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Appendix B 
Bistatic Scattering Matrix of a Cylinder with 

Arbitrary Orientation 

In this appendix we summarize the equations describing the bistatic scattering 
from a finite length dielectric cylinder with arbitrary orientation. To describe 
the scattering, we shall use a global coordinate system (see Fig. B-1) wherein 
the cylinder orientation is described using a unit vector aligned with the long 
axis of the cylinder, as follows: 

 ( ), sin cos sin sin cosc c c c c c cθ φ θ φ θ φ θ= + +c x y z  (B.1) 

We shall assume that an electromagnetic wave is incident upon this cylinder in 
such a way that the propagation vector of the incident wave can be written as 

 sin cos sin sin cosi i i i i iθ φ θ φ θ= − − −k x y z . (B.2) 

We are interested in the scattered field that is represented by the propagation 
vector 

 sin cos sin sin coss s s s s sθ φ θ φ θ= − − −k x y z . (B.3) 

Using the backscatter alignment coordinate system, we define two triplets of 
local coordinates to describe the transverse components of the incident and 
scattered fields. These coordinates are defined as 

 cos cos cos sin sini i i i i iθ φ θ φ θ= − − +v x y z , (B.4) 



300  Appendix B 

x̂

ŷ
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Fig. B-1. Global backscattering alignment coordinate system used in the calculations. 

 sin cosi i iφ φ= −h x y , (B.5) 

 cos cos cos sin sins s s s s sθ φ θ φ θ= − − +v x y z , (B.6) 

and 

 sin coss s sφ φ= −h x y . (B.7) 

We shall assume that the incident wave is a plane electromagnetic wave. 
Because the cylinder is of finite size, the scattered wave is, in general, a 
spherical wave that propagates away from the cylinder. We shall assume that 
we know the expressions for the bistatic scattering matrix of a cylinder that is 
oriented vertically and denote this matrix by S (θi , ,φ θi s ,φs ) . We shall use the 
same definition as proposed by van Zyl and Ulaby [1], which relates the 
incident and scattered waves as follows: 

 [ ]
ikr

sc inc e
r

=E S E . (B.8) 
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 eikr 
The term on the extreme right    explicitly shows the amplitude and phase  kr 

 
of a spherical wave. Note that, by this definition, the scattering matrix is not 
dimensionless. Van de Hulst [2] defines the denominator of the spherical wave 
as kr; in Van de Hulst’s definition the scattering matrix is dimensionless. In our 
case, the dimension of the scattering matrix elements is meters. 

The elements of the bistatic scattering matrix for a vertically oriented cylinder 
are derived by Senior and Sarabandi [3] as 
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and 
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In these equations, a  is the radius of the cylinder, k0 = 2π λ  is the wave 
number of the incident wave, and l  is the length of the cylinder. Also, 
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2 2s s i i s s iB B
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 0 0y k aB= , (B.19) 

 0 0 sin ix k a θ= , (B.20) 

and 
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with 
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The cylinder complex dielectric constant is ε . Note the dimension of each 
element of the scattering matrix. 

Equations (B.9) – (B.29) apply to the case of a vertically oriented cylinder. 
Returning to the case of a cylinder with arbitrary orientation, we will now 
define two local coordinate systems for the incident and scattered waves such 
that we can use these expressions to characterize the scattering in those two 
coordinate systems. We shall denote these coordinate systems by primed 
vectors. Starting with the incident electric field, we note that we can write this 
field as 

 inc inc inc inc inc
h i v i h i v iE E E E′ ′′ ′= + = +E h v h v , (B.30) 

from which it is easily shown that 
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The bistatic scattering matrix links the incident and scattered waves in the local 
coordinate systems aligned with the cylinder axis, as follows: 
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where the subscripts ic  and sc  indicate that the angles are relative to the 
cylinder orientation, rather than the z -axis, as was the case in Eqs. (B.9) – 
(B.29). 

The scattered wave can also be written as 
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from which we can show that 
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Combining Eqs. (B.31), (B.32), and (B.34), we find the bistatic scattering 
matrix of the cylinder as 
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The local coordinate systems are defined as 
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and 
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The scattered wave coordinate axes are defined in the same way. We note that 
we can write 

 ( ) ( )( )2, 1 ,i c c i c cθ φ θ φ× = − ⋅k c k c . (B.38) 

Also, note that the unprimed coordinate systems can be written like Eq. (B.36) 
and Eq. (B.37) with c(θ φc c, )  replaced by z . It then follows that 
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 i i i i′ ′⋅ = ⋅v v h h , (B.40) 

and 
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It can be shown that 
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and 

 ( )( ) ( ), sin sin sini c c i c c iθ φ θ θ φ φ⋅ × = − −k c z . (B.43) 

Using Eq. (B.43) and Eq. (B.42) in Eq. (B.41) and Eq. (B.39), respectively, we 
find that 
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For the scattered wave, we find that 

 
( ) ( ) ( )( )

( ) ( )( )22

, ,

1 1 ,

c c s s c c
s s s s

s s c c

θ φ θ φ

θ φ

⋅ − ⋅ ⋅
′ ′⋅ = ⋅ =

− ⋅ − ⋅

c z k z k c
h h v v

k z k c
 (B.46) 
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which can be written as 
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The angles θic  and θsc  are defined by 

 ( ) ( )cos cos cos sin sin cosic i c i c i c iθ θ θ θ θ φ φ= − ⋅ = + −k c  (B.50) 

and 

 ( ) ( )cos cos cos sin sin cossc s c s c s c sθ θ θ θ θ φ φ= − ⋅ = + −k c . (B.51) 

It is also useful to look at simpler expressions reported in the literature. Barrick 
[4] used the expressions for the fields scattered by an infinitely long cylinder 
and then accounted for the finite length l  of the cylinder by multiplying by a 
factor 
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Under this assumption, and evaluating Eqs. (B.9) – (B.12) on the cone 
sin iB θ= , we find 
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and 



Bistatic Scattering Matrix of a Cylinder with Arbitrary Orientation 307 

 ( ) ( ) ( ){ }sin sin, , , 1
sin

s im imTEs
vv i i s s m

i m

il VS C e
V

φ φθ
θ φ θ φ

π θ

+∞
−

=−∞
= − −∑ , (B.56) 

where 

 ( )0
1 cos cos
2 i sV k l θ θ= + . (B.57) 

Note that the series coefficients given in Eqs. (B.21) – (B.29) have the 
following symmetry relations 

 0; ; ; 0TM TM TE TE
m m m m m mC C C C C C C− − −= = = − = . (B.58) 

This means that the far-zone scattered field in the plane of incidence is not 
depolarized. This, however, is not the case of other azimuth angles. Also, in the 
forward scattering direction, required for the calculation of the extinction 
coefficient, these expressions are 
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Senior and Sarabandi [3] built on the work of Barrick [4] by integrating the 
current distribution over a cylinder of finite length. In contrast, Barrick [4] 
added a sin x x  term to the scattered field of an infinitely long cylinder to 
account for the finite length. As such, Senior and Sarabandi’s equations are 
possibly more accurate than those of Barrick, but require significantly more 
calculations. 

We shall use these expressions to calculate the composite scattering from a 
layer of vegetation. If we consider such a layer, there are three basic 
calculations for the layer as a whole that we need to perform. These include the 
backscatter from the layer, the bistatic forward scattering that would interact 
with the ground surface, and the attenuation through the layer. The latter is 
needed to calculate the attenuated backscatter from the underlying soil surface. 
The expressions listed so far can be used directly to calculate the first two 
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components. To calculate the attenuation through the layer, we shall make use 
of the optical theorem that states that the extinction cross section of a single 
particle is related to the forward scattering field through 
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where p  denotes the polarization of the wave. The dimension of this is meters 
squared, since the scattering matrix has dimension meters. The total extinction 
coefficient of a medium containing a random distribution of N  cylinders per 
unit volume is obtained by performing an ensemble average over the particles, 
as follows: 

 e e
p pNκ σ= . (B.63) 

The dimension of this quantity is m-1. Using this definition, the strength of the 
incident wave after propagating through a layer of thickness d  at an angle θi  
with respect to the vertical direction, is given by 

 
cos

cos

0

0

e
h i

e
v i

tr incd
h h

dv v

E Ee
E Ee

κ θ

κ θ

−

−

     =        

. (B.64) 

To find the total field propagating in this direction, we need to add the bistatic 
scattered field in this direction to Eq. (B.64). 

With these expressions for the scattering from an arbitrarily oriented cylinder, 
one can define models to describe the scattering from vegetated terrain. 
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