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Chapter 4 
Polarimetric SAR Calibration 

A polarimetric radar system measures the scattered power from the terrain 
being imaged. Before these measurements are useful for further quantitative 
analysis and comparison to models, the measured power values must be 
converted to normalized radar cross-sections. Polarimetric radar measurements 
require additional corrections: not only the amplitudes, but the relative phases 
between channels must also be calibrated. In this Chapter, we shall examine the 
steps required to calibrate polarimetric radar measurements in detail. 

4.1 Polarimetric Radar System Model 
To better understand the corrections we need to apply to a radar image during 
the calibration process, let us first discuss the implementation of such a radar 
system in the context of potential error sources. Figure 4-1 shows the block 
diagram of a typical polarimetric radar system. 

In reality, the radar system is not perfect. For example, rather than transmitting 
the signals through an antenna with a single, pure polarization, there might be 
some leakage into the orthogonal polarization channel. To take this into 
account, we can write the actual transmitted electric field as 
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In this equation, γ  is the radar look angle that defines through which part of the 
antenna radiation pattern the signal is transmitted. During synthetic aperture 
radar (SAR) data calibration, a flat (airborne case) or spherical (spaceborne 
case) Earth is usually assumed for purposes of calculating the radar look angle. 
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Fig. 4-1. Calibration of polarimetric radar. A polarimetric radar is implemented by 
alternatively transmitting signals out of horizontally and vertically polarized antennas and 
receiving at both polarizations simultaneously. Two pulses are needed to measure all the 
elements in the scattering matrix. 

It is then assumed that the radar platform was at an altitude h above the Earth 
reference surface, as shown in Fig. 4-2. Under this flat-Earth assumption in the 
airborne case, the look angle γ  and the incidence angle  for a given pixel are 
the same, as shown in Fig. 4-2. In the spaceborne case, the look angle and the 
incidence angle are not the same, but are related by 

 

η

sin sint sR Rη γ= , (4.1-2) 

with Rs  and Rt  the magnitude of the spacecraft and target position vectors 
relative to the center of the Earth, respectively. 

The slant range R  to the scattering area is measured through the time delay 
between the transmission of the pulse and the receipt of the scattered power. To 
know the slant range accurately, however, we must calibrate possible time 
delays in the radar system, such as the delay between the transmit event as 
issued by the timing system and the actual transmit event. One could calibrate 
the slant range by imaging a calibration site with a number of point targets 
(discussed in more detail below) of accurately surveyed positions. From the 
relative positions of these objects in the image, one can accurately calculate the 
absolute slant range to each, from which the system delays can be estimated. 
The time interval between these calibrations depends on how stable the radar 
system is in time. For most radar systems, this measurement is only performed 
a few times per year. 
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Fig. 4-2. Airborne (left) and spaceborne (right) imaging geometry usually assumed in SAR 
processing. In both cases, the radar platform is assumed to be at an elevation h above the 
reference plane. 

Unless the radar is operated in an interferometric mode, however, the look 
angle γ  is not measured directly and must be inferred indirectly. In most SAR 
processors, including the National Aeronautics and Space Administration/Jet 
Propulsion Laboratory (NASA/JPL) Airborne Synthetic Aperture Radar 
(AIRSAR) processors, this angle is calculated using the altitude of the radar 
platform, h, above the reference plane, the slant range R , and assuming a flat 
Earth. From Fig. 4-2 it follows that if this assumption is correct, one can write 

 ( )1cos h Rγ −= . (4.1-3) 

The equivalent expression for the spaceborne case assuming a spherical Earth is 
as follows: 
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. (4.1-4) 

The antenna radiation pattern that is of interest here is the so-called elevation 
pattern. This is measured in a plane that is orthogonal to the direction in which 
the radar is traveling. Returning to Eq. (4.1-1), we note that the cross-talk 
coefficients denoted by the δ  are not only a function of the actual antenna; that 
is, if the radar platform flies with a pitch that is not zero, the antenna 
coordinates are rotated by the pitch angle. This will then appear as a cross-talk 
in the transmitted signal. 

The quantity ft  in Eq. (4.1-1) is the result of differences in antenna patterns for 
the two polarizations, as well as potential gain and path length differences in 
the two transmit paths, including the polarization switch. The latter effects 
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result in an overall complex constant multiplier ft , that is a function of the 
look angle. 

This transmitted signal now propagates to the terrain being imaged. Unless the 
signal propagates through a plasma, we can consider this propagation to be 
represented by an identity matrix. In the case of a plasma, the signal will suffer 
Faraday rotation, which we can represent by a rotation matrix. For now, we 
shall assume no rotation. After reflection from the terrain, the signal propagates 
back to the radar. This reflection is represented by the complex scattering 
matrix. Upon reception, the system might again introduce distortions similar to 
those shown in Eq. (4.1-1). Putting all these together and ignoring Faraday 
rotation, the measured scattering matrix is then 
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with 
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The quantity fr  in Eq. (4.1-6) includes not only differences in the antenna 
patterns for the two polarizations but also gain and path length differences in 
the two receiver chains. 

Note that we can write the transmit and receive system distortion matrices as 
the product of two matrices 
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Following the nomenclature used by Quegan (1994) [1], we introduce the 
following symbols: 
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Therefore, using Eq. (4.1-7) in Eq. (4.1-5), we can write 
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Strictly speaking, we should also add a noise matrix to the right-hand side of 
Eq. (4.1-9) to account for thermal system noise; we shall, however, ignore that 
term for now. This system model was derived in slightly different forms by 
Klein and Freeman (1991) [2] and by Quegan (1994) [1]. Ignoring the additive 
noise, this is the most general form of the system model to include system 
distortions in the measurements. 

The scattering matrix for linear, reciprocal media is symmetrical. The vast 
majority of cases encountered in practical remote sensing fall in this category. 
Recognizing this, Raney (1988) [3] suggested that one could gain 3 decibels 
(dB) in signal-to-noise ratio (SNR) in the cross-polarized channel by coherently 
averaging the two measured cross-polarized terms in the scattering matrix. The 
3-dB increase results from the fact that the cross-polarized signals add 
coherently, but the noise in the two channels add incoherently because these 
measurements are made at different times and through different channels. We 
can write this symmetrized matrix as 
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In this equation, the superscript T refers to the transpose of the matrix. A close 
examination of this equation shows that we can write this as  

 ( ) [ ]hh hv hh hvT
c

hv vv hv vvsym actual

S S S S
K

S S S S
γ

    =       
D D  (4.1-11) 

and we can write the distortion matrix D  in the form [ ]
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It is important to realize that once we have symmetrized the matrix to take 
advantage of the increase in SNR, we do not need to know the individual 
components of the transmit-and-receive system distortion matrices. It is 
sufficient to estimate the elements of the equivalent distortion matrix in Eq. 
(4.1-12) to calibrate the elements of the scattering matrix. 

The system model in Eq. (4.1-11) can also be written in a form similar to Eq. 
(4.1-9) as follows 

 ( ) [ ][ ]hh hv hh hvT T
c x c c x
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with 
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The system model in Eq. (4.1-13) was derived by van Zyl (1990) [4] and 
applied to the calibration of the NASA/JPL AIRSAR polarimetric data. This 
model is only applicable to data that have been symmetrized and is, therefore, 
less general than the model in Eq. (4.1-9). On the other hand, studies (for 
example, Cordey, 1993 [5]) has shown that this algorithm is applicable to most 
terrain types. The only exceptions found were certain man-made structures, 
including villages and one agricultural field. This conclusion is not surprising; 
the derivation of Eq. (4.1-13) follows directly from Eq. (4.1-9) and only relies 
on reciprocity of the scattering process. 

Before discussing in detail how to calibrate polarimetric radars using the 
system models discussed so far, let us look at a few examples of the effects of 
these errors. We shall use the polarization responses of a trihedral corner 
reflector to illustrate the effects of various errors. To simplify our discussion, 
we shall use the system model in Eq. (4.1-11). Figure 4-3 shows the effects of 
different amounts of amplitude errors in the co-polarized channel imbalance. 

It is also instructive to look at these figures using the three-dimensional display 
of the polarization responses we introduced in Chapter 2. These are shown in 
Fig. 4-4. From Fig. 4-4 it is clear that the co-polarized channel amplitude 
imbalance causes the original figure to be distorted by moving the maximum 
along the S1  axis on the Poincaré sphere. Values of f ( )γ >1  move the 
maximum to the −S1  axis, while values of f ( )γ <1 move the maximum to the 
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Fig. 4-3. Examples of polarization responses of a trihedral corner reflector. The top left 
image shows the theoretical response with no calibration errors. The top right image has a 
co-polarized channel imbalance error of +0.5 dB. The bottom image has an error of  
-0.5 dB. 

+S1  axis. The further the value of f ( )γ  is from 1, the more distorted the figure 
becomes.  

The responses in Fig. 4-3 and Fig. 4-4 were calculated assuming that the phase 
of ( )f γ is zero. Fig. 4-5 and Fig. 4-6 show the responses assuming that 

( ) 1f γ = ; we will now vary the phase angle of ( )f γ . These figures, 
particularly the three-dimensional displays, show that the main effect of a 
phase-angle error in the co-polarized channels is to rotate the polarization 
response about the 1S  axis.  

Finally, Fig. 4-7 and Fig. 4-8 show the effects of the cross-talk errors. When the 
phase angle of the cross-talk parameter is near zero or 180 deg, the main effect 
is to distort the three-dimensional figure by shifting along the 2S  axis. This can 
be seen in the images on the right in Fig. 4-8. The standard co-polarized 
signatures for these cases look like a co-polarized amplitude imbalance, but the 
maximum in these figures are shifted from either vertical or horizontal (see the 
two signatures on the right in Fig. 4-7 compared to the top right signature in 
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Fig. 4-4. The same polarization responses as in Fig. 4-3, but displayed as three- 

dimension images as explained in Chapter 2. 

Fig. 4-3). In fact, the magnitude of this shift is related to the strength of the 
cross-talk parameter. When the phase of the cross-talk parameter is different 
than zero or 180 deg, however, the distortion is more complicated (as indicated 
in the figures). 

With this background, we now return to the process of calibrating polarimetric 
radar image data. The general calibration process follows the following steps:  

1. First, the cross-talk parameters are estimated and corrected. 

2. Then the relative co-polarized phase and amplitude are estimated and 
corrected. 

3. Finally, the absolute radiometric factor is estimated to turn the measured 
powers into normalized radar cross-sections. 

In the next few sections we shall discuss these steps in detail. 
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Fig. 4-5. Examples of polarization responses of a trihedral corner reflector with different 
amounts of co-polarization phase errors. The top left image shows the theoretical response 
with no calibration errors. The top right image has a phase error of 90 deg. The bottom left 
image has a phase error of 180 deg. The bottom right image has a phase error of 270 deg. 
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Fig. 4-6. The same polarization responses as in Fig. 4-5, but displayed as three-dimensional 

images as explained in Chapter 2. 
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Fig. 4-7. Examples of polarization responses of a trihedral corner reflector with different 
amounts of cross-talk errors. The top left image shows the theoretical response with no 
calibration errors. In the other three cases, we assumed that the magnitude of the cross-talk 
error is –20 dB, and that δ δ1 = 2 . The top right image has a phase error of 0 deg. The 
bottom left image has a phase error of 90 deg. The bottom right image has a phase error of 
180 deg. 
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Fig. 4-8. The same polarization responses as in Fig. 4-7, but displayed as three-dimensional 

images as explained in Chapter 2. 

4.2 Cross-Talk Estimation and Removal 
The first step in the calibration is to estimate the cross-talk parameters. To do 
this, we rewrite Eq. (4.1-9) in vector form, as follows 
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which is of the form 
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Forming the covariance matrix of the measured vector in Eq. (4.2-2), we find 

 [ ] ( ) [ ][ ][ ]2 † †
measured actualK γ    =    C X Q C Q X . (4.2-3) 

The superscript †  denotes the adjoint (transpose complex conjugate) of the 

matrix. To estimate the distortion matrices, particularly the matrix [X] , we 
make the crucial assumption that the terrain being imaged exhibits reflection 
symmetry. This idea was first introduced in the context of calibration by van 
Zyl [4] and used by Klein and Freeman [2] and Quegan [1]. Under this 
assumption, the averaged actual covariance matrix is of the form (Borgeaud et 
al., 1987 [6]; Nghiem et al., 1992 [7]) 
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In this expression, the angular brackets  denote spatial averaging of the 
image data. Performing the inner multiplications in Eq. (4.2-3), we find that we 
can write 
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This matrix still has the same basic form as the original actual covariance 
matrix in the sense that several of the matrix elements are zero. To estimate the 
cross-talk parameters, we perform the multiplication 

 [ ] [ ][ ] † =  T X O X . (4.2-6) 
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In doing so, however, we neglect those terms that are of second order compared 
to the other terms in the same element. The results are 
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From these expressions, we can form the following four simplified expressions 
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In this expression, we used the fact that [T]  is a Hermitian matrix. From these 
four expressions, we can solve for u, v, z, and w as follows 
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− −    
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. (4.2-9) 

From which we find 
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. (4.2-10) 

Simple inspection shows that 
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Note that knowing these four parameters does not yet allow us to recover [O]  

from [T] . We also need to know the value of α . We can solve for α  by 
writing 
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. (4.2-12) 

Combining these two equations, we find 
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With the values in Eq. (4.2-11) and Eq. (4.2-13), we can now construct the 
matrix [X]  in Eq. (4.2-6), which can then be used to solve for an estimate of 

the matrix [O] , as follows: 

 [ ][ ]
1 1† † †ˆ − −

       =       O X X X T X X X . (4.2-14) 

If we started with scattering matrix data, the equivalent solution is 
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We still need to estimate the channel imbalance to recover the actual scattering 
matrix. We shall discuss this process in the next section. Before we do that, 
however, let us also look at the case where the measured scattering matrix was 
symmetrized to gain the extra 3 dB in SNR in the cross-polarized channel. 
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Once we symmetrized the scattering matrix to gain the 3 dB in SNR in the 
cross-polarized channel, the system model can be written as pointed out by van 
Zyl (1990) [4] and derived in Eq. (4.1-13): 
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Performing the multiplications, we find that we can write 
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In this way, we have separated the cross-talk corrections from the co-polarized 
channel imbalance and absolute radiometric calibrations. Forming the 
covariance matrices, we define 

 [ ] ( )

*2 2

*

2 2

1 2 1
1 2 1 2

2 1 1

hh

hv hh hv vv

vv

b b W a a
a ab b W W W W b ab a

Wa a b b

        = + +    
           

T . (4.2-18) 

Next, we make the assumption that the covariance matrix of the terrain satisfies 
Eq. (4.2-4) as introduced in the context of calibration by van Zyl (1990) [4]. 
Under this assumption, we find 
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. (4.2-19) 

Therefore, we can write 
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We can now solve for the two complex cross-talk parameters. First, from the 
second equation in Eq. (4.2-20) we find 

 * *
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Multiplying the first expression in Eq. (4.2-20) by 33T , we find 
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where we have now made use of (4.2-21) in the second line of this expression. 
Gathering terms, we can write this expression as 
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To solve for a from this expression, we write the real and imaginary parts of 
this expression and then solve for the real and imaginary parts of a. The result 
is 
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In a similar way, we can solve for b to find 
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Note that the original equations in van Zyl (1990) [4] contain algebraic errors, 
as pointed out by Cordey (1993) [5]. The expressions reported here have been 
corrected. Note that Cordey’s expressions contain a typographical error, where 
the square was left off the W W *

hv hv  term in the second term of the 

denominators. 

Once we know the cross-talk parameters, their effect can be removed by 
inverting Eq. (4.2-18), as follows: 
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The expressions for a and b cannot be solved in a simple way; specifically, to 
solve for the cross-talk parameters, we need to know the cross-polarized return 

W W *
hv hv . Note that this quantity is the cross-polarized return after the cross-

talk effects have been removed. To solve this dilemma, van Zyl (1990) [4] 
proposed an iterative scheme. First, use Eq. (4.2-26) with a = b = 0 to estimate 
an initial guess of W W *

hv hv , which is then used to estimate an initial guess for 

the cross-talk parameters using Eqs. (4.2-24) and (4.2-25). This initial guess is 
then used to improve our estimate of W W *

hv hv  using Eq. (4.2-26). This 

improved estimate of W W *
hv hv  is then used to improve our estimate of the 

cross-talk parameters. This procedure is repeated until the values of W W *
hv hv , 

a, and b have reached stable solutions. 

These estimations all rely on calculating average values for the measured 
covariance matrix. A natural question is as follow: How many values need to be 
averaged to estimate these parameters? The practical answer ties back to the 
fundamental assumption about the actual covariance matrix as stated in 
Eq. (4.2-4). At this point, it is instructive to discuss a subtle but important point 
behind this assumption. The form of the covariance matrix as expressed in 
Eq. (4.2-4) assumes reflection symmetry, as is shown in the references cited 
earlier. One way this reflection symmetry can be broken is if there are local tilts 
in the azimuth direction. This can be modeled as a local rotation of the 
polarization basis 
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Comparing this expression with Eq. (4.2-16), it is clear that the effect of the tilt 
will appear as a cross-talk with a = − =b − tan β . Recognizing this, Schuler et 
al. (1996) [8] have proposed an algorithm to use the observed correlation 
between co- and cross-polarized returns to estimate azimuthal slopes in 
polarimetric radar images. To avoid situations where preferentially tilted 
surfaces are present in the images, care should be exercised when estimating the 
cross-talk parameters.  

In practice, the cross-talk parameters are functions of the antenna angle, which 
translates to different values of the slant range. Therefore, the cross-talk 
parameters are estimated by averaging the covariance matrix of an entire line of 
constant slant range. In this way, local tilts in the azimuth direction are usually 
averaged out, and a better estimate for the cross-talk parameters is obtained. 

4.3 Co-Polarized Channel Imbalance Calibration 
The second step in the polarimetric calibration process is to correct for any co-
polarized channel imbalances, both in amplitude and phase, that might exist. 
There a number of different ways to accomplish this step; each requires 
deployment of some external calibration devices and, potentially, the use of 
some calibration signals internal to the radar system. If the radar hardware is 
very stable over time, one could rely more on the internal signal to perform the 
calibration. In that case, the external devices will be used only periodically to 
verify the calibration of the system. Conversely, if there are no internal signals, 
or if the hardware stability is only short term, one must rely on external devices 
to perform the calibration. 

The ideal calibration device for this purpose is a trihedral corner reflector. In 
Chapter 2 we showed that these devices have the following scattering matrix 

 [ ]
2

0 1 0
0 112

k l
π
 

=  
 

S . (4.3-1) 

In this equation, the parameter l is the length of one of the sides of the corner 
reflector, as shown in Fig. 4-9. From a calibration point of view, the desirable 
characteristics of a trihedral corner reflector are: 
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Fig. 4-9. Trihedral corner reflectors are excellent calibration targets 
for polarimetric radar systems. This photograph shows one of the 
authors measuring the orientation of a trihedral corner reflector 
used for calibration. Wooden supports are used to lift the base of 
the corner reflector so that the boresight points at the expected 
flight elevation of the radar. The front edge of the corner reflector 
is placed parallel to the expected flight track of the radar. 

1. No cross polarization components are generated (σ σhv = vh = 0 ) for the 
linear polarization case. 

2. Horizontal and vertical backscattering cross sections are identical 
(σ σhh = vv ). 

3. Horizontal and vertical co-polarized components are in phase. 

4. The device is entirely passive; that is, it requires no power to operate in the 
field. 

These devices are easy to manufacture and subsequently deploy in the field. 
The basic construction uses three identical flat triangular panels, typically 
constructed using an aluminum frame and covered with an aluminum mesh to 
reduce weight. These panels are bolted together at the calibration site to form 
the trihedral corner reflector. The device is then oriented such that the front 
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edge of the base is parallel to the expected radar flight direction. The base is 
tilted to place the boresight of the corner reflector reflection pattern as close to 
the radar direction as possible. Exact orientation is nearly impossible, so careful 
measurements must be made of the orientations so as to allow later corrections 
for the pointing of the reflector relative to the radar look direction. These will 
be discussed in the next section. 

Since the co-polarized channel imbalance might be a function of the radar look 
direction, we typically deploy several of these devices in any image to be 
calibrated spaced relatively uniformly through the image at different positions 
across the radar track. Since we have to estimate the radar cross-sections of 
these devices from the radar image data, we typically look for smooth bare 
surfaces on which to place the corner reflectors, thereby keeping the 
background radar signals as low as possible in the immediate vicinity of the 
calibration devices. 

During routine polarimetric SAR processing, the images are formed and the 
antenna pattern and range corrections described in the next section are applied. 
The next step is usually to estimate and remove the cross-talk as described in 
the previous section. Now we are ready to calibrate the co-polarized channel 
imbalance. Typically, this is done in two steps: correct the phase, then correct 
the amplitude. 

To understand the co-polarized phase calibration, we consider the system 
model shown in Fig. 4-10, which is based on Lou and van Zyl (1992) [9] (note 
that “Pol. Switch” stands for Polarization Switch). This model includes a 
calibration signal to help measure some of the path delays in the system. We 
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Fig. 4-10. The system model used for co-polarized phase calibration. The instrumentally 

induced phase paths for the different paths are indicated with dashed lines. 
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shall first discuss the use of this signal to calibrate the phase difference because 
it has the advantage that we do not need to make any assumptions about the 
scattering in the image itself. We shall later discuss the case where this signal is 
not present. 

After cross-talk removal, we can write the scattering matrix as 

 [ ]
{ } { }
{ } { }2

exp ( 2 ) exp ( )

exp ( ) exp ( 2 )
hh Th Ah Rh hv Tv Ah Av Rh

hv Th Ah Av Rv vv Tv Av Rv

S i f S i

f S i f S i

φ φ φ φ φ φ φ

φ φ φ φ φ φ φ

 + + + + +
 =
 + + + + + 

R . (4.3-2)  

Remember that f f= ( )γ as shown in Eq. (4.1-12). In each case, terms such as 
φTh  refer to the phase of the signal because of the path along the dotted line 
labeled Th  in Fig. 4-10. For example, in the case of Rhh  the signal travels 
along the path Th  from the transmitter to the circulator then along path Ah  
between the circulator and the antenna before being radiated. Upon reception, 
the signal again travels along path Ah , now from the antenna to the circulator, 
and then along path Rh  between the circulator and the rest of the horizontal 
channel receiving chain. We can rewrite Eq. (4.3-2) by extracting an overall 
absolute phase as follows 

 [ ] { }
{ } { }

{ } 2

exp ( 2 ) exp ( )
exp ( 2 )

exp ( )
hh T A R hv A R

Tv Av Rv
hv T A vv

S i f S i
i

f S i f S

φ φ φ φ φ
φ φ φ

φ φ

 + + +
 = + +
 + 

R , (4.3-3) 

where φT = φTh − =φTv ; ;φ φA Ah −φAv φ φR = Rh −φRv . The absolute phase 
outside of the matrix in Eq. (4.3-3) is of little importance in polarimetry; this 
information is lost when the various cross-products are formed in the 
covariance matrix. The elements of the covariance matrix are 
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There are three unknown phases to calibrate: φT , φA  and φR . We can measure 
the antenna path phase difference φA  when the radar system is assembled on 
the spacecraft or aircraft. This path involves only cables (or possibly 
waveguides) and the antennas and should remain stable over long periods of 
time as long as the antennas and cables are not disturbed. To measure the 
receiver path phase difference, we use the calibration tone that is injected into 
the two channels via a switch network. This tone has a common source. 
Therefore, any phase difference measured at the output of the receiver chains 
(for example, φcal ) is related to the differences in path length that the common 
signal traveled through the system. Referring to Fig. 4-10, we can write this 

 φcal =φ φR + ⇒C φR =φcal −φC . (4.3-5) 

The term φC  can be minimized by careful design and φC  should stay stable 
over long periods because it involves path length differences through cables, 
splitters, and couplers. We can measure this after radar installation; it should 
then remain stable as long as these devices are not changed or disturbed. We 
can, therefore, recover the receiver path length phase difference from  
Eq. (4.3-5) by monitoring the phase difference between the calibration signals 
in the two receiver chains. 

There is now only one path length phase difference that is not known: φT  This 
phase difference can be recovered by using the fact that reciprocity dictates that 
S Shv = vh . From Eq. (4.3-4), we find that 
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 { }2* exp ( )hv vh hv R TR R fS i φ φ−= . (4.3-6) 

The phase of the complex product R R*
hv vh  will vary slightly for each pixel in 

the image due to system noise. To get a good estimate of φ φR T− , therefore, we 
can average this complex product over the entire scene. We can then recover 
the transmit path length phase difference from 

 { }*argT R hv vhR Rφ φ= − . (4.3-7) 

With these relative phases known, the scattering matrix elements can be 
calibrated. This discussion makes only one assumption about the scattering: 
that reciprocity holds. No further assumptions are necessary. 

But what if we do not have a calibration tone built into the radar system? We 
shall now show that with a relatively simple assumption about the scattering, 
we can still calibrate that relative co-polarization phase, as discussed by Zebker 
and Lou (1990) [10]. The basic assumption is that there is some extended area 
in the image that we know what the co-polarized phase difference should be. 
Let us denote this expected phase difference by φ̂co . From the image data for 
the area where we expect to know the co-polarized phase difference we extract 
the measured co-polarized phase as 

 { }* ˆ ˆarg 2 2hh vv T A R co T R co AR R φ φ φ φ φ φ φ φ= + + = ⇒ + = − . (4.3-8) 

Using Eq. (4.3-7) and Eq. (4.3-8) we can now solve for the values of φT  and 
φR . So what type of surfaces can be used with this method to calibrate the 
phases? Models of scattering from slightly rough surfaces predict an average 
co-polarized phase that is near zero. Of course, if there are trihedral corner 
reflectors in the image, one could use their measured co-polarized phases in the 
same way. 

Once the phases have been calibrated, we need to correct the effects of the 
co-polarized amplitude imbalance. For this, we use the measured image power 
from trihedral corner reflectors. Recall that for these devices we expect the 
co-polarized responses to be identical. After phase calibration, we end with 
covariance matrix elements that are 



Polarimetric SAR Calibration 183 

 

{ }

{ }

{ }

* * *

2* * * *

4* * *

2* * *

2* * *

2* * *

exp ( )

exp ( )

exp ( 2 )

hh hh hh hh hh hh

hv hv hv hv vh vh hv hv

vv vv vv vv vv vv

hh hv hh hv T A hh hv

hh vh hh vh R A hh hv

hh vv hh vv T A R hh vv

hv

W W R R S S

W W R R R R f S S

W W R R f S S

W W R R i f S S

W W R R i f S S

W W R R i f S S

W W

φ φ

φ φ

φ φ φ

= =

= = =

= =

= − + =

= − + =

= − + + =

{ }

{ }

{ }

2* * *

3* * *

3* * *

exp ( )

exp ( )

exp ( )

vh hv vh R T hv hv

hv vv hv vv R A hv vv

vh vv vh vv T A hv vv

R R i f S S

W W R R i f S S

W W R R i f S S

φ φ

φ φ

φ φ

= − − =

= − + =

= − + =

. (4.3-9) 

We measure the co-polarized channel amplitude imbalance by extracting the 
horizontal-horizontal (HH) and vertical-vertical (VV) image power in a small 
box centered on the corner reflector. Generally, we add the power in this small 
box so as to find the integrated power under the point response of the corner 
reflector. This method is less sensitive to processor focusing than using the 
peak value in the point response. For co-polarized channel imbalance, the 
absolute value of this integrated power is not important; only the relative values 
in the HH and VV images matter. 

The square root of the square root of the measured ratios of the power in the 
HH and VV images as a function of angle of incidence is then used to derive a 
correction curve to apply to the images. This curve represents the magnitude of 
the quantity f (γ )  in Eq. (4.1-14) or fr (γ )  in Eq. (4.1-7). From the curve we 
can then calculate a value of the co-polarized amplitude correction for each 
range line. Once we apply this correction to the data, we have calibrated all the 
polarimetric channels relative to each other. What remains is to perform an 
absolute calibration, which will enable us to compare the measured image radar 
cross-sections to theoretical models. We shall discuss this process next. 

4.4 Absolute Radiometric Calibration 
To understand the absolute radiometric corrections performed during SAR 
processing, let us examine the radar equation we first encountered in Chapter 1 
(see Fig. 1-6). The received power from a scattering area A  is given by  
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Where 

 Pt  = transmitted power 

 λ  = radar wavelength  

 R  = distance to scattering area (4.4-2) 

 Gt (γ )  = transmit antenna gain at angle γ  

 Gr (γ )  = radar look angle γ  

 σ0  = normalized radar cross-section for area A  

Note here that A  is the area on the ground responsible for the scattering. 

Since the radar signals are sampled in the time domain, which corresponds to 
distances in the line-of-sight (the slant range) direction, the following 
approximation is usually made during SAR calibration when calculating the 
scattering area 

 
sin

r aA δ δ
η

= . (4.4-3) 

Here δr and δa  are the slant range (cross-track) and azimuth (along-track) 
pixel spacings, respectively. Note that the scattering area is determined by the 
pixel spacing; that is the way in which the radar signals are sampled, not the 
resolution of the radar. Typically, the radar pixel spacing is smaller than the 
radar resolution so that a point target typically occupies more than one pixel in 
a radar image. 

The goal of SAR imaging is to measure σ0  for each pixel. Rewriting 
Eq. (4.4-1), one finds that 

 ( )0 ,K R Aσ γ= , (4.4-4) 

Where 

 ( ) ( )
( ) ( )

3 4

2
4

, r

t t r

RPK R
P G G

π
γ

λ γ γ
= . (4.4-5) 
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We note that, apart from the measured transmit and received power levels, two 
parameters, R  and γ , must be estimated to determine K R( ,γ ) . We have 
already discussed how these parameters are estimated for the airborne and 
spaceborne cases. For each line of constant range in the data, one can estimate 
the corresponding slant range and look angle. The look angle is then used to 
determine the value of the antenna gain to apply for that line. These gains, 
together with the other parameters in Eq. (4.4-5), are then used to determine the 
value of K R( ,γ )  for that particular line. 

In most SAR processors, the look angle is determined assuming a reference 
surface that contains no relief. In reality the local topography raises or lowers 
the pixel so that the actual look angle is different from the one calculated from a 
reference surface. If the topography is known in digital form, one can actually 
take this effect into account during processing to provide more accurate 
calibration of the data. Radar interferometry is especially useful in this regard: 
the interferometer provides the topography that is needed to more accurately 
calibrate the data. 

Finally, to complete the calibration, one has to remove the scattering area A . 
Here again most SAR post-processors use the flat or spherical Earth 
assumptions and approximate the area A  by Eq. (4.4-3). We note that, as in the 
case of the look angle, the incidence angle is not measured directly and must be 
inferred indirectly. If digital topographic data are available, one could estimate 
the actual scattering area much more accurately and perform a more accurate 
calibration. We shall discuss this in more detail later. 

Even with excellent knowledge of antenna-gain patterns and system 
parameters, the absolute calibration of the image is best achieved using external 
calibration targets placed in an image to verify the overall calibration. Trihedral 
corner reflectors are excellent devices to use for this purpose. The basic idea is 
to deploy the corner reflectors so that they are spaced across the image swath, 
covering most of the range extent of the image. For a corner reflector 
constructed with triangular panels, such as the one shown in Fig. 4-9, the radar 
cross-section is, per Ruck et al. (1970) [11], as follows 

 ( ) ( ) ( )

24

2
4 2, cos sin sin cos

cos sin sin cos
lπσ θ φ θ θ φ φ

θ θ φ φλ

 
= + + − 

+ +  
. (4.4-6) 

The angles θ  and φ  are shown in Fig. 4-11. The peak of the response happens 
for θ = 54.74°;φ = 45°,  and the half-power response is approximately a cone of 
40 deg centered on this axis of symmetry. Therefore, if the corner reflector is 
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Fig. 4-11. Diagram showing the spherical angles 
relative to the panels of the trihedral corner reflector. 
The bottom panel is in the x-y plane. 

placed in that portion of the image where the angle of incidence is 54.74 deg, 
the radar signal will be reflected with maximum intensity. 

To use the corner reflector as a calibration device, we try to point it such that 
the radar signal will be reflected optimally. This means that if the expected 
angle of incidence is θi ≤ 54.74 deg,  we need to raise the bottom panel by an 
angle αCR = 54.74 deg − θi . At the same time, we need to ensure that the front 
edge of the bottom panel is parallel to the expected flight line. Careful 
measurements of the final orientation angles must be made for later use in the 
calibration process. These angles are typically measured as close in time to the 
actual overflight as possible. Figure 4-9 shows one of the authors measuring the 
angles of such a corner reflector deployed for calibration purposes. To ensure 
accuracy of the measurements, the corner reflector signal must be much 
brighter than the background in the image. This is accomplished by placing the 
corner reflectors on as smooth a surface as possible, preferably with no 
vegetation cover. Corner reflectors on the order of 2.4-m panels are typically 
sufficient for L-band calibration; for C-band the typical size is about 1 m. 

To find the absolute calibration factor to apply to the radar image, we compare 
the measured corner reflector signal in the image to the theoretical value, 
keeping in mind that radar images are reported as normalized radar cross-
sections (that is, the power is divided by the scattering area). During this step, 
we take into account the actual orientation angles as measured for each 
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individual corner reflector. To get a more accurate measurement, we typically 
deploy as many corner reflectors at the calibration site as is practical. The 
individual measurements are then averaged together to arrive at the final 
calibration value. The overall normalized radar cross-section of each pixel in 
the image is then scaled by this value to ensure that the average of the corner 
reflector values will be the correct theoretical value. Figure 4-12 shows such a 
calibration site in California used to calibrate the NASA/JPL AIRSAR system. 
The corner reflectors are spaced across the Rosamond dry lake to cover as 
much of the imaging swath as possible. 

For most SAR processors, this will conclude the calibration process. In the next 
two sections, we shall examine a bit more closely some of the assumptions 
made during the calibration process. In particular, we shall look at the accuracy 
of approximating the scattering area by a flat facet. We shall follow that 
discussion by looking at the effect of local topography on antenna pattern 
correction when the antenna look angle is calculated assuming a flat or 
spherical reference plane. 

4.4.1 Effect of Topography on the Scattering Area 
Figure 4-13 shows a surface tilted in an arbitrary direction being illuminated by 
a plane wave. It follows from simple geometry that the pixel area δ δr a  is the 
projection of the actual surface area A′  on the image plane. Therefore, 

 
Fig. 4-12. Image of the Rosamond dry lake in California showing the array of corner 
reflectors used to calibrate the NASA/JPL AIRSAR system. The dry lake bed is the large dark 
feature forming most of the image. The corner reflectors are visible as the line of bright 
objects near the bottom edge of the lake. The image is an L-band total-power image, and the 
radar illumination is from the left in the image. The corner reflectors are spaced to cover as 
much of the range swath as possible. 
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Fig. 4-13. Diagram of a tilted ground element in 
relation to the image plane that is defined by the x 
axis (assumed to be the azimuth direction) and the 
unit vector that points in the slant range direction. 

 cosr a Aδ δ ψ′= , (4.4-7) 

where ψ  is the angle between the actual surface normal and the image plane 
normal. Using spherical coordinates for the surface slope tilt angle θs  and the 
slope aspect angle ϕs , we can write the surface normal as 

 sin cos sin sin coss s s s s sθ ϕ θ ϕ θ= + +n x y z . (4.4-8) 

Here it is assumed that the unit vector x  points in the along-track direction. 
Denoting the radar line of site direction by the unit vector r , the normal to the 
image plane is 

 cos sini η η= × = +n x r y z . (4.4-9) 

Therefore, 

 cos sin cos cos sin sins i s s sψ η θ η θ ϕ= ⋅ = +n n . (4.4-10) 

The actual scattering area is, therefore, 

 
sin cos cos sin sin

r a

s s s
A δ δ

η θ η θ ϕ
′ =

+
. (4.4-11) 

This expression reduces to Eq. (4.4-3) if the surface is not tilted (that is, 0sθ = ). 
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To quantify the errors introduced by using Eq. (4.4-3) instead of Eq. (4.4-11) 
for the actual scattering area, we calculate the ratio of the two areas: 

 ( ) 0sin
10log 10log

sin cos cos sin sins s s

AError dB
A

η
η θ η θ ϕ

 ′ = =    +   
. (4.4-12) 

We used η0  in the numerator of Eq. (4.4-12) as a reminder that this angle 
represents the angle of incidence calculated for a reference plane, either a flat 
surface for airborne cases or a spherical surface for spaceborne SARs. Due to 
local relief, this angle might be different than the local angle of incidence for an 
elevated but untilted surface element. This local angle of incidence can be 
calculated from the slant range R , the height of the radar platform h , and the 
elevation of the image pixel hp  above the reference plane, respectively. These 
expressions are 

 ( ){ }1cos ph h Rη γ −= = −  (4.4-13) 

for the airborne case and 

 ( ){ }1sin sins t pR R hη γ−= +  (4.4-14) 

for the spaceborne case. In this expression  
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 + − + =  
 
 

. (4.4-15) 

Note that under the flat or spherical Earth assumption for the reference plane 
hp  is assumed to be zero, or at least the same value for all pixels in the image. 

Also, in Eq. (4.4-13) - (4.4-15) a positive value of hp  means that the pixel is 
above the reference plane. 

Figure 4-14 shows the magnitude of the calibration error introduced by making 
the assumption shown in Eq. (4.4-3) when calibrating the effect of the 
scattering area. The results are shown for different values of the angle of 
incidence and assume that the radar altitude above the reference plane and the 
pixel elevation are accurately known. 

These results show the following important points: 
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Fig. 4-14. These graphs show the calibration error that could be introduced if 
local surface elements are tilted as a result of topographical variations in 
elevation. The graph on top assumes that the tilts are only in the range 
direction, with positive slopes towards the radar. The errors are plotted for 
different values of the radar look angle. The graph on the bottom shows the 
effect of purely azimuthal tilts. In this case, the results are independent of the 
angle of incidence and the errors are significantly smaller than the case of 
tilts in the range direction. 
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1. The error due to the scattering area is largest when the slope of the surface 
is such that the range slope equals the angle of incidence. When this 
happens, the local angle of incidence approaches zero deg. 

2. The smaller the look angle, the larger the errors due to the surface slope. In 
these cases, a smaller surface tilt leads to the situation described in 1. 

3. The effects of azimuth tilts are much smaller than those of range tilts. 

To better quantify what magnitude errors can be expected in practice, van Zyl 
et al. (1992) [12] calculated, using digital elevation model (DEM) data, the 
distribution of surface slopes for a moderate relief area near Tombstone, 
Arizona, and a high-relief area near Oetztal in Austrian Alps. In both cases, 
DEM data were used to calculate the slope in two orthogonal directions using 
the difference in height of two adjacent pixels and dividing by the horizontal 
separation. Using the information in the slope images, they calculated the 
expected errors for each area for an airborne case (using the nominal 
parameters of the NASA/JPL AIRSAR system flown on the NASA DC-8 
aircraft) and a spaceborne case (using Earth Resource Satellite 1 [ERS-1] 
parameters). In the airborne case, the flat-Earth incidence angle typically varies 
between approximately 15 deg and 60 deg, while for the spaceborne case, the 
incidence angle at the center of the image is assumed to be 23 deg. For the 
moderate relief area, it was found that the airborne case shows relatively small 
errors, although some leading slopes of the hills exhibit errors exceeding 3 dB. 
The errors in the spaceborne case are larger, mainly because of the smaller 
incidence angle. Most of the errors were less than 1 dB, even in the spaceborne 
case. It was found, however, that the situation for the high-relief area was 
dramatically different. In that case, most of the leading slopes show errors on 
the order of 5 dB or larger, even in the airborne case. In the spaceborne 
example of the Oetztal area, most of the errors exceed 1 dB, with large areas 
showing errors exceeding 5 dB in magnitude. 

It also follows from Eq. (4.4-11) that the calibration error will be influenced by 
how accurately the angle of incidence is inferred. In the airborne case, one has 
to rely on some measurement of the platform altitude to calculate the incidence 
angle as shown in Eq. (4.4-13). It is important to note (see Fig. 4-15) that even 
if one could measure the altitude of the plane above the terrain directly 
underneath it very accurately, it still does not mean that the angle of incidence 
is calculated correctly in the swath to the side of the plane. This, of course, is a 
consequence of the changing topography. As an example, a 500-m error in the 
estimation of h h− p  will lead to an additional error of about 2 dB at a 30-deg 

look angle in the case of a plane with nominal h h− p  of 8000 m. Note that the 
500-m number is not the accuracy with which the radar altitude can be 
measured. It is the difference in elevation of the terrain directly underneath the 
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Fig. 4-15. Imaging geometry where the elevation of the terrain being imaged varies. 
Not taking the varying topography into account will result in the incorrect look angle 
being used during antenna pattern removal. 

plane and that of the area being imaged off to the side. In our experience with 
the NASA/JPL AIRSAR system flying on a DC-8 plane, we often image terrain 
in which we have more than 500-m variation in elevation. Of course, this error 
can be minimized by a proper choice of the radar platform altitude during 
processing. In the spaceborne case, the terrain variations are much smaller than 
the platform altitude, which means that the additional errors introduced by 
misestimating the angle of incidence are negligible. 

In summary, we have shown in this section that the error due to the flat surface 
approximation when calculating the scattering area is significant in both 
airborne and spaceborne SAR data. 

4.4.2 Effect of Topography on Antenna Pattern Corrections 
In removing the antenna patterns during radiometric calibration, one has to 
estimate where in the antenna beam the pixel was during data collection. 
Typically the antenna is mounted on the platform such that the boresight of the 
antenna points at a specific look angle. For electronically or mechanically 
steerable antennas, this boresight angle can be changed for each data collection. 
To remove the antenna gain pattern from the image, therefore, we need to know 
the radar look angle as well as the roll angle of the radar platform. If the radar 
platform roll stays constant, the only remaining unknown is the radar look 
angle for each pixel. In most cases, the radar platform roll changes with time. 
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Typically three-axis gyroscopes are used to measure radar platform attitude. If 
the accuracy of these measurements is not sufficient, other techniques, such as 
those discussed by Curlander and McDonough (1991) [13], may be employed 
to estimate platform roll more accurately. 

To evaluate the effect of the topography on the antenna pattern removal, let us 
assume that the roll angle is known and discuss only the additional effect of 
varying topography. Key to antenna pattern removal is the estimation of the 
actual radar look angle γ  for each pixel. In the spaceborne case, the look angle 
in the presence of varying terrain is given by Eq. (4.4-15). Typically hp  is 
much smaller than the other quantities in this expression, meaning that the 
effect of the varying topography on the estimation of the look angle can be 
neglected. The limiting factor in the spaceborne case is much more likely to be 
knowledge of the antenna pointing. 

In the airborne case, the local terrain variation might be a significant fraction of 
the plane altitude, as illustrated in Fig. 4-15. Suppose the height of the radar 
platform above some reference plane is h . If now the elevation of the terrain 
directly underneath the plane with respect to the same reference plane is H  
and the elevation of the pixel being imaged is hp , it follows that the actual 
look angle is given by Eq. (4.4-13) (see Fig. 4-14). If one uses the measured 
plane elevation above the terrain directly underneath it, the incorrectly inferred 
look angle will be given by 

 ( ){ }1cos ph H h Rη γ −= = − − . (4.4-16) 

The error introduced in the antenna pattern removal can be written  
[see Eq. (4.4-5)] as 

 ( )
( )

( ) ( )
( ) ( )
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0 0
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t r
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K R G G

γ γ γ
γ γ γ

= . (4.4-17) 

Clearly, the magnitude of the error depends on the exact values of the antenna 
patterns Gt  and Gr . From Fig. 4-14, however, it is clear that if the terrain 
elevation is a significant fraction of the altitude at which the plane flies, the 
actual and assumed look angles might be significantly different, even if we use 
the correct altitude for the plane. 

These errors were quantified by van Zyl et al. (1993) [12]. They used the 
C-band antenna patterns for the NASA/JPL AIRSAR system and evaluated the 
antenna pattern removal errors for a high-relief area in the Austrian Alps. Their 
calculations show that extremely large errors, some much larger than 10 dB, 
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can be expected in the near range. In the case of the AIRSAR system, the 
antenna boresight points at a 50-deg look angle. The near range of the image, 
typically less than 20-deg look angle, is imaged by that part of the antenna 
pattern where the gain changes rapidly with angle, Therefore, a relatively small 
error in look angle can cause a significant error in antenna pattern correction. 
Their result indicates that one can expect that any time the SAR system 
acquires data over that portion of the antenna beam where the gain changes 
rapidly with angle away from boresight, the effect of topography might lead to 
significant calibration errors. 

There is another subtle point to realize regarding the antenna pattern correction 
errors discussed here. Since the antenna gain patterns for the different 
polarizations are typically slightly different, the errors due to the topography 
might be different for the different polarizations. This, in turn, means that the 
polarimetric calibration (that is, the relative calibration between the different 
polarization channels) will be affected by the topography. This is especially 
important for those geophysical algorithms that are designed to use polarization 
ratios to infer some geophysical parameter from the radar data. Note, however, 
that this error results from using the wrong look angle in the calibration; that is, 
it is an antenna pattern removal error. As argued before, this type of error is not 
expected to be a major problem for spaceborne SAR systems. 

4.4.3 AIRSAR Image Example 
Figure 4-16 shows an example of an image acquired with the NASA/JPL 
AIRSAR system at C-band calibrated with and without taking the topography 
into account. This image was acquired of over the Tennessee Valley area of 
Marin County near San Francisco in California. The radar was operated in the 
TOPSAR interferometric mode; consequently, a co-registered digital elevation 
model was available from this mode with which to correct the SAR image data.  

The image calibrated assuming a flat-Earth reference plane shows distinct 
variations in radar cross-section associated with the topography. Slopes facing 
the radar (at the top of the image) are consistently brighter than those facing 
away from the radar. This effect gives the image a three-dimensional 
appearance. This effect was exploited by Guindon (1990) [14] to develop an 
algorithm to estimate topography from the brightness variations in radar 
images. When the calibration is properly done taking into account the 
topography, however, the image on the left shows very little of these effects 
and appears much flatter in brightness. 
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Fig. 4-16. Two images showing the effects of taking the topography into account when 
calibrating SAR data acquired over terrain with varying topography. The image on the left 
was calibrated taking topographical effects into account, while the image in the right was 
calibrated using the standard smooth (flat) Earth approximation. The radar illumination is 
from the top. Note that the image on the left appears to have much less variation in 
brightness that can be attributed to the topography. 

These images strikingly show the differences between calibrations that take the 
topography into account and calibrations assuming a flat reference plane. It is 
clear that extra care must be taken when attempting to derive quantitative 
information from SAR data acquired in areas with significant relief, especially 
with airborne systems, if the calibration does not take the topographical effects 
into account. 

4.5 Faraday Rotation 
Radar signals transmitted from most orbiting spacecraft have to propagate 
through the ionosphere before on their way to the surface of the earth and again 
after being scattered by the surface. Linearly polarized electromagnetic waves 
suffer a rotation of the polarization, known as Faraday rotation, when 
propagating through a plasma like the ionosphere. This rotation, of course, 
could introduce significant errors into the measured scattering matrix if not 
removed properly during calibration.  

The amount of rotation that an electromagnetic wave polarization suffers as a 
result of Faraday rotation is proportional to the total electron content (TEC) of 
the ionosphere [15]. Therefore, this effect varies with solar activity, reaching its 
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maximum during solar maximum. The amount of rotation is also inversely 
proportional to the square of the frequency, which means that low frequency 
radars will be affected more than higher frequencies. At solar maximum,  
L-band radars could see as much as 40 deg of rotation [16], while a P-band 
radar could see as much as 321 deg of rotation. For C-band and higher 
frequencies, the rotation is generally negligible. It should be pointed out that 
these numbers are the maximum expected. Rignot [17], for example, estimated 
that a Faraday rotation of approximately 30 deg would explain some anomalous 
scattering observed with HH polarization using the Japanese JERS-1 SAR 
system. In a different study, Wright et al. [18] argue that the upper limit on the 
Faraday rotation at L-band is on the order of 30 deg. 

The major effect of Faraday rotation, since it involves a rotation of a linear 
polarization, is to create an artificial correlation between the co- and cross-
polarized elements of the scattering matrix. As discussed previously in  
Section 4.2, polarimetric cross-talk removal algorithms use the fact that for 
terrain with reflection symmetry there should be no correlation between these 
terms. Any inferred correlation is then estimated as cross-talk in the antennas 
and removed. In the presence of Faraday rotation, this additional artificial 
correlation would lead to large errors in the estimation of the cross-talk. Recent 
experience with spaceborne SAR systems, however, shows that antennas can be 
implemented with adequate cross-talk performance, so that the effect of the 
antenna cross-talk is generally negligible. In that case, the perceived correlation 
between co- and cross-polarized terms in the scattering matrix can be attributed 
to Faraday rotation only. 

The problem of estimating Faraday rotation directly from polarimetric data has 
received considerable attention recently [16, 18, 19, 20, 21]. In the presence of 
Faraday rotation, the radar system model given in Eq. (4.1-9) needs to be 
modified in the following way 

( )[ ][ ][ ] [ ][ ][ ]hh hv hh hv
x c c x

vh vv hv vvmeasured actual

S S S S
K

S S S S
γ Ω Ω

   
=   

   
R R F F R T  

  (4.5-1) 

Where 

 [ ] cos sin
sin cosΩ
Ω Ω 

=  − Ω Ω 
F  (4.5-2) 

represents the one-way Faraday rotation through the ionosphere given by an 
angle Ω . In writing Eq. (4.5-1), we have neglected the effects of thermal noise 
in the system, which will be additive. Freeman [16] shows various ways to 
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estimate the amount of Faraday rotation. If we can assume that the radar system 
is well calibrated, except for the Faraday rotation, we can write the measured 
scattering matrix as [19, 21] as  

 
cos sin cos sin
sin cos sin cos

hh hv hh hv

hv vv hv vv

M M S S
M M S S

Ω Ω Ω Ω      
=      − Ω Ω − Ω Ω      

 (4.5-3) 

Here we assumed that reciprocity holds for the scattering matrix. Bickel and 
Bates [22] actually proposed an estimator of the Faraday rotation angle derived 
from expressing the measured scattering matrix in a circular polarization basis:  

 ( )*
12 21

1ˆ arg
4

Z ZΩ =  (4.5-4) 

In this expression, 12   ( )  ( )hv vh hh vvZ M M j M M= − + +  and 

21 12   2( )vh hvZ Z M M= + − . Expanding Eq. (4.5-3), we find 
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Note that when Faraday rotation is present, hv vhM M≠ , even if the scattering 
matrix satisfies reciprocity. From this expression, we find  
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Using these relations, Freeman [16] showed that one can estimate the Faraday 
rotation angle via  

 11ˆ tan
2

vh hv

hh vv

M M
M M

−  −
Ω =  

+ 
 (4.5-7) 

While this estimator appears straightforward to implement, Freeman [16] points 
out that if applied on a single pixel basis, this estimator could result in large 
errors. Instead, he proposes to use an averaged estimator given by  
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Freeman [16] reports that in the presence of residual calibration errors, the 
estimator given in Eq. (4.5-4) performs better than the one in Eq. (4.5-8). 

4.6 Summary 
As discussed in this chapter, polarimetric radars are significantly more 
challenging to calibrate than single-channel radars. However, the techniques 
discussed here have been tested thoroughly calibrating a wide range of airborne 
and spaceborne SAR systems. It is safe to say that these techniques have proven 
so successful that calibrated polarimetric data are now routinely available from 
all modern SAR sensors. 

The estimation and removal of Faraday rotation is a significant topic for lower 
frequency radar systems. This topic will be especially important for lower 
frequency radars (L-band and particularly P-band) proposed to study the 
Earth’s ecosystems. It seems, however, that when the techniques discussed in 
the previous section are applied to L-band data, reasonable results are obtained. 
This removes a major obstacle towards implementing future low-frequency 
radar systems. 
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