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Chapter 3 
Advanced Polarimetric Concepts 

Since the introduction of polarimetric radar data in the 1980s, many different 
analysis techniques have been investigated. Many of these are application 
specific. In this chapter we shall discuss the theoretical background for many of 
these techniques and compare the information that is provided by the different 
approaches. As we shall see, many of these techniques provide very similar 
information, with the result that the choice of analysis technique becomes more 
one of personal preference. 

3.1 Vector-Matrix Duality of Scatterer Representation 
In the previous Chapter we demonstrated that the received power can be written 
in terms of the scatterer covariance matrix, as follows: 

 [ ] [ ]* *;P = ⋅ =A C A C TT  (3.1-1) 

The superscript * denotes complex conjugation and ~ denotes the transpose 
operation. The vector T  contains the same information as the original 
scattering matrix. 

If we restrict ourselves to the backscatter direction where S Shv = vh , the usual 
forms for the antenna and scatterer vectors are 

 { }( )1 2rec tr rec tr rec tr rec tr
h h h v v h v vp p p p p p p p= +A  

and 

( )2hh hv vvS S S=T . 
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The covariance matrix as defined in this expression is a positive semi-definite 
Hermetian matrix. This means that all the eigenvalues are real and that the 
eigenvectors are orthogonal. To prove that the eigenvalues have to be non-
negative, recall that we can diagonalize the covariance matrix using a unitary 
transformation, as follows 

 [ ] [ ] [ ][ ]1−=Λ U C U . (3.1-2) 

In this equation, [Λ]  is a 3 × 3 diagonal matrix containing the non-negative 
real eigenvalues of the covariance matrix and [U]  is a 3 × 3 complex matrix 
with columns equal to the normalized eigenvectors of the covariance matrix. 
Because the covariance matrix is Hermitian, however, the matrix [U]  also 
satisfies 

 [ ] [ ] [ ] [ ] [ ]† † 1−= ⇒ =U U I U U , (3.1-3) 

where the †  sign denotes the adjoint (complex conjugate transpose) of the 
matrix. The normalized eigenvectors (or their complex conjugates) form an 
orthonormal basis; we can, therefore, write any antenna vector as a linear 
combination of these vectors. Specifically, 

 [ ]** * *
1 1 2 2 3 3ˆ ˆ ˆb b b= + + =A e e e U B . (3.1-4) 

Using Eq. (3.1-4) in Eq. (3.1-1), we find the following expression for the power 

    [ ] [ ][ ] [ ] [ ][ ]* 1 22 2* *
1 1 2 2 3 3 0P b b bλ λ λ−= ⋅ = ⋅ = + + ≥U B C U B B U C U B . (3.1-5) 

The received power must be non-negative for all antenna vectors, which means 
that all the eigenvalues must be non-negative. 

In the case where the covariance matrix represents a single scatterer (that is, it 
was calculated from a scattering matrix, as shown in Eq. (3.1-1)), it is easy to 
show that the eigenvalues are 

 * * *
1 2 32 , 0hh hh vv vv hv hvS S S S S Sλ λ λ= + + = = . (3.1-6) 

In this case, two of the three eigenvalues are zero. This, in fact, is the test of 
whether one could calculate an equivalent scattering matrix from any given 
covariance matrix. 

The covariance matrix characterization is particularly useful when analyzing 
multi-look radar images, since the covariance matrix of a multi-look pixel is 
simply the average covariance matrix of all the individual measurements 
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contained in the multi-look pixel. Recall that multi-looking is performed by 
averaging the power from adjacent pixels together in order to reduce speckle. 
This averaging process can be written as 

 [ ] [ ]* *

1 1 1 1

1 1M N M N
ij ij

j i j i
P P C

MN MN= = = =
= = ⋅ = ⋅∑∑ ∑∑A A A C A , (3.1-7) 

where the two subscripts denote averaging in the range and azimuth directions, 
respectively. The angular brackets denote this spatial averaging. In general, 
this average covariance matrix will have more than one non-zero eigenvalue. 
All eigenvalues must, however, still be non-negative. 

Cloude (1992) [1] was the first to use the orthonormality of the eigenvectors of 
the covariance matrix (in the context of radar polarimetry) to propose the 
decomposition of the covariance matrix in terms of its eigenvalues and 
eigenvectors. Specifically: 

 [ ]
3

†

1
ˆ ˆi i i

i
C λ

=
=∑ e e . (3.1-8) 

The decomposition proposed by Cloude [1], as shown in Eq. (3.1-8), is unique. 
That is, since the eigenvectors of the covariance matrix are orthogonal, they 
form a natural basis in which to express the scattering. In some sense, this 
breaks the covariance matrix into orthogonal components, as one would 
normally do for a vector. However, as a vector can be expressed in many 
different coordinate systems, so too can a covariance matrix. For example, we 
could also choose to write the average covariance matrix in the following form 

 [ ]
3

†

1
ˆ ˆi i i

i
C w

=
=∑ p p , (3.1-9) 

where the vectors p̂i  form an orthonormal set. An example of such a set is the 
vectors representing the Pauli spin matrices:  

 1 2 3

1 1 0
1 1ˆ ˆ ˆ0 ; 0 ; 1
2 21 1 0

     
     = = =     
     −     

p p p . (3.1-10) 

Note that any set of orthonormal vectors can be used when decomposing the 
averaged covariance matrix. Just as in the vector case, the choice of coordinate 
system depends on the application. In the case of the covariance matrix, this 
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choice is often dictated by the fact that we are trying to interpret the total 
scattering in terms of known models or scattering mechanisms. For example, 
the three Pauli vectors represent scattering from a metallic trihedral corner 
reflector, a metallic dihedral corner reflector, and a metallic dihedral corner 
reflector rotated by 45 degrees (deg) about the line of sight, respectively, as 
discussed in Chapter 2. 

The Cloude eigenvector decomposition is a special case of the general 
decomposition. While it is mathematically unique, its interpretation is not 
necessarily straightforward. The reason for this is that there is no guarantee that 
the eigenvectors will represent any known physical scattering mechanism 
directly. An additional complication comes from the fact that if this 
decomposition is done on every pixel in a multi-looked image, the eigenvectors 
that form the coordinate system for this decomposition might be different from 
pixel to pixel. This means that the coordinate system generally varies from 
pixel-to-pixel unless all the covariance matrices have identical eigenvectors. 
Therefore, the value of any eigenvalue might vary from pixel to pixel, and it is 
not easy to tell if the variation is due to the strength of the scattering or to the 
fact that the eigenvectors are different. One common way to reduce this 
problem is to express the scattering vector in the Pauli basis and then calculate 
the equivalent covariance matrix and perform the decomposition in this basis. 
This does not, however, actually overcome the fundamental issue of the 
coordinate system varying from pixel to pixel; instead, this approach facilitates 
interpreting the eigenvectors in terms of Pauli vectors. 

Many authors have proposed so-called target decomposition schemes in which 
a covariance matrix is decomposed into separate matrices on the basis of simple 
models. In those cases, care must be taken to ensure that the individual matrices 
that are used in the decomposition all satisfy the condition that their individual 
eigenvalues must be non-negative. We shall discuss this further in a later 
section. 

Whether one thinks of a scatterer in terms of a covariance matrix or a set of 
scattering vectors is a matter of personal choice. In the rest of this chapter we 
shall explore various interpretations of the average scattering based on different 
applications. Before doing so, we shall discuss a number of polarimetric 
parameters that are often encountered in the literature. 

3.2 Eigenvalue and Eigenvector-Based Polarimetric 
Parameters 

Cloude (1992) [1] and, later, Cloude and Pottier (1995) [2] introduced a number 
of polarimetric parameters that are derived from the eigenvalues and 
eigenvectors that are commonly used today. In this section, we shall discuss 
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these parameters, as well as others that are commonly encountered in the 
literature. 

3.2.1 Parameters Used to Describe Randomness in Scattering 
One such parameter, intended to measure target randomness, is the entropy, 
which defined as 

 
3

3
1 2 31

log ; i
T i i i

i
H P P P λ

λ λ λ=
= − =

+ +∑ . (3.2-1) 

As pointed out by Cloude [1], the target entropy is a measure of target disorder, 
with 1TH =  for random targets with three equal eigenvalues and 0TH =  for 
simple (single, non-random) targets. 

Recall from the discussion of polarization responses in Chapter 2 that the 
amount of variation (that is, randomness) in the scattering properties manifests 
itself in the form of a “pedestal” in the polarization response. While we 
normally refer to the pedestal height in the context of the co-polarized response, 
Durden et al. (1990) [3] showed that measuring the pedestal height is 
equivalent to measuring the ratio of the minimum eigenvalue to the maximum 
eigenvalue; that is 

 1 2 3

1 2 3

min( , , )
max( , , )

Pedestal Height λ λ λ
λ λ λ

= . (3.2-2) 

In reality, this ratio over-estimates the total variation in the observed radar 
cross-section as a function of polarization. The reason for this is that in order 
for this minimum and maximum to be realized, both eigenvectors 
corresponding to those eigenvalues must be valid antenna vectors (see 
(Eq. 3.1-5)). This is not necessarily the case, possibly resulting in a smaller 
ratio. Nevertheless, this definition of the pedestal height is a useful measure of 
the randomness of the scattering process. 

Using the model of randomly oriented thin cylinders (we will discuss this in 
more detail later), Kim and van Zyl (2001) [4] introduced the so-called radar 
thin vegetation index (RVI): 

 
( )1 2 3

1 2 3

4min , , 8
2

hv

hh vv hv
RVI

λ λ λ σ
λ λ λ σ σ σ

= =
+ + + +

. (3.2-3) 

(The equation of the right is true for media with reflection symmetry.) This 
parameter, which is also a measure of the randomness in the scattering, 
generally varies between 0 and 1. This ratio decreases as the cylinders become 
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thick compared the radar wavelength. In the limiting case where the cylinders 
are very thick compared to the radar wavelength, this ratio approaches zero. 
The factor 4 in Eq. (3.2-3) is arbitrary: it was chosen so that the RVI for a cloud 
of randomly oriented thin cylinders would be equal to 1. 

To illustrate the similarity between these parameters with real image data, we 
shall first consider the image of San Francisco we discussed in Chapter 2. From 
the signatures shown in Fig. 2-22, we expect little randomness for the ocean 
scattering, and significant randomness for the vegetation scattering in the 
Golden Gate Park area. The urban area should show intermediate randomness. 
Figure 3-1 shows the comparison of the three measures of randomness 
introduced above. What is immediately obvious is that these three images 
convey the same basic information. The only real difference is the scaling from 
the bare ocean surface to the vegetated areas. The entropy image shows a more 
compressed scale with less variation in color than the other two. The pedestal 
height image based on the ratio of the eigenvalues shows the largest dynamic 
range. Overall, however, there is little reason to prefer one display over the 
other. 

Note how both the entropy and the thin vegetation index show an increase in 
randomness in the ocean from left to right in the image. Recall that the radar 
illumination is from the left and that the angle of incidence increases from left 
to right. The observed increase in randomness in the ocean is due to the 
decrease in signal-to-noise ratio as the angle of incidence increases. Also, note 
that not all urban areas show the same amount of randomness. This can be 

   (Entropy)              (Pedestal Height)            (RVI) 

 
Fig. 3-1. L-band randomness images of San Francisco acquired with the NASA/JPL AIRSAR 
system. The Golden Gate Bridge is visible in the top center of the image linking the Presidio 
of San Francisco to the Golden Gate National Recreational Area north of the entrance to San 
Francisco Bay. Golden Gate Park is the rectangular feature in the lower half of the image in 
the left portion of the city. The image on the left shows the entropy scaled from 0 to 1. The 
middle image shows the pedestal height scaled from 0 to 0.5. The image on the right shows 
the RVI scaled from 0 to 1.   
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explained by the orientation of the buildings relative to the radar look direction. 
If a building is oriented such that it presents a large face to the radar, in general, 
the dominant scattering mechanism is a double reflection off the street onto the 
face of the building and back to the radar. This is the case above and below 
Golden Gate Park in the image. If the building is turned slightly, however, such 
that the front face of the building no longer is orthogonal to the direction in 
which the radar waves propagate, this double reflection signal no longer travels 
back to the radar. The result is that other direct reflections from the street and, 
possibly, the roofs of the buildings begin to dominate, and the signals appear 
more random. This effect is visible in the middle right portion of the image. 

As a second example, we consider an image of a portion of the Black Forest in 
Germany acquired with the NASA/JPL AIRSAR system during the summer of 
1991. The L-band image is shown for reference in Fig. 3-2. The bright feature 
in the left portion of the image is the town of Vilingen. The brighter right-hand 
portion of the image is a mixed forest consisting of spruce (Picea abies), pine 
(Pinus sylvestris), and fir (Abies alba) trees. The dry weight biomass ranges up 
to 50 kilograms per square meter (kg/m2). The darker areas in the upper portion 

 
Fig. 3-2. L-band total power image of a portion of the Black Forest in Germany acquired 

with the NASA/JPL AIRSAR system in the summer of 1991. 
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and to the left in the image are mostly agricultural fields with varying amounts 
of biomass, depending on the crop type and maturity of the plants. 

Figure 3-3 shows the three parameters calculated from the L-band data. In all 
cases, the forested areas show significant randomness, and the urban areas 
show little randomness. The agricultural areas show variations consistent with 
the amount of vegetation present on a field scale. 

Figure 3-4 compares the radar vegetation index for the three frequencies (C-
band, L-band, and P-band) that the AIRSAR system uses to acquire images. 
The C-band images shows much more detail in the agricultural areas because 
the shorter wavelength is more sensitive to the smaller biomass in these fields. 
The P-band image, on the other hand, shows a large variation in the forested 
area. This is due to the increased penetration through the canopy at the longer 
wavelength with a resulting increase in double reflections from the ground to 
the trunks of the trees and back to the radar. The variation in RVI is due to the 
effect that the underlying topography has on the resulting mixture of scattering 
mechanisms, as discussed by van Zyl (1993) [5]. 

3.2.2 Alpha Angle 
Cloude and Pottier (1996) [6] proposed the following description for the 
eigenvectors of the covariance matrix: 

 ( )cos sin cos sin sini ie eδ γα α β α β=e  (3.2-4) 

 (Entropy) (Pedestal Height) (RVI) 

 
Fig. 3-3. L-band randomness images of the area shown in Fig. 3-2. Forested areas show the 

highest amount of randomness. 
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. (3.2-7) 

 (C-Band) (L-Band) (P-Band 

 
Fig. 3-4. Radar vegetation index images of the area shown in Fig. 3-2 for different 

frequencies. See the text for a discussion of the images. 

in a basis formed by the Pauli matrices. The average angles are then calculated 
using 

 
3

1
i i

i
Pα α

=
=∑ , (3.2-5) 

where Pi  is defined in Eq. (3.2-1). The α  angle in particular has received 
significant attention, and, together with the entropy, has been proposed as a 
way to perform an unsupervised classification of polarimetric SAR images. To 
investigate the meaning of these angles a bit further, consider that the 
normalized eigenvector (expressed in Pauli basis) can be written as follows 

 
( )

( ) ( )( )2
2 2

i
i i

hh vv hh vv hv
hh vv hv

e S S S S e S e
q q q

ϕ
δ γ− −= + −

+ +
e , (3.2-6) 

where q *
xy = SxySxy  and the phase angle ϕ  represents the phase of S Shh + vv . 

A comparison of Eq. (3.2-6) and Eq. (3.2-4) now shows that the angle δ  is the 
relative phase between S Shh − vv  and S Shh + vv . Similarly, the angle γ  is the 
relative phase between Shv  and S Shh + vv . Next, notice that 

 
2 2 2

tan
1 1

hv hv vv x

hh vv hh vv co

S S S R
S S S S R

β = = =
− − −
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The angle β  is, therefore, a function of the ratio of the cross-polarized term to 
the co-polarized VV term in the scattering matrix, as well as the ratio of the two 
co-polarized terms. The angle α  can similarly be written as 

 
2 21 4

tan
1
co x

co

R R
R

α
− +

=
+

. (3.2-8) 

At this point, it is useful to compare these parameters for a few canonical cases. 
These are summarized in Table 3-1. 

The results in Table 3-1 show that the angle α  varies from zero deg for 
trihedral scattering to π 2  for dihedral scattering. Dipole scattering represents 
an intermediate case where α =π 4.  Note that this value of α  for dipole 
scattering does not depend on the physical orientation of the dipole. The angle 
β  is near zero for all cases where the cross-polarized return is small compared 
to the co-polarized returns. For the case of a single dipole, the β  angle is 
related to the physical orientation of the dipole. 

Also note that when the cross-polarized term is small compared to the co-
polarized ones, the angle α  is basically dependent on the co-polarized ratio. 
For example, in the case of a bare slightly rough surface, this ratio is a function 

Table 3-1. Comparison of α  and β  angles for canonical scatterers. 
Scatterer Matrix Elements coR  xR  α  β  

Vertical 
Dipole 0; 0,vv hh hvS S S≠ = =  0 0 4π  0 

Horizontal 
Dipole 0; 0,hh vv hvS S S≠ = =  ∞  0 4π  0 

Trihedral 1, 0hh vv hvS S S= = =  1 0 0 0 

Dihedral 1, 0hh vv hvS S S= − = =  -1 0 2π  0 
Dipole 
oriented at 
angle ψ  
w.r.t. 
horizontal 
direction 

2coshhS ψ=  
2sinvvS ψ=  

sin coshvS ψ ψ=  

2tan ψ  tanψ  4π  2ψ  

Slightly 
Rough 
Surface 

; 1vv hh xS S R≥ 
 0 1coR≤ ≤  1xR 

 1 1
tan

1
co

co

R
R

−  −
≈   + 

 0≈  

Dielectric 
Double 
Bounce 

; 1vv hh xS S R≤ 
 0 1coR≥ ≥ −  1xR 

 1 1
tan

1
co

co

R
R

−  −
≈   + 

 0≈  
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of the surface dielectric constant. Therefore, for such a surface, α  would be a 
function of the dielectric constant. For wet surfaces at high incidence angles, 
dipole scattering. Figure 3-5 shows the alpha angle for different dielectric 
constants and different incidence angles. Note that as the surface dielectric 
constant increases, the alpha angle increases as discussed above. Also, because 
of the change in the co-polarized ratio, as the angle of incidence increases, so 
does the alpha angle. 

In the case of double reflections from dielectric surfaces, the co-polarized ratio 
will approach infinity at the Brewster angle. For that case, the angle α  will also 
approach π/4. Figure 3-6 illustrates this point further. The figure illustrates an 
example where we calculated the alpha angle for a dielectric dihedral reflection 
assuming that both surfaces have the same dielectric constant. When the 
dielectric constant becomes very large, the alpha angle approaches π/2, which is 
the expected value for a metallic dihedral. For low dielectric constants, 
however, the alpha angle is closer to 45 deg. Note that for some dielectric 
constants and angle-of-incidence ranges the alpha angle can actually be less 
than π/4. This will mostly happen for low dielectric constant values at larger 
angles of incidence. These examples illustrate that care must be exercised when 
interpreting the values of α . 

 
Fig. 3-5. Alpha angle as a function of dielectric constant for a slightly rough dielectric 
surface for three different incidence angles. Note that as the incidence angle and the 
dielectric constant increases, the alpha angle also increases. At very large dielectric 
constants and incidence angles, the alpha angle will approach 45 deg.  
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To illustrate the meaning of the alpha angle in image data, Fig. 3.7 shows the L-
band alpha angle image for San Francisco. The alpha angle for the ocean is 
mostly less than 45 deg, consistent with the expectation for a slightly rough 
surface. Note the increase in the alpha angle with increasing angle of incidence 
(the angle of incidence increases from left to right across the image) in the 
ocean, consistent with the predictions shown in Fig. 3-5. The vegetated areas all 
show alpha angles near 45 deg, consistent with dipole scattering. The urban 
areas consistently show alpha angles larger than 45 deg, consistent with the 
expectations for a double-reflection signal from a non-metallic surface. 

Figure 3-8 shows the alpha angles at different frequencies for the Black Forest 
image. As in the case of San Francisco, the urban areas consistently show alpha 
angles larger than 45 deg. We also see the effect of frequency very clearly in 
the agricultural areas. At C-band, the alpha angle is mostly near 45 deg, while 
at L- and P-band, the values are closer to zero, indicating bare (or nearly bare) 
surfaces. The forested areas at L- and P-band show alpha angles either near 45 
deg (especially at L-Band) or larger than 45 deg where there is an appreciable 
amount of double reflection signal. The C-band image, interestingly, shows the 
alpha angle in the forested areas to be less than 45 deg and generally less than 
the values observed in the agricultural areas where there is vegetation. The  
 

Fig. 3-6. Alpha angle as a function of angle of incidence for a double reflection from two 
dielectric surfaces with the same dielectric constant (epsilon). At angles of incidence equal 
to the Brewster angle of the dielectric surfaces, the alpha angle will be 45 deg.  
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explanation for this lies in the size of the branches relative to the radar 
wavelength. When we used the term “dipole” before, we could have substituted 
“cylinder that is thin compared to the radar wavelength.” Let us consider such a 
cylinder that is oriented vertically. In the thin cylinder limit, we will observe 
the scattering shown in Table 3-1. As the cylinder becomes thicker compared to 
the radar wavelength, we observe an increase in the HH term relative to the VV 
term. In fact, in the thick cylinder limit, the HH term will approach the VV 
term. As the cylinder radius increase relative to the radar wavelength, therefore, 
the co-polarized ratio will increase from zero to 1 in the limit of a thick 
cylinder. Equation (3.2-8) predicts that this will cause the alpha angle to 
decrease from the 45-deg range as the cylinders increase in thickness relative to 

Fig. 3-7. Alpha angle for the San Francisco image. See the text for discussion.  
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Fig. 3-8. Multi-frequency alpha angle for the Black Forest image. See the text for discussion. 

the radar wavelength. In these images, the cylinders are of fixed size, but the  
radar wavelength changes. At C-band, the radius of a given cylinder will be 
larger relative to the radar wavelength than at L-band. We would, therefore, 
expect to see a lower alpha angle at C-band than at L-band. 

3.3 Decomposition of Polarimetric Scattering 
Earlier in this chapter we discussed the duality between representing a scatterer 
by its scattering matrix or by an equivalent vector containing the elements of 
the scattering matrix. In this section, we shall explore this concept in greater 
detail. 

First, let us consider the case of a single scatterer that can be represented by its 
scattering matrix. We shall further restrict our discussion to the backscatter case 
where reciprocity is assumed to hold. If we assume that the scattering matrix 
was measured in the linear basis, we can write 

 
1 0 0 1 0 0
0 0 1 0 0 1

hh hv
hh hv vv

hv vv

S S
S S S

S S
       

= + +       
      

 (3.3-1) 

or, in the equivalent vector form, 

 
1 0 0
0 1 0
0 0 1

hh

hv hh hv vv

vv

S
S S S S
S

       
       = + +       

      
      

. (3.3-2) 

In writing the scattering matrix in vector form, we used an orthogonal basis to 
express the elements of the scattering vector. It should be immediately obvious 
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that there are an infinite number of such orthogonal bases that one could choose 
to represent the scattering vector. Any combination of the form 

 1 2 3a a a= + +1 2 3S p p p  (3.3-3) 

would be permissible as long as 

 
0 if
1 ifi j

i j
i j
≠

⋅ =  =
p p . (3.3-4) 

The logical question is then: Is any basis (other than the one used to make the 
measurement to begin with) that should be considered for such decomposition? 
The answer depends on the specific application, but the basis derived from the 
Pauli spin matrices has a nice intuitive interpretation. This basis is shown in 
Eq. (3.1-10) in vector form. In matrix form, the basis is 

 
1 0 1 0 0 1
0 1 0 1 1 02 2

hh hv

hv vv

S S a b c
S S

       
= + +       −      

. (3.3-5) 

This decomposition was also used by Krogager (1993) [7] in his thesis. The 
first two terms involve only the co-polarized elements of the scattering matrix 
and can be interpreted as scattering by an odd number of reflections from a 
metallic structure and an even number of reflections from a metallic structure, 
respectively. The first matrix represents, therefore, scattering from a flat plate, a 
sphere, or a metallic trihedral corner reflector. The second matrix represent 
scattering from a metallic dihedral corner reflector. 

The third matrix can be interpreted in different ways. Since it only involves the 
cross-polarized component of the scattering matrix, it is usually interpreted as 
indicating the amount of random scattering. While this interpretation certainly 
has some merit in the practical sense that scattering from vegetated areas 
usually shows a large amount of cross-polarized return, it is not strictly correct 
from a theoretical point of view. The third matrix, as was pointed out in 
Chapter 2, is also the scattering matrix of a dihedral corner reflector rotated by 
45 deg about the line of sight. The resulting scattered energy is fully polarized, 
but the polarization vector has been rotated. Admittedly, this is a special case. 
In most practical applications, a large cross-polarized component is also 
typically associated with significant depolarization of the scattered energy. 

To illustrate the usefulness of this approach for interpreting scattering, we 
display a color image of San Francisco in Fig. 3-9 in which we assigned the 
blue color as the magnitude of a in Eq. (3.3-5), the red color as the magnitude 
of b, and the green color as the magnitude of c. This image shows that the urban 
area shows a large fraction of the scattering in the red color, which corresponds 
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to the dihedral component. On the other hand, the ocean shows much more blue 
on the left, consistent with the single scattering mechanism. The vegetated 
areas, on the other hand, show significant cross-polarized return. Note the 
interesting change in color in the ocean from the left to the right in the image, 
where there is significantly more red visible in the ocean. The explanation for 
this lies in the fact that for a dielectric surface like the ocean, the co-
polarization ratio is a function of both the dielectric constant and the angle of 
incidence. Figure 3-10 shows the expected co-polarization ratio for a surface 
with a dielectric constant of 81. The figure also shows the co-polarized ratio to 
be less than 1, especially at the larger angles of incidence. The Pauli basis, 
however, forces the HH and VV terms to be equal. Therefore, if the co-
polarized ratio is less than 1, a dihedral component is needed to explain the 
difference between the HH and VV terms. 

 
Fig. 3-9. Color overlay of San Francisco displaying S Shh + vv  in blue, S Shh − vv  in red, 

and Shv  in green. These three colors are the magnitudes of the scattering matrix elements 
when they are expressed in the Pauli basis. 
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The smaller the co-polarization ratio, the stronger the dihedral component 
required to explain the difference. This is shown as the dashed curve in 
Fig. 3-10. 

It is important to appreciate that the first-order small perturbation model only 
includes single scattering terms. The fact that the ocean scattering is interpreted 
to have a significant amount of double reflections occurs only because of the 
basis under which we have chosen to interpret the scattering. This basis forces 
the HH and VV components to be the same for the “single scattering” term, 
leading to this interpretation. This is a fundamental issue with many of the 
target decomposition schemes proposed in the literature. All of these schemes 
try to interpret scattering based on an assumption of an underlying basis. If the 
scattering fits the basis, the interpretation is obviously appropriate. If the basis 
is not consistent with the actual scattering, however, the interpretation should 
be modified to take this fact into account. Nevertheless, the Pauli basis provides 
a good general purpose framework for interpreting polarimetric radar images 
(as the San Francisco example shows). 

Figure 3-11 shows the three-frequency Pauli decompositions for the Black 
Forest image. These images show a consistent interpretation of the scattering 
from what we discussed before. The scattering from the randomly oriented 

 
Fig. 3-10. Expected co-polarization ratio and the ratio of double reflection scattering to 
single reflection scattering as a function of the angle of incidence for a surface with a 
dielectric constant of 81. The values were calculated using the first-order small 
perturbation model and assuming the Pauli basis to calculate double and single reflection 
components.  
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vegetation is relatively strong in the cross-polarized return. The urban areas, on 
the other hand, are dominated by dihedral-type reflections at all wavelengths. 
The increased amount of penetration at P-band shows, relatively speaking, a 
stronger double reflection signal in much of the forest. The C-band signals 
interact more with the shorter agricultural crops than the longer wavelengths, 
resulting in increased cross-polarized returns in those areas. 

The discussion so far was concerned with the decomposition of the scattering 
matrix, or its associated vector form, into orthogonal components. As pointed 
out before, there is potentially an infinite set of bases we can use for this 
decomposition. A more important question is the following: What about the 
case where we have an average covariance matrix? What is the most 
appropriate way to decompose this observed scattering into simpler parts? We 
shall discuss this in detail in the next section. 

3.3.1 Scattering Decomposition in the Incoherent Case Using 
Orthonormal Bases 

As mentioned in the beginning of this chapter, after multi-looking to reduce 
speckle, we can write the average covariance matrix as 

 [ ] [ ]
1 1

1 M N

ij
j iMN = =

= ∑∑C C , (3.3-6) 

where the two sums indicate averaging in the range and azimuth directions, 
respectively. We shall restrict our discussion to the backscatter case, where the 
individual covariance matrices are defined as 

 
Fig. 3-11. Pauli basis color overlays for the Black Forest image. The color scheme is the 
same as that in Fig. 3-9. The C-band image is on the left, the L-Band in the middle, and the 
P-Band on the right. 
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 [ ] ( )
* * *

* * * *

* * *

2

2 2 2 2 2

2

hh hh hh hv hh vvhh

hv hh hv vv hv hh hv hv hv vv

vv vv hh vv hv vv vv

S S S S S SS

S S S S S S S S S S
S S S S S S S

       = =         

C . (3.3-7) 

The covariance matrix is Hermitian. The matrix, therefore, contains, at most, 
three independent complex numbers and three real numbers, for a total of nine 
real numbers. The scattering matrix, on the other hand, contains, at most, three 
complex numbers. If we remove an absolute phase number from one of the 
elements of the scattering matrix, we would be left with one real and two 
complex numbers (a total of five real numbers). There must, therefore, be at 
least four relations between the elements of the covariance matrix of a single 
scatterer. These are 

 

* * * *
00 11 01 10

* * * *
00 22 02 20

* * * *
11 22 12 21

* * * * * *
00 11 22 01 02 12

2 2 2 0

0

2 2 2 0

2 2

hh hh hv hv hh hv hv hh

hh hh vv vv hh vv vv hh

hv hv vv vv hv vv vv hv

hh hh hv hv vv vv hh hv vv hh

C C C C S S S S S S S S

C C C C S S S S S S S S

C C C C S S S S S S S S

C C C C C C S S S S S S S S S S

− = − =

− = − =

− = − =

− = − *2 0hv vvS S =

. (3.3-8) 

Once we perform the averaging process shown in Eq. (3.3-6) during the multi-
looking process, these relations will no longer hold. Instead, the equal signs 
should be replaced with greater than or equal to signs. In fact, that is simply a 
statement of the Cauchy-Schwarz inequality applied to complex numbers. 
Therefore, in general, 

 

00 11 01 10

00 22 02 20

11 22 12 21
*

00 11 22 01 02 12

0
0

0

0

C C C C
C C C C
C C C C

C C C C C C

− ≥
− ≥
− ≥

− ≥

. (3.3-9) 

Unless equality holds in each of the four cases, we cannot find an equivalent 
scattering matrix to fully represent the scattering described by the covariance 
matrix as shown in Eq. (3.3-7). A reasonable question then is whether we can 
find a set of scattering matrices that, when transformed to their covariance 
matrices, could be added to fully describe the observed covariance matrix. To 
answer this question, consider the decomposition proposed by Cloude 
(1992) [1]: 

 [ ]
3

†

1
ˆ ˆi i i

i
λ

=
=∑C e e . (3.3-10) 
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This decomposition is unique. That is, since the eigenvectors of the covariance 
matrix are orthogonal, they form a natural basis in which to express the 
scattering. There is one potential problem with this decomposition. Since the 
decomposition is performed for each covariance matrix (that is, on a pixel-by-
pixel basis in an image), the resulting basis for the decomposition changes from 
pixel to pixel. This could make it more difficult to compare the meaning of a 
given eigenvalue in different areas without also looking at the associated 
eigenvectors that form the basis. To illustrate what we mean, consider the 
special case of the covariance matrix of terrain with reflection symmetry. In 
that case, the covariance matrix has the special form (Borgeaud et al., 1985) 
[8]: 

 [ ]
*

0
0 0

0

ξ ρ
η

ρ ζ

 
 

=  
 
 

C , (3.3-11) 

where 

 

*

*

*

*

2

hh hh

hh vv

hv hv

vv vv

S S

S S

S S

S S

ξ

ρ

η

ζ

=

=

=

=

. (3.3-12) 

The parameters ξ η, , ζ and ρ  all depend on the size, shape, and electrical 
properties of the scatterers, as well as their statistical distribution. It is easily 
shown that the eigenvalues of [C]  are 

 

( )

( )

22
1

22
2

3

1 4
2
1 4
2

λ ξ ζ ξ ζ ρ

λ ξ ζ ξ ζ ρ

λ η

 = + + − + 
 
 = + − − + 
 

=

. (3.3-13) 

All these are real numbers, as expected for a Hermitian matrix. It follows from 
inspection that the first and third eigenvalues are positive. To show that the 
second eigenvalue is also positive, note that, from the second relationship in 
Eq. (3.3-10), 
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 ( ) ( )2 22 24ξζ ρ ξ ζ ρ ξ ζ≥ ⇒ − + ≤ + . (3.3-14) 

Hence, the second eigenvalue is also positive. 

The corresponding three eigenvectors are 

 

2

1 2 2

2

2 2 2

3

2

0
4 1

2

0
4 1

0
1
0

ρ ζ ξ
ζ ξ

ζ ξ ρ

ρ ζ ξ
ζ ξ

ζ ξ ρ

  − + ∆   − + ∆   =
  − + ∆ +   
 
  − − ∆   − − ∆   =
  − − ∆ +   
 

 
 =  
 
 

k

k

k

. (3.3-15) 

In these expressions, we used the shorthand notation 

 ( ) 22 4ζ ξ ρ∆ = − + . (3.3-16) 

We note that ∆  is always positive. Also note that we can write the ratio of the 
first elements of the first two eigenvectors as 

 
2 2 2 2

11
22 2 221

4

44

k
k

ζ ξ ζ ξ ρ ζ ξ

ρζ ξ ζ ξ ρ

     − + ∆ − − ∆ +    − − ∆       = −
     − − ∆ − + ∆ +       

, (3.3-17) 

which is always negative. This means that the first two eigenvectors represent 
scattering matrices that can be interpreted in terms of odd and even numbers of 
reflections. Without looking explicitly at the eigenvectors, however, we will not 
know which eigenvalue to associate with which scattering mechanism. 

Figure 3-12 illustrates this with an example. On the left, we display the image 
of San Francisco previously discussed with the three eigenvalues as defined in 
Eq. (3.3-13) colored blue for the first eigenvalue, red for the second, and green 
for the third. Note that the third eigenvalue and eigenvector are identical to the 
third Pauli element encountered before. The ocean is dominated by a blue color, 
indicating that the scattering is dominated by whatever scattering mechanism 
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Fig. 3-12. Two color overlays for the image of San Francisco. In the image on the left, colors 
are assigned to the three eigenvalues without further examining the eigenvectors. The first 
eigenvalue is colored blue, the second red, and the third green. In the image on the right, the 
co-polarized phase of the first eigenvector is used to determine the color of the first 
eigenvalue. If the phase is more consistent with odd numbers of reflections, the eigenvalue 
is colored blue. Otherwise it is colored red. The color of the second eigenvector is 
determined using the fact that the two co-polarized phases of the first two eigenvectors are 
180 deg different. 

the first eigenvector represents. The urban areas, however, are also dominated 
by a blue color, indicating the same. Vegetated areas consistently show a green 
color, indicating that depolarization is, relatively speaking, high. On the right 
panel of Fig. 3-12, we show the same image, but this time we examined the 
eigenvectors for each pixel. If the co-polarized phase is in the range [-90°;90°], 
we assign a blue color to the eigenvalue corresponding to that eigenvector. If 
the co-polarized phase is in the range [90°;270°], we assign a red color. We 
already showed that the phase difference between the first two eigenvectors is 
180 deg; once we identified the color for the first eigenvector, therefore, the 
color for the second is automatically determined. This image on the right is 
quite different from the one on the left. In particular, the urban area in the 
image on the right is now dominated by red, indicating scattering more 
consistent with double reflections. 

Comparing the results on the right in Fig. 3-12 with those in Fig. 3-9, we note 
many similarities between the Pauli basis display and the eigenvalue display. 
The main difference is that the eigenvalue display colors appear more pure. 
Also, note that the gradient from blue to red in the ocean is not as pronounced 
in the image on the right in Fig. 3-12. The reason is that while the Pauli basis 
insists that the co-polarized terms have the same amplitude, the eigenvectors do 
not (see Eq. (3.3-15)). 
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A natural question is then: Is there a preferred basis in which to do the 
decomposition? In general, we could also choose to write the average 
covariance matrix in the following form 

 
[ ]

3
†

1

† 1 if
0 if

i i i
i

i j

w

i j
i j

=
=

=
=  ≠

∑C p p

p p

. (3.3-18) 

The Pauli and the eigenvalue bases are two special cases of this decomposition. 
The answer to this question is not obvious. It depends largely on the goal of the 
analysis. As our discussion shows, the decomposition is not the hard part; 
interpreting the results is. This desire to be able to interpret the results of such 
decomposition is what led many researchers to propose decompositions based 
on specific models, rather than orthogonal bases as discussed so far. We shall 
look at this in more detail in the next section. 

3.3.2 Model Based Scattering Decomposition in the Incoherent 
Case 

The basic idea behind model-based decompositions is to hypothesize that the 
measured covariance matrix can be modeled as the combination of a number of 
individual matrices representing scattering as predicted by models. In this 
section we shall examine a number of different model-based decomposition 
schemes in more detail. 

3.3.2.1 Freeman-Durden Three-Component Scattering Decomposition. For 
vegetated terrain, we could hypothesize that the dominant scattering 
mechanisms might be direct scattering from randomly oriented branches, plus 
double reflections from the ground/trunk combination, plus direct (although 
attenuated) scattering from the underlying ground surface. This is the basic idea 
behind the three-component scattering decomposition proposed by Freeman 
and Durden (1998) [9]. This decomposition can be written as follows 

 [ ] [ ]s ground d trunk ground v branchesf f f−   = + +   C C C C , (3.3-19) 

with 
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2

*

0
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0
0 0 0
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β β

β

α α

α
−

 
 

  =      
 
 
 

  =      
 
 
 =  
 
 

C

C

C

. (3.3-20) 

The matrix representing branch scattering assumes that the branches are thin 
compared to the radar wavelength and that the branches are uniformly 
randomly oriented. We previously discussed this case in Chapter 2. From 
Eq. (3.3-19) one can then derive the following four equations: 

 

2 2 2

2

2

*

3

3

hh s d v

vv s d v

hv v

hh vv s d v

S f f f

S f f f

S f

S S f f f

β α

β α

= + +

= + +

=

= + +

. (3.3-21) 

Freeman and Durden (1998) [9] point out that there are four equations and five 
unknowns. They then make the following crucial suggestion: since neither the 
ground reflection nor the double reflection terms add to the predicted cross-
polarized return, they can use the measured cross-polarized return to solve for 
the parameter fv . They continue to suggest that the volume contribution can 
then be subtracted from the measured matrix before solving for the other terms. 
In other words, we can write Eq. (3.3-19) as 

 
[ ]

2 2

2

2 2

3 0

0 2 0

0 3

hv hv

hv s ground d trunk ground

hv hv

S S

S f f

S S

−

 
 
 
     − = +    
 
 
 

C C C
. (3.3-22) 
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Once the subtraction has been done, there are three remaining equations in four 
unknowns, as follows: 

 

2 2 2

2

*

hh s d

vv s d

hh vv s d

S f f

S f f

S S f f

β α

β α

′
= +

′
= +

′
= +

. (3.3-23) 

The primes on the left serve to remind us that these are the quantities after the 
volume-scattering contribution have been subtracted. The phase of the 
remaining co-polarized component is then used to fix either α  or β . The 
argument is that if the residual co-polarized phase is closer to zero than to π , 
surface scattering dominates and we should solve for β  explicitly. Therefore, 
we set α = −1  (indicating a double reflection) and solve for the remaining 
parameters. On the other hand, if the residual co-polarized phase is closer to π  
than to zero, double reflection scattering dominates and we should solve for α  
explicitly. In this case, we set β =1  (indicating a single reflection) and solve 
for the remaining parameters. 

Figure 3-13 shows a color overlay image of the three contributions calculated 
using the Freeman and Durden (1998) [9] model for the image of the Black 
Forest at L-band. The image on the left shows the relative strength of the three 
scattering mechanisms in the color code indicated. Overall, the image clearly 
shows volume scattering to dominate in the vegetated areas, double reflections 
to dominate in the urban areas, and some of the agricultural areas to show 
surface scattering. At this qualitative level, the results appear consistent with 
our expectations. The image is also similar to the Pauli basis image shown in 
the middle of Fig. 3-11.  

However, a deeper examination shows a significant flaw in this decomposition. 
The image on the right shows the results of an analysis of the eigenvalues of the 
matrix on the left in Eq. (3.3-22) after we subtracted the vegetation contribution 
from the original data. If any of the eigenvalues are negative, we blanked out 
the pixel in the image on the right in Fig. 3-13. This surprising result shows that 
the majority of the pixels in the vegetated area end up with negative 
eigenvalues after we subtracted the scattering from the vegetation, as suggested 
by Freeman and Durden (1998) [9]. However, this is exactly where we expect 
the scattering model for scattering from the vegetation to be most applicable! 
We shall show later that this surprising result is the consequence of assigning 
all the cross-polarized return to the vegetation scattering. 
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. (3.3-25) 

 
Fig. 3-13. Two color overlays displaying the results of the Freeman and Durden 
decomposition applied to the L-band image of the Black Forest. The image on the left 
displays the surface contribution in blue, the double reflection contribution in red, and the 
vegetation contribution in green. The image on the right shows only those pixels with non-
negative eigenvalues once the vegetation contribution has been subtracted. See the text for 
more discussion. 

3.3.2.2 Four-Component Model Proposed by Yamaguchi et al. The three-
component model described above assumes that the terrain has reflection 
symmetry by ignoring the terms in the covariance matrix that involves products 
of co-polarized and cross-polarized terms. While this assumption seems to be 
valid for most types of terrain in the sense that these components of the 
covariance matrix are much smaller than the others, one cannot always assume 
that reflection symmetry will hold. Yamaguchi et al. (2005) [10] recognized 
this fact and proposed an extension of the three-component model to include a 
term that would account for the non-zero products of co-polarized and cross-
polarized terms. Their decomposition is written as 

 [ ] [ ] [ ]s ground d trunk ground v branches c helixf f f f−   = + + +   C C C C C , (3.3-24) 

with the matrix representing the helix scattering taking one of the following two 
forms: 

 [ ] [ ]
1 2 1 1 2 1

1 12 2 2 ; 2 2 2
4 4

1 2 1 1 2 1
r helix l helix

j j

j j j j

j j
− −

   − − −
   

= − = −   
      − − −   

C C
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*Note that these two matrices both predict the cross products S Shh hv  and 

S *
hvSvv  to be purely imaginary numbers. This might not be the case in 

observed data. To get around this, Yamaguchi et al. (2005) [10] recommend 
using only the imaginary portion of the observed cross-products in the 
decomposition. Furthermore, the model matrices predict that 

S * *
hhShv = S Shv vv . Again, this might not be exactly what is observed. 

Therefore, they recommend using 

 { }* *1 Im
4 2
c

hh hv hv vv
f S S S S= +  . (3.3-26) 

Finally, to decide which matrix in Eq. (3.3-25) to use, they propose 
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* *
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Im 0 use 
if

Im 0 use 
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S S S S

S S S S

−

−

 + > ⇒

 + < ⇒


C

C
. (3.3-27) 

Assuming a uniformly oriented canopy, and writing out the covariance matrices 
in Eq. (3.3-24), we find the following five equations with six unknowns: 
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*
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3 1
8 4
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8 4

3 1
8 4
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8 4
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c
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S f f f f

S S f f f f

fS S S S

β α

β α
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= + + −

+ =

. (3.3-28) 

The unknown quantities are α β, , f fs d, , fv  and fc .  To solve for these 
unknowns, note that the last expression allows us to find fc  as follows 

 { }* *2 Imc hh hv hv vvf S S S S= + . (3.3-29) 

We can then use the second equation in Eq. (3.3-28) to find vf , as follows: 
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 28
4
c

v hv
ff S = − 

 
. (3.3-30) 

Once these two unknowns are determined, the contributions of the helix 
scattering and the volume scattering can be subtracted from the observed 
covariance matrix. Solving for the remaining unknowns then follows the same 
procedure as outlined by Freeman and Durden (1998) [9] as discussed in the 
previous section. Specifically, 

   
[ ]

1 2 13 0 1
0 2 0 2 2 2

8 4
1 0 3 1 2 1

v c
s ground d trunk ground

j
f ff f j j

j
−

 ± −       + = − − ±          −   

C C C 



. (3.3-31) 

Yamaguchi et al. (2005) [10] went one step further than the Freeman and 
Durden (1998) [9] decomposition in that they recognized that not all vegetated 
terrains are well represented by a uniformly oriented canopy. In some cases, the 
orientations are preferentially vertical, while in others it might be preferentially 
horizontal. For these cases, Yamaguchi et al. [10] propose to use cosine-
squared distributions around either vertical or horizontal directions, which leads 
to the following covariance matrices 

 _ _

8 0 2 3 0 2
1 10 4 0 ; 0 4 0

15 15
2 0 3 2 0 8

branches h branches v

   
      = =      
   
   

C C . (3.3-32) 

In their decomposition algorithm, Yamaguchi et al. [10] use the ratio of the VV 
to HH cross-sections to decide which canopy model to use. If the ratio of VV to 
HH power is less than –2 dB, they use the cosine-squared distribution around 
the horizontal direction. If the ratio is between - 2 dB and + 2 dB, they use the 
uniform distribution. When the ratio is larger than +2 dB, they use the cosine-
squared distribution around the vertical direction. In the case where we use a 
distribution that is preferentially horizontal, the expressions in Eq. (3.3-28) 
need to be modified as follows: 
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. (3.3-33) 

The helix component is still determined by Eq. (3.3-29), but we now have to 
modify how we determine the volume component, as follows: 

 215
2 4

c
v hv

ff S = − 
 

. (3.3-34) 

The surface and double reflection components are then determined using the 
Freeman and Durden (1998) [9] approach after the following subtraction 

   

[ ]
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0 4 0 2 2 2
15 4

2 0 3 1 2 1
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j
f ff f j j

j
−
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

. (3.3-35) 

In the case where the ratio of VV to HH is larger than +2 dB, we assume a 
preferentially vertical orientation, the helix component is determined as before, 
and the volume component is determined by Eq. (3.3-34). The surface and 
double reflection components are determined after the following subtraction 

   

[ ]
1 2 13 0 2

0 4 0 2 2 2
15 4

2 0 8 1 2 1

v c
s ground d trunk ground

j
f ff f j j

j
−

 ± −       + = − − ±          −   

C C C 



. (3.3-36) 

The Yamaguchi et al. (2005) [10] algorithm can be summarized as follows: 

1) Estimate the helix scattering component using Eq. (3.3-29). 

2) Depending on the ratio of VV to HH, use Eq. (3.3-30) (-2 dB < VV/HH  
< 2 dB) or Eq. (3.3-34) (VV/HH < - 2 dB or VV/HH > + 2 dB) to estimate 
the volume component. 
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3) Subtract the helix and volume components from the observation using  
Eq. (3.3-31) when - 2 dB < VV/HH < 2 dB, Eq. (3.3-35) when VV/HH  
< –2 dB or Eq. (3.3-35) when VV/HH > +2 dB. 

4) Use Eq. (3.3-23) and the process described by Freeman and Durden (1998) 
[9] to estimate the strength of the surface and double reflection scattering 
terms. 

Figure 3-14 shows the results of applying the Yamaguchi et al. (2005) [10] 
decomposition to the L-band image of the Black Forest. The image on the left 
shows the relative strength of the volume, double bounce, and surface 
scattering with the same color scheme that we used for the Freeman and Durden 
(1998) [9] decomposition in Fig. 3-13. Also shown in the figure on the right are 
the pixels with negative eigenvalues after the helix and volume components 
have been subtracted. Comparing Fig. 3-14 and Fig. 3-13, we note that the 
qualitative results of the decompositions are very similar. This is not surprising, 
since the helix components are typically much smaller than the others. The 
major difference between the two decomposition methods lies in the number of 
pixels with negative eigenvalues. The Yamaguchi et al. (2005) [10] 
decomposition results show significantly fewer pixels with negative 
eigenvalues. It should be pointed out that Yamaguchi et al. (2005) [10] 

 
Fig. 3-14. Two color overlays displaying the results of the Yamaguchi et al. [10] 
decomposition applied to the L-band image of the Black Forest. The image on the left 
displays the surface contribution in blue, the double reflection contribution in red, and the 
vegetation contribution in green. The image on the right shows only those pixels with non-
negative eigenvalues once the vegetation contribution has been subtracted. See the text for 
more discussion. 
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recognized that areas where the HV returns exceed approximately half that of 
HH or VV could lead to negative powers in the decomposition. Their solution 
was to apply a slightly different algorithm to pixels that show this high relative 
value of HV. In the next section we shall describe a systematic way of 
determining the level of the volume scattering while still ensuring that no 
negative powers will result. 

Figure 3-15 shows the relative strength of the helix term in the Yamaguchi et 
al. [10] decomposition. Notice that the helix terms are stronger in the vegetated 
areas, but overall still relatively small, rarely exceeding 10 percent of the 
scattering. The image in the right shows the strength of the helix term when it is 
not normalized by the total power. It is interesting to note that the areas 
indicated by the arrows show modulations that appear to be consistent with the 
along-track slopes caused by the local topography. This image was analyzed by 
van Zyl (1993) [5] who showed that the scattering mechanisms at P-band are 
strongly modulated by the topographic slopes in the range direction. The fact 
that the strength of the helix term might be influenced by the along-track slopes 
should not be a surprise because it is well known that along-track tilts lead to 

 
Fig. 3-15. The image on the left displays the relative strength of the helix term in the 
Yamaguchi et al. [10] decomposition as a fraction of the total power. While the helix term is 
slightly stronger in the vegetated areas, it is relatively small compared to the overall 
scattering. The image on the right shows the strength of the helix term when it is not 
normalized. The arrows indicate areas where the strength of the helix term is modulated by 
the topographic slopes in the along-track direction. Images were calculated at L-band. 
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non-zero correlations between co- and cross-polarized components of the 
scattering matrix (Shuler et al., 1996 [11]; Lee et al., 2000 [12]), even for 
terrains that otherwise would exhibit reflection symmetry. 

To better understand how azimuth slopes affect the co- and cross-polarized 
correlation, consider the analysis shown in Appendix A for a tilted surface. We 
show that the scattering matrix of the tilted surface  (θ S ) can be written as a 
transformation of the scattering matrix of the surface without tilts  l (θ S l ) , as 
follows 

 S (θ θ) =  

 T SR l l( )[TR ] . (3.3-37) 

The angles refer to the angle of incidence in either the global coordinate system 
(θ ) or the local coordinate system (θl ) for the surface. For details, please see 
the appendix. The transformation matrix takes the form of a coordinate rotation 

 [ ] cos sin
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u h
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ϕ ϕ
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= = = − − 
T , (3.3-38) 

where hx  and hy  are the surface slopes in the range (cross-track) and azimuth 
(along-track) directions, respectively. Note that these expressions are 
completely general; no assumptions are made about the form of the scattering 
matrix. In the special case where the range slopes are small, the rotation is 
directly proportional to the azimuth slope. Performing the transformation, we 
find that 
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If the terrain exhibits reflection symmetry, the second and third terms are zero 
and this quantity becomes a real number. In that case, the estimate of the helix 
component as given by Eq. (3.3-29) will be zero. If the terrain does not exhibit 
reflection symmetry or if we only average over a relatively small number of 
pixels (recall that reflection symmetry only says that in the average the co-cross 
product will be zero) the estimate of the helix component will be 

 ( ) ( ) ( ) ( ){ }
( )( ) ( )( ){ }
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* * * *
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. (3.3-40) 
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This quantity is clearly modulated by the along-track slopes, so the results in 
the image on the right in Fig. 3-15 are not surprising. 

3.3.2.3 The Non-Negative Eigenvalue Decomposition (NNED). The results in the 
previous two sections show a significant flaw in these decompositions; some 
negative powers might result after subtraction of the volume components from 
the observation. This is clearly a non-physical result. If the hypothesis is that 
the observed radar cross-section is the linear sum of radar cross-sections 
representing different types of scattering mechanisms, a crucial requirement is 
that each scattering mechanism must represent a physically realizable scatterer 
or collection of scatterers. This must also mean that the radar cross-section 
representing each scattering mechanism must be zero or positive for all 
polarization combinations. As shown in Eq. (3.1-5), this implies that all 
eigenvalues of the matrices representing the individual scattering processes 
must be non-negative. A decomposition method that takes this property into 
account was proposed by van Zyl et al. (2008) [13] and van Zyl et al. 
(2010) [14], which we shall call the non-negative eigenvalue decomposition 
(NNED). 

To introduce the NNED technique, let us take a more generic decomposition 
where we want to express the scattering as follows  

 [ ] [ ] [ ]model remaindera= +C C C . (3.3-41) 

Here, the first term on the right represents the covariance matrix predicted by 
some model, such as randomly oriented branches. Recognizing that the form of 
this covariance matrix might be different from the measured matrix, we add the 
second term, which will contain whatever is in the measured matrix that is not 
consistent with the model matrix. The question now is what value of a to use in 
Eq. (3.3-41). To answer this question, we need to recognize that all matrices in 
Eq. (3.3-41) must represent physically realizable covariance matrices. That is, if 
we look at each matrix by itself, it should satisfy all the restrictions that we 
expect for a measured covariance matrix. In particular, we need to insist that the 
eigenvalues for each matrix are real and greater than or equal to zero. Let us 
rewrite Eq. (3.3-41) in the form 

 [ ] [ ] [ ]remainder modela= −C C C . (3.3-42) 

The matrix on the left must have eigenvalues that are real and are larger than or 
equal to zero. This requirement allows us to derive a limit on the values of a. 
The largest value of a that still ensures that all three eigenvalues of the matrix 
on the left would be greater than or equal to zero is the maximum value of a 
that we could use in Eq. (3.3-41). 
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To derive the general expressions limiting the values of a, we start with the 
average covariance matrix for terrain with reflection symmetry as given in  
Eq. (3.3-11) and write the model covariance matrix as 

 [ ]
*

0
0 0

0

a a

model a

a a

ξ ρ
η

ρ ζ

 
 

=  
  
 

C . (3.3-43) 

Then Eq. (3.3-42) becomes 
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The eigenvalues for this matrix are the roots of the following equation 
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. (3.3-46) 

Since λ λ1 2≥ , the maximum value of a is found when either λ2 = 0  or when 
λ3 = 0 . To find the value of a that would make λ2 = 0 , we need to solve the 
equation 
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. (3.3-47) 

This quadratic has two roots that are both positive. The smaller of the two is 
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. (3.3-48) 

The case of λ3 = 0  is straightforward. The resulting maximum a is, therefore, 
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It should be pointed out that in the general form for the model matrix we 
assumed in Eq. (3.3-43), we have explicitly assumed that the model matrix 
represents an average scattering process for terrain with reflection symmetry. It 
also includes cases of a single scatterer with no cross-polarized component, 
such as a pure dihedral or first-order scattering from a slightly rough surface. It 
does not, however, include scattering from terrain that does not exhibit 
reflection symmetry or single scatterers with cross-polarized components. For 
those cases, the expressions become significantly more complicated, with the 
eigenvalues being the roots to a cubic polynomial. However, most observed 
scattering seems to approximate reflections symmetry well, as evidenced by the 
relatively small values of the helix component in the Yamaguchi et al. 
(2005) [10] decomposition discussed in the previous section; therefore, we do 
not believe the current analysis to be too severely limited by these assumptions. 
In any case, the fundamental approach remains the same. We always insist that 
no eigenvalue be negative. 

We note that if the model represents a single scatterer with no cross-polarized 
2return, ξ ζa a = ρa  and we can simplify the expressions in Eq. (3.3-49) to 
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Let’s illustrate this process with an example. For the model, we shall assume a 
uniformly random oriented cloud of thin cylinders. The expression for the 
average covariance matrix for this model was derived in Chapter 2 and for the 
backscatter case is given by 

 
3 8 0 1 8
0 2 8 0

1 8 0 3 8
cylinders

 
   =   
 
 

C . (3.3-51) 

Putting these together in Eq. (3.3-49), we find the resulting maximum a is, 
therefore, 
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To illustrate this process with a numerical example, consider the case of a 
covariance matrix extracted from the Black Forest image at L-band. The 
normalized matrix is 

 [ ]
0.472 0.008 0.010 0.056 0.029
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i i
i i
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Note that this matrix is not the same as the one we assumed in Eq. (3.3-11), but 
the terms assumed to be zero in Eq. (3.3-11) are indeed much smaller than the 
others. We shall, therefore, ignore those terms and effectively set them equal to 
zero, consistent with what Freeman and Durden (1998) [9] assumed. Using Eq. 
(3.3-52), we find that 

 ( )max min 0.940,0.752 0.752a = = . (3.3-54) 

Simply setting the strength of the returns from the randomly oriented cylinders 
based on the cross-polarized return will force us to use the value 0.940 for a. 
Clearly, this is much larger than the allowable value of 0.752. Using this 
maximum value of a, we find that the decomposition would be 
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. (3.3-55) 

Figure 3-16 shows a comparison of the fraction of the scattering assigned to the 
randomly oriented canopy by using the approach suggested by Freeman and 
Durden (1998) [9] and that using the maximum value of a as we have described 
above. The fraction is expressed as the total power of the scattering from the 
randomly oriented cloud of cylinders as compared to the total power in the 
measured covariance matrix. In the case of the Freeman and Durden (1998) [9] 
decomposition, this ratio is simply the thin vegetation index, as defined in 
Eq. (3.2-3). We note from this figure that the fraction of scattering that should 
be assigned to the vegetation is generally quite a bit lower than if we simply 
assume that all the cross-polarized scattering comes from the randomly oriented 
branches. In fact, on the average, the maximum amount of scattering from the 
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branches is between 10 and 20 percent lower if we insist that the eigenvalues 
remain positive. Nevertheless, the random scattering clearly still dominates in 
the vegetated areas; this correction would not change the qualitative 
interpretation of the scattering for this scene significantly. 

It is important to remember that the image on the right in Fig. 3-16 represents 
the maximum amount of scattering we can assign to the randomly oriented 
cylinders. We are, of course, free to assign less than that, and we would not 
violate our requirement that the eigenvalues of the remainder not be negative. 
This result points to one of the difficulties with model-based decompositions: 
How are we to decide how much of the scattering to assign to the randomly 
oriented cylinders? Unfortunately, there is no simple answer to this question. A 
reasonable suggestion is to use the amount of power in the left-over matrix (that 
is, the one labeled “remainder” in Eq. (3.3-41)) as a guide. One could make the 
argument that the best value of a to use would be that value of a that results in 
the minimum amount of power in the remainder matrix. We can then simply 
compare the total power in the remainder matrix to that in the original 
measurement and select that value of a that minimizes this ratio. For the single-

 
Fig. 3-16. These images display the fraction of the observed total power that can be 
attributed to scattering from a uniformly randomly oriented layer of cylinders. The image on 
the left follows the calculation proposed by Freeman and Durden (1998) [9]. The image on 
the right is calculated by requiring that the remaining eigenvalues not be negative. On the 
average, the image on the right shows about 10-20 percent lower values for the forested 
areas than the one on the left. 
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model case discussed so far, this simply leads to picking the maximum value 
of a. 

The question now is whether there is a way to pick the “best” solution for a 
generic model-based decomposition for vegetation scattering. We shall assume, 
like Freeman and Durden (1998) [9], that the scattering from vegetated terrain 
consists of three major components: scattering from the canopy, double 
reflection scattering, and single reflections from the underlying ground surface. 
We then propose a hybrid approach that combines model-based decomposition 
and eigenvalue decomposition. In the case of the Freeman and Durden (1998) 
[9] decomposition, they must artificially decide whether to explicitly solve for 
the double-reflection or the single-reflection parameters by examining the phase 
difference between HH and VV. As we showed before (van Zyl, 1992 [15]), the 
eigenvalue decomposition itself can be interpreted in terms of single (or odd 
numbers of) reflections, double (or even numbers of) reflections, and a diffuse 
part. Our hybrid approach then is as follows. We first subtract a covariance 
matrix representing a model for canopy scattering from the observed covariance 
matrix. We pick that multiplicative parameter that minimizes the power in the 
remainder matrix. We then perform an eigenvalue decomposition on the 
remainder matrix. Mathematically this translates to 

 [ ] [ ] [ ]c canopy d double s single r remainderf λ λ λ   = + + +   C C C C C . (3.3-56) 

Here, λr  is the “diffuse” part of the covariance matrix that is left once we 
subtracted the canopy contribution to the observed scattering. It is clear that if 
we want to minimize the power in the last matrix on the right, we need to 
maximize the value of fc . This is done using the expressions in Eq. (3.3-49), 
where the subscript a in that expression is substituted for the canopy model 
covariance matrix. 

This decomposition needs only one assumption: that of the model to use to 
represent the canopy scattering. We no longer have to artificially make 
assumptions about the ratio of the HH to VV scattering strength for the double-
reflection or single-reflection terms. These are determined by the eigenvectors 
of the matrix that is left over once the canopy contribution is subtracted. 

Figure 3-17 shows a comparison of the Freeman and Durden (1998) [9] 
decomposition and NNED using uniformly randomly oriented thin cylinders as 
the model for the canopy scattering like Freeman and Durden. In our display of 
the NNED, we use the green color to show the canopy strength, blue to show 
the single scattering term, and red to show the double reflection term. We do 
not include the last term on the right in Eq. (3.3-56) in our display. At first look, 
these images are qualitatively very similar. A closer examination, however, 
shows that the details in the forested area are quite different. For example, there 
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Fig. 3-17. These L-band images show a comparison between a three-component 
decomposition as proposed by Freeman and Durden (left image) [9] and a modified version 
that ensures non-negative powers after the vegetation scattering has been subtracted (right 
image). Note the increased double reflections in the forested areas in the image on the right. 

are significantly more double reflections in much of the forest in the modified 
three-component analysis (NNED) than in the original Freeman and Durden 
decomposition. This is to be expected, since we have now assigned less of the 
scattered power to the randomly oriented cylinders. Therefore, while the results 
are qualitatively the same, these images are quite different. This could be quite 
significant if one were to use these decomposed signals in further analysis to 
infer geophysical parameters. 

Figure 3-18 shows a similar result calculated using the C-band images. The 
differences in the forest are now even more evident between the standard 
Freeman-Durden (1998) [9] decomposition and the modified version that 
ensures that all eigenvalues remain non-negative. In this case, there is 
significantly more scattering assigned to the single reflection model, especially 
in the older, higher biomass parts of the forest. This should not, however, be 
interpreted that there is more direct scattering observed from the ground surface 
under the forest. In fact, this increase is due to the fact that the thin cylinder 
model is less appropriate at C-band because most of the branches are no longer 
much thinner than the radar wavelength. When this happens, the random 
cylinder model matrix becomes more like scattering from a flat plate or a 
sphere. In the limiting case where the branches become much thicker than the 
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Fig. 3-18. Comparison between a three-component decomposition as proposed by Freeman 
and Durden (left image) and the modified version that ensures non-negative powers after the 
vegetation scattering has been subtracted (right image) at C-band. Note the increased single 
reflections in the forested areas in the image on the right. See the text for a discussion. 

radar wavelength, the scattering from the randomly oriented thick branches 
would be indistinguishable from the scattering from a sphere or a flat plate. 

Figure 3-19 shows the comparison at P-band. The modified decomposition 
shows significantly less random scattering and increased double reflections 
when compared to the Freeman-Durden (1998) [9] decomposition. This shows 
again how assigning all the cross-polarized return to the canopy scattering tends 
to overestimate the contribution from the canopy scattering. Also note that the 
scattering near the top of the image (the portion where the angle of incidence is 
quite steep) has a more bluish tint in the image on the right, implying more 
single scattering from the underlying ground surface. This is consistent with the 
expectation that at steeper angles of incidence the attenuation loss through the 
canopy will be lower, increasing the strength of the reflection from the 
underlying ground surface. 

In all the discussion thus far we have implicitly assumed that the covariance 
matrix terms that involve cross-products of co-polarized returns and cross-
polarized returns are negligibly small. The usual argument in favor of this 
assumption is that natural terrain tends to exhibit reflection symmetry over 
large scales. Yamaguchi et al. (2005) [10] point out that this is not always the 
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Fig. 3-19. Comparison between a three-component decomposition as proposed by Freeman 
and Durden (left image) and the modified version that ensures non-negative powers after the 
vegetation scattering has been subtracted (right image) at P-band. Note the increased 
double reflections (red color) in the forested areas in the image on the right. 

case. In fact, they show examples of urban areas where these terms are not 
negligible. Their solution is to add a fourth model to the decomposition that 
includes scattering by helices to account for the observed correlation between 
the co-polarized and cross-polarized returns. They then proceed to first remove 
this helix component that is calculated based on the observed correlation. Note 
that our proposed hybrid decomposition as shown in Eq. (3.3-56) explicitly 
includes any potential observed cross-correlation between the co-polarized and 
cross-polarized components. The matrices that are calculated using the 
eigenvalue decomposition are formed from the eigenvectors of the covariance 
matrix that results from the subtraction of the assumed canopy model from the 
observed covariance matrix. Any correlation between the cross-polarized and 
co-polarized returns will result in these eigenvectors not being “pure” single, 
double, or diffuse scattering covariance matrices. The advantage of the NNED 
approach is that we do not have to assume a specific scattering mechanism that 
accounts for these observed correlations. 

3.3.2.4 Adaptive Model-Based Decomposition. In the previous section, we laid 
out a method for performing a model-based decomposition that ensures that all 
the individual matrices have non-negative eigenvalues. We shall now show 
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how this same idea can be used to determine which canopy model is the “best” 
fit to the observations. 

As we pointed out before, the idea is to minimize the amount of power in the 
matrix that is left once we subtract the canopy scattering. This provides a 
simple way to compare different canopy models. We simply calculate the 
amount of power that would be in the remainder matrix once we subtract each 
canopy model contribution. The model with the smallest amount of power left 
over is then assumed to be the best fit to the observation. In fact, Yamaguchi et 
al. (2005) [10] pointed out that the uniformly randomly oriented cloud of thin 
cylinders might not always be the appropriate model for canopy scattering. As 
part of their four-component scattering decomposition, they included a test to 
apply different canopy models. 

As an illustration of the idea, let us first look at an example where we will use a 
limited number of different canopy models to find the best fit for the L-band 
data of the Black Forest image we have been analyzing so far. In doing the test, 
we assume three different models: a uniformly randomly oriented cloud of thin 
cylinders, a cloud of thin cylinders oriented around the horizontal direction with 
a cosine squared distribution, and a cloud of thin cylinders oriented around the 
vertical direction with a cosine squared distribution. For each pixel in the 
image, we then calculate the relative amount of power in the remainder matrix 
if we subtracted the maximum contribution assuming each of these models. 
Figure 3-20 shows the result for the three cases at L-band. At the global scale of 
the image, it appears that the best fit model at L-band might be the cosine 

 
Fig. 3-20. Comparison of different canopy models at L-band. The images show the relative 
amount of power in the remainder matrix after the canopy contribution has been subtracted 
from the observation. The results show that the cosine squared distribution around the 
horizontal orientation provides the best fit over the majority of the image. 
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squared distribution around the horizontal orientation. Most of the image is, in 
fact, coniferous trees with branches that are closer to horizontal orientation than 
uniformly randomly oriented; this result is, therefore, not unexpected. 

It should be pointed out that this result cannot be taken as conclusive proof that 
the canopy contains branches that have orientations that are closer to horizontal. 
In drawing such conclusions, one has to remember that this result shows the 
best fit of a canopy model to the observation by first subtracting the canopy 
contribution. In some sense, this means we assume that the scattering is 
dominated by the canopy contribution. If, for example, we had the case of a 
pure double reflection (for which HH is larger than VV) with a small 
contribution from a uniformly oriented canopy, the resulting covariance matrix 
would have HH larger than VV. In that case, we might find that the best fit 
canopy model is a cosine squared around the horizontal orientation because that 
model predicts that HH will be larger than VV. 

We can now extend this concept by adaptively performing the decomposition 
on each pixel to find the best canopy model for that pixel. The process is the 
same as we described above, except it is performed for each pixel separately. 
For each pixel, we now compare the remainders for the set of models and pick 
the model that leaves the smallest relative amount of power in the remainder 
after we subtract the canopy contribution. We shall first introduce this concept 
with just the three models described above (the same three used by Yamagichi 
et al. (2005) [10]) and later generalize the concept. Figure 3-21 shows the 
results for the Black Forest image at C-band, L-band, and P-band. At C-band, 

 
Fig. 3-21. Adaptive non-negative eigenvalue decompositions at different frequencies with 
three canopy scattering models. At the longer wavelengths, the scattering is best modeled 
by a cosine squared distribution around the horizontal orientation. At C-band, a uniformly 
random orientation provides the best fit. See the text for more discussion. 
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the uniformly randomly oriented model is the best fit, consistent with scattering 
from the needles in the coniferous trees. At L-band and P-band, we see that 
most of the pixels are better represented by a model with a cosine-squared 
distribution around the horizontal orientation. At L-band this result is likely 
because of the primary branch orientation. At P-band, however, this is probably 
more indicative that double-bounce scattering from the ground surface and tree 
trunks likely dominates. 

Figure 3-22 shows the L-band comparison of the adaptive decomposition using 
three models compared to the Yamaguchi et al. (2005) [10] choice of model 
based on their simplified selection criteria involving the ratio of HH to VV 
power. We have blanked out pixels for which either the single reflections or the 
double reflections are stronger than the canopy component since, for those 
pixels, our original assumption that the canopy scattering dominates clearly 
does not hold. First, we notice a difference in the number of pixels that are 
blanked out between the adaptive decomposition and the Yamaguchi et al. 
decomposition. This is primarily related to the amount of power assigned to the 
canopy component and the fact that for our adaptive decomposition we insist 
that all eigenvalues be non-negative. This will typically assign less power to the 
canopy component. Apart from this difference, however, it is obvious that the 
two adaptive techniques give very similar results. 

Building on these initial results, Arii et al. (2010) [16] and Arii (2009) [17] 
extended the adaptive decomposition technique to include a generalized canopy 

 
Fig. 3-22. This figure shows a comparison of the optimum model indicated by the color 
schemes for the adaptive NNED and Yamaguchi et al. models using the L-band image. We 
have blanked out those pixels for which the canopy scattering is not the strongest 
component. Note the great similarity between the NNED and Yamaguchi results in terms 
of which models best represents the canopy scattering. 
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component that selects the best fit to the canopy scattering over different 
amounts of randomness and different mean orientations of the canopy. Their 
characterization of the canopy scattering starts with the scattering matrix of a 
vertically oriented thin cylinder, which apart from a multiplicative constant that 
depends on the cylinder length and dielectric constant, can be written as 

 
0 0

.
0 1cylS    ∝     

 (3.3-57) 

They then allow this cylinder to be rotated by an angle θ  with respect to the 
vertical direction about the line of sight, with positive values of θ  indicating a 
clockwise rotation. The resulting covariance matrix is found to be 
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They write this as the sum of three matrices: 
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. (3.3-59) 

The next step is then to calculate the average covariance matrix for a given 
probability distribution of the cylinder orientation angles. The resulting average 
covariance matrix is 

 [ ] ( ) ( )
2

0
vol cylC C p d

π
θ θ θ =  ∫ , (3.3-60) 

where p (θ )  describes the probability density function of the cylinder 
orientation angles. In the discussion above, we have used three cases: uniform 
distribution for which 

 1
2uniformp
π

=  (3.3-61) 
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and cosine-squared distributions around the vertical and horizontal directions 
are as follows 

 ( )

( )
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cos_ 2
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0
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cos

cos
sqp

d
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θ θ

θ θ θ

−
=

−∫
. (3.3-62) 

For the distribution peaking around vertical, θ0 = 0; while for the horizontal 
case, θ π0 = 2.  The uniform distribution represents the most random 
orientation. In the other extreme, the delta function around a fixed angle 

 ( ) ( ){ }0 0
1
2deltap δ θ θ δ θ θ π= − + − −  (3.3-63) 

represents the least amount of randomness. Arii (2009) [17] and Arii et al. 
(2010) [18] suggested that all these cases can be approximated by a generalized 
n-th power cosine squared distribution, as follows: 
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. (3.3-64) 

When n = 0, this distribution becomes exactly the same as the uniform 
distribution; specifically, it approximates the delta function distribution with 
infinitely large n. 

The average covariance matrix for the generalized probability density function 
can be written as 
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with 
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To derive expressions for these, we note that we can write 
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Using the series expansion in Eq. (3.3-67), we find 
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Also, note that 
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It is easily shown that 
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Next, we note that 
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We easily find that 

 [ ] ( ){ } [ ] ( ){ }
2 2

0 0
cos 2 sin 2 0C n k d C n k d

π π

α αθ θ θ θ− = − =∫ ∫ . (3.3-72) 

After considerable algebra, we find 
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Using Eq. (3.3-73), Eq. (3.3-72), Eq. (3.3-70), and Eq. (3.3-68) in Eq. (3.3-65), 
we find 
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Note that we have derived this expression assuming that n is an integer. We 
have also verified this expression numerically for values of n that are not 
integers (Arii et al., 2010 [18]). For the three cases we have used so far, we find 
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The eigenvalues of the covariance matrix in Eq. (3.3-74) only depend on the 
value of the power of the cosine squared function and not on the mean 
orientation angle. The eigenvalues are: 
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Figure 3-23 shows the three eigenvalues as a function of the power of the 
cosine-squared function. Note that for all values of n, λ2 ≤ ≤λ λ3 1.  This figure 
shows that there is little practical difference for distributions for values of 
n > 20.  To illustrate this, we show the entropy and the RVI of the resulting 
average covariance matrix as a function of n in Fig. 3-24. The results confirm 
that especially the RVI varies very little for values of n > 20.  
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Fig. 3-23. This figure shows the relative strength of the eigenvalues of the covariance 
matrix representing the generalized volume scattering model. For all values of n, we find 
that 2 3 1.λ λ λ≤ ≤ . 

With this theoretical framework in hand, we can now describe the proposed 
adaptive model-based decomposition. In fact, it differs from the previously 
described NNED only in the first step of the decomposition. Instead of 
choosing a specific model for the canopy scattering, the adaptive 
decomposition calculates the best fit over all powers n and all mean orientation 
angles θ0.  We decide which pair of parameters represent the best fit by 
selecting that pair that results in the least amount of power in the “remainder” 
matrix: 

 [ ] [ ] [ ] ( )
( )( )

12
1 1 2remainder v

n nnC C f C C C
n n nα β γ

 −    ′ = − + +    + + +  
. (3.3-77) 

Note that the canopy distribution function as used here does not assume 
reflection symmetry. In fact, reflection symmetry only results for special mean 
orientation angles. As such, Eq. (3.3-77) describes a general decomposition; we 
do not need to resort to adding special scatterers to generate non-zero 
correlations between the cross- and co-polarized terms in the covariance matrix. 
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Fig. 3-24. Two charts showing the relative strength of the eigenvalues of the covariance 
matrix representing the generalized volume-scattering model. The top chart is a plot of 
entropy, and the bottom is a plot of RVI. 
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We first illustrate our results with a numerical example. For our comparison, 
we extracted the average covariance matrix in the forest portion of the Black 
Forest image at all three frequencies. The resulting matrices are 
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We shall illustrate the use of this model by assuming the canopy scattering 
dominates and that we can consider the canopy as a collection of randomly 
oriented dipoles. This is equivalent to assuming that the scattering is from a 
collection of randomly oriented cylinders, but that the cylinders are much 
thinner than the radar wavelength. 

In fitting our observations to the model, we use the methodology described 
above. The results are: 
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. (3.3-79) 

These results show a decrease in randomness with an increase in wavelength. 
Also, the longer wavelengths sense a mean orientation angle that is close to 
horizontal (recall the angles are measured with respect to the orientation angle 
of a vertically oriented dipole). Since the longer wavelengths interact 
preferentially with the larger branches, which for the type of trees present in 
this data set are oriented closer to the horizontal direction, the results appear 
reasonable. The C-band results indicate more randomness, consistent with 
interactions with more vertically oriented needles that are also more randomly 
oriented than the larger branches. 

Next we show the results of applying the adaptive decomposition to the Black 
Forest image. First we show the randomness results in Fig. 3-25. A significant 
difference is observed in the forested area as a function of wavelength, 
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consistent with the numerical example as reported in van Zyl et al. (2010) [14]. 
Randomness values close to that of the uniform distribution are found over the 
C-band image; conversely, the P-band image shows values with less 
randomness than cosine-squared distribution. From a physical point of view, 
this is reasonable considering the orientation distributions of needles, branches, 
and trunks. The shorter wavelength mainly interacts with the needles, which 
have higher variance than trunks and branches. Also, the P-band can penetrate 
needles and branches so that trunks having much lower variance become 
dominant. Some of the areas of increased randomness visible at P-band have 
previously been shown to be areas where the trunk scattering is reduced due to 
topographic effects (van Zyl, 1993 [5]). The L-band result lies in between these 
two cases; this corresponds mainly to the branch distribution. 

Next, we show the mean orientation angle for all three frequencies in Fig. 3-26. 
Pixels with horizontal orientation are widely distributed in the forested area of 
the L- and P-band images. Before continuing with the interpretation, it is 
necessary to look at the decomposition results of all three scattering 
mechanisms, as in Fig. 3-27. Here, we display each scattering mechanism 
separately, and the value for each pixel is normalized by the total power. Since 
the scattering in the forested area at the L-band is mostly contributed by the 
volume component, the inferred horizontal orientation in the L-band image in 
Fig. 3-26 should be indicative of scattering by branches. However, the 
horizontal orientation in the P-band image is not related to the physical 
orientation of scatterers in the volume layer. It is well-known that the double-
bounce scattering raises the HH contribution due to the Fresnel reflections at 

 
Fig. 3-25. Randomness maps derived from the C-band (left), L-band (center), and P-band 
(right) AIRSAR images in the Black Forest. As in the numerical example, the randomness 
decreases for the longer wavelengths (Arii et al., 2009 [16]). 
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Fig. 3-26. Mean orientation angle maps derived from the C-band (left), L-band (center), and 

P-band (right) AIRSAR images in the Black Forest (Arii et al., 2009 [16]). 

the trunk and ground surface. Since the algorithm subtracts the volume 
component first and then infers the other scattering mechanisms, strong double-
bounce contribution misleads us to interpret a horizontally oriented volume 
component. One must pay particular attention to interpret the mean orientation 
angle map when double-bounce scattering contribution is dominant. The 
C-band mean orientation angle map indicates scattering from more vertically 
oriented scatterers. Given that the shorter C-band wavelength mostly interacts 
with the needles and mostly with those needles near the top of the canopy 
(scattering lower down in the canopy is expected to be attenuated), this result is 
reasonable. 

A clear contrast exists along the river and road in the P-band in Fig. 3-27. The 
scattering from the forested area is basically contributed by both volume and 
double-bounce terms. However, the volume component is significant along the 
river and road, whereas the double-bounce is considerably smaller. This result 
is due to the local topography, as pointed out by van Zyl [5], where the double-
bounce contribution is drastically reduced because the Fresnel reflections no 
longer dominate when the forest floor is tilted. 
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Fig. 3-27. Volume (left), double-bounce (center), and surface (right) components of the 
adaptive algorithm for the C-band (top), L-band (middle), and P-band (bottom) Black Forest 
images. Each pixel is normalized by total power. Dotted lines in red indicate river (upper) 
and road (lower), respectively (Arii et al., 2009 [16]). 
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3.4 Image Classification 
Classification of images involves using a set of rules to decide whether 
different pixels in an image have similar characteristics. These rules in effect 
divide the total data space into subsets separated by so-called decision 
boundaries. All pixels that fall within a volume surrounded by such decision 
boundaries are then labeled as belonging to a single class.  

Two major approaches are used in classifying images; supervised and 
unsupervised classifications. In the case of supervised classification, a user will 
specify so-called feature vectors to be used in the comparison process. These 
vectors can be thought of as defining the centroids of the decision volumes that 
are separated by the decision boundaries. These feature vectors can be extracted 
from the image to be classified, or could come from a library of radar signatures 
either measured in the laboratory or in the field. In the case of unsupervised 
classification, the computer is allowed to find the feature vectors without help 
from an image analyst. In the simplest form, known as the K-means algorithm, 
K feature vectors are typically selected at random from the data space.  

A different way to look at classification approaches is whether they are based 
purely on the data available in the image, or whether the analyst is adding 
information based on physics. The former is often referred to as a statistical 
approach, or more correctly, a data driven approach. The analyst relies purely 
on the data and the statistics associated with the data to segment the image into 
classes. In the physics-based approach, the analyst compares the data in the 
image to known characteristics based on physics. For example, one might be 
interested in knowing which parts of a scene are covered with vegetation. Based 
on the physics of vegetation scattering models, one might conclude that such 
areas would exhibit relatively large entropy or RVI values, and use those 
parameter with some threshold value to decide whether a pixel should be 
labeled as vegetated or not.  

3.4.1 Supervised Classification 
The most popular supervised classification technique is the Bayes classifier. 
The basic principle of the Bayes classifier can be described using Eqs. (3.4-1) 
and (3.4-2). If a land class is denoted by iϖ  where i = 1, 2, …., N classes, a 
pixel A  can be classified as  

 iA ϖ∈   if  ( | ) ( | )i jP A P Aϖ ϖ> . (3.4-1) 

However, it is much easier to evaluate ( | )iP A ϖ than ( | )iP Aϖ using ground-
truth data. Therefore, we transform Eq. (3.4-1) using the Bayes theorem as  
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 iA ϖ∈   if  ( | ) ( ) ( | ) ( )i i j jP A P P A Pϖ ϖ ϖ ϖ> . (3.4-2) 

It is convenient to transform Eq. (3.4-2) using a distance measure d Ai ( )  as  

 iA ϖ∈   if  ( )id A  < ( )jd A . (3.4-3) 

where, typically  

 ( ) ln ( | ) ( )i i id A P A Pϖ ϖ= − . (3.4-4) 

Using Eqs. (3.4-3) and (3.4-4), pixel A  is classified to be ϖ i  if the distance 
measure of ϖ i  ( = − ln P A( |ϖ ϖi i)P( ) ) is the shortest among all possible 
classes. As the simplest example, if the conditional probability density function 
(PDF) derived from the ground truth data is given by the normal distribution as 

 ( )2 21( | ) exp / 2
2i i i

i
P A A s

s
ϖ µ

π
 = − −  

. (3.4-5) 

where µi  and si  are the mean value and the standard deviation of the 
conditional PDF of the class ϖ i . The distance measure can be calculated as  

 ( )
2

( ) / 2 ln( ) ln ( )i i i i id A A s s Pµ ϖ = − + −  . (3.4-6) 

The most challenging step of evaluating Eq. (3.4-6) is to estimate P( )ϖ i  for all 
classes before we apply a classification method to polarimetric SAR data. One 
commonly used assumption is that an equal probability is assigned to all 
classes. Then, Eq. (3.4-6) can be simplified as  

 ( )
2

( ) / 2 ln( )i i i id A A s sµ = − +  . (3.4-7) 

From Eq. (3.4-7), the distance measure becomes smaller if the distance 
(normalized by the standard deviation of PDF) between the measured pixel 
value and the PDF mean value is smaller.  

For the fully polarimetric SAR case, Lim et al. (1989) [19] calculated the 
distance measure as  

 [ ] [ ]1( ) ln ln ( )i ii id P ϖ−+= + −X X C X C . (3.4-8) 

where the complex vector X is given by  
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Here [C]  is the covariance matrix of the assumed class feature for the ith i
class. The conditional PDF is given by  
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The complex Gaussian distribution given in Eq. (3.4-10) is a good 
approximation for single-look polarimetric data. Lee et al. [20] showed that for 
multi-look polarimetric SAR data, the complex Wishart distribution is a better 
approximation. Using this distribution, Lee et al. derived the following distance 
measure  

 [ ] ( )1( ) ln ln ( )i i iid n Tr P ϖ− = + −  
Z C C Z . (3.4-11) 

Here Z represents the covariance matrix of the pixel being classified, and n is 
the number of looks in the image.  

To implement Eq. (3.4-8) or (3.4-11), one must evaluate all P( )ϖ i or assume 
equal a priori probabilities for all the classes. In the absence of any additional 
information equal a priori probabilities are often assumed. Figure 3-28 shows 
an example of a supervised Bayesian classification of the Black Forest image 
we analyzed earlier in the chapter. Here we selected three training sets, one in 
the agricultural area (displayed in blue), one in the urban area (displayed in 
red), and one in the forested area (displayed in green). The image on the left in 
Fig. 3-28 shows the result using the full covariance matrix, including the 
absolute radar cross-section assuming equal a-priori probabilities. The results 
show that most of the agricultural area is in fact identified as similar to that 
training area, and similarly for the other two classes. A closer look at the top 
right-hand corner of the image on the left shows a diagonal line of red pixels, 
meaning these pixels were classified as being similar to the urban training area. 
The scattering in this area is not similar to double reflects, however. These 
pixels were placed in this class mainly because of their large absolute cross-
sections. 

The image on the right in Fig. 3-28 repeats the calculation, but this time using 
the normalized covariance matrices. In other words, all brightness information 
was discarded, and the classification is done purely on the relative strength of 
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Fig. 3-28. Bayesian classifications of the L-band Black Forest image using training areas in 
the agricultural area (blue), urban area (red) and the forest (green). The image on the left 
uses the absolute brightness, while the one on the right uses normalized covariance 
matrices. See the text for a discussion.  

the polarimetric information. Overall, the general results between the two 
images are similar. However, closer examination of the image on the right 
shows that several areas, particularly in the agricultural areas, are classified 
differently. Since the polarimetric information is more directly related to the 
scattering mechanisms, we expect the image on the right to show more details 
about the scattering mechanisms. For example, the diagonal line of red pixels in 
the upper right is now correctly identified as similar to the forest training area. 
Note, however, that the classification on the right appears noisier than the left.  

In calculating the result shown in Fig. 3-28, we assumed equal a-priori 
probabilities for each of the classes. In the absence of additional information, 
this is a reasonable assumption. Van Zyl and Burnette (1992) [21] proposed an 
iterative method to evaluate P( )ϖ i . First, they assume equal probabilities for 
all P( )ϖ i . Then, the results from the first classification (equal probability 
assumption) are used to estimate all P( )ϖ i . This is done by calculating the 
number of pixels in a pre-determined box that was placed in each class, divided 
by the total number of pixels in the box. The successive iteration improves the 
accuracy of the classification. Rignot and Chellappa (1992) [22] proposed a 
maximum a posteriori (MAP) estimate to segment polarimetric SAR data. The 
segmentation results using MAP showed a 10–20 percent improvement when 
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they are compared with the results using the maximum likelihood (ML) method 
under the equal probability assumption.  

Figure 3-29 shows the result of applying the iterative scheme proposed by van 
Zyl and Burnette to estimate the probabilities for each class. On the left is the 
original Bayes classification with equal a-priori probabilities. On the right is 
the result after a single iteration using a 5 × 5 box to calculate the probability of 
finding a specific class in a given pixel. The result is a dramatic decrease in the 
apparent noise in the classification. Van Zyl and Burnette found that in general 
very few iterations are needed for the classification to converge [21].  

In order to improve the classification accuracy, SAR images are often filtered to 
suppress speckle noise. Lee at el. (1999) [23] proposed a technique to preserve 
polarimetric properties without degrading the image quality. To avoid the 
crosstalk between polarimetric channels, each element of the covariance matrix 
was filtered independently. The filtering was performed by averaging the 
covariance matrix of neighboring pixels without deficiency of smearing the 
edges. To preserve the edge sharpness, the filtering was adaptively applied to a 
homogeneous area from selected neighboring pixels using edge-aligned 
windows [23]. Using this filtering, Lee at el. (1999) [23] reported that the 
classification accuracy was approximately doubled for five classes out of the 

 
Fig. 3-29. The image on the left was classified using equal a-priori probabilities for all 
classes, and normalized covariance matrices. The image on the right illustrates the result of 
using adaptive a-priori probabilities as proposed by van Zyl and Burnette to perform the 
classification. The image on the left is used with a 5 × 5 box centered on each pixel to 
calculate the probability of finding a specific class in that pixel. The image on the right is the 
result of a single iteration. 
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total of seven classes when the results were compared with the ones using the 
data without any filtering.  

3.4.2 Physics-Based Unsupervised Classification 
Supervised classifications allow the analyst to select feature vectors from the 
image itself and then use them on the Bayesian algorithm to identify which 
pixels in the image are the closest to the selected features. One difficulty with 
this approach is that the results are dependent on how well the person picks the 
class training areas. If the selected areas are not very homogeneous, the results 
may not be very satisfying. A different type of approach relies on physics to 
segment a polarimetric image into different classes of scattering. This approach 
is completely unsupervised, and does not rely on a human to pick areas to use 
as the class centroids.  

One of the earliest polarimetric unsupervised classification schemes was 
suggested by van Zyl [24]. Pixels in an image are compared to three scattering 
mechanisms, odd numbers of reflections, even numbers of reflections, and 
diffuse scattering based on the expected scattering parameters predicted by 
simple models. The results showed that bare surfaces are usually similar to the 
odd number of reflections model, while urban areas typically scatter consistent 
with an even-number-of-reflections model. Vegetated areas mostly exhibit 
diffuse scattering, particularly at longer wavelengths. This interpretation is 
confirmed by the results shown in Fig. 3-30.  

This idea was taken further by Cloude and Pottier [25] using the entropy and 
average alpha angle discussed earlier to divide the data space into nine different 
regions. They showed that of these nine regions, eight are commonly found in 
polarimetric radar data. Based on this division of the data space, one can then 
segment the image based on which region in the data space each pixel falls into. 
As in the case of van Zyl, this algorithm requires no user input, and the 
segmentation is done automatically. Results show that the two classes with the 
largest entropy are similar to the diffuse scattering class defined by van Zyl 
[24]. The alpha-entropy classification further segments van Zyl’s odd numbers 
of reflections and even number of reflections classes into several classes based 
on the amount of randomness in the scattering as measured by the entropy. See 
Fig. 3-30 for the results of this algorithm when applied to the L-band Black 
Forest image. 
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Fig. 3-30. Unsupervised classifications of the L-band image of the Black Forest using the 
algorithm by van Zyl [24] (left) and the alpha-entropy algorithm (right). The alpha-entropy 
image further divides the original three classes using the entropy information.  

3.4.3 Combined Unsupervised and Bayes Classification Algorithms 
As mentioned above, it is difficult to find reliable training data sets to estimate 
the statistical parameters required for the maximum likelihood classification. 
To overcome this difficulty, some authors have proposed using an unsupervised 
classification technique to produce initial training data sets. Lee at el. (1999) 
[26] proposed an unsupervised classification technique that combines a 
polarimetric decomposition method (unsupervised) and the complex Wishart 
classifier [20] (supervised). The “alpha-entropy” algorithm [25, 27] based on 
the polarimetric decomposition technique was used to provide the initial 
training data set for the eight zones defined by the alpha angle and the entropy. 
This training data set was used as an input for the Wishart classifier. The 
classification result was improved by iteration of this process. When the 
iteration process satisfies some pre-determined termination criteria, the 
classification result is finalized.  

More recently, Lee at el. (2004) [27] proposed a different approach to combine 
both unsupervised and supervised classification techniques. In this approach, 
they applied the model-based decomposition algorithm by Freeman and Durden 
[9] to the polarimetric SAR data to provide the classification result for three 
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categories: surface, double bounce, and volume scattering mechanisms. This 
division was accomplished based on the dominant power associate with each 
scattering mechanism. Lee et al. (2004) [27] divided each category into 30 
clusters based on the backscattering power of their dominant scattering 
mechanism. The initial clusters were merged based on the between-cluster 
Wishart distance [27] to form the classes. The Wishart classification method 
was applied to the polarimetric data iteratively until this process converged. 
These combined classification approaches usually provide more accurate 
classification results than unsupervised approach can without requiring the 
ground truth data.  

Figure 3-31 illustrates the idea behind a combined unsupervised and Bayesian 
classification algorithm. In this example, we used three model-derived 
covariance matrices to perform the initial unsupervised classification. The three 

 
Fig. 3-31. Results using three model-derived covariance 
matrices to perform an unsupervised classification of the 
L-band Black Forest data. Pixels displayed in red are 
similar to a double reflection expected from two dielectric 
surfaces, those in blue are similar to a bare rough surface, 
and those in green are similar to a cloud of uniformly 
randomly oriented thin dielectric cylinders. 
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models are that of a rough bare surface, a dihedral corner reflector with 
dielectric surfaces, and a uniformly randomly oriented cloud of thin cylinders. 
These three model covariance matrices are used in an unsupervised 
classification using normalized covariance matrices. Once the initial 
classification is performed, the average covariance matrix for each class is 
calculated and used in the next step. This process is iterated until the 
classification converges in the sense that less than .001 percent of the pixels 
still change class.  

We note that there is great similarity between this unsupervised classification 
and the supervised classification using normalized covariance matrices shown 
on the right in Fig. 3-28. The main difference is that more areas in the 
agricultural areas are classified as being more similar to the dielectric dihedral 
reflection.  

One drawback of all classification algorithms is that they force a pixel to 
belong to one class only. The decision is based on which class most closely 
resembles the observed scatter. Unfortunately, scattering is seldom purely one 
mechanism. As we shall see in Chapter 5, scattering from vegetated areas often 
is a mixture of many different scattering mechanisms. Forcing a pixel to belong 
to one class ignores this reality. We therefore believe that classification results 
should be interpreted with care. Our personal preference is to use techniques 
that preserve the relative fractions of different scattering mechanisms, such as 
the Pauli matrix decomposition or one of the model-based decompositions.  

3.5 Polarimetric SAR Interferometry 
SAR interferometry refers to a class of techniques where additional information 
is extracted from SAR images that are acquired from different vantage points, 
or at different times. Various implementations allow three types of information 
to be extracted: 1) topography, 2) surface velocity, and 3) surface deformation. 
If two SAR images are acquired from slightly different viewing geometries, 
information about the topography of the surface can be inferred. Conversely, if 
images are taken at slightly different times, a map of surface velocities can be 
produced. Finally, if sets of interferometric images are combined, subtle 
changes in the scene can be measured with extremely high accuracy. These 
techniques are summarized in more detail in several references [28, 29, 30].  

SAR interferometry was first demonstrated by Graham (1974) [31], who 
demonstrated a pattern of nulls or interference fringes by vectorally adding the 
signals received from two SAR antennas; one physically situated above the 
other. Later, Zebker and Goldstein (1986) [32] demonstrated that these 
interference fringes can be formed after SAR processing of the individual 
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images if both the amplitude and the phase of the radar images are preserved 
during the processing.  

The basic principles of interferometry can be explained using the geometry 
shown in Fig. 3-32. Two radar return signals ( E A( )1  and E A( )2 ) are recorded 
by the two interferometric antennas ( A1 and A2  shown in Fig. 3-32) separated 
by the baseline B . A 2x2 Hermitian matrix can be formed using E A( )1  and 
E A( )2  as 

 [ ] ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

* *
1 1 1 2*1 *

1 2 * *
2 2 1 2 2

( )
( )n

E A E A E A E AE A
I E A E A

E A E A E A E A E A

 
    = =       

 

. 

  (3.5-1) 

The diagonal components represent two conventional SAR images collected by 
the interferometric SAR system. The interferometric SAR information can be 

( *extracted from the off diagonal component E A1 2)E (A ) . The phase of this 

term (known as interferogram) is defined as 

 
Fig. 3-32.  Basic interferometric radar geometry. The path 
length difference between the signals measured at each of the 
two antennas is a function of the elevation of the scatterer. 
(From Elachi and van Zyl (2006) [28]) 
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1 2argI E A E Aφ = . (3.5-2) 

Radar interferometry can be implemented in two different ways. In so-called 
single-pass interferometers, the two antennas are physically separated, but on 
the same platform. In the case of airborne SAR systems, the two interferometric 
antennas might be mounted in different places on the fuselage, or under the 
wings of the aircraft. In the case of the Shuttle Radar Topography Mission 
(SRTM) that was flown on the Space Shuttle Endeavour in 2000, a 60 meter 
(m) long boom was used to separate the two antennas. Single-pass 
interferometers acquire the images from both ends of the baseline at the same 
time.  

An alternative way to implement radar interferometry is to use images from 
different orbits in the case of spaceborne systems, or in the case of airborne 
systems, from different flight lines. This implementation is known as repeat-
track interferometry. In this case, images at each end of the baseline are 
acquired at different times, with time separations varying from minutes in the 
case of airborne systems to days to even years in the case of spaceborne 
systems. A slight variation of the repeat-track implementation is to use two 
satellites that follow each other in slightly different orbits. This is knows as 
tandem interferometry. The time difference for acquiring images is typically 
seconds to minutes, depending on how far apart the two satellites are 
positioned.  

The scattering center of a pixel can be located using the law of cosines on the 
triangle formed by the two antennas and the scattering center of a pixel as 

 ( ) ( )2 2 2 2 cos 2R R R B BR πδ θ α+ = + − − + . (3.5-3) 

The variables in Eq. (3.5-3) are shown in Fig. 3-32. If we assume that R B>> , 
(a very good assumption for most interferometers) one finds that  

 ( )sinR Bδ θ α≈ − − . (3.5-4) 

The radar system does not measure the path length difference explicitly, 
however. Instead, what is measured, is an interferometric phase difference that 
is related to the path length difference through  

 ( )2 22 sinT I
a aN R Bπ πφ φ π δ θ α
λ λ

= + = = − − . (3.5-5) 

where a =1 for the case where signals are transmitted out of one antenna and 
received through both at the same time, and a = 2  for the case where the signal 
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is alternately transmitted and received through one of the two antennas only. In 
order to reconstruct the topography, the integer N  must be determined using a 
phase unwrapping technique [33, 34].  

From Fig. 3-32, it also follows that the elevation of the point being imaged is 
given by 

 1( ) cos cos sin
2

Tz y h R h R
a B
λφ

θ α
π

−  = − = − −   
  

. (3.5-6) 

with h  denoting the height of the reference antenna above the reference plane 
with respect to which elevations are quoted. As shown in Eq. (3.5-6), the 
interferometric phase (φT ) provides the information on the location of the 
scattering center. Since the return signals from two interferometric antennas are 
collected in a different geometry, there is decorrelation between two signals. 
This decorrelation can provide the additional information on scattering objects 
to be imaged. 

The interferometric coherence is defined as  

 
( ) ( )

( ) ( ) ( ) ( )

*
1 2

* *
1 1 2 2

INT SNR T B

E A E A

E A E A E A E A
γ γ γ γ= = . (3.5-7) 

The interferometric decorrelation is composed of three contributions: 1) 
additive noise, 2) slightly different imaging geometry of two antennas, and 3) 
temporal changes of scattering objects. As shown in Eq. (3.5-7), γ SNR  includes 
decorrelation due to additive noise. If both interferometric channels have the 
same SNR, γ SNR  can be written as  

 
1

11
SNR

SNR

γ =
+

. (3.5-8) 

The temporal correlation (γT ) represents the scattering geometry change in 
time [35]. If the interferometric signals are collected at the same time, γT =1. 
The baseline decorrelation (1- γB ) is due to the speckle difference due to the 
fact that two interferometric signals are collected in a slight different imaging 
geometry. This term (γB ) includes the information on scattering objects. If the 
scattering object is a point target, there is no baseline decorrelation. The 
baseline decorrelation is a key parameter to understand the scattering 
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characteristic of each pixel. The baseline correlation (γB ) can be estimated 
from the measured correlation coefficient (γ ) after removing the effect of 

SNRγ  and Tγ  as shown in (3.5-7). The expression for the baseline correlation 
to estimate the scattering characteristic of each pixel can be found in [29].  

Electromagnetic wave propagation is by nature a vector phenomenon. 
Therefore, in order to capture the complete information about the scattering 
process, interferometric measurements should really be made in the full 
polarimetric implementation of a radar system. In this case, there are really 
three different measurements being made at the same time. First, there are the 
two polarimetric radar measurements at each end of the baseline, represented 
below by the two covariance matrices [ ]11C  and [ ]22C . Since the baseline is 
generally short compared to the distance to the scene, these two measurements 
can be expected to be nearly identical, except for the very small change in the 
angle of incidence from one end of the baseline to the other. The third 
measurement, of course, is the full vector interferogram as opposed to the scalar 
implementation described earlier.  

The vector interferogram, which is the complex cross-correlation of the signal 
from one end of the baseline with that from the other end of the baseline, can be 
described as  

 [ ]* * * *
1 2 1 1 2 2 1 12 2V V = = ⋅A T T A A C A  . (3.5-9) 

The antenna ( A ) and scatterer ( T ) vectors are given in Eq. (3.1-1). The 
complex correlation of the two signals after averaging is  
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Notice that the interferometric phase is a function of the antenna polarization 
vectors as shown in Eq. (3.5-9).  

 [ ]( )*
int 1 12 2argϕ = ⋅A C A . (3.5-11) 

Notice that the interferometric phase will be used to locate the scattering center 
of different antenna polarization combinations. In addition, the polarimetric 
correlation coefficient can be used to estimate the scattering characteristics of 
each pixel. Using this formulation, Cloude and Papathanassiou (1998) [36] 
showed, using repeat-track SIR-C interferometric data, that polarization 
diversity can be used successfully to optimize the correlation between images. 
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They also showed significant differences in the measured elevation in forested 
areas when using polarization optimization. At present, polarimetric 
interferometry is a very active research area [37, 38, 39, 40, 41, 42]. 
Unfortunately, progress is hampered severely by lack of availability of well-
calibrated data, as only a hand-full of radar systems have been upgraded to full 
polarimetric interferometry capability.  

To illustrate the information content of polarimetric interferometry, we used 
data acquired in the repeat-track interferometry mode using the SIR-C system 
when it flew on the Space Shuttle in October 1994. The data we use were 
acquired over the Mahantango Watershed near Harrisburg, Pennsylvania. An L-
band total power image of part of the area is shown in Fig. 3-33. The 
Mahantango watershed is part of the Valley and Ridge Physiographic Province 
of eastern Pennsylvania. The area is characterized by forested ridge tops, while 

 
Fig. 3-33. L-band total power image of a portion of the Mahantango watershed in 
Pennsylvania. The darker areas are agricultural fields, and the brighter grey tones are 
forested ridge tops. 
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the valley areas are typically used for agriculture. Approximately 55 percent of 
the area is forested, and about 45 percent of the area is used for cropland.  

To illustrate the additional information contained in the polarimetric data, we 
choose to display differential interferograms using the image on the left in 
Fig. 3-34. The differential interferograms are constructed as follows. First we 
construct the HH interferogram as the reference. We then construct 
interferograms that are effectively the phase of each of the covariance matrix 
elements in Eq. (3.5-9). We then subtract the HH interferogram phase from 
each of these to form nine differential interferograms. These are shown in 
Fig. 3-34.  

 
Fig. 3-34.  Differential interferograms constructed using the polarimetric information 
acquired over the Mahantango watershed. The top row represent HH polarization on pass 
one, and HH on pass two (left), HV on pass two (middle) and VV on pass two (right). The 
second row is the same, except for HV on pass one, and the third row represents VV on 
pass one. See the text for how these were generated. Images across the upper left lower 
right diagonal are the complex conjugates of each other, hence the different colors.  
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The most striking is the image in the upper right in Fig. 3-34, which displays 
the differential phase of using HH polarization at one antenna and VV 
polarization at the other. The image shows that the agricultural areas in general 
have almost zero phase (which means they have the same phase in the VV and 
the HH interferogram). The forested areas, however, shows a significant phase 
angle, in this case near 90 deg.  

3.6 Summary 
In this chapter we introduced several more advanced polarimetric concepts. The 
vector-matrix duality allows us to understand decomposition algorithms in 
more detail. We also discussed several parameters based on the eigenvalues of 
the covariance matrix. These parameters provide useful information concerning 
the amount of randomness in the observed scatter, as well as potentially what 
the actual scattering mechanisms might be. 

Finally, we examined different approaches for interpreting the scattering 
mechanisms in an image. Using orthogonal bases, we can derive unique 
decompositions. These decompositions, while unique, are not straightforward 
to interpret. In particular, the decomposition based on the eigenvectors of the 
covariance matrix suffers from the fact that the basis in which the 
decomposition is done varies from pixel to pixel in the image. This further 
complicates the interpretation. At the other end of the spectrum are model-
based decompositions. These are not unique, and picking the appropriate 
solution is not obvious, but their interpretation is more straightforward. We 
showed that some of the popular model-based decompositions suffer from 
serious limitations imposed by the assumptions of how the observations are to 
be decomposed; these assumptions lead to results that are non-physical in the 
sense that negative powers could be generated. We showed that this limitation 
can easily be removed using a simple check based on the eigenvalues of the 
covariance matrix. A simple hybrid approach can be implemented that corrects 
these limitations. This approach is then easily extended to show a simple way to 
find the best model to fit the observed canopy scattering. 

It is important to remember that all these decomposition techniques are simply 
tools to make interpretation of the observed scattering easier. The strength of 
the pure eigenvalue and eigenvector approaches is that the answers are unique, 
and no assumptions are required to perform the decomposition. The 
interpretation of the results, however, requires an interpretation of the basis 
vectors in terms of scattering mechanisms, which might not be unique. The 
model-based decompositions provide an easy interpretation. But this easy 
interpretation assumes that the models are indeed applicable to the 
observations, which might not be the case. Furthermore, the results are not 
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unique in the sense that many different model combinations could be used. In 
the final analysis, which tool is used depends on personal preference. 
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