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Chapter 2  
Coupled Oscillator Arrays – Basic 

Analytical Description and Operating 
Principles 

In this chaper we will show how to use the theory developed in Chapter 1 to 
mathematically describe a linear array of oscillators coupled to nearest 
neighbors. It was Karl Stephan who first showed that such arrays can be useful 
in providing excitation signals for a linear array of radiating elements in that if 
locking signals are injected into the end oscillators of the array, variation of the 
relative phase of the locking signals can be used to control the distribution of 
the phase of the signals across the array [1]. Later, Liao and York pointed out 
that by merely tuning the end oscillators of the array the phase distribution can 
be controlled without any external injection signals [28]. We will show that, 
while the equations and associated boundary conditions at the array ends can 
describe the nonlinear behavior of the array through numerical solution, if the 
inter-oscillator phase differences remain small, the equations may be linearized. 
The linearized version may be solved analytically for the dynamic behavior of 
the phase, and from this one may obtain the dynamic behavior of the beam 
radiated by the elements of this linear phased array antenna. 
 
An important consideration in the analysis is the manner in which the 
oscillators are coupled. The coupling can be represented as a “coupling 
network” connected to the array of oscillators, and this network can be 
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described in terms of its port characteristics; that is, in terms of its admittance 
matrix or its scattering matrix.  
 
The above theoretical description will then be generalized to planar arrays of 
oscillators coupled to nearest neighbors and the phase dynamics obtained by 
solution of the resulting equations. Here again, the coupling can be described in 
terms of port characteristics.  

2.1 Fundamental Equations 
Recall that two oscillators coupled together as symbolized in Fig. 2-1 were 
described by Eqs. (1.4-1) and (1.4-2). We now consider the generalization to 
2N+1 oscillators shown in Fig. 2-2. The generalization of Eqs. (1.4-1) and 
(1.4-2) is, 
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where i is an integer index that identifies each oscillator and runs from  
–N to N. We choose the number of oscillators to be odd so that there will be a 
center oscillator. This is not really necessary as the theory can be adapted to an 
even number of oscillators also. (A simple artifice for accomplishing this is to 
generalize N to half of an odd integer value so that 2N+1 becomes an even 
number and let the index, i, take on only half integer values from –N/2 to N/2 
with unit increments.)  
 
 
 
 

 
Fig. 2-1. Two coupled  

oscillators. 
 

 

 
Fig. 2-2. 2N + 1 coupled oscillators. 
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However, from a practical point of view, it is convenient to have a center point 
at which to inject an external signal from a stable oscillator for the purpose of 
stabilizing the array oscillation. We therefore select the number to be odd. Note 
that, because the end oscillators are coupled to only one other oscillator, they 
are described by differential equations with only one sine term on the right side; 
that is, 

 ( )0 1 , 1sinN
N lock N N N N

d
dt
θ ω ω θ θ−

− + − − − += + ∆ − −Φ  (2.1-2) 

 ( )0 1 , 1sinN
N lock N N N N

d
dt
θ ω ω θ θ− −= + ∆ − −Φ  (2.1-3) 

Note further that, because the maximum magnitude of the sine function is unity, 
the end oscillators of the array can be detuned from their nearest neighbors by a 
maximum of one locking range without losing lock whereas the center 
oscillator can be detuned up to two locking ranges. The maximum permitted 
detuning of the other oscillators will lie between one and two locking ranges. 
(See Section3.1, Eq. (3.1-35).)  
 
This system of simultaneous nonlinear first-order differential equations, 
(2.1-1)—(2.1-3), can be solved numerically beginning with an initial phase 
distribution and oscillator tuning thus providing the phase distribution at all 
subsequent times. However, numerical solution does not provide an intuitive 
grasp of the behavior and how the parameters affect it. This intuitive 
understanding may be more easily gleaned from an approximate analytic 
solution. Then, later, if a more exact result is needed, the numerical approach 
can be applied. 
 
Before proceeding to solve Eqs. (2.1-1) to (2.1-3) by linearization, we remark 
that the oscillator tuning required to produce a desired steady-state phase 
distribution may be easily obtained from these equations. That is, in steady state 
the time derivatives are zero, and from (2.1-1) to (2.1-3) the oscillator tuning is 
merely, 
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 (2.1-4) 

 ( )0, 1 , 1sinN ref lock N N N Nω ω ω ϕ ϕ− − + − − − +− = −∆ − −Φ  (2.1-5) 
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 ( )0 1 , 1sinN ref lock N N N Nω ω ω ϕ ϕ− −− = −∆ − −Φ  (2.1-6) 

where we have defined a new phase variable via, 

 i i ref tθ ϕ ω= +  (2.1-7) 

and refω  is taken to be the ensemble frequency of the array. 

 
Let us assume for the moment that the coupling phases are a multiple of π, and 
sum (2.1-4)–(2.1-6) over the 2N+1 array elements. We find that under this 
assumption, 
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(2.1-8) 

so that, 

 0
1 N

ref i
i NN

ω ω
=−

= ∑  (2.1-9) 

the average of the free-running frequencies. Thus, we have shown that for 
coupling phase equal to a multiple of π, the ensemble frequency of the array is 
the average of the free running frequencies of the oscillators. 
 
As an example, in an array with zero coupling phase, a linear phase distribution 
with an inter-oscillator phase difference of δϕ  requires, 

 0 0i refω ω− =  (2.1-10) 

 ( )0, sinN ref lockω ω ω δϕ− − = −∆  (2.1-11) 

 ( )0 sinN ref lockω ω ω δϕ− = ∆  (2.1-12) 
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Thus, beginning with all the oscillators tuned to the reference frequency, tuning 
the leftmost oscillator down in frequency by half of the locking range and 
tuning the rightmost oscillator up in frequency by half of the locking range will 
produce a phase distribution across the array with a positive slope of π/6 
radians between oscillators, π/6 being the arcsine of 1/2. If the oscillator 
outputs are used to excite radiating elements spaced a half wavelength 
(π radians) apart, the radiated beam will be directed 9.6 deg from normal to the 
array, that is, the arcsine of 1/6. It is this method of beam-steering that was first 
described by Liao and York. [28] Of course, much more general phase 
distributions are possible and the required oscillator tunings to produce them 
are given by Eqs. (2.1-4)–(2.1-6). 

2.2 Discrete Model Solution (Linearization and Laplace 
Transformation) 

In order to render the analytic solution tractable, we assume that the arguments 
of the sine functions in Eqs. (2.1-1)–(2.1-2) are close to an integral multiple of 
2π. Specifically, we will assume that the coupling phase is zero and that the 
inter-oscillator phase differences are small so that the sine functions can be 
approximated by their arguments. In this approximation, Eq. (2.1-1) becomes, 

 ( )0 1 12i
i lock i i i

d
dt
θ ω ω θ θ θ+ −= + ∆ − +  (2.2-1) 

Similarly, Eqs. (2.1-2) and (2.1-3) become, 

 ( )0, 1
N

N lock N N
d

dt
θ ω ω θ θ−

− − + −= + ∆ −  (2.2-2) 

 ( )0 1
N

N lock N N
d
dt
θ ω ω θ θ−= + ∆ −  (2.2-3) 

Note that these approximate linearized equations would seem to imply that the 
end oscillators of the array can be detuned by π/2  locking ranges and the center 
one can be detuned by π locking ranges and still remain locked because the 
phase differences between oscillators remain less than or equal to π/2. 
However, from the full nonlinear theory of Section 2.1, we know that this is 
actually not true. These linearized equations only apply when the phase 
differences are small so that the sine functions may be accurately replaced by 
their arguments and π/2 is certainly not a small value in this sense. 
 
In terms of the new phase, Eq. (2.1-7), we find that Eqs. (2.2-1)–(2.2-3) 
become, 
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 ( )0 1 12i
i ref lock i i i

d
dt
ϕ ω ω ω ϕ ϕ ϕ+ −= − + ∆ − +  (2.2-4) 

 ( )0, 1
N

N ref lock N N
d

dt
ϕ ω ω ω ϕ ϕ−

− − + −= − + ∆ −  (2.2-5) 

 ( )0 1
N

N ref lock N N
d

dt
ϕ ω ω ω ϕ ϕ−= − + ∆ −  (2.2-6) 

Now we have a system of first-order linear differential equations that describe 
the dynamic behavior of the oscillator array. Unlike the system of first-order 
nonlinear differential equations from which it was derived, this system can be 
solved analytically. 
 
We begin by writing these linear equations, Eqs. (2.2-4)–(2.2-6), in matrix 
form, 

 0
[ ] [ ] [ ] [ ][ ]ref lock

d M
dt
ϕ ω ω ω ϕ= − + ∆  (2.2-7) 

where [ ]ϕ  is a 2N+1 element vector of oscillator phases, [ω0] is a similar vector 
of oscillator free-running frequencies, and [M] is a (2N+1) by (2N+1) 
tridiagonal matrix with –2’s on the diagonal, except for the –1’s in the upper 
left and lower right corners, and 1’s on the first super and sub diagonals. 
Dividing by lockω∆  yields, 

 
[ ] [ ] [ ][ ]tune

d M
d
ϕ ϕ
τ

= ∆Ω +  (2.2-8) 

where locktτ ω= ∆  and 0[ ] i ref
tune

lock

ω ω
ω
− 

∆Ω =  ∆ 
, a vector of oscillator free 

running frequencies relative to the reference frequency (detuning frequencies). 
Laplace transformation with respect to τ   gives, 

 [ [ ] [ ]][ ] [ ]tunes I M ϕ− = ∆Ω  (2.2-9) 

with the tildes indicating transformed quantities and with [I] being the identity 
matrix. We now define eigenvectors, [v]n , and eigenvalues, λn , of the matrix 
[M] to be such that, 

 [ ]][ ] [ ]n n nM v vλ=  (2.2-10) 
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Our intention is to express the solution of Eq. (2.2-9) as a sum of these 
eigenvectors with unknown coefficients. When this sum is substituted into 
Eq. (2.2-9), the orthogonality of the eigenvectors will be employed to determine 
the coefficients of the expansion and thus obtain the solution in series form. 
Since the number of eigenvectors is finite, this series will be a finite sum; that 
is, a closed form. Moreover, as we will see in the next section, in steady state, 
an approximation of this sum may be carried out to produce a simple functional 
form for the phase distribution. 
 
Note that Eq. (2.2-10) is a three term recurrence relation for the elements of the 
eigenvectors, iv ; that is, 

 1 1(2 ) 0i n i iv v vλ− +− + + =  (2.2-11) 

with the two auxiliary conditions, 

 1 (1 ) 0N n Nv vλ− − + =  (2.2-12) 

 1 (1 ) 0N n Nv vλ− + −− + =  (2.2-13) 

Now, Eq. (2.2-11) is satisfied by the Chebyshev polynomials, ( )i nT x  and 

( )i nU x , where, 

 
2

2
n

nx λ+
=  (2.2-14) 

so that Eqs. (2.2-12) and (2.2-13) become, 

 1( ) (2 1) ( ) 0N n n N nW x x W x− − − =  (2.2-15) 

 1( ) (2 1) ( ) 0N n n N nW x x W x− + −− − =  (2.2-16) 

where Wi is a linear combination of Ti and Ui-1. Equivalently, using (2.2-11) we 
have, 

 1( ) ( ) 0N n N nW x W x+ − =  (2.2-17) 

 1( ) ( ) 0N n N nW x W x− − −− =  (2.2-18) 

These boundary condition equations determine the permissible values, xn. Let 
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 1( ) ( ) ( )i n T i n U i nW x T x U xα α −= +  (2.2-19) 

so that 

 1( ) ( ) ( )i n T i n U i nW x T x U xα α− −= −  (2.2-20) 

Adding and subtracting Eqs. (2.2-17) and (2.2-18) using Eqs. (2.2-19) and 
(2.2-20) yields, 

 1( ) ( ) 0N n N nT x T x+ − =  (2.2-21) 

 1( ) ( ) 0N n N nU x U x−− =  (2.2-22) 

Using the trigonometric expression for T, Eq. (2.2-21) yields, 

 1 11 1sin cos ( ) sin cos ( ) 0
2 2n nN x x− −    + =    

    
 (2.2-23) 

which implies that, 

 
2cos

(2 1)T n
nx

N
π 

=  + 
 (2.2-24) 

so that the eigenvalues are given by, 

 222cos 2 4sin
(2 1) (2 1)Tn

n n
N N
π πλ

   
= − = −   + +   

 (2.2-25) 

the subscript T indicating that the elements of the corresponding eigenvectors 
are ( )i nT x . Conversely, using the trigonometric expression for U, Eq. (2.2-22) 
yields, 

 11cos cos ( ) 0
2 nN x−  + =  

  
 (2.2-26) 

which implies that, 

 
( )
( )
2 1

cos
2 1Un
n

x
N

π +
=   + 

 (2.2-27) 

so that the eigenvalues are given by, 
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( )
( )

( )
( )

22 1 2 1 / 2
2cos 2 4sin

2 1 2 1Un
n n
N N

π π
λ

   + +
= − = −      + +   

 (2.2-28) 

the subscript U indicating that the elements of the corresponding eigenvectors 
are 1( )i nU x− . In (2.2-25) and (2.2-28) the index n runs from 0 to N after which 
the eigenvalues repeat. Thus, we have arrived at two sets of eigenfunctions, one 
set, the T’s, excited by the symmetric part of the detuning function and the 
other set, the U’s, excited by the antisymmetric part, with respect to the array 
center. 
 
We may now expand the solution of Eq. (2.2-9) in these eigenvectors as, 

 
0

[ ] [ ] [ ]
N

n T n n U n
n

A v B vϕ
=

= +∑  (2.2-29) 

Substituting this expansion into Eq. (2.2-9), we obtain, 

 0

0

[ [ ] [ ]] [ ] [ ]

( )[ ] ( )[ ] [ ]

N

n T n n U n
n

N

n Tn T n n Un U n tune
n

s I M A v B v

A s v B s vλ λ

=

=

− + =

− + − = ∆Ω

∑

∑ 

 (2.2-30) 

Using the orthogonality of the eigenvectors, we may now solve for the 
coefficients An and Bn. 

 
[ ] [ ]

( )[ ] [ ]
tune T n

n
Tn T n T n

vA
s v vλ
∆Ω •

=
− •



 (2.2-31) 

 
[ ] [ ]

( )[ ] [ ]
tune U n

n
Un U n U n

vB
s v vλ

∆Ω •
=

− •



 (2.2-32) 

Substituting into Eq. (2.2-29), 
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 0

0

[ ] [ ][ ] [ ]
( )[ ] [ ]

[ ] [ ] [ ]
( )[ ] [ ]

N
tune T n

T n
Tn T n T nn

N
tune U n

U n
Un U n U nn

v v
s v v

v v
s v v

ϕ
λ

λ

=

=

∆Ω •
=

− •

∆Ω •
+

− •

∑

∑







 (2.2-33) 

and, if the detuning function is a step function at time zero, the inverse Laplace 
transform is, 

 ( )

( )

,

1

0

[ ]
2 1

[ ] [ ] [ ] 1
[ ] [ ]

[ ] [ ] [ ] 1
[ ] [ ]

Tn

Un

N

tune i
i N

N
tune T n

T n
Tn T n T nn

N
tune U n

U n
Un U n U nn

N

v v e
v v

v v e
v v

λ τ

λ τ

τϕ

λ

λ

=−

=

=

= ∆Ω
+

∆Ω •
− −

•

∆Ω •
− −

•

∑

∑

∑

 (2.2-34) 

The first of the three summations, the one arising from the zero eigenvalue, 
indicates that the steady-state ensemble frequency of the array is shifted by the 
average oscillator detuning; i.e., the sum of the elements of the [ ]tune∆Ω
vector divided by the number of oscillators. 
 
Recall that we assumed at the start of this section that the coupling phase is 
zero. Returning for a moment to Eq. (2.1-1) and using Eq. (2.1-7), we may 
write, 

 
( )

( )
0 1 , 1

1 , 1

sin

sin

i
i ref lock i i i i

lock i i i i

d
dt
ϕ ω ω ω ϕ ϕ

ω ϕ ϕ

+ +

− −

= − + ∆ − −Φ

+ ∆ − −Φ
 (2.2-35) 

If the coupling phases are taken to be equal, this can be rearranged to read, 

 
( ) ( ) ( ) ( )

( ) ( ) ( )

0 1 1

1 1

sin cos cos

cos sin sin

i
i ref lock i i i i

lock i i i i

d
dt
ϕ

ω ω ω ϕ ϕ ϕ ϕ

ω ϕ ϕ ϕ ϕ

+ −

+ −

 = − −∆ Φ − + − 

 + ∆ Φ − + − 

 (2.2-36) 

or, 
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 ( ) ( ) ( )0 1 1sin sini
i ref eff i i i i

d
dt
ϕ ω ω ω ϕ ϕ ϕ ϕ+ − = − + ∆ − + −   (2.2-37) 

where, 

 ( ) ( ) ( )1 1sin cos cosref ref lock i i i iω ω ω ϕ ϕ ϕ ϕ+ − = + ∆ Φ − + −   (2.2-38) 

and  

 ( )coseff lockω ω∆ = ∆ Φ  (2.2-39) 

which is the same as Eq. (1.4-18). Thus we conclude that, in a 2N+1 oscillator 
array, a uniform coupling phase modifies the effective locking range according 
to Eq. (2.2-39) just as it did for two oscillators, and the ensemble frequency is 
modified according to Eq. (2.2-38). Interestingly, if the inter-oscillator phase 
difference is 90 deg, the ensemble frequency becomes independent of the 
coupling phase as pointed out by Humphrey and Fusco [25]. 
 
The speed of the array response to the application of a step tuning is determined 
by the smallest nonzero eigenvalue. From Eq. (2.2-28) this is, 

 
2

2
0

/ 24sin
(2 1) (2 1)U N N
π πλ

   
= − ≈ −   + +   

 (2.2-40) 

This provides the important result that the linear array response time constant is 
roughly proportional to the square of the number of elements, the 
approximation becoming more accurate as the number of elements is increased. 
 
While the time constant is unaffected, the effective steering speed of such 
arrays, as defined by the radiated beam peak neglecting aberration, may be 
increased by “over-steering.” That is, one may apply more detuning than 
necessary to achieve the desired steady-state phase gradient but reduce it to the 
required value during the beam-steering transient. Generalizing this concept, 
one may apply arbitrarily time-varying detuning as suggested by Heath et al. 
[29]. In particular they considered sinusoidal detuning and showed that the 
maximum stable inter-oscillator phase shift is thereby increased from 90 to 
138 deg. 

2.3 Steady-State Solution 
In this section we will investigate the steady-state solution for the phase 
distribution in a bit more detail. From Eq. (2.2-34), the steady-state solution is, 
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 1

0

[ ] [ ][ ] [ ]
[ ] [ ]

[ ] [ ] [ ]
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N
tune T n

T n
Tn T n T nn

N
tune U n

U n
Un U n U nn
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v v
v v

ϕ
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λ

=

=

∆Ω •
= −

•

∆Ω •
−

•

∑

∑
 (2.3-1) 

in which we have suppressed the linear term in time that merely represents a 
shift in the ensemble frequency due to the detuning. The denominators of the 
terms of the series may be written explicitly as, 

 

( )2
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(2 1) 2
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T n T n i n
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v v T x

ni N
N
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• = =

 
= + + 

∑

∑
 (2.3-2) 

and, 

 

( )21
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i N
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π

−
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• = =
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= + +  

 + 

+

 +
 + 

∑

∑  

(2.3-3) 

Suppose that one of the oscillators, say the jth one, is step detuned at time zero 
from the ensemble frequency by one locking range. The solution given by 
Eq. (2.3-1) then becomes, 
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1
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 (2.3-4) 

Thus, the elements of the vector of oscillator phases may be written, 
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 ( ) ( )

( )
( )

21

0 2

2 2cos cos
(2 1) (2 1)2

2 1
4sin

(2 1)

2 1 2 1
sin sin

(2 1) (2 1)2
2 1 2 1 / 2

4sin
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n

j n i n
N N

N n
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j n i n
N N

N n
N

π π

ϕ
π

π π

π

=

=

   
   + +   =

+  
 + 

   + +
   + +   +

+  +
  + 

∑

∑

 (2.3-5) 

 
The series given by Eq. (2.3-5) has a finite number of terms so it can be 
summed numerically. As an example, we evaluate this series for N = 10, a  
21-element array, with oscillator number 5 detuned one locking range, and plot 
the phase of each oscillator in Fig. 2-3 as the dots. 
 
Noting that the lowest order terms in n contribute most of the sum, we 
approximate the eigenvalues in the denominators of Eq. (2.3-5) as follows. 

 
2

2 24sin
(2 1) (2 1)

n n
N N
π π   

≈   + +   
 (2.3-6) 

 ( )
( )

( )
( )

2
2 2 1 / 2 2 1

4sin
2 1 2 1

n n
N N

π π   + +
≈      + +   

 (2.3-7) 

Substituting these approximations in Eq. (2.3-5) gives, 
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N

j n i n
N N

N n
N

π π

ϕ
π

π π

π

=

=

   
   + +   ≈

+  
 + 

   + +
   + +   +

+  +
  + 

∑

∑

 (2.3-8) 

If the upper limit of these summations is extended to infinity (adding 
presumably negligible terms), the sum may be written as the simple quadratic 
function, 

 ( ) ( ) ( )22 21 12 1 2 1
2 2 1) 6i i j N j i N

N
ϕ  = + − + − + + +  

 (2.3-9) 

Thus, we see that the steady-state phase distribution when one oscillator is 
detuned is approximately parabolic with a slope discontinuity at the detuned 
oscillator. To compare with the earlier example, we evaluate this function for  
N = 10, a 21-element array, with oscillator number 5 detuned one locking range 
and plot the phase of each oscillator in Fig. 2-3 as x’s. Note that the 
approximation is quite accurate. In fact, in the present example, the maximum 
error is only about 4 milliradians (mr) of phase. 
 
Finally, we note that, since the eigenvalues repeat, if the sums in Eq. (2.3-5) are 
continued to an infinite number of terms instead of stopping at N, the result 
would be a set of delta functions, one at each oscillator, with amplitude (area) 
equal to the phase of that oscillator. 
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Fig. 2-3. A possible phase distribution  

for a 21-element array. 

 

2.4 Stability of the Phase Solution in the Full Nonlinear 
Formulation 

In the previous sections of this chapter, we found that linearization provided a 
path to analytic solution for the phase distribution across the array. It was also 
pointed out in passing that the full nonlinear formulation provided the oscillator 
tuning necessary to achieve a desired steady-state phase distribution. In this 
section we discuss the properties of the steady-state phase solution of the full 
nonlinear formulation largely as described by Heath, et al. [29]. Recalling that 
linearization permitted solution of the problem, we expect that the effect of a 
small perturbation of an assumed solution of the nonlinear equations can be 
investigated in a similar manner. This is the approach taken by Heath, et al. 
[29] in determining the stability of the solution in the fully nonlinear case. To 
place this in the framework of our previous analysis we begin with 
Eqs. (2.1-1)–(2.1-3) and introduce (2.1-7) to obtain,  
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( )

( )
0 1 , 1

1 , 1

sin

sin

i
i ref lock i i i i

lock i i i i

d
dt
ϕ

ω ω ω ϕ ϕ

ω ϕ ϕ

+ +

− −

= − + ∆ − −Φ

+ ∆ − −Φ
 (2.4-1) 

 ( )0 1 , 1sinN
N ref lock N N N N

d
dt
ϕ ω ω ω ϕ ϕ−

− + − − − += − + ∆ − −Φ  (2.4-2) 

 ( )0 1 , 1sinN
N ref lock N N N N

d
dt
ϕ ω ω ω ϕ ϕ− −= − + ∆ − −Φ  (2.4-3) 

Following Heath, et al. [29], we assume a solution of (2.4-1)–(2.4-3) with a 
uniform inter-oscillator phase difference (linear phase distribution) and uniform 
reciprocal coupling, as was the case in the earlier example given by 
Eqs. (2.1-10)–(2.1-12), and let the phase of each oscillator be changed by a 
small time dependent perturbation, iη ; that is, 

 i i ref itθ ϕ ω η= + +  (2.4-4) 

Equations (2.4-1)–(2.4-3) then become, 

 

( )

( ) ( )
( )

1

1

cos

2cos cos

cos

i
lock i

i

i

d
dt
η ω δϕ η

δϕ η

δϕ η

+

−

= ∆ −Φ

− Φ

+ +Φ 

 (2.4-5) 

 ( )( )1cosN
lock N N

d
dt
η ω δϕ η η−

− + −= ∆ −Φ −  (2.4-6) 

 ( )( )cosN
lock N N

d
dt −1

and again we note that the system coefficients matrix multiplying the vector of 
η ’s will be tridiagonal with diagonal elements − Φ2cos ( )cos (δϕ )  except for 
the upper left and lower right corners which are −cos (δϕ −Φ) and 

−cos (δϕ +Φ) , respectively. The super-diagonal elements are cos (δϕ −Φ )
and the sub-diagonal elements are cos (δϕ +Φ) .  
 
From the analysis in Section 2.2, we recall that the stability of the system 

η ω δϕ η η= ∆ +Φ −  (2.4-7) 

depended upon the eigenvalues of the system matrix, Eqs. (2.2-25) and 
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(2.2-28), being negative. So it is in the present case. Thus, we must determine 
the eigenvalues for this new more complicated system matrix. Heath, et al. [29] 
provide us with a prescription for doing this. The first step is to symmetrize the 
matrix by defining new eigenvector elements related to the η ’s as follows. 
 
First, define a new variable, γ , via, 

 ( )
( )

2cos
cos

i

i i
δϕ

γ η
δϕ

 −Φ
=   +Φ 

 (2.4-8) 

Now, substitution of Eq. (2.4-8) into Eqs. (2.4-5)–(2.4-7) yields, 

 

( ) ( )

( ) ( )
( ) ( )

1

1

cos cos

2cos cos

cos cos

i
lock i

i

i

d
dt
γ

ω δϕ δϕ γ

δϕ γ

δϕ δϕ γ

+

−

= ∆ −Φ +Φ

− Φ

+ −Φ +Φ 

 (2.4-9) 

 
( ) ( )

( )
1cos cos

cos

N
lock N

lock N

d
dt
γ

ω δϕ δϕ γ

ω δϕ γ

−
− +

−

= ∆ −Φ +Φ

−∆ −Φ
 (2.4-10) 

 
( ) ( )

( )
1cos cos

cos

N
lock N

lock N

d
dt
γ

ω δϕ δϕ γ

ω δϕ γ

−= ∆ −Φ +Φ

−∆ +Φ
 (2.4-11) 

The system matrix for Eqs. (2.4-9)–(2.4-11) is symmetric. Rearranging these 
equations a bit results in, 

 

( ) ( ) [

( )
( )

( )
( ) ]

1

1

cos cos

cos cos
cos cos

i
lock i

i i

d
dt
γ

ω δϕ δϕ γ

δϕ δϕ
γ γ

δϕ δϕ

+

−

= ∆ −Φ +Φ

 −Φ +Φ
− + +
 +Φ −Φ

 (2.4-12) 



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( ) ( )

( )
( )1

cos cos

cos
cos

N
lock

N N

d
dt
γ

ω δϕ δϕ

δϕ
γ γ

δϕ−

= ∆ −Φ +Φ

 +Φ
 × −

−Φ  

 (2.4-14) 

( ) ( )

( )
( )1

cos cos

cos
cos

N
lock

N N

d
dt
γ

ω δϕ δϕ

δϕ
γ γ

δϕ

−

− + −

= ∆ −Φ +Φ

 −Φ
 × −

+Φ  

 (2.4-13) 

As in Section 2.2, these equations may be written in matrix form. The stability 
is determined by the eigenvalues, nλ , of the system matrix, which can be found 
as follows. Let, 

 
( )
( )

( )
( )

1 cos cos1cos
2 cos cos

δϕ δϕ
α

δϕ δϕ
−
  −Φ +Φ
  = +

 +Φ −Φ   
 (2.4-15) 

Now the analogs of Eqs. (2.2-11)–(2.2-13) are, 

 1 1(2cos ) 0i n i iv v vα λ− +− + + =  (2.4-16) 

 1 ( ) 0i
N n Nv e vα λ− − + =  (2.4-17) 

 1 ( ) 0i
N n Nv e vα λ−

− + −− + =  (2.4-18) 

and the argument of the Chebyshev polynomials is, 

 
2cos

2
n

nx α λ+
=  (2.4-19) 

Substituting Eqs. (2.2-19) and (2.2-20) into Eqs. (2.4-17) and (2.4-18) and 
setting the determinant of the coefficients of Tα  and Uα  equal to zero gives 
us the following transcendental equation for the eigenvalues. 
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 ( ) ( ) ( ) ( )1 1sin 2 1 cos sin 2 1 cos cosn n nx N x N x α− −   + = +   
 (2.4-20) 

So either, 

 cosnx α=  (2.4-21) 

and, from Eq. (2.4-19) the eigenvalues are zero, or, 

 ( ) ( )1sin 2 1 cos 0nN x− + = 
 

 

(2.4-22) 

and the eigenvalues are, 

 
2 2

2cos 2cos
2 1

/ 24sin 4sin
2 1 2

n
n
N

n
N

πλ α

π α

 = − + 
   = − +   +   

 (2.4-23) 

The time dependence of the nth perturbation mode will be, 

 ( ) ( )cos cosn lock nt te eλ ω δϕ δϕ σ∆ −Φ +Φ =  (2.4-24) 

and 

 ( ) ( )cos cosn n lockσ λ ω δϕ δϕ= ∆ −Φ +Φ  (2.4-25) 

Substituting Eq. (2.4-23) into Eq. (2.4-25), 

 
( ) ( )

2 2/ 24 sin sin
2 1 2

cos cos

n lock
n
N
π ασ ω

δϕ δϕ

    = − ∆ −    +    

× −Φ +Φ  
(2.4-26) 

The nth perturbation eigenmode will be stable if  has a non-positive real part. 
In general, the phase distribution across the array will be stable if all of the 

sn 'σ  have non-positive real parts. Note that in the typical case where Φ  is an 

nσ
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integral multiple of π , α is zero. Then, if δϕ  is less than π / 2  all of the 
s are real and non-positive so the array phase distribution is stable 
all perturbations. 

eigenvalue
against sm
 
In this section we have shown that, by linearizing the equations about an 
arbitrary solution for the phase distribution in a linear array in which only the 
end oscillator free running frequencies are controlled, we may study 
analytically the stability of the solution against small perturbations. Heath, et al. 
[29] have also shown that exact stable constant phase gradient solutions of the 
nonlinear equations with arbitrary time dependence can be obtained if one is 
willing to control the free-running frequencies of all of the oscillators in the 
array rather than just the end ones. 

2.5 External Injection Locking 
It was mentioned in passing in Section 2.1 that we chose the number of 
oscillators in the array to be odd so as to provide a convenient center point at 
which to inject a stabilizing external signal. In this section we discuss the 
needed modifications to the mathematical formulation to accommodate an 
external injection signal and account for its impact on array behavior. 
 
Beginning with Eq. (2.1-1) we envision an external signal injected into the pth 
oscillator and add a term to the equation representing this signal.  

 

( )
( )

( )

0 1 , 1

1 , 1

, , ,

sin

sin

sin

i
i lock i i i i

lock i i i i

ip lock p inj inj p p inj

d
dt
θ

ω ω θ θ

ω θ θ

δ ω θ θ

+ +

− −

= + ∆ − −Φ

+ ∆ − −Φ

+ ∆ − −Φ

 (2.5-1) 

where δ ip is the Kronecker delta function and ∆ωlock , ,p inj  is the locking range 

een the external oscillator and the injected oscillator in the array. Note that 
phase of the injection signal must remain within π / 2  radians of that of the 
cted array oscillator to maintain lock. For simplicity, let all of the coupling 
ses be zero and assume that the inter-oscillator phase differences are small 

betw
the 
inje
pha
to permit linearization. Then, introducing Eq. (2.1-7) we have, 

 
( )

( )
0 1 1

, ,

2i
i ref lock i i i

ip lock p inj p inj

d
dt
ϕ ω ω ω ϕ ϕ ϕ

δ ω ϕ ϕ

+ −= − + ∆ − +

− ∆ −
 (2.5-2) 
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By replacing Eq. (2.2-4) with Eq. (2.5-2) while Eqs. (2.2-5) and (2.2-6) remain 
unchanged, Eq. (2.2-9) now becomes, 

 [ [ ] [ ] [ ]][ ] [ ] [ ]tune injs I M d rϕ ϕ− + = ∆Ω +

   (2.5-3) 

where [d] is a matrix with one non-zero element, r, at position pp on its 
diagonal, [ ]injϕ is a vector with one non-zero component, the pth one., and  

 
, ,lock p inj

lock
r

ω
ω

∆
=

∆
 (2.5-4) 

Here again the tilde denotes Laplace transformation with respect to the scaled 
time, τ .  Equation (2.2-11) is thus replaced by, 

 1 1(2 ) 0i ip n i iv r v vδ λ− +− + + + =  (2.5-5) 

And Eqs. (2.2-12) and (2.2-13) are unchanged. 
 
We now postulate eigenvectors with two sets of elements, those to the left of 
and including the injection site I = p labeled “L” and those to the right of and 
including the injection site I = p labeled “R.” That is, 

 ( ) ( ) ( )
1( ) ( ) ( );L L L

n i n i ni T UW x T x U x i pα α −= + ≤  (2.5-6) 

 ( ) ( ) ( )
1( ) ( ) ( );R R R

n i n i ni T UW x T x U x i pα α −= + ≥  (2.5-7) 

and we require that the pth elements match at the injection site; that is, 

 ( ) ( )( ) ( )L R
p n p nW x W x=  (2.5-8) 

Now Eq. (2.5-5) with i=p, Eq. (2.2-12), Eq. (2.2-13), and Eq. (2.5-8) are four 

equations in the four unknowns, 
( )L
Tα , ( )L

Uα , 
( )R
Tα , and ( )R

Uα . The equations 
are homogeneous, so the determinant of the coefficients must be zero if we are 
to obtain a nontrivial solution. As usual, this condition yields a transcendental 
equation for nx  thus giving the eigenvalues, nλ . The transcendental equation 
in this case is, 
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( ) ( )1 1

1 1

sin cos sin (2 1)cos

1 1cos ( )cos cos ( )cos
2 2

n n

n n

x N x

r N p x N p x

− −

− −

+ =

   + + + −   
   

 (2.5-9) 

Note that if r = 0 we recover the eigenvalues for the uninjected array, Eqs. 
(2.2-24) and (2.2-27). 
 
Proceeding as in the uninjected case, the solution may be expressed in terms of 
the eigenvectors and eigenvalues in the form, 

 
( )2

0

[ ] [ ] [ ]
[ ] [ ]

( )[ ] [ ]

N tune inj n
n

n n nn

v
v

s v v

ϕ
ϕ

λ=

∆Ω + •
=

− •∑





 (2.5-10) 

and the inverse Laplace transform follows immediately. For practice, you may 
wish to explicitly compute the eigenvalues and eigenvectors and evaluate the 
solution from Eq. (2.5-10). 
 
The beam-steering scheme proposed by Stephan [1] requires two injection 
points, i = pL and i = pR, characterized by two locking-range ratios, rL and rR. 
The solution procedure described above can be generalized to accommodate 
such a situation as follows. We postulate eigenvectors in three parts, one to the 
left of both injection points denoted “L”, one between the injection points 
denoted “B”, and one to the right of both injection points denoted “R.” The 
elements of these vectors are linear combinations of Chebyshev polynomials as 

( )L ( )Lbefore. Thus, there will be six unknown coefficients, αT , αU , 

α ( )R ( )R
T , and αU . Imposing the end conditions, continuity at ea

point, and the modified three term recurrence at each injection point

( )B
Tα , ( )B

Uα ,  

ch injection 
, 

 1 1(2 ) 0
L L Lp L n p pv r v vλ− +− + + + =  (2.5-11) 

 1 1(2 ) 0
R R Rp R n p pv r v vλ− +− + + + =  (2.5-12) 

provides a homogeneous system of six equations for these unknown 
coefficients. Setting the determinant of this system equal to zero yields a 
transcendental equation for the eigenvalues and the solution proceeds as before. 
This transcendental equation is, 
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( ) ( )

( )

1 1

1 1

1 1

1
1

1

sin cos sin (2 1)cos

1 1cos ( )cos cos ( )cos
2 2
1 1cos ( )cos cos ( )cos
2 2

cos (2 1 2 )cos
sin cos

cos (2 1 2 )cos sin ( ) c

n n

L L n L n

R R n R n

L R
L n

n

R n R L

x N x

r N p x N p x

r N p x N p x

r r N p x
x

N p x p p

− −

− −

− −

−
−

−

+ +

   + + + + −   
   
   + + + + −   
   

+ + +

× + − −( )1os 0nx− =

 (2.5-13) 

 
Note that if either rL or rR is zero, we recover Eq. (2.5-9). Here again you may 
want to perform the detailed calculations to obtain the explicit solution. 
Solutions of this type will be discussed in further detail in connection with the 
continuum model treated in Chapter 3. 
 
In the extreme case where all of the oscillators are injection locked to the same 
external oscillator, the solution simplifies considerably. Returning to 
Eq. (2.5-3), we find that the elements of [d] are all equal as are the elements of 
[ ]injϕ . So that Eq. (2.5-3) becomes, 

 [ [ ] [ ][ ] [ ]tunes I M ϕ− = ∆Ω  (2.5-14) 

where, 

 [ ] [ ] [ ]M M d= −  (2.5-15) 

and 

 [ ] [ ] [ ]tune tune injr ϕ∆Ω = ∆Ω + 

  (2.5-16) 

Eq. (2.5-14) is now identical in form to Eq. (2.2-9), and the solution in the form 
of Eq. (2.2-34) follows immediately. However, if the injection signals differ 
sufficiently in phase, the elements of the right side of Eq. (2.5-16) can exceed 
unity and the oscillators therefore lose lock. This phenomenon has been 
exploited in discriminating between signals arriving at disparate angles in 
illuminating a phased array. For a given illumination angle the signals at each 
element differ from those of nearest neighboring elements by a constant phase 
difference and, if used to inject the corresponding oscillators of a coupled 
oscillator array, represent the second term on the right side of Eq. (2.5-16). 
Thus, as the incidence angle increases, the phase differences increase and 
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eventually the array loses lock. This permits identification of signals arriving 
outside a given range of incidence angles. [18] 
 
Before proceeding to planar arrays, we remark at this point that one may also 
produce beam-steering via a variant of the Stephan approach in which the 
external injection signals are provided by the end oscillators of the array and 
their phase is controlled by adjusting the coupling phase between the end and 
next to end oscillators [30]. 
 
Finally, we add that, as shown by Heath, control of the coupling phase also 
affords the possibility of creating a so-called “difference pattern” in which a 
null is formed instead of a beam. [31] This is done by switching the phase of 
one interior coupling by π radians. Of course, such a null can also be steered via 
either detuning or injection of the end oscillators. 

2.6 Generalization to Planar Arrays 
Nearly all of the formalism presented in connection with linear arrays of 
oscillators can be generalized to planar arrays. The simplest of planar arrays 
consists of a linear array of linear arrays placed side by side as shown in  
Fig. 2-4. Assuming nearest-neighbor coupling, this implies that each oscillator 
is coupled to four others and can be described mathematically by analogy with 
Eq. (2.1-1). That is, 

 

( )
( )
( )
( )

0 1,

1,

, 1

, 1

sin

sin

sin

sin

ij
ij lock i j ij

lock i j ij

lock i j ij

lock i j ij

d
dt
θ

ω ω θ θ

ω θ θ

ω θ θ

ω θ θ

+

−

−

+

= + ∆ − −Φ

+ ∆ − −Φ

+ ∆ − −Φ

+ ∆ − −Φ

 (2.6-1) 

 

  

where, for simplicity, we have assumed that all of the coupling phases are 
equal. The oscillators are indexed separately in the two orthogonal directions x 
and y in the plane of the array by indices i and j, respectively. The four sine 
terms correspond to coupling to the four nearest neighboring oscillators 
implying that for a zero-coupling phase, the center oscillator may be detuned by 
as much as four locking ranges, and the array will still remain locked. 
Similarly, the corner oscillators may be detuned by two locking ranges. The 
largest permitted detuning of the other oscillators will lie between two and four 
locking ranges.  The effects of a uniform coupling phase can be determined in 
 



COAs—Basic Analytical Description and Operating Principles 49 

 
 

 
Fig. 2-4. Planar array with nearest neighbor coupling. 

 
the same manner as in the one-dimensional case. That is, an effective locking 
range and ensemble frequency shift can be determined as a function of coupling 
phase. Letting the coupling phase be zero and linearizing as we have done in 
the case of linear arrays, we obtain, 

 

( ) ( )
( ) ( )
( )
( )

0 1, 1,

, 1 , 1

0 1, 1,

, 1 , 1

2

2

ij
ij lock i j ij lock i j ij

lock i j ij lock i j ij

ij lock i j ij i j

lock i j ij i j

d
dt
θ

ω ω θ θ ω θ θ

ω θ θ ω θ θ

ω ω θ θ θ

ω θ θ θ

+ −

− +

+ −

− +

= + ∆ − + ∆ −

+ ∆ − + ∆ −

= + ∆ − +

+ ∆ − +

 (2.6-2) 

or, using Eq. (2.1-7) and locktτ ω= ∆ , we find that, 

 
( )

( )

0
1, 1,

, 1 , 1

2

2

ij ij ref
i j ij i j

lock

i j ij i j

d
d
ϕ ω ω

ϕ ϕ ϕ
τ ω

ϕ ϕ ϕ

+ −

− +

− 
= + − + ∆ 

+ − +

 (2.6-3) 

Laplace transformation leads to, 
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( )

( )
1, 1,

, 1 , 1

2

2

ij tune i j ij i j

i j ij i j

sϕ ϕ ϕ ϕ

ϕ ϕ ϕ

+ −

− +

= ∆Ω + − +

+ − +



   

  

 (2.6-4) 

where, 0[ ] ij ref
tune

lock

ω ω
ω
− 

∆Ω =  ∆ 
, elements of a rectangular matrix. This 

equation may now be written in matrix form by defining a matrix [ ]ϕ  with 

ces, [v] , with elements, vij , and elements ijϕ . We now define eigenmatri

eigenvalues, mnλ , satisfying, 

 ( ) ( )1, 1, , 1 , 12 2i j ij i j i j ij i j mn ijv v v v v v vλ+ − − +− + + − + =  (2.6-5) 

The key concept enabling analytical treatment of planar arrays is separability of 
the behavior in the two orthogonal directions. That is, if we define the two 
dimensional phase distribution to be the product of two one dimensional 
distributions, 

 ij i jv v v=  (2.6-6) 

Then Eq. (2.6-5) becomes, 

 ( ) ( )1 1 1 12 2j i i i i j i j mn i jv v v v v v v v v vλ+ − − +− + + − + =  (2.6-7) 

Dividing by the product, jivv , results in, 

 
( ) ( )1 11 1 22 j j ji i i

mn
i j

v v vv v v
v v

λ− ++ − − +− +
+ =  (2.6-8) 

The first term on the left is dependent only on i and is independent of j. 
Similarly the second term on the left is dependent only on j and is independent 
of i. The right side of the equation is independent of both i and j. Thus, we have 
a sum of a function of i and a function of j equal to a constant which implies 
that each of these functions must itself be a constant. That is, 

 
( )1 12i i i

m
i

v v v
v

λ+ −− +
=  (2.6-9) 
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( )1 12j j j
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v
λ− +− +

=  (2.6-10) 

and 

 m n mnλ λ λ+ =  (2.6-11) 

Using the definition of [M] from Eq. (2.2-7), we may write Eqs. (2.6-9) and 
(2.6-10) in the forms, 

 [ ]][ ] [ ]m m mM v vλ=  (2.6-12) 

and 

 [ ]][ ] [ ]n n nM v vλ=  (2.6-13) 

which are identical to Eq. (2.2-10). Thus, the eigenmatrices have been separated 
into the outer product of eigenvectors, one for the i dependence and one for the 
j dependence, and each of these eigenvectors is identical with those of the linear 
array of section 2.2. That is, 

 [ ] [ ] [ ]mn m nv v v= ⊗  (2.6-14) 

The eigenvectors and eigenvalues of Eqs. (2.6-12) and (2.6-13) were found in 
section 2.2, and we will use them here to express the solution of Eq. (2.6-4) in 
the form,  

 [ ] [ ]mn mn
m n

C vϕ =∑∑  (2.6-15) 

Substitution of this form into Eq. (2.6-4) gives, 

 

[ ] [ ]
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mn mn tune m mn mn
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n mn mn
m n

s C v C v

C v

λ

λ

= ∆Ω +

+

∑∑ ∑∑

∑∑



 (2.6-16) 

We now make use of the orthogonality of the eigenvectors. Premultiplying by 
[ ]pv  and post multiplying by [ ]qv , we have, 
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+ + • •
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 (2.6-17) 

so that, 

 ( )( )( )
[ ] [ ]

[ ] [ ] [ ] [ ]
p tune q

pq
p q p p q q

v v
C

s v v v vλ λ

•∆Ω •
=

− − • •



 (2.6-18) 

And Eq. (2.6-15) becomes, 

 ( )( )( )
[ ] [ ][ ] [ ]

[ ] [ ] [ ] [ ]
m tune n

mn
m n m m n nm n

v v v
s v v v v

ϕ
λ λ

•∆Ω •
=

− − • •∑∑


  (2.6-19) 

the planar analog of Eq. (2.2-33). The stability analysis of Section 2.4 also 
carries over to the planar case as discussed by Heath, et al. [29]. One may 
similarly derive a planar analog of (2.5-10) should there be external injection 
[2]. The dynamic behavior of the phase distribution for these cases will be 
discussed in greater detail in connection with the continuum model presented in 
Chapter 3. However, we remark here that Karl Stephan and his student, 
William Morgan, reported application of his external injection beam-steering 
technique to a four-by-four planar array of mutually injection-locked oscillators 
[2]. They also developed a theory for such arrays in which the coupling is 
accomplished via a general multiport coupling network described by an 
admittance matrix as will be further described in Section 2.7 [2] [3]. They 
considered theoretically the use of such an oscillator array to excite an array of 
tapered slot radiators reasoning that the higher gain of these elements would 
mitigate grating lobes if the array size were increased by using element spacing 
greater than a half wavelength. 

2.7 Coupling Networks 
So far we have focused primarily on the behavior of the oscillators in the array 
but very little on the manner in which they are coupled. We merely asserted that 
the coupling was present with a certain assumed strength and coupling phase. 
In addition, two other parameters are important in the design of coupled-
oscillator arrays, the network quality factor or Q, which is related to the 
bandwidth, and the load presented to the oscillators by the network. Although 
not essential, two simplifying assumptions are quite commonly made. The 
coupling strength is assumed to be weak in a sense to be detailed shortly, and 
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the coupling network Q is assumed to be small relative to the oscillator Q so 
that the network can be assumed to be frequency independent over the 
operating bandwidth of the oscillators. Finally, it is essential that the load 
resistance presented to the oscillators be smaller than the maximum negative 
resistance the oscillator can produce so that oscillation can be sustained. In 
order to systematically design appropriate coupling networks, it is necessary to 
derive relationships between these three parameters and the values of the 
components used in constructing the network. In this section, such relationships 
will be derived. 
 
Before proceeding, we remark that the consequences of violation of the above 
simplifying assumptions have in fact been studied. The case of strong coupling 
was treated in this context by Nogi, et al. [17]. They showed that strongly 
coupled arrays exhibit many modes in which the oscillator amplitudes as well 
as the phases vary across the array and that only one mode has constant 
amplitude. They further suggested that all other modes can be suppressed by 
placing a series resistor at the center point of each coupling line. The principle 
underlying this approach was pointed out very early by Stephan and Young. [3] 
The implications of narrow-band coupling networks were studied by Lynch and 
York [32]. The analysis becomes more complicated than in the broadband case 
[33], but useful results can still be obtained. Very recently these issues were re-
examined by Seetharam and Pearson [19]. They showed that strongly coupled 
oscillator arrays exhibit wider locking ranges and lower phase noise levels but 
that the broadband assumption concerning the coupling network is violated, 
necessitating the use of the more complicated theoretical formalism. 
 
Generally, the oscillators may be viewed as being coupled by a multiport 
passive network to which an oscillator is to be connected at each port. This 
situation was analyzed by Pogorzelski [34]. The network is characterized by its 
complex admittance matrix; and for a linear array, if the desired coupling is to 
nearest neighbors, then the admittance matrix will be tridiagonal. For analytical 
simplicity, we assume an infinitely long array. We want the oscillators to 
operate in identical environments, so we design the network to be periodic with 
period unity in the oscillator index. Its admittance matrix will therefore have 
equal diagonal elements, Y11, and equal off-diagonal elements, Y12. 
 
Focusing now on the network alone, in terms of the complex impedance matrix 
we may write the network equations in the form, 

 [ ] port portZ I V   =     (2.7-1) 
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where the vector components are the port currents and port voltages. Because 
the network is periodic, the elements of the impedance matrix, mnZ  will have 
the form, 

 mn n mZ Z Z−= =


 (2.7-2) 

where the port indices, m and n, extend from minus infinity to plus infinity for 
this infinite network. In this sense,   denotes the “distance of the element from 

Furthermore, the network periodicity implies 

ectors,[w]∆ϕ , of the impedance matrix will 

the main diagonal of the matrix.” 

that the components of the eigenv

have uniform phase progression and uniform amplitude across the network 
ports. That is, the elements of the eigenvector with inter-port phase difference 
ϕ∆  are, 

 jm
mw e ϕ∆=  (2.7-3) 

Defining, 

 [ ]portI I wϕ ϕ∆ ∆
  =   (2.7-4) 

and 

 [ ]portV V wϕ ϕ∆ ∆
  =   (2.7-5) 

every equation in the system given by Eq. (2.7-1) becomes, 

 j

n
Z e I Vϕ

ϕ ϕ

∞
∆

∆ ∆
=−∞

 
=  

 
∑ 



 (2.7-6) 

Now, the tridiagonal admittance matrix gives us, 

 ( )11 12 12
j jI V Y Y e Y eϕ ϕ

ϕ ϕ
∆ − ∆

∆ ∆= + +  (2.7-7) 

Combining Eqs. (2.7-6) and (2.7-7), we have, 

 
( )11 12

1
2 cos

j

n
Z e

Y Y
ϕ

ϕ

∞
∆

=−∞
=

+ ∆∑ 



 (2.7-8) 
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a Fourier series for which the coefficients, 


Z , can be found by means of the 
usual integration. That is, 

 ( )11 12

1
2 2 cos

je dZ
Y Y

απ

π

α
π α

−

−
=

+∫

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 (2.7-9) 

The integration can be carried out analytically to yield, 
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 (2.7-10) 

This approach is quite similar to that used in the analysis of phased-array 
antennas to obtain the well-known relationship between the mutual coupling 
coefficients among the elements and the active reflection coefficients of the 
array [35]. The result is that we have expressed the elements of the impedance 
matrix and admittance matrix of the coupling network in terms of the two 
parameters, Y11 and Y12. 
 
We now define the complex coupling coefficient of the coupling network in the 
following way. Let the voltage at the nth port be Vn and the current into the nth 
port be In. We can establish a Norton equivalent circuit at the (n+1)st port as 
follows. The open circuit voltage is, 

 1oc nV I Z=  (2.7-11) 

and the short circuit current is, 

 12sc nI V Y= −  (2.7-12) 

Thus, the Norton admittance is, 

 
2 2 2 2

11 12 11 11 1212 12

1 11 1 11

4 4
2

n
N

n

Y Y Y Y YV Y YY
I Z Y Z Y

− − −−
= = = −  (2.7-13) 

Now, using the Norton equivalent circuit and connecting load admittance GL to 
the port, the voltage at port n+1 is, 

 12
1

1
n sc n

L N L N

YV I V
G Y G Y+ = = −

+ +
 (2.7-14) 
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The complex coupling coefficient, κ  , is defined to be the ratio of the voltage 
at port n+1 to the voltage at port n. That is, 

 12

L N

Y
G Y

κ −
=

+
 (2.7-15) 

In the weak coupling approximation, Y12 is small and to first order in Y12, we 
have, 

 12

L

Y
G

κ −
≈  (2.7-16) 

This coupling factor determines the locking range because the injection signal 
arriving at an oscillator, i, from a neighboring one, j, is the amplitude of the 
oscillator signal, Aj, multiplied by κ  so the locking range is given by, 

 0 12 0
2 2

ji i
lock

i L

A Y
Q A QG
κω ω

ω
−

∆ = ≈  (2.7-17) 

For comparison, see Eq. (1.3-16).  
 
Before proceeding, we wish to highlight an interesting point regarding the 
nature of the coupling. If a current is injected into the nth port of the network 
with all other ports open circuited, the voltage appearing at port n+m is, from 
the impedance matrix, just Zm/Z0 times the voltage at the injected port. (See 
Eq. (2.7-10).) That is, open-circuit voltages appear at all ports throughout the 
network, not just at the adjacent ports. In this sense, each oscillator really 
influences all the others, and the coupling is “all to all” rather than “nearest 
neighbor” in nature. The fact that the admittance matrix is banded might seem 
to imply nearest-neighbor coupling, but the banded nature of the matrix merely 
implies that, when a voltage is applied to the nth port with all the other ports 
shorted, short-circuit current flows only in the adjacent ports. The limited 
influence results from shorting the ports not from limited coupling. That said, 
we proceed to define the coupling factor of the network, as the ratio of the 
open-circuit voltages at adjacent ports when a current is injected into the nth 
port of the network with all other ports open circuited. From Eq. (2.7-10), that 
ratio is, 

 
2 2
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Y Y Y
Y

ε
− −

=  (2.7-18) 

For weak coupling, this becomes, 
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 12

11

Y
Y

ε −
≈  (2.7-19) 

where we have effectively neglected the coupling to the non-nearest neighbor 
ports by working only to first order in this ratio. This same result is obtained if 
we define the coupling factor by applying a voltage to the nth port, shorting all 
the others and taking the ratio of the (n+1)st port current to the nth port current. 
This obtains because if GL is large compared to Y12, the coupling is weak and 
the ports are all nearly shorted. 
 
The coupling factor appearing in the expression for the locking range given by 
Eq. (2.7-17) depends on both the oscillator load and the coupling network. 
Based on the discussion above, we can separate these by writing Eq. (2.7-16) in 
the form, 

 12 11

11 L

Y Y
Y G

κ εη
  −

≈ =  
  

 (2.7-20) 

so that the first factor, ε , characterizes the network coupling and the second 
factor, η , characterizes the coupling of the oscillators to the network. 
 
The second important parameter in network design is the network quality factor 
or Q. Fundamentally, Q is defined in terms of energy stored and energy lost per 
unit time, but equivalently, Q can also be defined in terms of the frequency 
dependence of the port admittance near resonance; that is, 

 2
res

Y

Q
Y

ω ω

ω ω

=

∂
∂=  (2.7-21) 

a unitless quantity. For our coupling network we thus have the formula, 

 
( )11 12
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2 cos
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net

Y Y
Q

Y Y
ω ω

ϕω ω
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∂
+ ∆

∂=
+ ∆

 (2.7-22) 

And, for our formulation to apply, this must be much smaller than the Q of the 
oscillators. 
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Finally, the third parameter in the design of these arrays is the amount of 
negative resistance that must be provided by the oscillators. When operating 
normally, the current entering each port of the network is related to the port 
voltage by the port admittance; that is,  

 11 122 cos
I

Y Y Y
V

ϕ
ϕ

ϕ
ϕ∆

∆
∆

= = + ∆  (2.7-23) 

Since the inter-oscillator phase difference cannot exceed π/2 and Y12 has a 
negative real part, the maximum susceptance presented to the oscillator by the 
network is Re(Y11). Thus, we conclude that the oscillator must be designed to 
provide a minimum of this amount of negative susceptance plus an amount 
sufficient to compensate for the internal load susceptance, GL, to maintain 
oscillation when connected to the network. 
 
Let us now consider a concrete example of a network of the sort commonly 
used in experimental studies of linear coupled oscillator arrays. Each unit cell 
consists of a one wavelength long transmission line of characteristic impedance 
ZC, two parallel resistors to reduce the network Q by reducing reflections at the 
transmission line ends, and two series resistors to control the coupling strength. 
Such a network is shown in Fig. 2-5 wherein the circles indicate terminals 
where the oscillators are connected at each end of the unit cell. Using the 
definitions of the elements of the admittance matrix, we may determine that, 
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 (2.7-24) 

so that from Eq. (2.7-19) for weak coupling, 
 

 
Fig. 2-5. Unit cell of an infinite one-dimensional coupling network. 
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ε
 −
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 (2.7-25) 

and the oscillators must provide negative susceptance, -Gosc, where, 
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 (2.7-26) 

In order to determine the network Q using Eq. (2.7-22), it is necessary to 
explicitly display the frequency dependence of the admittance parameters 
induced by the transmission lines. That is, from transmission line theory, we 
have, 
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 (2.7-27) 
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 (2.7-28) 

where ZR is the impedance of the parallel combination of Rp and Rs, and γ is the 
propagation constant of the transmission line. The frequency dependence arises 
because γ  is linear in ω . Using these expressions in Eq. (2.7-22), we find 
that, 
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 (2.7-29) 

(Note that this does not agree with equation (18) of [34] due to an algebraic 
error in the derivation of that equation.) Typical oscillators used with this 
network have Q’s on the order of 100. To minimize the Q of the network, we 
chose parameter values to minimize reflections at the ends of the transmission 
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lines. That is we chose R CZ Z≈  so that for small inter-oscillator phase 
differences we have, 

 
4

p
net

s

R
Q

R
π

≈  (2.7-30) 

and for resistors of comparable value, the network Q is of order unity, clearly 
much smaller than the oscillator Q as assumed in the mathematical model. 
 
Another particularly simple coupling network was proposed by Humphrey and 
Fusco; that of a single capacitor between adjacent ports of the network. [36] 
The corresponding parameters can be derived from the previous example by 
setting Rp to infinity and replacing Rs by 1/(2jωC). Thus, 
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2Y j C
Y j C

ω
ω

=
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 (2.7-31) 

Note that the approximation of Eq. (2.7-19) is not valid for this network so 
Eq. (2.7-18) must be used and we obtain, 
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(2.7-32) 

Note further that the coupling phase is zero. 
 
The approach outlined above for coupling networks designed for linear arrays 
of oscillators can be generalized to the case of planar arrays in which, for 
example, each oscillator is coupled to its four nearest neighbors via the network 
unit cell shown in Fig. 2-5. The admittance matrix is then block tridiagonal, and 
each diagonal block is tridiagonal while the off-diagonal blocks are diagonal. 
The matrix is symmetric, and the elements along any diagonal are equal. Thus, 
the admittance matrix has only three independent elements. The diagonal 
elements are denoted by Yd, the off diagonal elements of the diagonal blocks by 
Yx, and the diagonal elements of the off-diagonal blocks by Yy.. As shown in 
[34], the integral in Eq. (2.7-9) then becomes the two dimensional integral, 
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The impedance matrix, though full, also has a block structure. The elements 
along any diagonal within a block are equal. Similarly, the blocks along any 
block diagonal are equal. Using a generalization of the notation used previously 
for the linear case, the first subscript indicates the “distance” from the diagonal 
within each block and the second subscript indicates the “distance” of the block 
from the block diagonal. 
 
The integrals given by Eq. (2.7-33) for nearest neighbors, Z01 and Z10, as well as 
the integral for the diagonal elements Z00, can be expressed in terms of elliptic 
integrals. That is, 
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 (2.7-35) 

 
( ) ( )

( )

10 22 22

22

2 162
2 44

2 2 164, ,
2 2 2 2 4

d y x y

x d x yd x y

d x y x yx

x d x y d x y

Y Y Y Y
Z K

Y Y Y YY Y Y

Y Y Y Y YY
Y Y Y Y Y Y Y

π

π

  − −   =      − −− −   

 
− −   − Π    − −  − −  

 (2.7-36) 

where K is the complete elliptic integral of the first kind and Π  is the elliptic 
integral of the third kind. [37] The analogs of the voltage ratio of Eq. (2.7-18) 
are, 
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nd 
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ε =  (2.7-38) 

hese expressions are quite cumbersome. However, as shown in Ref. [34], one 
ay obtain more manageable expressions by evaluating the integrals 

symptotically for large subscript via the method of stationary phase when the 
ther subscript is zero. While technically only valid for large index, the form of 
hese expressions exhibits a common ratio between the ports which may be 
aken to be a measure of the coupling. That is, one obtains, 
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s the analogs of Eq. (2.7-18). For weak coupling, Yx and Yy are small compared 
ith Yd and we obtain, 
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imilarly, the analogs of Eq. (2.7-20) are,  
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The network Q can again be expressed as the logarithmic derivative of the port 
admittance with respect to frequency. That is, 
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Finally, the oscillators must provide negative resistance such that, 

 ( )Reosc dG Y− >  (2.7-46) 

For a network using the coupling configuration shown in Fig. 2-5, 
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so that, 
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and, 
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 (2.7-50) 

For R CZ Z≈  and small inter-oscillator phase differences we again have,  
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π Rp
 Qnet ≈  (2.7-51) 

4 Rs

hich is typically much smaller than the oscillator Q. 

n this section we have discussed the analysis of coupling networks for infinite 
rrays both linear and planar. Although, in practice the arrays are of course 
inite, the analysis of infinite arrays is more tractable and provides insight into 
ow the circuit parameters affect the array behavior. Thus, relatively simple 
pproximate formulas obtain for the coupling strength, network Q, and needed 
scillator negative resistance in terms of circuit element values facilitating the 
esign of such networks. 

.8 Conclusion 
n this chapter, the oscillators of the arrays were treated as individual circuits 
apable of oscillation in themselves. These were coupled to form a mutually 
jection-locked system of oscillators. In that sense, the modelling was discrete, 

nd the phase distributions studied were distributions of the phases of the 
dividual oscillator outputs, which (of course) have meaning only in terms of 
e individual oscillator output signals. In the next chapter, however, we will 
troduce the concept of the continuum model in which the phase distributions 

re continuous functions. It is emphasized that the values of these continuous 
unctions still only have physical meaning when the functions are evaluated for 
rguments corresponding to individual oscillators. Arguments between these 
re for mathematical convenience and the corresponding function values have 
o physical significance. 
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