chebyshev polynomial of the second kind of argument a/(2b), 

0 1a s  , 2a s  ,and sdb e  . Now, U can be written in the form, 
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  
  

 (5.2-16) 

 

  

and defining Q to be, 
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     
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 
 (5.2-17) 

U becomes, 
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(5.2-18) 

Substituting Eq. (5.2-18) into Eq. (5.2-15) yields, 
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 (5.2-19) 

in which, 

 
1

Q b
R

bQ


 


 (5.2-20) 

In Eq. (5.2-19), n> is the greater of i and j while n< is the lesser. The form of 

Eq. (5.2-19) is suggestive of an image series produced by reflections at the ends 

of the array, where Q plays the role of a “propagator.” The series may be 

obtained by expanding in powers of the reflection coefficient, R. When R is set 

equal to zero, we obtain the solution for an infinite array, 

 
,

2 24

tune j n n
i Q Q

a b
  






 (5.2-21) 

or, using Eq. (5.2-17), 
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 (5.2-22) 

Consider now an example of a 17-element array with coupling delay of two 

inverse locking ranges (ILRs) and step detuning of the center oscillator by one 

locking range. The inverse Laplace transform of Eq. (5.2-19) may be easily 

obtained by expanding it in powers of sdb e  . Each term of the resulting 

series will be of the form, 

 
1

( )

( 2)

sd p

p

C e

s s




 (5.2-23) 

which has a known inverse transform, 

 
2

0
!

pd
pC
e d

p


 


   (5.2-24) 

The solution is plotted in Fig. 5-1. This solution exhibits several easily 

understandable features. First, the center oscillator is the only one detuned, and 

it is detuned at time zero. Thus, its nearest neighbors on either side do not 

change phase until one delay time has elapsed, giving the influence of the 
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center oscillator detuning sufficient time to propagate to them. The center 

oscillator phase evolution continues exponentially and unperturbed until two 

delay times have elapsed. Then the influence of the phase changes of the 

neighboring oscillators impact the center oscillator, causing the slope change at 

time equal to four inverse locking ranges. This multiple reflection-like behavior 

continues to spread throughout the array creating the ripples in the phase visible 

in Fig. 5-1. For comparison, the corresponding phase behavior in the absence of 

coupling delay is shown in Fig. 5-2 and is noncausal. 

 

The preceding discussion indicates that the array behavior will not begin to 

differ from that of the infinite array until eight delay times have elapsed 

(16 inverse locking ranges) and that even then the effect will begin with the 

outermost oscillators. The center oscillator behavior will not differ from that of 

the infinite array until 16 delay times have elapsed (32 inverse locking ranges). 

Thus, these plots do not indicate that the array is of finite size. To display finite 

array effects, we plot similar curves for a seven element array in Fig. 5-3 and 

Fig. 5-4. In this case the end effects begin to appear in the phase behavior of the 

end oscillators after three delay times (six inverse locking ranges).  This may be 

seen by comparing the curves for  3i   in Figs. 5-1 and 5-3.     Note that they 

 

 

Fig. 5-1. Phase dynamics for a 17 element linear array with two inverse locking 
range coupling delay. (Reproduced by permission of American Geophysical 
Union from [47], ©2008 American Geophysical Union.) 
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Fig. 5-2. Phase dynamics for a 17 element linear array with no coupling delay. 
(Reproduced by permission of American Geophysical Union from [47], ©2008 
American Geophysical Union.) 

 

differ only for time greater than six inverse locking ranges. However, the 

curves in Figs. 5-2 and 5-4 differ for all times because with no coupling delay 

the end effects begin immediately and, of course, acausally. 

 

Thus, we have shown that the introduction of coupling delay in the linearized 

discrete model of coupled oscillator arrays eliminates the noncausal nature of 

the solutions in the absence of coupling delay. We now proceed to apply this 

approach in the continuum model. 

5.3 The Continuum Model with Coupling Delay 

In this section we develop a generalization of the continuum model of 

Section 3.1 that accounts for coupling delay. The causality properties of this 

generalization will be discussed in terms of the infinite linear array which, of 

course behaves identically to a corresponding finite array for times early 

enough to preclude end effects. Our approach will be that of Section 3.1where 

we begin with Eq. (3.1-1) with the time delay, d, inserted in the arguments of 

the appropriate terms leading to, 
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Fig. 5-3. Phase dynamics for a 7 element linear array with two inverse locking 
range coupling delay. (Reproduced by permission of American Geophysical 
Union from [47], ©2008 American Geophysical Union.) 

 

 
Fig. 5-4. Phase dynamics for a 7-element linear array with no coupling delay. 
(Reproduced by permission of American Geophysical Union from [47], ©2008 
American Geophysical Union.) 
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 
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 (5.3-1) 

Introducing the scaled time, τ, and the detuning function, ΔΩtune, as before, 

Laplace transformation leads to, 
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 

 (5.3-2) 

Then, expanding in Taylor series to second order in x , 

  
2

2

( , )
2 2 ( , ) ( , )sd sd
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d x s
s e x s x s e
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
     

   (5.3-3) 

the analog of Eq. (3.1-4). Setting, 

 
1

( , ) ( )tune x s x y
s
    (5.3-4) 

corresponding to step detuning of the oscillator at x = y at time zero by one 

locking range, we obtain the Green’s function, 
1

~g , as the differential equation 

solution, 
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
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 (5.3-5) 

At this point, a serious difficulty is encountered with respect to causality. If one 

were to compute numerically the inverse Laplace transform integral for 

Eq. (5.3-5), one would find that the influence of the nearest neighbors of the 

detuned oscillator begins at time d. This violates causality because, as pointed 

out in Section 5.2, this influence must not begin until time 2d, the round trip 

transit time between the detuned oscillator and its neighbors. Following 

Pogorzelski [48], we begin our study of this apparent paradox by comparing the 

denominator of Eq. (5.3-5) with that of Eq. (5.2-22) known to be causal. That 

is, the denominator of Eq. (5.2-22) is, 

 2 2( 2) 4 ( 2) 2 ( 2) 2sd sd sds e s e s e          (5.3-6) 

while the denominator of Eq. (5.3-5) is, 
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 ( 2) 2 sds e   (5.3-7) 

Thus, the two solutions, the causal one Eq. (5.2-22), and the present one, 

Eq. (5.3-5), have different branch points in the complex s plane. Solution 

Eq. (5.3-5) has branch points where 2 2 sds e   whereas the causal solution 

Eq. (5.2-22) has these plus additional branch points where 2 2 sds e   . 

Now, computing the inverse Laplace transform via integration on the 

Bromwich contour will involve deformation of the contour around the branch 

cuts associated with these branch points. Thus, it becomes clear that the 

solution Eq. (5.3-5) will be missing the contribution from half of the branch 

cuts in the causal solution Eq. (5.2-22). As shown in [48], this is the root of the 

causality difficulty. 

 

Why do we find ourselves in this situation? Our approach was successful in the 

absence of coupling delay, but something went wrong when delay was 

included. This can be understood by looking at the nature of the solutions 

corresponding to the two sets of branch cuts shown in Fig. 5-5 where the dots 

correspond to Eq. (5.3-7) and the circles to the remaining branch points of the 

complete set, Eq. (5.3-6).  

 

We have assumed in deriving the partial differential equation Eq. (5.3-3) that 

the solution will be smoothly varying in the interior of the array so that the 

inter-oscillator phase differences are small validating the linearization of the 

sine functions in Adler’s formalism. Thus, in the interior of the array where the 

detuning is zero, the second derivative will be small and 

  2 2
sd

s e   (5.3-8) 

 

corresponding to the dot branch points in Fig. 5-5. However, we can switch 

from the dots to the circles by replacing sde  with sde . Doing this in Eq. 

(5.3-2) we obtain, 
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 (5.3-9) 
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Fig. 5-5. Branch point locations for 
delay of two inverse locking ranges. 
(Reproduced by permission of 
American Geophysical Union from 
[48], ©2008 American Geophysical 
Union.) 

 

so it is evident that 1 , the solution associated with the circle type branch 

points, alternates in sign between adjacent oscillators and is thus clearly not 

slowly varying. Therefore, we cannot use the Taylor expansion to advantage 

here. However, if we define, 

 
2 1( , ) ( , ) j xx s x t e    (5.3-10) 

then 2  is slowly varying even though 1  is not and we may write, 
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 (5.3-11) 
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and expand in Taylor series to obtain, 

  
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2
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
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   (5.3-12) 

corresponding to the circle type branch points. Thus, it becomes clear that our 

assumption of slowly varying phase, implicit in the use of the Taylor series, 

eliminated the solutions associated with the circle type branch points. The 

Green’s function corresponding to these branch points is, 
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and the causal Green’s function is a linear combination of Eq. (5.3-5) and 

Eq. (5.3-13); that is, 
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   

 (5.3-14) 

where A + B = 1 so that the proper detuning function is generated on the right 

side of the differential equation. It remains to determine A and B. 

 

For large values of s, far from the origin of the s plane, we can obtain a fairly 

accurate estimate of the branch point locations. These locations are defined by, 

  2 2 sds e    (5.3-15) 

where the upper sign corresponds to the dots and the lower one to the circles. 

Inserting s j   , 

  2 2 d j dj e e         
 

(5.3-16) 

For 2   , 

  /2
2

j dde e
 

   (5.3-17) 

Thus, 
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and we have 
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for the dots and 
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 (5.3-20) 

for the circles. Now, from Eq. (5.3-17), 
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so, 
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 (5.3-22) 

for p = m or n. Armed with these approximate branch point locations, we are in 

a position to estimate ( , , ) /g y y   , the time derivative of the phase of the 

detuned oscillator. This will exhibit the temporal discontinuities associated with 

the arrival of influence from neighboring oscillators and highlight the causal 

behavior. First, from Eq. (5.3-14), 

 ( , , )
2 2 ( 2) 2 2 ( 2)

sd sd

sd sd

e e
sg s y y A B

j s e j s e
 

   

 (5.3-23) 

Now, envisioning the inverse transform as a sum of branch cut integrals, we 

recognize that the result will be approximately, 
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(5.3-24) 

Here we have used the s’s given by Eq. (5.3-19) through Eq. (5.3-22) and, 
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u de
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
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 
  (5.3-25) 

The expression on the right side of Eq. (5.3-24) is a Fourier series except for 

the time dependence of the coefficients. Recall that this series was obtained 

using the large s approximation so only the high-order terms are accurate. The 

high-order terms of this series govern the discontinuities in the time 

dependence. Now, looking at Eq. (5.3-24) for d , 
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(5.3-26) 

and we see that if A = B, the high-order portions of the two series will cancel 

term by term so that there will be no discontinuity at d . However, at 

2d   we have, 
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 (5.3-27) 

and the high-order terms no longer cancel but add. Thus, there will be a 

discontinuity at 2d  . This is to be expected because it allows for one round-

trip interval to the nearest neighbors from the time when the oscillator is 

detuned. We conclude that the discontinuities will occur at the proper times for 

causality to be satisfied only if A = B. From this condition and the fact that  

A + B = 1, we determine that both A and B are equal to ½, and from 

Eq. (5.3-14) the causal Green’s function is, 
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 (5.3-28) 

As shown in Ref. [48], a better approximation to the exact discrete model 

solution may be obtained from the form, 
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e e
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  
   

 (5.3-29) 

with optimal selection of the constant, C. From Ref. [48], the optimal value of 

C is, 

 
2 2

C


  (5.3-30) 

The temporal behavior of the phase of each oscillator in the array is most easily 

seen by plotting the time derivative of the phase because this makes more 

obvious the times at which the influences from the neighboring oscillators 

arrive. Thus, in Figs. 5-6 through 5-10, we compare the result of the 

approximate continuum formula Eq. (5.3-29) in solid lines with that of the 

discrete model Eq. (5.2-22) in dashed lines considered to be the exact result. 

The coupling delay in this example is two inverse locking ranges (ILRs). The 

fine scale wiggles shown in the inset of Fig. 5-6 arise from the truncation of the 

series of branch cut integrals to a finite number of terms. 
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Fig. 5-7. Time derivative of the phase of the nearest neighbors of the 
detuned oscillator. (Reproduced by permission of American Geophysical 
Union from [48], ©2008 American Geophysical Union.) 

 

 

Fig. 5-8. Time derivative of the phase of the second nearest neighbors of 
the detuned oscillator. (Reproduced by permission of American 
Geophysical Union from [48], ©2008 American Geophysical Union.)  
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Fig. 5-9. Time derivative of the phase of the third nearest neighbors of 
the detuned oscillator. (Reproduced by permission of American 
Geophysical Union from [48], ©2008 American Geophysical Union.) 

 

 

Fig. 5-10. Time derivative of the phase of the fourth nearest neighbors 
of the detuned oscillator. (Reproduced by permission of American 
Geophysical Union from [48], ©2008 American Geophysical Union.)  
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Notice that the more distant the oscillator from the detuned one, the later the 

response by exactly two inverse locking ranges (one delay time) per oscillator. 

Moreover, the influence of the nearest neighbors of the detuned oscillator does 

not impact that oscillator until four inverse locking ranges (two delay times) 

have elapsed. Similar delays of two delay times are visible in all of the curves 

corresponding to round-trip delays between the oscillators. All of these 

behaviors are consistent with a causal solution. 

 

We return now to the previous analysis of the location of the branch points to 

highlight two properties that may not have been obvious in the earlier 

discussion. First, as the delay time is decreased, there is a critical value at 

which the distribution of the branch points changes character. If the delay time 

is equal to 0.139232271 inverse locking ranges the smallest circle type branch 

points merge at  = –9.18224297. For delays less than that, say for a delay of 

0.12 inverse locking ranges, the branch point locations are as shown in  

Fig. 5-11.  

 

Second, as the delay approaches zero, all of the branch points move to infinity 

except two, one at the origin and one at –4. Thus, in this zero-delay limit we 

have from Eq. (5.2-22), taken to be the exact solution, that, 

 ( , , )
( 4)

x y s
e

g s x y
s s s

 




 (5.3-31) 

which, perhaps surprisingly, does not agree with Eq. (3.1-6). It does agree in 

the limit of small s so one can expect that the time functions will agree for late 

times, but there will be a difference at early times. When x = y; that is, for the 

detuned oscillator, the inverse Laplace transforms of Eqs. (3.1-6) and (5.3-31) 

can be computed analytically, and we thus obtain from Eq. (5.3-31), 

    2
0 1( , , ) 2 2g y y e I I         (5.3-32) 

where In is the Bessel function of imaginary argument and from Eq. 3.1-6), 

 ( , , )g y y





  (5.3-33) 
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Fig. 5-11. Branch point locations for d = 0.12 
inverse locking ranges. (Reproduced by 
permission of American Geophysical Union 
from [48], ©2008 American Geophysical Union.)  

 

For comparison, these two functions are plotted in Fig. 5-12. The solid curve is 

Eq. (5.3-32), and the short dashed curve is Eq. (5.3-33) while the long dashed 

curve is the difference. Note that, although Eq. (5.3-33) neglects the alternating 

sign solution, it is nevertheless a very good approximation to the exact solution 

Eq. (5.3-32).  

5.4 Beam Steering in the Continuum Model with 
Coupling Delay 

In this section we apply what we have learned so far regarding the analytical 

treatment of coupling delay to the analysis of beam-steering of oscillator arrays 

embodying such delay. We begin with the continuum generalization of the 

linearized discrete model solution for one detuned oscillator in an infinite array 

given by Eq. (5.2-22); that is, 
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Fig. 5-12. Comparison of the single branch point solution (dashed) with the two 
branch point solution (solid). The difference is shown in long dashes. 
(Reproduced by permission of American Geophysical Union from [48], ©2008 
American Geophysical Union.)  
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 (5.4-1) 

Our approach will be to devise a differential equation having Eq. (5.4-1) as its 

Green’s function. When x is not equal to y, this solution satisfies the differential 

equation, 

 

2
2

1

2

2
sec 0

2

sdd e
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sdx
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
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  
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 (5.4-2) 

However, at x = y there will be a discontinuity in the slope of the phase that 

gives rise to a delta function. Evaluating the magnitude of this slope 

discontinuity we determine that the Green’s function Eq. (5.4-1) satisfies, 
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 (5.4-3) 

We may now follow the procedure of Section 3.1 to express the finite-array 

Green’s function as a sum of the eigenfunctions of the differential operator in 

this equation. In order to do this we will need the boundary conditions at the 

ends of the array. Recall that the reflection coefficient at the array ends was 

given by Eq. (5.2-20) which is a fairly complicated function of s. However, 

following Pogorzelski [49], we may simplify matters by assuming the addition 

of half-length coupling lines at the ends of the array. If this is done, the 

reflection coefficient becomes unity because the array boundary then becomes 

an image plane. (See Pogorzelski [47].) A reflection coefficient of unity 

corresponds to the familiar Neumann condition of zero phase slope. Using this 

boundary condition, the even and odd normalized eigenfunctions are seen to be, 
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 (5.4-4) 

Choosing the detuning time dependence to be a unit step at time zero and 

following he approach of Section3.1, the Laplace transform of the phase 

distribution may be written in terms of the eigenfunctions as, 
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(5.4-5) 

We will obtain the inverse Laplace transform via residue calculus. The poles 

are determined by, 
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 (5.4-6) 

Taking the hyperbolic secant of both sides and then the reciprocal we obtain the 

equivalent condition, 
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 (5.4-7) 

This equation can be solved in terms of the Lambert W function defined by, 

 ( )( ) W zz W z e  (5.4-8) 

In terms of this function, the solution of Eq. (5.4-7) is, 
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 (5.4-9) 

These pole locations are plotted in Fig. 5-13. 
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Fig. 5-13. Pole locations for delay of two inverse locking ranges. Black 

dots denote odd values of and gray dots denote even values of . 
(Reproduced by permission of American Geophysical Union from, [49] 
©2008 American Geophysical Union.) 

 

The overall array time constant is determined by the poles closest to the origin. 

We therefore set about solving Eq. (5.4-9) approximately for small s. To do this 

we expand the Lambert W function in a Taylor series about 22 dde . 

  2 2 2( ) (2 ) (2 ) 2d d dW z W de W de z de     (5.4-10) 

Now, W satisfies the differential equation, 
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 (5.4-11) 

So that the first two terms of the Taylor series yield, 
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 (5.4-12) 

and, using Eq. (5.4-9), 
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Recall that z is the argument of the W function so from Eq. (5.4-9), 
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Substituting Eq. (5.4-14) into Eq. (5.4-13) and setting m = 0, 
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(5.4-15) 

The pole at 0  together with the denominator s from the step detuning 

function produce the double pole at the origin leading to the linear time 

dependence or shift in ensemble frequency due to the detuning. For the 

antisymmetric detuning used in beam-steering, the even  poles do not 

contribute, so the dominant pole is the one for 1 lying on the real axis at, 
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 (5.4-16) 

so the time constant of the array is, 
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 (5.4-17) 

or just (2d+1) times the time constant without coupling delay. (Compare with 

Eq. 2.2-40.) 

 

Returning now to Eq. (5.4-5), we form the solution for beam-steering by 

combining two solutions of the form Eq. (5.4-5), one for detuning of the 

oscillator at –N and one for detuning of the oscillator at N, each end of the 

array. 



Causality and Coupling Delay 163 

 
   

 

1

2 2

22

1

2
8sec

2
( , , ) ( , , )

(2 1) ( 2) 4

2 1 2 1
sin sin

2 1 2 1

2 1 2
sec

2 1 2

sd

sd

sdn

e
h

s
s x N s x N

N s s e

n y n x

N N

n e
h

N s

 

 











 
     

  

    
   

    
   

            

  

(5.4-18) 

To obtain the residues, we define q(s) to be the denominator, 
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 (5.4-19) 

and expand in the Taylor series, 
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We thus obtain the aperture phase a function of time in the form, 
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Recall that at each oscillator, x is an integer and that the phase only has physical 

meaning at these integral values of x. As a result, the sum on n need only 

extend from 0 to N – 1 because for integral x, these terms are equal to those for 

n = N + 1 through 2N with the order reversed. Higher order terms in n only 

affect the phase values between the oscillators and thus are not relevant. 

 

Typically, the time at which the time function becomes non-zero is determined 

by when the Bromwich contour used in the inverse Laplace transform integral 
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can be closed in the left half plane, thus enclosing the poles. Prior to that time, 

the contour may only be closed in the right half plane, and since it encloses no 

poles there, the solution is zero. This is the usual way in which causality enters 

such analysis. In this case, however, Eq. (5.4-18) reveals that the contour may 

be closed in the left half plane beginning at d   . Causality dictates that the 

solution remain zero until 0  . Thus, it turns out that the residue sum remains 

zero even though the contour is closed in the left half plane and only becomes 

non-zero after 0  . This is illustrated in Eq. (5.4-21), in which the contour 

was closed in the left half plane beginning at / 4d    leading to the 

,2 1 /4m ns d
e 

 term. Figure 5-14 shows the resulting solution for each oscillator of 

a 21-element array with coupling delay of two inverse locking ranges. Causality 

is obviously satisfied regardless of this unusual closing of the contour. Figure 

5-15 shows the same solution extending to later times showing that in steady 

state the phase increments between oscillators become equal, implying a linear 

phase progression as needed for beam-steering. 

 

The data in Figs. 5-14 and 5-15 are re-plotted in Figs. 5-16 and 5-17, 

respectively. Here one may view the aperture phase distribution at all values of 

time simultaneously.  

 

Finally Fig. 5-18 shows a particular range of time specifically for comparison 

with Fig. 5-19, which is the same case but with no coupling delay. Pay 

particular attention to the time scales in these plots. 

 

The point made by comparing Fig. 5-18 with Fig. 5-19 is that the coupling 

delay of two inverse locking ranges has slowed the response of the array by  

2d + 1 or a factor of five, just as predicted by Eq. (5.4-17). 

 

We now compute the far-zone radiated field when the oscillators in this  

21-element array with coupling delay are used to excite the elements of a 

phased array with half-wavelength element spacing. The result is shown in  

Fig. 5-20 where we see beam behavior very similar to that of arrays without 

delay but slower by (2d + 1). 
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Fig. 5-14. Phase evolution of the oscillators in a 21-element linear array with 
coupling delay of two inverse locking ranges. (Reproduced by permission of 
American Geophysical Union from, [49] ©2008 American Geophysical Union.)  

 

 

 

Fig. 5-15. Phase evolution of the oscillators in a 21-element linear array with 
coupling delay of two inverse locking ranges over a longer duration. (Reproduced 
by permission of American Geophysical Union from, [49] ©2008 American 
Geophysical Union.) 
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Fig. 5-16. Three dimensional representation of the phase evolution 
in a 21-element array at early times. (Reproduced by permission of 
American Geophysical Union from, [49] ©2008 American 
Geophysical Union.)  

 

 

Fig. 5-17. Three dimensional representation of the phase 
evolution in a 21-element array at later times. (Reproduced 
by permission of American Geophysical Union from, [49] 
©2008 American Geophysical Union.)  
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Fig. 5-18. Phase evolution over 250 inverse 
locking ranges for a 21-element array with 
coupling delay of two inverse locking 
ranges. (The vertical scale is from –10 to 10 
radians as in Fig. 5-19.) (Reproduced by 
permission of American Geophysical Union 
from, [49] ©2008 American Geophysical 
Union.)  

 

 

Fig. 5-19. Phase evolution over 250 inverse 
locking ranges for a 21-element array with no 
coupling delay. (Reprinted from [38] with 
permission, ©2000 IEEE.) 
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Fig. 5-20. Dynamic behavior of the far-zone radiated field for a  
21-element array with coupling delay of two inverse locking ranges. 
(Reproduced by permission of American Geophysical Union from, [49] 
©2008 American Geophysical Union.)  

 

The final value theorem applied to Eq. (5.4-18) gives the steady-state phase 

distribution as, 
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and for half-wavelength spacing of the radiating elements, we find that the 

steady-state beam position is at, 

 
1 1 1
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 (5.4-23) 
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This one-radian inter-oscillator phase difference stresses the linear 

approximation a bit in that the error in linearizing the sine function is about 19 

percent. However, the dynamic behavior is still qualitatively approximated.  

 

In the above analysis a large number of residues are required for early times 

and very few are required for late times. However, returning to the discrete 

model, an alternative formulation is available that provides for more efficient 

computation for early times. Returning to Eq. (5.2-19) and specializing to the 

present case of a 21-element array, we have that, 
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 (5.4-24) 

where as before,
 0 1a s  , 2a s  , and sdb e  . We now expand this 

expression in powers of –b, and as before, the inverse Laplace transform of 

each term in the expansion can be computed analytically. The number of terms 

required is determined by the time interval over which the response is desired 

because each term has a delay factor psde  where p is the power of –b in the 

term in the expansion, and d is the coupling delay. So, for sufficiently large p, 

the term will be zero for the interval in question. Thus, in contrast with the 

eigenfunction expansion, for early times very few terms are required. 

 

This approach was applied to the 21-element array with coupling delay treated 

earlier, and the results are plotted in Fig. 5-21 for comparison with Fig. 5-14. 

Interestingly, this power series approach is a bit more flexible in terms of 

boundary conditions. Recall that without the added half-length coupling lines at 

each end of the array, the previous method was complicated. Here, however, 

the use of Eq. (5.2-20) in Eq. (5.2-19) to model an array without the added lines 

poses no difficulty. The expansion in powers of b proceeds as before and the 

result is plotted in Fig. 5-22. Notice the difference in the early time ripples due 

to this alternative boundary condition when compared with Fig. 5-21. 
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Fig. 5-21. Phase evolution in a 21-element array with coupling delay of two inverse 
locking ranges via expansion in powers of b. (Reproduced by permission of 
American Geophysical Union from, [49] ©2008 American Geophysical Union.)  

 

 

Fig. 5-22. Phase evolution via expansion in powers of b for a 21-element array with 
coupling delay of two inverse locking ranges but without the added half-length 
coupling lines at the ends. (Reproduced by permission of American Geophysical 
Union from, [49] ©2008 American Geophysical Union.) 
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5.5 Conclusion 

The primary motivation for this chapter was the issue of causality in coupled 

oscillator arrays. Because the continuum model leads to a diffusion equation, 

the response to an excitation always begins immediately regardless of the 

physical separation of the two. Here, by appropriately introducing a delay factor 

in the Laplace transforms, we render the solutions causal in that there appears a 

finite “propagation delay” between the excitation and the response. The result is 

a more realistic representation of the array response not to mention some rather 

interesting inverse Laplace transforms encountered along the way. 
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