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Chapter 2 
Basic Principles of SAR Polarimetry 

The field of synthetic aperture radar changed dramatically in the early 1980s 
with the introduction of advance radar techniques, such as polarimetry and 
interferometry. While both of these techniques had been demonstrated much 
earlier, radar polarimetry only became an operational research tool with the 
introduction of the NASA/JPL Airborne Synthetic Aperture Radar (AIRSAR) 
system in the early 1980s. Radar polarimetry was proven from space with the 
two Spaceborne Imaging Radar C-band and X-band (SIR-C/X) SAR flights on 
board the space shuttle Endeavour in April and October 1994. In this chapter, 
we describe the basic principles of SAR polarimetry and, thereby, provide tools 
necessary to understand SAR polarimetry applications, such as land 
classification. 

2.1 Polarization of Electromagnetic Waves 
In SAR polarimetry, information is transmitted from an object to a sensor by 
electromagnetic waves. The information could be encoded in the frequency 
content, intensity, or polarization of the electromagnetic wave. The 
electromagnetic waves propagate at the velocity of light from the object directly 
through free space or indirectly by reflection, scattering, and radiation to the 
sensor. The interaction of electromagnetic waves with natural surfaces and 
atmospheres is strongly dependent on the frequency of the waves. 

An electromagnetic wave consists of a coupled electric and magnetic force 
field. In free space, these two fields are at right angles to each other and 
transverse to the direction of propagation. The direction and magnitude of only 
one of the fields (usually the electric field) is sufficient to completely specify 
the direction and magnitude of the other field in free space using Maxwell’s 
equations. The polarization of the electromagnetic wave is contained in the 
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elements of the vector amplitude A  of the electric field. For a transverse 
electromagnetic wave, this vector is orthogonal to the direction in which the 
wave is propagating; we can, therefore, completely describe the amplitude of 
the electric field by writing A  as a two-dimensional complex vector: 

 ˆ ˆh vi i
h va e a eδ δ= +A h v . (2.1-1) 

Here, we denote the two orthogonal basis vectors as ĥ  for horizontal and v̂  for 
vertical. Horizontal polarization is usually defined as the state where the 
electric vector is perpendicular to the plane of incidence. Vertical polarization 
is orthogonal to both horizontal polarization and the direction of propagation 
and corresponds to the case where the electric vector is in the plane of 
incidence. Any two orthogonal basis vectors could be used to describe the 
polarization; in some cases, the right- and left-handed circular basis is used. 
The amplitudes, ah  and av , and the relative phases, δh  and δ v , are real 
numbers. The polarization of the wave can be thought of as the shape that the 
tip of the electric field would trace over time at a fixed point in space. Taking 
the real part of Eq. (2.1-1), we find that the polarization figure is the locus of all 
the points in the h-v plane that have the coordinates 
Eh = ah cosδh ; E av = v cosδv . It can easily be shown that the points on the 
locus satisfy the expression 

 ( ) ( )
2 2

22 cos sinh v h v
h v h v

h v h v

E E E E
a a a a

δ δ δ δ
   

+ − − = −   
   

. (2.1-2) 

This is the expression of an ellipse (shown in Fig. 2-1). In the general case, 
therefore, electromagnetic waves are elliptically polarized. In tracing the 
ellipse, the tip of the electric field can rotate either clockwise or counter-
clockwise; this direction is denoted by the handedness of the polarization. The 
definition of handedness accepted by the Institute for Electrical and Electronics 
Engineers (IEEE) is that a wave is said to have right-handed polarization if the 
tip of the electric field vector rotates clockwise when the wave is viewed 
receding from the observer. If the tip of the electric field vector rotates counter-
clockwise when the wave is viewed in the same way, it has a left-handed 
polarization. It is worth pointing out that a different definition of handedness is 
often encountered in optics literature. Specifically, in optics literature, a wave is 
said to have a right-handed (left-handed) polarization when the wave is viewed 
approaching the observer and the tip of the electric field vector rotates in the 
clockwise (counter-clockwise) direction. 
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Fig. 2-1. A polarization ellipse. 

In the special case where the ellipse collapses to a line, which happens when 
δ δh v− = nπ  with n any integer, the wave is said to be linearly polarized. 
Another special case is encountered when the two amplitudes are the same 
(a ah v= )  and the relative phase differenceδ δh v−  is either π 2  or −π 2 . In 
this case, the wave is circularly polarized. 

The polarization ellipse (see Fig. 2-1) can also be characterized by two angles 
known as the ellipse orientation angle (ψ  in Fig. 2-1, 0 ≤ ≤ψ π ) and the 
ellipticity angle, shown as χ  ( −π 4 4≤ χ π≤ ) in Fig. 2-1. These angles can 
be calculated as follows: 

 ( ) ( )2 2 2 2
2 2

tan 2 cos ; sin 2 sinh v h v
h v h v

h v h v

a a a a
a a a a

ψ δ δ χ δ δ= − = −
− +

. (2.1-3) 

Note that linear polarizations are characterized by an ellipticity angle χ = 0 . 
Note also that two waves are orthogonally polarized: that is, the scalar product 
of the two polarization vectors will be zero if the two polarization ellipses have 
orientation angles that are 90 degrees (deg) different and the handedness of the 
two waves are opposite. 

So far, it was implied that the amplitudes and phases shown in Eq. (2.1-1) and 
Eq. (2.1-2) are constant in time. This might not always be the case. If these 
quantities vary with time, the tip of the electric field vector will not trace out a 
smooth ellipse. Instead, the figure will, in general, be a noisy version of an 
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ellipse that after some time might resemble an “average” ellipse. In this case, 
the wave is said to be partially polarized, and it can be considered that part of 
the energy has a deterministic polarization state. The radiation from some 
sources, such as the Sun, does not have any clearly defined polarization. The 
electric field assumes different directions at random as the wave is received. In 
this case, the wave is called randomly polarized or unpolarized. In the case of 
some man-made sources, such as lasers and radio/radar transmitters, the wave 
usually has a well-defined polarized state. 

Another way to describe the polarization of a wave that is particularly 
appropriate for the case of partially polarized waves is through the use of the 
Stokes parameters of the wave. For a monochromatic wave, these four 
parameters are defined as 

 
( )
( )

2 2
0

2 2
1

2

2

2 cos
2 sin

h v

h v

h v h v

h v h v

S a a

S a a
S a a
S a a

δ δ
δ δ

= +

= −
= −
= −

. (2.1-4) 

Note that for such a fully polarized wave, only three of the Stokes parameters 
are independent, since S 2 2 2 2

0 1= S + S S2 3+ . Using the relations in Eq. (2.1-3) 
between the ellipse orientation and ellipticity angles and the wave amplitudes 
and relative phases, it can be shown that the Stokes parameters can also be 
written as 

 
1 0

2 0

3 0

cos 2 cos 2
cos2 sin 2
sin 2

S S
S S
S S

χ ψ
χ ψ
χ

=
=
=

. (2.1-5) 

If two ellipse orientations differ by 90 deg and the handedness of the ellipses 
are opposite (that is, the ellipticity angles are equal but of opposite sign), it 
follows from Eq. (2.1-5) that the Stokes parameters of two orthogonally 
polarized waves are the same magnitudes, but opposite in sign. 

The relations in Eq. (2.1-5) lead to a simple geometric interpretation of 
polarization states. The Stokes parameters S1 , S2  and S3  can be regarded as 
the Cartesian coordinates of a point on a sphere, known as the Poincaré sphere, 
of radius S0  (see Fig. 2-2). There is, therefore, a unique mapping between the 
position of a point in the surface of the sphere and a polarization state. Linear 
polarizations map to points on the equator of the Poincaré sphere, while the 
circular polarizations map to the poles. Orthogonal polarizations are anti-podal 
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Fig. 2-2. Polarization represented as a point on the Poincaré sphere. 

on the Poincaré sphere, which means they lie on opposite sides of the sphere 
and the line connecting the orthogonal polarizations runs through the center of 
the sphere. See, for example, the positions of horizontally and vertically 
polarized linear polarizations or the two circular polarizations in Fig. 2-2. 

In the case of partially polarized waves, all four Stokes parameters are required 
to fully describe the polarization of the wave. In general, the Stokes parameters 
are related by S2 2 2 2

0 1≥ S S+ 2 + S3 , with equality holding only for fully polarized 
waves. In the extreme case of an unpolarized wave, the Stokes parameters are 
S0 > 0  and S S1 2= = S3 = 0 . It is always possible to describe a partially 
polarized wave by the sum of a fully polarized wave and an unpolarized wave. 

The magnitude of the polarized wave is given by S 2 2 2
1 + S S2 3+ ; the 

magnitude of the unpolarized wave is S 2 2 2
0 − S S1 + 2 3+ S . Finally, it should 

be pointed out that the Stokes parameters of an unpolarized wave can be written 
as the sum of two fully polarized waves, as follows: 
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    
     −     = +
     −
    

−     

. (2.1-6) 

These two fully polarized waves have orthogonal polarizations. This important 
result shows that when an antenna with a particular polarization is used to 
receive unpolarized radiation, the amount of power received by the antenna will 
be only that half of the power in the unpolarized wave that aligns with the 
antenna polarization. The other half of the power will not be absorbed because 
its polarization is orthogonal to that of the antenna. 

2.2 Mathematical Representations of Scatterers 
If a radiated electromagnetic wave is scattered by an object and one observes 
this wave in the far-field of the scatterer, the scattered wave can, again, be 
adequately described by a two-dimensional vector. In this abstract way, one can 
consider the scatterer as a mathematical operator that takes one two-
dimensional complex vector (the wave impinging upon the object) and changes 
that into another two-dimensional vector (the scattered wave). Mathematically, 
therefore, a scatterer can be characterized by a complex 2 × 2 scattering matrix: 

 [ ]hh hvsc tr tr

vh vv

S S
S S

 
= = 
 

E E S E  (2.2-1) 

where Etr  is the electric field vector that was transmitted by the radar antenna, 
[S]  is the 2 × 2 complex scattering matrix that describes how the scatterer 

modified the incident electric field vector, and Esc is the electric field vector 
that is incident on the radar receiving antenna. This scattering matrix is also a 
function of the radar frequency and the viewing geometry. The scatterer can, 
therefore, be thought of as a polarization transformer, with the transformation 
given by the scattering matrix. Once the complete scattering matrix is known 
and calibrated, one can synthesize the radar cross-section for any arbitrary 
combination of transmit and receive polarizations.  

Fig. 2-3 shows a number of such synthesized images for the San Francisco Bay 
area in California. The data were acquired with the NASA/JPL AIRSAR 
system. 
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To specify the polarization vectors and electric field vectors, we need to define 
the radar coordinate system. In this book, we will use the backscatter alignment 
coordinate system as shown in Fig. 2-4; this is the coordinate system in which 
radar measurements are performed. (See Ulaby and Elachi, [1], Chapter 2, for a 
more detailed discussion of coordinate systems.) 

The voltage measured by the radar system is proportional to the scalar product 
of the radar antenna polarization and the incident wave electric field, i.e.: 

 [ ]rec tr
aV c= ⋅p S p , (2.2-2) 

where ptr  and prec  are the normalized polarization vectors describing the 
transmitting and receiving radar antennas expressed in the backscatter 
alignment coordinate system, and ca  is a factor that includes the transmitting 
antenna gain, the receiving antenna effective area and the distance to the 
scatterer (see the derivation of the radar equation in Chapter 1). For our 
purposes here, we are interested in the properties of the scatterer, so we shall 

ˆ
rk

ˆ
th

ˆ tv

ˆ
tk

ˆ rv
ˆ

rhẑ

ŷ

x̂

iφ

sφ

sθ
iθ

 
Fig. 2-4. A backscatter alignment coordinate system. Notice that the transmitting 
and receiving polarizations coincide for the backscattering case where the 
transmitting and receiving antennas are located at the same place. 
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ignore ca  in the rest of the discussion. The power received by the radar is the 
magnitude of the voltage squared (Kennaugh [2]; Kostinski and Boerner [3]; 
van Zyl et al. [4]; Zebker et al. [5]: 

 [ ]
2* rec trP VV= = ⋅p S p . (2.2-3) 

Expanding the expression inside the magnitude sign in Eq. (2.2-3), it can be 
shown that the received power can also be written in terms of the scatterer 
covariance matrix, as follows: 

 ( )( ) [ ] [ ]** * * * *;P VV= = = = ⋅ =AT TA ATT A A C A C TT    ,  (2.2-4) 

where A~ = (p rec tr rec tr rec tr
h p tr p rec

h h pv pv ph pv pv ) represents the transpose of 

the antenna polarization vector elements and T~ = (Shh Shv Svh Svv )  
represents only the scatterer. The superscript * denotes complex conjugation. 
The covariance matrix characterization is particularly useful when analyzing 
multi-look radar images, since the covariance matrix of a multi-look pixel is 
simply the average covariance matrix of all the individual measurements 
contained in the multi-look pixel.   

Recall that multi-looking is performed by averaging the power from adjacent 
pixels together to reduce speckle. This averaging process can be written as 

 [ ] [ ]* *

1 1 1 1

1 1M N M N
ij ij

j i j i
P P C

MN MN= = = =
= = ⋅ = ⋅∑∑ ∑∑A A A C A , (2.2-5) 

where the two subscripts denote averaging in the range and azimuth directions, 
respectively. The angular brackets  denote this spatial averaging. 

Eq. (2.2-4) shows the covariance matrix to be a 4 × 4 complex Hermetian 
matrix. In the case of radar backscatter, reciprocity dictates that S Shv = vh  and 
the covariance matrix can, in general, be written as a 3 × 3 complex Hermetian 
matrix. Also note that it is always possible to calculate the covariance matrix 
from the scattering matrix. However, the inverse is not true: it is not always 
possible to calculate an equivalent scattering matrix from the covariance matrix. 
This follows from the fact that the off-diagonal terms in the covariance matrix 
involve cross-products of the scattering matrix elements (for example, S S*

hh hv ). 
For a single scattering matrix, there is a definite relationship between this term 
and the two diagonal terms S S*

hh hh  and S *
hvShv . However, once the covariance 
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matrix elements are averaged spatially (such as during multi-looking of an 
image), this definite relationship no longer holds and we cannot uniquely find 
an equivalent hhS  and hvS  that would satisfy all three cross-products 

*
hh hvS S , *

hh hhS S , and *
hv hvS S . 

The power expression shown in Eq. (2.2-3) can also be written in terms of the 
antenna Stokes vectors. First, consider the following form of the power 
equation (van Zyl [6]; van Zyl et al. [7]): 

 

( )( )
( )( )
( )( ) ( )( )
( )( ) ( )( )

*

*

* * * *

* * * *

*

*

*

*

rec sc rec sc

rec sc rec sc rec sc rec sc
h h v v h h v v

rec rec sc sc rec rec sc sc
h h h h v v v v

rec rec sc sc rec rec sc sc
h v h v v h v h

rec rec
h h
rec rec
v v
rec rec
h v
rec rec
v h

P

p E p E p E p E

p p E E p p E E

p p E E p p E E

p p

p p

p p

p p

= ⋅ ⋅

= + +

= +

+ +

 
 
 

= 


 

p E p E

*

*

*

*

sc sc
h h
sc sc
v v
sc sc
h v
sc sc
v h

rec

E E

E E

E E

E E

 
 
 
⋅  
  
    
 

= ⋅g X

. (2.2-6) 

Here, the vector X in Eq. (2.2-6) is a function of the transmit antenna 
parameters and the scattering matrix elements. Using the fact that [ ]sc tr=E S p , 

it can be shown that [ ] tr=X W g , where 

 [ ]

* * * *

* * * *

* * * *

* * * *

hh hh hv hv hh hv hv hh

vh vh vv vv vh vv vv vh

hh vh hv vv hh vv hv vh

vh hh vv hv vh hv vv hh

S S S S S S S S

S S S S S S S S

S S S S S S S S

S S S S S S S S

 
 
 

=  
 
  
 

W . (2.2-7) 

Therefore, the measured power can be expressed as 

 [ ]rec trP = ⋅g W g . (2.2-8) 
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The Stokes vector of a wave can be written as 

 [ ]

* * *

* * *

* * *

* * *

1 1 0 0
1 1 0 0
0 0 1 1
0 0( )

h h v v h h

h h v v v v

h v h v h v

h v h v h v

p p p p p p

p p p p p p

p p p p p p
i ii p p p p p p

   +     
    − − = = =   
    +     −    − −   

S R g . (2.2-9) 

From Eq. (2.2-9), [ ] 1−=g R S . Then, after straightforward calculations, it can 
be shown that 

 [ ]rec trP = ⋅S M S . (2.2-10) 

The matrix [ ]M  is known as the Stokes scattering operator and is given by 

 [ ] [ ] [ ][ ]1 1T− − =   
M R W R , (2.2-11) 

where the superscript T indicates the transpose of the matrix. Note that, like the 
covariance matrix, the average power can be written in terms of the average 
Stokes scattering operator. 

2.3 Implementation of a Radar Polarimeter 
Polarimetric radars must measure the full scattering matrix to preserve the 
information regarding the scatterer. From Eq. (2.2-2), it can be seen that setting 
one transmit vector element equal to zero allows us to measure two components 
of the scattering matrix at a time. Mathematically, this operation is expressed as 

 
1 0

;
0 1

tr tr
hh hh hv hv hh hv

vh vh vv vv vh vv

S S S S S S
S S S S S S

          
= =          

          
. (2.3-1) 

Eq. (2.3-1) represents the typical implementation of a radar polarimeter: that is, 
a radar polarimeter transmits a wave of one polarization and receiving echoes in 
two orthogonal polarizations simultaneously. This is followed by transmitting a 
wave with a second polarization and, again, receiving echoes with both 
polarizations simultaneously (as is shown in Fig. 2-5). In this way, all four 
elements of the scattering matrix are measured. This implementation means that 
the transmitter is in slightly different positions when measuring the two 
columns of the scattering matrix, but this distance between the two positions is 
typically small compared to a synthetic aperture and, therefore, does not lead to 
a significant decorrelation of the signals. The more important aspect of this 
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Fig. 2-5. A polarimetric radar is implemented by alternatively transmitting signals out of 
horizontally and vertically polarized antennas and receiving at both polarizations 
simultaneously. Two pulses are needed to measure all the elements in the scattering matrix. 

implementation is that the pulse repetition frequency (PRF) must be high 
enough to ensure that each polarimetric channel is sampled adequately. 
Therefore, each channel must independently satisfy the minimum PRF 
requirement. Since we are interleaving two measurements, this means that the 
master PRF for a polarimetric system runs twice the rate of a single-channel 
SAR. The NASA/JPL AIRSAR system pioneered this implementation for SAR 
systems. Subsequently, the same implementation was used in the SIR-C part of 
the SIR-C/X-SAR radars. 

A polarimetric SAR implemented in this fashion actually acquires four images: 
one each for the horizontal-horizontal (HH), horizontal-vertical (HV), vertical-
horizontal (VH), and vertical-vertical (VV) combinations. The basic 
measurement for each pixel in the highest resolution image is, therefore, a 
complete scattering matrix, or four complex numbers. If the SAR operates in 
the backscatter mode, reciprocity dictates that hv vhS S=  and that there are only 
three independent images. In practice, the HV and VH measurements are made 
at different times and through different receivers, so thermal noise in the system 
will cause these numbers to be different. Once the channels are properly 
calibrated, any remaining differences are due to thermal noise. Therefore, one 
could, in fact, average these two channels together coherently to increase the 
signal-to-noise ratio in the cross-polarized image. After this operation, one is 
left with three independent complex numbers per pixel. 

As discussed in the previous chapter, all SAR images suffer from speckle noise, 
which is the result of coherent interference from individual scatterers that might 
be present inside a pixel. To reduce this speckle noise, the power from adjacent 
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pixels are averaged; this process is known as multi-looking. We have shown in 
Eq. (2.2-5) that all the polarimetric information can be retained by performing 
this multi-looking operation by averaging the covariance matrices of adjacent 
pixels. A similar operation follows from Eq. (2.2-10) for the Stokes scattering 
operator case, as follows: 

 [ ] [ ]
1 1 1 1

1 1M N M N
rec tr rec tr

m ij ij
j i j i

P P P
MN MN= = = =

= = = ⋅ = ⋅∑∑ ∑∑S M S S M S . (2.3-2) 

This multi-looking operation can be done once; all subsequent analyses would 
then be performed on the multi-looked data set. In fact, the polarimetric data 
from the NASA/JPL AIRSAR system is distributed in a multi-looked format 
with some special compression formatting to reduce the data volume further. 
The multi-looked polarimetric data from the SIR-C radar was distributed as 
cross-products of the scattering matrix, which are the elements of the 
covariance matrix. 

Polarimetric SAR systems place additional restrictions on the pulse repetition 
frequency (PRF) used to operate the radar. Each transmit polarization channel 
must satisfy the normal constraints imposed on SAR systems using a single 
transmit polarization. The result is that polarimetric systems operate with a 
master PRF that runs twice as fast as that of a single transmit channel SAR. 
Additionally, the range ambiguities of a polarimetric SAR system are more 
complicated than those of a single channel SAR. In the HV channel, for 
example, one would measure ambiguous signals from the next and the previous 
pulses (in fact, at all odd numbers of ambiguous pulses) at HH. Given that HV 
is usually much smaller than HH to begin with, we then have to place even 
more stringent requirements on the overall ambiguity levels to measure HV 
accurately in the presence of the ambiguities. This severely limits the useful 
swath width that can be achieved with polarimetric SAR systems from space. 

One way to achieve much of the desirable information from a polarimetric 
measurement with reduced requirements on the PRF and the ambiguity level is 
to use so-called compact polarimetry (Souyris et al. [8]). Compact polarimetry 
essentially is a special, dual-polarization mode in which one polarization only is 
transmitted and two orthogonal polarizations are used to measure the return. In 
the original mode proposed by Souyris et al. [8], a 45 deg linear polarization 
signal is transmitted and horizontal and vertical polarizations are used to 
receive the signal. In this case, the received signal is simply 

 ( ) ( )1 1;
2 2h hh hv v vh vvV S S V S S= + = + . (2.3-3) 

The average covariance matrix is then 
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* * * *

* * * *
1
2

hh hh hv hv hh vv hv hv
p

vv hh hv hv hv hv vv vv

S S S S S S S S
C

S S S S S S S S

 + +   ≈   
+ + 

 

. (2.3-4) 

In deriving this covariance matrix, we have assumed that the terrain exhibits 
reflection symmetry. Compact polarimetry allows us to relax the requirements 
on the PRF to be the same as that of a conventional SAR system. Compact 
polarimetry also balances the ambiguity levels better than that of a regular 
polarimetric system. The drawback, of course, is that we no longer have “pure” 
measurements of co-polarized and cross-polarized terms. Instead, we have 
mixtures of co- and cross-polarized terms in all components of the covariance 
matrix. 

Following the original proposed compact polarimetry mode, Raney [9] 
suggested transmitting circular polarization to be more advantageous in the 
presence of Faraday rotation. The basic expressions are similar to those derived 
above, however, and will not be repeated here. 

2.4 Polarization Response 
Once the scattering matrix, the covariance matrix, or the Stokes matrix is 
known, one can synthesize the received power for any transmit and receive 
antenna polarizations using the power equations ((Eq. (2.2-3), Eq. (2.2-4), and 
Eq. (2.2-10)). This is known as polarization synthesis and is discussed in more 
detail in Chapter 2 of Ulaby and Elachi [1]. Note that if we allow the 
polarization of the transmit and receive antennas to be varied independently, the 
polarization response of the scene would be a four-dimensional space. This is 
most easily understood by representing each of the two polarizations by the 
orientation and ellipticity angles of the respective polarization ellipses. The 
polarization response is, therefore, a function of these four angles. Visualizing 
such a four-dimensional response is not easy. To simplify the visualization, the 
so-called polarization response (van Zyl [6]; Agrawal and Boerner [10]; Ulaby 
and Elachi [1]) was introduced. The polarization response is displayed as a 
three-dimensional figure, and the transmit and receive polarizations are either 
the same (the co-polarized response) or they are orthogonal (the cross-polarized 
response). One can also display the maximum or minimum received power as a 
function of transmit polarization or the polarized and unpolarized component of 
the power using this same display. Agrawal and Boerner [10] also used this 
method to display the relative phase of the received signal as a function of 
polarization. 

We shall introduce the polarization response through the example of a trihedral 
corner reflector that has been used extensively for the polarimetric radar 



Basic Principles of SAR Polarimetry 43 

 (a) (b)

ˆ tv

ˆ
th

l

Fig. 2-6. (a) A trihedral corner reflector is being deployed at the calibration site.  
(b) The trihedral corner reflector geometry.  

calibration. A picture of a trihedral corner reflector is shown in Fig. 2-6. The 
scattering matrix of a trihedral corner reflector is given by 

 [ ] 1
1 0
0 1

c  
=  

 
S , (2.4-1) 

k l2
where c 0

1 = . From Eq. (2.4-1), the characteristics of a trihedral corner 
12π

reflector are: 

1. No cross polarization components are generated (HV = VH = 0) for the 
linear polarization case. 

2. Horizontal and vertical backscattering cross sections are identical  
(HH = VV). 

3. Horizontal and vertical co-polarized components are in phase. 

These are the desired properties of a calibration target to balance the co-
polarized elements (i.e., the diagonal terms) of the scattering matrix. In 
addition, trihedral corner reflectors provide relatively large radar cross sections 
with a large, 3-dB beamwidth independent of the radar wavelength and the 
corner reflector size. 

From Eq. (2.4-1), Eq. (2.2-4), and Eq. (2.2-11), we can calculate the covariance 
matrix and the Stokes scattering operator as 
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 [ ] 2
1

1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

c

 
 
 =
 
 
 

C  (2.4-2) 

and 

 [ ] 2
1

1 0 0 0
0 1 0 01
0 0 1 02
0 0 0 1

c

 
 
 =
 
 

− 

M . (2.4-3) 

Using Eq. (2.2-10) and Eq. (2.4-3), the received power can be calculated 
explicitly, as shown in Eq. (2.4-4) for the case of co-polarized and cross-
polarized antennas: 
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( ) ( ){ }
( ){ }
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2
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1 cos 2 sin 2
24
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24

k lP

k l

k l

ψ χ ψ χ χ
π

χ χ
π

χ
π

= ± ±

 = ± − 

= ±



, (2.4-4) 

where the top sign is for the co-polarization case and the bottom sign is for the 
cross-polarization case. (Recall that orthogonally polarized waves are anti-
podal on the Poincaré sphere.) The ellipse orientation and ellipticity angles 
refer to those of the transmitting antenna. It is immediately apparent that the 
received power is independent of the ellipticity angle. Taking the derivative 
with respect to the ellipse orientation angle, it is easily shown that for the co-
polarized response, the maximum is found when χ = 0  (linear polarizations) 
and the minimum occurs at χ = 45°  (circular polarizations). The locations of 
the maxima and minima are reversed in the case of the cross-polarized 
response. This behavior is explained by the fact that the reflected waves have 
the opposite handedness than the transmitted ones when analyzed in the 
backscatter alignment coordinate system. Therefore, if either circular 
polarization is transmitted, the reflected wave is polarized orthogonally to the 
transmitted wave, leading to maximum reception in the cross-polarized and 
minimum reception in the co-polarized case. 
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The co- and cross-polarized responses are shown in Fig. 2-7. These three-
dimensional displays show the normalized radar cross-section (power) in the 
vertical direction plotted as a function of the transmitting antenna ellipse 
orientation and ellipticity angles. For co-polarized responses, the receiving 
antenna has the same polarization as that of the transmitting antenna. The left-
hand figure in Fig. 2-7 shows the positions of some of the more common 
antenna combinations for this type of display. For the cross-polarized response, 
the receiving antenna polarization is orthogonal to that of the transmitting 
antenna. Some of the common combinations are shown on the right in Fig. 2-7. 
Note that the displays in Fig. 2-7 confirm what we already discussed using 
Eq. (2.4-4). First, the received power is not a function of the ellipse orientation 
angle, as seen by the constant value of the radar cross-section in Fig. 2-7 for 
changing ellipse orientation. The maximum of the co-polarization signature 
occurs for the linear polarizations, and the minima at the circular polarizations. 
For the cross-polarization response, the maxima occur at the circular 
polarizations, while the minima occur at the linear polarizations. 

A slightly different display of the polarization response involves displaying the 
normalized radar cross-section in spherical coordinates using the Poincaré 
sphere. The polarization is defined by the angles as shown in Fig. 2-2, but the 
radius is plotted as the normalized received power. This three-dimensional 
version of the polarization responses for the trihedral corner reflector is shown 
in Fig. 2-8. The co-polarized response clearly shows the nulls at the circular 
polarizations; the cross-polarized response shows the corresponding maximum 
for the circular polarizations. 

The second example of polarization responses is that of a dihedral corner 
reflector, shown in Fig. 2-9. The scattering matrix of a dihedral corner reflector 

 
Fig. 2-7. The polarization response of a trihedral corner reflector. Two responses are 
displayed: (right) identical transmit and receive polarizations (co-polarized) and (left) 
orthogonal transmit and receive polarizations (cross-polarized). 
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Fig. 2-8. Three-dimensional polarization response of a trihedral corner reflector. 

 
Fig. 2-9. A dihedral corner reflector. 

 
is given by 

 [ ] 2
1 0
0 1

c  
=  − 

S , (2.4-5) 

k
where 0abc2 = . From Eq. (2.4-5), we find the following characteristics for a 

π
dihedral corner reflector: 

1. No cross polarization components are generated (HV = VH = 0) when it is 
illuminated by a purely horizontal or vertical radar signal. 

2. Horizontal and vertical backscattering cross sections are identical  
(HH = VV). 

3. Horizontal and vertical co-polarization components are out of phase. 
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From Eq. (2.4-5), we can calculate the covariance matrix and the Stokes 
scattering operator as 

 [ ] 2
2

1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

c

− 
 
 =
 
 
− 

C  (2.4-6) 

and 

 [ ] 2
2

1 0 0 0
0 1 0 01
0 0 1 02
0 0 0 1

c

 
 
 =
 −
 
 

M . (2.4-7) 

The received power from a dihedral corner reflector for the co- and cross-
polarized cases can be written as 

 ( ) ( ) ( ) ( ) ( ){ }

( ) ( ) ( ){ }

2 2 2
2 2 2 2 20

2

2 2 2
2 20

2

1 cos 2 cos 2 sin 2 cos 2 sin 2

1 cos 2 cos 4 sin 2

k a bP

k a b

ψ χ ψ χ χ
π

χ ψ χ
π

= ± ±

= ± ±


. (2.4-8) 

Taking the derivatives of this expression, one finds that the co-polarized 
maxima occur at horizontal linear, vertical linear, and the circular polarizations. 
The co-polarized minima occur at 45 deg and 135 deg linear polarizations. The 
cross-polarized maxima occur at the same polarizations as the co-polarized 
minima. The cross-polarized minima occur at the same polarizations as the co-
polarized maxima. This information allows us to conclude that the minima 
observed in these responses occur because the polarization of the received wave 
is orthogonal to that of the transmitting antenna. 

Figure 2-10 shows the co- and cross-polarized responses of the dihedral corner 
reflector. Note that the minima in one figure correspond to the maxima in the 
other. While not obvious when comparing Fig. 2-7 and the top row in Fig. 2-10, 
a comparison of Fig. 2-8 and the bottom row of Fig. 2-10 clearly shows that the 
polarization responses of the dihedral and trihedral corner reflectors are rotated 
versions of each other in the Poincaré space. In fact, the responses of the 
dihedral corner reflector are exactly those of the trihedral rotated 90 deg about 
the S1  axis. In that sense, we can consider these responses as “orthogonal” to 
each other. 
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Fig. 2-10. Standard (top row) and three-dimensional (bottom row) polarization responses  

of a dihedral corner reflector. 

Next, consider the case of a dihedral corner reflector, such as the one showed in 
Fig. 2-9; for this case, however, we rotate the base of the corner reflector 45 
deg relative to the horizontal axis. Consequently, the scattering matrix becomes 

 [ ] 2
0 1
1 0

c  
=  

 
S , (2.4-9) 

k0ab
where c2 = , as before. The covariance matrix and the Stokes scattering 

π
operator are 
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 [ ] 2
2

0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

c

 
 
 =
 
 
 

C  (2.4-10) 

and 

 [ ] 2
3

1 0 0 0
0 1 0 01
0 0 1 02
0 0 0 1

c

 
 − =
 
 
 

M . (2.4-11) 

The received power from a rotated dihedral corner reflector for the co- and 
cross-polarized cases can be written as 

 ( ) ( ) ( ) ( ) ( ){ }

( ) ( ) ( ){ }

2 2 2
2 2 2 2 20

2
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1 cos 2 cos 2 sin 2 cos 2 sin 2

1 cos 2 cos 4 sin 2
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
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. (2.4-12) 

The polarization responses for this rotated dihedral corner reflector are shown 
in Fig. 2-11. Note that the cross-polarized maxima are now at HV and VH, with 
corresponding zeros at HH and VV. The three-dimensional signature in 
Fig. 2-11 shows that the responses of this rotated dihedral are the same shape as 
those of the trihedral, but rotated by 90 deg about the S2  axis. They are in some 
sense “orthogonal” to the responses of both the trihedral and the non-rotated 
dihedral. 

The scattering from vegetation is often modeled using a combination of 
randomly oriented cylinders. For the short, thin, vertical-conducting cylinder 
shown in Fig. 2-12, the scattering matrix is given by 

 [ ] 3
0 0
0 1

c  
=  

 
S , (2.4-13) 

k l2 3
where c 0

3 =  and a is the radius of a cylinder. 
6  −  ln (4l a/ ) 1

From Eq. (2.4-13), we can calculate the covariance matrix and the Stokes 
scattering operator as  
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Fig. 2-11. Standard (top row) and three-dimensional (bottom row) polarization responses of  
a dihedral corner reflector rotated by an angle of 45 deg relative to the horizontal direction. 

 [ ] 2
3

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

c

 
 
 =
 
 
 

C  (2.4-14) 

and 

 [ ]
2

3

1 1 0 0
1 1 0 0
0 0 0 04
0 0 0 0

c
− 

 − =
 
 
 

M . (2.4-15) 
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Fig. 2-12. A short, thin vertical 
conducting cylinder. The length of a 
cylinder is l. 

The corresponding polarization responses are shown in Fig. 2-13. Note that 
both the co-polarized response is zero for HH polarization and the cross-
polarized response is zero for VH polarization. This is the first example where 
both the co- and cross-polarized responses are zero for a given transmit 
polarization (horizontal polarization in this case). The reason for this is that 
when we transmit a horizontally polarized wave at this scatterer, there is no 
coupling to the cylinder and no scattered wave. Contrast this with the case of 
Fig. 2-11 for a horizontally polarized wave. The co-polarized response is zero, 
but the cross-polarized response is a not. This means that the scattered wave is 
non zero, but polarized orthogonally to the transmitted wave, and, hence, the 
maximum in the cross-polarized response. 

Next, let us consider the case of a short, thin cylinder oriented at 45 deg from 
the vertical direction shown in Fig. 2-14. In this case, the scattering matrix is 
given by 

 [ ] 3 1 1
1 12

c − 
=  − 

S , (2.4-16) 

k l2 3
where c3 =

0  and a is the radius of a cylinder. 
6 ln (4l a/ ) −  1

From Eq. (2.4-16), we can calculate the covariance matrix and the Stokes 
scattering operator as 
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Fig. 2-13. The polarization responses of a short, thin, vertically oriented 

 conducting cylinder. 
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and 

 [ ]
2

3

1 0 1 0
0 0 0 0
1 0 1 04
0 0 0 0

c
− 

 
 =
 −
 
 

M . (2.4-18) 

The corresponding polarization response is shown in Fig. 2-15. Note that the 
position of the maximum in the co-polarized responses has shifted to be at 45 
deg linear polarization. This indicates that the polarization response is sensitive 
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Fig. 2-14. A short, thin conducting 
cylinder oriented at 45 deg from the  
vertical direction. The length of a 
cylinder is l. 

to the orientation of the short cylinder; we will exploit this fact when analyzing 
scattering from vegetation. Also, note that the cross-polarized response in 
Fig. 2-15 has the same shape as the co-polarized response in Fig. 2-10. This 
illustrates an important point: these polarization responses are not unique. In 
fact, these responses represent only a subset of the entire polarization space, 
and it is possible that more than one type of scatterer might have the same 
response. It would, therefore, be a mistake to consider the polarization 
responses as a unique way of identifying a specific type of scatterer. 

Thus far, we have discussed only cases where the scatterer is characterized by a 
unique, single scattering matrix. In those cases, we have shown theoretically 
(we shall discuss this in more detail later) that the co-polarized and cross-
polarized responses will each have at least one polarization for which the 
measured power goes to zero. When we analyze multi-looked data, however, 
we are working with the average power received from a collection of pixels. 
The composite polarization response can be thought of as the (properly 
normalized) sum of the individual polarization responses representing 
individual pixels. Unless all the individual responses have their null responses 
at exactly the same polarization, the composite signal will no longer have a null 
polarization. Instead, there might be some polarization for which the composite 
radar return is a minimum, but not zero. 

To illustrate this further, let us consider the case of randomly oriented 
cylinders. This model has been used to describe scattering from randomly 
oriented tree branches that are thin compared to the radar wavelength. We shall 
start with a thin, conducting cylinder oriented at an angle α  with respect to the 
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. (2.4-20) 

 
Fig. 2-15. The polarization response of a short, thin conducting cylinder oriented at 45 deg 
from the vertical direction. Note the difference between the responses in this figure and the 
responses shown in Fig. 2-13 for the vertically oriented cylinder. 

vertical axis. The scattering matrix can be calculated by considering the rotation 
of the local coordinate axes defining the cylinder orientation, resulting in 

 3
cos sin 0 0 cos sin
sin cos 0 1 sin cos

hh hv

vh vv

S S
c

S S
α α α α
α α α α

−       
=       −      

. (2.4-19) 

Here we assume that the cylinder lies in a plane that is orthogonal to the 
direction in which the radar waves travel. After straightforward matrix 
multiplications, the scattering matrix can be written as 

 
2

3 2
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To illustrate the affect of randomness on the polarization response, we shall 
now analyze two different cases. In the first case, we assume that the cylinders 
are oriented uniformly randomly; i.e., we assume that α  to be a random 
variable with a uniform distribution over [0,2π]. In this case, we find that 
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. (2.4-21) 

The covariance matrix for this case is 

 [ ] 2
3

3 8 0 0 1 8
0 1 8 1 8 0
0 1 8 1 8 0

1 8 0 0 3 8

c

 
 
 =
 
 
 

C . (2.4-22) 

The Stokes scattering operator is 

 [ ] 2
3

1 4 0 0 0
0 1 8 0 0
0 0 1 8 0
0 0 0 0

c

 
 
 =
 
 
 

M . (2.4-23) 

The polarization responses for this cloud of randomly oriented cylinders are 
shown in Fig. 2-16. Comparing these responses to those of the trihedral corner 
reflector, it is clear that they are similar except for the addition of a “pedestal” 
on which the responses sit. This “pedestal height” can be defined as the ratio of 
the minimum power in the response to the maximum power in the response. 
Using this definition, the pedestal height of a single scatterer will be zero, while 
the pedestal height for this example of the randomly oriented cylinders will be a 
non-zero value between 0 and 1. Therefore, the pedestal height can be used to 
infer the amount of randomness exhibited by multi-looked pixels. 

To illustrate this point further, let us look at a second example involving the 
thin cylinders. Instead of assuming a uniform distribution in the angle α , we 
shall assume that the cylinders are mostly vertically oriented in a plane 
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Fig. 2-16. Polarization responses of a cloud of thin conducting cylinders that are oriented 
uniformly randomly in a plane orthogonal to the radar look direction. Note that these shapes 
are similar to those shown for the trihedral corner reflector, except that the nulls in the 
responses have been replaced by non-zero minima. 

orthogonal to the direction in which the radar signal is propagating. We shall 
assume the following probability density function for the cylinders: 

 ( ) 21 cos ; 0 2p α α α π
π

= ≤ ≤ . (2.4-24) 

This distribution has been used to describe scattering from vegetation, such as 
grass or wheat, which grows mostly vertically. Performing the averaging, we 
find 
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The covariance matrix for this case is 

 [ ] 2
3

1 8 0 0 1 8
0 1 8 1 8 0
0 1 8 1 8 0

1 8 0 0 5 8

c

 
 
 =
 
 
 

C . (2.4-26) 

The Stokes scattering operator is 

 [ ] 2
3

1 4 1 8 0 0
1 8 1 8 0 0

0 0 1 8 0
0 0 0 0

c

− 
 − =
 
 
 

M
. (2.4-27) 

The polarization responses for this cloud of randomly oriented cylinders are 
shown in Fig. 2-17. Compare the co-polarized response in the top left to that of 
a single, vertically oriented cylinder as shown in Fig. 2-13. These two 
responses are quite similar, with the exception that the response in Fig. 2-17 has 
a pedestal added to it. The relative height of this pedestal in the co-polarized 
response in Fig. 2-17 is 20 percent; however, the pedestal in Fig. 2-16 is 66 
percent, clearly indicating the relationship between pedestal height and 
randomness. 

So far, we have assumed that all the matrices are measured without any noise 
added to the measurements. In reality, of course, this is not the case. Before 
looking at the effect of system thermal noise on these responses, however, let 
us first examine the case of noise only. As mentioned in the previous section, 
scattering matrices are measured using two transmit pulses and two 
independent receiver channels. 

Because measurements in a particular receiver are made at different times, and 
because the pulse repetition frequency is low enough so that the time between 
pulses (i.e., measurements) is much longer than the noise coherence time, the 
noise measurements in the four images corresponding to the scattering matrix 
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Fig. 2-17. Polarization responses for a cloud of dipoles with orientations according to the 
statistical distribution shown in Eq. (2.4-24). Note the similarity with the responses of a 
single, vertically oriented cylinder shown in Fig. 2-13, except for the addition of a pedestal. 
Also note the relative size of the pedestal in this figure, as compared to that of a uniform 
random orientation distribution shown in Fig. 2-16. 

elements can be considered statistically independent. We shall further assume 
that the data, including the noise-only data, are well calibrated such that the 
channels are properly balanced in amplitude. In the absence of a return signal, 
after averaging, the covariance matrix will be an identity matrix, and the 
corresponding Stokes scattering operator will be 

 [ ]

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

nP

 
 
 =
 
 
 

M . (2.4-28) 

This means, as expected, that the polarization response of a noise-only 
measurement is a constant value, independent of the transmit or receive 



Basic Principles of SAR Polarimetry 59 

polarization. These polarization responses are shown in Fig. 2-18. Note that, in 
this case, the pedestal height is 100 percent. 

In the backscatter case, reciprocity dictates that the two cross-polarized 
measurements should be identical. In practice, they differ because of the 
additive thermal noise in the receiver channels. As mentioned in the previous 
section, we can exploit the fact that the two cross-polarized measurements are 
made through different receivers and at different times, resulting in 
uncorrelated noise. If we average these two measurements before multi-
looking, the noise power is effectively halved. Assuming that the noise power 
in each channel is Pn , the resulting noise power in the averaged cross-polarized 
channel will be 

 
Fig. 2-18. The polarization responses of noise-only measurements when the noise power is 
identical in the two receiver channels. It is assumed that the cross-polarized channels are 
not averaged to increase the signal-to-noise ratio. 
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. (2.4-29) 

The superscript m is added to indicate individual noise measurements. The 
second and third terms are zero because the noise in the two channels is 
uncorrelated. In this case, the covariance matrix is 

 [ ]

1 0 0 0
0 1 2 1 2 0
0 1 2 1 2 0
0 0 0 1

nN P

 
 
 =
 
 
 

C  (2.4-30) 

and the Stokes scattering operator is 

 [ ]

3 4 0 0 0
0 1 4 0 0
0 0 1 4 0
0 0 0 1 4

nN P

 
 
 =
 
 
 

M . (2.4-31) 

The polarization responses of this case are shown in Fig. 2-19. Note that the 
pedestal is still 100 percent, but the cross-polarized responses are now less than 
the co-polarized ones. 

To illustrate the effect of system noise on the polarization signatures, we note 
that the thermal noise and the radar signal are uncorrelated. The measured 
scattering matrix for each pixel can be written as 

 [ ] [ ] [ ]m = +S S N . (2.4-32) 

The first term on the right is the actual scattering matrix; the second term 
represents thermal noise in the system. Since the signal and noise are 
uncorrelated, the multi-looked covariance matrix is 

 [ ] [ ] [ ]m N= +C C C  (2.4-33) 
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Fig. 2-19. Polarization responses of noise-only measurements when the cross-polarized 
channels are averaged before multi-looking to increase the signal-to-noise ratio in those 
channels. 

and the multi-looked Stokes scattering operator is 

 [ ] [ ] [ ]m N= +M M M . (2.4-34) 

The noise matrices are the same as those in Eq. (2.4-30) and Eq. (2.4-31). The 
composite polarization response in the presence of noise will, therefore, be the 
sum of the actual scatterer response and that of the system noise. Since the 
system noise response is just a pedestal, the presence of the system noise will 
simply add a pedestal to the scatterer response. This is illustrated for the case of 
a vertically oriented thin cylinder with different amounts of thermal noise 
present in Fig. 2-20. 
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Fig. 2-20. Co-polarized responses of a thin conducting cylinder with various signal-to-noise 
ratios. Note the similarity of the SNR = 6dB response to that of the cosine squared random 
orientation shown in Fig. 2-17. 

Note the similarity of the polarization response in the bottom left of Fig. 2-20 to 
that of the cloud of thin cylinders with a cosine squared distribution around the 
vertical direction. These figures illustrate an important point: the presence of a 
pedestal implies randomness, but the randomness can be due to many different 
causes. Care should, therefore, be exercised not to assume that the presence of a 
pedestal implies random orientation of scatterers without first verifying that 
there is an adequate signal-to-noise ratio (SNR) for this interpretation. 

2.5 Optimum Polarizations 
In the previous section, we introduced the concept of polarization responses as 
a way of visualizing the response of a scatterer, or a collection of scatterers 
after multi-looking. We shall now look at how to determine which polarization 
combination would optimize (i.e., either maximize or minimize) the received 
power from such a scatterer or collection of scatterers. We shall use the Stokes 
scattering operator representation of the scatterer for two reasons. First, it can 
be used to represent both a single scatterer or the ensemble average, or multi-
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looked data. Second, it provides a simple, intuitive way of understanding how 
to optimize the received power by changing either the transmit or receive 
polarization. In the rest of this section, the matrix [ ]M  will be used to mean 
either a single scatterer or a multi-looked average. 

2.5.1 General (Bistatic) Case 
This problem was first analyzed by Ioannidids and Hammers [11] in the context 
of maximizing radar signal strength in the presence of unwanted clutter. From 
Eq. (2.2-10) and Eq. (2.3-2), the received power can be written as 

 [ ]rec trP = ⋅S M S , (2.5-1) 

where Srec  and Str  are the Stokes vectors representing the fully polarized 
waves of the receiving and transmitting antennas, respectively. Because these 
vectors represent fully polarized waves, each of these vectors has to satisfy Eq. 
(2.1-5). Therefore, 

 

1 0 0 0
0 1 0 0

0
0 0 1 0
0 0 0 1

 
 − ⋅ =
 −
 − 

S S . (2.5-2) 

We can also write the Stokes scattering operator in the following form: 

 [ ] m 
=  
 

u
M

v Q
 , (2.5-3) 

with u  and v  three-dimensional real vectors and Q  a 3 × 3 real matrix. The ~ 
sign indicates the transpose of the vector or matrix. Note that in the backscatter 
case, u v=  and Q  is a symmetrical matrix. Now let us write the Stokes vectors 
of the antennas as 

 
1 1

; ; 1; 1rec tr   
= = ⋅ = ⋅ =   
   

S S x x y y
y x

. (2.5-4) 

Note that these vectors satisfy Eq. (2.5-2). Using Eq. (2.5-4) and Eq. (2.5-3) in 
Eq. (2.5-1), we find that 

 P m= + ⋅ + ⋅ + ⋅u x v y y Qx . (2.5-5) 

This is the quantity we need to optimize, but subject to the constraints in 
Eq. (2.5-4). In the special case of co- and cross-polarized responses, either 
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y x=  or y x= − . To find the optima of P subject to the constraints in Eq. (2.5-
4), we use the Lagrange multiplier method and construct the function 

 ( ) ( )1 1
2 2

yxF m
λλ

= + ⋅ + ⋅ + ⋅ + − ⋅ + − ⋅u x v y y Qx x x y y . (2.5-6) 

Let us first look at the receiving antenna polarization. The optimum 
polarizations are found by taking the derivatives of F: 

 
0
0

x x

y y

F
F

λ
λ

∇ = ⇒ = +

∇ = ⇒ = +

x u Qy
y v Qx


. (2.5-7) 

The value of the Lagrange multiplier λy  is found from the constraint in 
Eq. (2.5-4) that the magnitude of the vectors y  and x  must be 1. Using this 
constraint for the receiving antenna and the first equation in Eq. (2.5-7), we find 
that the optimum receive antenna polarization is given by 

 
( ) ( )

+
= ±

+ ⋅ +

v Qxy
v Qx v Qx

. (2.5-8) 

Let us examine this equation in more detail. The vector on the right is simply 
the polarized part of the vector that is the product of the Stokes scattering 
operator and the polarized part of the Stokes vector representing the 
transmitting antenna. Therefore, Eq. (2.5-8) simply states that the optimum 
receiving polarization is that Stokes vector that is either aligned with this vector 
or anti-podal to this vector on the Poincaré sphere. Further recall from our 
earlier discussion that orthogonal polarizations are anti-podal on the Poincaré 
sphere. Therefore, Eq. (2.5-8) simply states that the optimum receive 
polarizations for a given transmit polarization are those that either match the 
polarization of the incoming wave or are orthogonal to the polarization of the 
incoming wave. 

From Eq. (2.5-7), we can now derive the following two expressions for the 
optimum transmit and receive antenna polarizations: 

 
( ) ( )
( ) ( )

x y y

x y y

λ λ λ

λ λ λ

− = − +

− = − +

QQ I x u Qv

QQ I y v Qu

 


. (2.5-9) 

We can solve for the values of λx  and λy  using the constraint in Eq. (2.5-4) 
that the magnitude of the vectors y  and x  must be 1. This gives the following 
two expressions 
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( ) ( )

( ) ( )

1

1

1

1

x y y

x y y

λ λ λ

λ λ λ

−

−

− + =

− + =

QQ I u Qv

QQ I v Qu

 


. (2.5-10) 

Once the values for xλ  and yλ  are known, we can use Eq. (2.5-9) to find the 
optimum polarization vectors. 

These non-linear equations are not easy to solve explicitly. In practice, it is 
easier (and faster computationally) to use Eq. (2.5-8) in Eq. (2.5-5) to write the 
received power in the following form 

 ( ) ( )P m= + ⋅ ± + ⋅ +u x v Qx v Qx  (2.5-11) 

and to solve for the maxima or minima of Eq. (2.5-11) numerically, because the 
polarization response is a slowly varying function, as can be seen from the 
figures in the previous section. Once the optimum transmit polarizations have 
been identified, the optimum receive polarizations can be calculated using 
Eq. (2.5-8). 

2.5.2 Backscatter (Monostatic) Case 
So far, we have made no assumptions on the form of the Stokes scattering 
operator. In the special case of a monostatic radar, reciprocity dictates that the 
scattering matrix be symmetrical. In that case, the Stokes scattering operator is 
also symmetrical; i.e., 

 ;= =u v Q Q . (2.5-12) 

For this special case, the two expressions in Eq. (2.5-9) are identical, implying 
that the optimum receive polarization is related to the optimum transmit 
polarization by 

 = ±y x . (2.5-13) 

In other words, the optimum values of the received power are found using co-
polarized or cross-polarized antennas. We can then rewrite the power 
expression in Eq. (2.5-5) as follows 

 
2c

x

P m
P m

= + ⋅ + ⋅

= − ⋅

u x x Qx
x Qx

, (2.5-14) 

where the subscripts c and x refer to the co-polarized power and the cross-
polarized power, respectively. We shall analyze the two cases separately. First, 
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consider the cross-polarized case. Solving for the optimum polarization vector 
subject to the constraint that the magnitude of this vector should be 1, gives the 
following expression 

 λ=Qx x . (2.5-15) 

In other words, the optimum polarizations for the cross-polarized case are the 
normalized eigenvectors of the matrix Q and the optimum cross-polarized 
power values are 

 xP m λ= − , (2.5-16) 

where λ  represents the eigenvalues of the matrix Q . Since Q  is a symmetrical 
real matrix, all the eigenvectors are orthogonal to each other. This means that 
the optimum cross-polarized vectors are orthogonal when plotted on the 
Poincaré sphere. Note that the Stokes vectors, not the electric field vectors, are 
orthogonal. 

The case of the co-polarized power is a bit more complicated. Taking the 
derivatives of the first equation in Eq. (2.5-14) subject to the constraint that the 
magnitude of the polarization vector should be 1 and setting the result equal to 
zero gives the following result 

 ( )υ− = −Q I x u . (2.5-17) 

As long as υ  is not an eigenvalue of Q , this equation has a unique solution: 

 ( ) 1υ −= − −x Q I u . (2.5-18) 

In the special case where u  is the null vector, the solutions to Eq. (2.5-17) are 
the normalized eigenvectors of Q . In general, however, the optimum vectors x  
will not be eigenvectors of Q . The values of υ  are found from the constraint 
that the magnitude of x  must be 1. The most intuitive solution is to write both 
x  and u  in the basis formed by the normalized eigenvectors of the matrix Q . 
Since Q  is a symmetrical matrix, these normalized eigenvectors are orthogonal 
and can be used as a basis to express these vectors. If we write u  as 

 1 1 2 2 3 3ˆ ˆ ˆb b b= + +u e e e , (2.5-19) 

with êi ; i =1,2,3  representing the normalized eigenvectors, we can solve for x  
from Eq. (2.5-17). The result is 
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( ) ( ) ( )

31 2
1 2 3

1 2 3
ˆ ˆ ˆbb b

υ λ υ λ υ λ
= + +

− − −
x e e e , (2.5-20) 

where λi ; i =1,2,3  are the eigenvalues of Q . The magnitude of this vector is 

 
( ) ( ) ( )

22 2
31 2

2 2 2
1 2 3

bb b

υ λ υ λ υ λ
= + +

− − −
x . (2.5-21) 

The values of υ  are found by requiring that this magnitude be equal to 1. 
Solving for υ  from this equation results in a sixth order polynomial in υ  (van 
Zyl et al. [4]). The real valued roots of this polynomial are the optimum values 
of υ . The polynomial is 

 6 5 4 3 2
1 2 3 4 5 6 0d d d d d dυ υ υ υ υ υ+ + + + + + = , (2.5-22) 

with 
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. (2.5-23) 

So how do we know that the polynomial in Eq. (2.5-22) has any real-valued 
roots? We can show that, in general, it will have at least two real-valued roots. 
This follows from the behavior of x  as a function of υ , which is easiest seen 
from Eq. (2.5-21). As the value of υ  approaches both ±∞ , it is clear that 
x → 0 . On the other hand, as the value of υ  approaches any of the real-

valued eigenvalues of the symmetrical matrix Q , x →∞ . Therefore, there 
must be at least one value of υ  between −∞  and the smallest eigenvalue of Q  
for which x =1. Likewise, there must be at least one value of υ  between the 
largest eigenvalue of Q  and ±∞  and for which x =1. This proves that there 
will always be at least two real-valued roots to the polynomial in Eq. (2.5-22). 
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The one root will be less than the smallest eigenvalue of Q , and the other will 
be larger than the largest eigenvalue of Q . 

2.5.3 Special Case: Single Scatterer in Backscatter (Monostatic) 
Case 

Now let us consider the special case of the return from a single scatterer 
measured in the backscatter configuration. In this case, the scattering matrix S  
is symmetrical and there is a definite relationship between the elements of the 
matrix Q . In fact, straightforward but tedious algebra shows that in this case, 
Q  has three eigenvalues 

 ( )( )
( )( )

1

2

3

0

0

m

m m

m m

λ

λ

λ

=

= − + ≥

= − − + ≤

u u

u u

. (2.5-24) 

The normalized eigenvector corresponding to the first eigenvalue is ±u u . 
Using this eigenvalue in Eq. (2.5-14) shows that the vector ±u u  corresponds 
to a cross-polarized null. It also is a solution to Eq. (2.5-17) with 

 mυ = ± u . (2.5-25) 

Using these in the top equation in Eq. (2.5-14) gives the two co-polarized 
powers of 

 ( )2cP m= ± u . (2.5-26) 

The plus sign corresponds to the maximum co-polarized power. Therefore, the 
polarization vector that maximizes the co-polarized power also results in a 
cross-polarized null. Also note from Eq. (2.5-26) that 

 ( )2 0csP m m= − ≥ ⇒ ≥u u . (2.5-27) 

As we shall see shortly, this co-polarized power represents the saddle point in 
the co-polarized response. 

To find the vectors corresponding to the co-polarized minima, we define a 
normalized vector 

 1 3ˆ ˆa b= +x e e , (2.5-28) 
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where ê1 = −u u  and ê3  are normalized eigenvectors of the matrix Q  and a  
and b  are real numbers. Since Q  is a symmetrical matrix, these eigenvectors 
are orthogonal. Since x  must have unit amplitude, it follows that we must 
require that 

 2 2 1a b+ = . (2.5-29) 

The vector x  must also be a solution to Eq. (2.5-17). If we use Eq. (2.5-28) in 
Eq. (2.5-17), we arrive at the following two equations: 

 

( )
a

m

υ λ

λ

=

=
−
u . (2.5-30) 

Here, λ  is the eigenvalue corresponding to ê3 . Combining the bottom line of 
Eq. (2.5-30) with Eq. (2.5-29) allows us to derive the value of b  as 

 
( )

2

21b
m λ

= ± −
−

u
. (2.5-31) 

Using x  with these values of a  and b  in the expression for the co-polarized 
power shows that the received power will be zero if λ  corresponds to either 
λ2  or λ3  as given in Eq. (2.5-24). To decide which of the eigenvectors should 
be used in Eq. (2.5-28), we note that we can use Eq. (2.5-17) in the top line of 
Eq. (2.5-14) to write the co-polarized power as 

 0cnP m mλ λ= + ⋅ + = ⇒ = − − ⋅u x u x . (2.5-32) 

However, 

 3
1 0
2 csm m P λ λ− − ⋅ ≤ − + = − ≤ ⇒ =u x u . (2.5-33) 

Therefore, we have two solutions that would lead to zero co-polarized power. 
These two are 

 2 2
1 3 1 3ˆ ˆ1 ; 1n na a a a= − + − = − − −

u ux e x e
u u

, (2.5-34) 
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where 

 
( )( )

a
m m m

=
+ − +

u

u u
. (2.5-35) 

Equation (2.5-34) shows that the two co-polarized nulls and the co-polarized 
maximum and saddle point all lie in the same plane. Furthermore, the two co-
polarized nulls are equal distances from the co-polarized saddle. This is easily 
proven by taking the dot products 

 1 2 cosn n a α− ⋅ = − ⋅ = =
u ux x
u u

. (2.5-36) 

This is the famous polarization fork originally proven by Huynen in his 
landmark thesis (Huynen [12]). 

Note that while the cross-polarized null polarization correspond to the co-
polarized maximum polarization, the same is not true for the co-polarized null 
and the cross-polarized maximum. The co-polarized null polarizations are given 
in Eq. (2.5-34) and the cross-polarized maximum polarization vector is ±ê3 . 
The value of the maximum cross-polarized power is 

 ( )( )xmP m m m= + − +u u . (2.5-37) 

Figure 2-21 shows these optimum polarizations on the Poincaré sphere.  

2.5.4 Special Case: Multiple Scatterers with Reflection Symmetry 
Here we shall consider the special case of the return from a group of scatterers 
with a special orientation distribution measured in the backscatter 
configuration. The orientation distribution is such that it is symmetrical about 
the vertical direction. In this case, it can be shown that 

 * * 0hv hh hv vvS S S S= = . (2.5-38) 
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Fig. 2-21. The optimum polarizations plotted on the Poincaré sphere. 
The vectors corresponding to the co-polarized maximum, saddle 
point, and minima form the Huynen polarization fork. All these 
vectors lie in the same plane. 

This leads to a special form of the Stokes scattering operator; 
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, 

where x  means the ensemble average of x . In this case, Q  has three 
eigenvalues 
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. (2.5-39) 

The normalized eigenvector corresponding to the first eigenvalue is ±u u . 
Using this eigenvalue in Eq. (2.5-14) shows that the vector u u  corresponds to 

2a cross-polarized power value equal to Shv . It also is a solution to  

Eq. (2.5-17) with 

 2
hvm Sυ = − ± u . (2.5-40) 

Using these in the top equation in Eq. (2.5-14) gives the two co-polarized 
powers of 

 2 2;c hh vvP S S= . (2.5-41) 

To find the vectors corresponding to the co-polarized minima, we follow the 
same procedure as in the previous section and define a normalized vector 

 1 3ˆ ˆa b= +x e e , (2.5-42) 

where ê1 = −u u  and ê3  are normalized eigenvectors of the matrix Q  and a  
and b  are real numbers. Since Q  is a symmetrical matrix, these eigenvectors 
are orthogonal. In fact, the two eigenvectors corresponding to the second and 
third eigenvalues lie entirely in the plane containing the S2  and S3  axes of the 

Poincaré sphere. If Im S S*
hh vv = 0 , these eigenvectors coincide with the S2  

and S3  axes. Since x  must have unit amplitude, it follows that we have to 
require that 

 2 2 1a b+ = . (2.5-43) 

The vector x  must also be a solution to Eq. (2.5-17). If we use Eq. (2.5-28) in 
Eq. (2.5-17), we arrive at the following two equations: 
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( )2
hv

a
m S

υ λ

λ

=

=
− −

u . (2.5-44) 

Here, λ  is the eigenvalue corresponding to ê3 . Combining the bottom line of 
Eq. (2.5-30) with Eq. (2.5-29) allows us to derive the value of b  as 

 

( )
2

22
1

hv

b
m S λ

= ± −
− −

u
. (2.5-45) 

Using x  with these values of a  and b  in the expression for the co-polarized 
power shows that the received power will be 

 
( )

2

2c
hv

P m
m S

λ
λ

= + −
− −

u
. (2.5-46) 

The three values of the cross-polarized power are 

 { }2 2 *1;
2x hv hv hh vvP S m S S S= − ± . (2.5-47) 

Two of these values lie in the plane containing the S2  and S3  axes of the 
Poincaré sphere and one lies on the S1  axis. 

2.5.5 A Numerical Example 
As an example of optimizing the power using independent transmit and receive 
antenna polarizations, let us consider the case of the randomly oriented 
cylinders from the previous section with a cosine squared distribution around 
the vertical direction. From Eq. (2.4-27), the normalized Stokes scattering 
operator have the following values 
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= −

=

 
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 
 

u
v u

Q



. (2.5-48) 

In this case, the three eigenvalues of the matrix Q  are 0, 1/2, and 1/2. The 
maximum cross-polarized return occurs for the polarization corresponding to 
the smallest eigenvalue; i.e., for circular polarizations. The minimum cross-
polarized return occurs for the eigenvector corresponding to the largest 
eigenvalue, which, in this case, is any polarization that lies in the S1 - S2  plane 
of the Poincaré sphere; i.e., any linear polarization. 

The co-polarized solutions are simply the HH and VV returns, with the 
maximum occurring for VV and the minimum for HH. Note that for the case of 
λ = 0 , we find from Eq. (2.5-45) and Eq. (2.5-48) that b = 0 , which means that 
the minimum co-polarized power also coincides with the saddle point. 

In this section, we concentrated on those polarization combinations that 
optimize (either maximizes or minimizes) the received power from a particular 
scatter or ensemble of scatterers. However, maximizing or minimizing the 
power from a single pixel, or even an area in an image, is of limited utility. This 
is best illustrated using the polarimetric L-band image of San Francisco 
acquired with the NASA/JPL AIRSAR system that we discussed earlier. 
Figure 2-22 shows the total power image (the trace of the covariance matrix, or 
the M11  element of the Stokes scattering operator) of this image with three co-
polarized signatures of the ocean (top), an urban area (middle), and an area in 
Golden Gate Park (bottom). The maximum for the ocean occurs near VV. The 
other two signatures have their maxima near HH polarization. These two 
images are shown in Fig. 2-23. The HH image shows that the urban areas and 
park are bright relative to the ocean. The VV image shows the ocean to be 
bright relative to the urban areas. In image analysis, it is more common to 
require the contrast between two different areas to be maximized so as to be 
able to clearly identify similar areas. One of the earliest papers on this topic is 
the one by Ioannidis and Hammers [11] that reported on the optimum 
polarization to discriminate a target in the presence of clutter. We shall look at 
this problem in the next section. 
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Fig. 2-22. An L-band total power image of San Francisco acquired with the NASA/JPL 
AIRSAR system. The three co-polarized signatures for the ocean, urban area, and Golden 
Gate Park are shown on the left. 

 
Fig. 2-23. HH polarized image (left) and VV polarized image (right) of San Francisco. The 
image on the left maximizes the power from the urban and park areas. The image on the 
right maximizes the power from the ocean. Note, however, that even though the power from 
the ocean is maximized in the image on the right, the contrast between the ocean and the 
urban areas is larger on the left. 
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2.6 Contrast Enhancement 
Suppose we want to maximize or minimize the contrast between two areas in 
an image. We shall assume that each area is represented by an average Stokes 
scattering operator. The contrast can be written as 

 1 1 1 1 1 1

2 2 2 2 22

rec tr

E rec tr
P mC
P m

⋅ + ⋅ + ⋅ + ⋅
= = =

+ ⋅ + ⋅ + ⋅⋅

S M S u x v y y Q x
u x v y y Q xS M S

, (2.6-1) 

where the subscripts 1 and 2 refer to the two areas. We now have to optimize 
this quantity subject to the constraints that the Stokes vectors have unit 
amplitude as shown in Eq. (2.5-4). To find the optimum values of the contrast 
function, we again use the Lagrange multiplier method as before and calculate 
the gradient with respect to x  and y . The optimum values are those for which 
the gradient is zero. This leads to the following two coupled equations: 
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. (2.6-2) 

The solution to these equations is a set of two non-linear equations in either x  
or y  that is quite complex to solve. To provide more insight into the solution, a 
simpler approach is to consider the problem in two steps. First, we fix the 
transmit polarization and then derive the receive polarization that would 
optimize the contrast for that particular transmit polarization x . For this, we 
introduce the shorthand notations: 
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S m
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s v Q x

u x
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. (2.6-3) 

It is then clear from the top line in Eq. (2.6-2) that we can write 
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. (2.6-4) 

Using this expression in the original expression for the contrast gives 
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The only unknown in this expression is the contrast ratio CE . Rearranging 
terms leads to the following quadratic expression for this ratio 

 ( ) ( ) ( )2 2 2
02 2 2 01 02 1 2 01 1 12 0E EC S C S S S− ⋅ − − ⋅ + − ⋅ =s s s s s s . (2.6-6) 

The optimum contrast ratios are then 
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and 
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These expressions are still quite complex to solve analytically for the x  that 
optimizes either the maximum or minimum contrast ratio. A simpler approach, 
proposed by Dubois and van Zyl (1989) [13], is to solve for the maximum of 
Eq. (2.6-8) over all x  numerically. Once this maximum ratio is found, the 
optimum receive polarization follows from the top equation in Eq. (2.6-2) to be 

 1 2

1 2

opt

opt

C

C

−
=

−

s s
y

s s
. (2.6-9) 

Note that these expressions turn out to be this complicated because we are 
insisting that the resulting Stokes vectors represent fully polarized waves; i.e., 
those of actual antennas. This, of course would be necessary if one wanted to 
implement a real radar system that operated with the optimum polarization 
combinations. However, for pure signal processing applications after data 
collection, one might want to relax this limitation. This approach was first 
reported by Swartz et al. [14] using the covariance approach for the backscatter 
case. 

To illustrate the difference, let us assume that the two vectors recS  and trS  in 
Eq. (2.6-1) are simply 4-dimensional vectors. In that case, we solve for the 
optimum contrast by introducing (following Swartz et al. [14]) an artificial, but 
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general, constraint that the denominator of Eq. (2.6-1) should be equal to 1. The 
solution in this case then becomes 

 1 2

1 2

tr tr
tr

rec rec
rec

λ

λ

=

=

M S M S

M S M S 
, (2.6-10) 

where trλ  and recλ  are the Lagrange multipliers. If the inverse of 2M  exists, 
these expressions can be written as 

 
1

2 1
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tr tr
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rec rec
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−

−

=

=

M M S S

M M S S 
, (2.6-11) 

Therefore, if we relax the requirement that the two vectors recS  and trS  
represent fully polarized Stokes vectors, the solutions simply are the 
eigenvectors of 1

2 1
−M M  and 1

2 1
−M M  . Note that, in the backscatter case, the 

Stokes scattering operators are symmetrical matrices and these two expressions 
become identical. This is also true for the solution to Eq. (2.6-2). If the inverse 
of 2M  does not exist, we can rewrite Eq. (2.6-10) in a form that has the 
solution similar to Eq. (2.6-11), but with the roles of 1M  and 2M  
interchanged. 

2.6.1 Numerical Example 
Consider the case of maximizing the contrast between the return from a 
dihedral corner reflector and that of a randomly oriented cloud of thin cylinders. 
In this case, the normalized Stokes scattering operators are 

 1 2

1 0 0 0 1 0 0 0
0 1 0 0 0 1 2 0 0

;
0 0 1 0 0 0 1 2 0
0 0 0 1 0 0 0 0

   
   
   = =
   −
   
   

M M . (2.6-12) 

First we look at the case where we insist that the Stokes vectors represent fully 
polarized waves. Fig. 2-24 shows graphically the maximum and minimum 
contrast ratios for each transmit polarization. In each case, we performed the 
calculations that follow. For each of the transmit polarizations shown, we 
calculated the contrast ratio for all possible receive polarizations. We then 
found the maximum and minimum values and plotted those two values for that 
particular transmit polarization in these two figures. From Fig. 2-24 we see that 
the maximum contrast occurs for linear transmit polarizations that have 
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orientations of either 45 deg or 135 deg. The corresponding maximum contrast 
ratio is 4. Using this information, Eq. (2.6-9) gives the optimum receive 
polarization as either the co-polarized companion to the transmit polarization 
(in which case the contrast ratio is 0 [minimum]) or the cross-polarized 
companion (in which case the contrast ratio is 4, or a maximum). 

This result is not unexpected. We know (see Fig. 2-10 and Fig. 2-16) that a 
dihedral corner reflector has its maximum cross-polarized return at 45 deg or 
135 deg linear polarizations. At the same time, the linear polarizations are 
where the randomly oriented cylinders have their minimum in their cross-
polarized return. This combination argues that the maximum contrast should 
then be at the 45 deg or 135 deg linear cross-polarized pair. 

Next, let us consider the case where we do not insist that the solutions only be 
Stokes vectors representing fully polarized waves. In this case, the inverse of 

2M  does not exist. However, we can rewrite Eq. (2.6-10) by multiplying both 
sides by the inverse of 1M  to give 

 1
1 2

1 0 0 0
0 2 0 0
0 0 2 0
0 0 0 0

λ−

 
 
 = =
 −
 
 

M M S S S . (2.6-13) 

The eigenvalues are 2, 1, 0, and -2, and the corresponding four eigenvectors are 
the four principal dimensions of the vector S . The Notice that this type of 
solution allows not only vectors that are not Stokes vectors, but also allows 
negative contrast ratios. The vector ( )0 1 0 0=S  corresponds to the largest 
eigenvalue, but the largest contrast is actually achieved with the eigenvector 

( )0 0 0 1= ±S  because, in this case, the denominator of the contrast is 

 
Fig. 2.24. The maximum (left) and minimum (right) contrast ratios calculated as a function of 
the transmit polarization orientation and ellipticity angles. The maximum contrast is 
achieved using a linear transmit polarization with an orientation of either 45 deg or 135 deg. 
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zero, theoretically allowing the contrast to approach infinity. Of course, in 
general, if there is any polarization combination that would zero out the power 
from the denominator, one could argue that the contrast ratio would be 
maximized. The problem with this approach is that the exact polarization 
combination at which the zero occurs might vary from one pixel in an image to 
the next, causing the result to be quite noisy. 

2.6.2 Image Example 
In the late 1980s, two different groups investigated the optimum polarizations 
to maximize the contrast between man-made structures (such as buildings) and 
natural terrain. Swartz et al. [14] used data from an area in the city of San 
Francisco to represent man-made structures and data from an area in Golden 
Gate Park for natural terrain. They found that the optimum polarizations were a 
transmitting antenna with parameters ( ) ( ), 41.3 , 6.44t tψ χ = − ° − °  and a 
receiving antenna with parameters ( ) ( ), 60.3 ,3.51r rψ χ = ° ° . Notice that these 
antennas are very nearly orthogonally polarized and close to the combination 
we derived in the previous section. 

Dubois and van Zyl (1989) [13] made a more systematic study of the same 
problem, choosing many different pairs of areas and repeating the experiment at 
different incidence angles. They concluded that the optimum polarization varies 
little with the change in incidence angles and that a 45 deg cross-polarized pair 
provides the optimum contrast. They defined the polarization enhancement as 
the contrast calculated with normalized Stokes scattering operators and found 
the enhancement factor to be about 3 dB independent of the incidence angle and 
of the size of the image area used to characterize either class of scatterer. 
Furthermore, they found the same results if they used bare surfaces as the 
natural terrain. 

Figure 2-25 illustrates this using the data from the NASA/JPL AIRSAR system 
that are shown in Fig. 2-23. Notice the excellent contrast between the urban 
areas and the vegetated Golden Gate Park, as well as the contrast between the 
urban areas and the ocean. Comparing to the image on the left in Fig. 2-23, we 
note some improvement in contrast between the urban area and the park. In 
fact, Swartz et al. [14] found that among the canonical polarization 
combinations, HH provided the best contrast, but was still about 2 dB less than 
what can be achieved with the optimum polarization combination. 

Figure 2-26 shows the “image” using the non-physical polarization that 
theoretically zeros the power from a cloud of randomly oriented thin cylinders, 
as discussed in the previous section. This image, which is the 44M  element of 
the Stokes scattering operator, shows the areas that are dominated by double 
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reflections to be very bright, areas that are vegetated medium gray, and areas 
that have near specular scattering as very dark. To understand why this is the 
case, recall that for specular reflection the scattering matrix is the identity 
matrix. In that case, the  element of the normalized Stokes scattering 
operator is -1. The same element is zero for a randomly oriented cloud of thin 
cylinders and +1 for double reflections from a dihedral corner reflector.  

Note, however, that this image is quite noisy, making it less useful than, for 
example, Fig. 2-25, for image-photo-interpretation purposes. It does, however, 
provide a simple check on whether a bright point in an image is so because it 
represents specular scattering or because it represents a double reflection 
resembling a dihedral corner reflector. 

44M

 
Fig. 2-25. Image of San Francisco, California, synthesized using a 45-deg linearly polarized 
antenna to transmit the signals and a 135-deg linearly polarized antenna to receive. Notice 
the increased contrast between the urban areas and the vegetated Golden Gate Park, as well 
as the contrast between the urban areas and the ocean. 
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Fig. 2-26. “Image” of the M44 element of the Stokes scattering operator of San Francisco, 
California. Bright areas represent double reflections, while dark areas represent near-
specular scattering. The image is quite noisy, reducing it utility for image-photo 
interpretation. 

2.7 Summary 
In this chapter, we introduced the basic principles of radar polarimetry. We 
introduced the important concepts of the various mathematical representations 
of scatterers and briefly reviewed the implementation of a radar polarimeter. 
We also discussed the concept of the polarization responses, and provided 
many examples illustrating this concept of visualizing the information 
contained in the polarization properties of a scatterer. Next, we looked at how 
to optimize the power received from a particular scatterer or group of scatterers 
by varying the polarization. We concluded with the case of using polarization 
to optimize the contrast between scatterers. 
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The discussion and examples presented in this chapter show the utility of 
polarization to extract more information regarding the properties of scatterers. 
In the rest of this book, we shall build upon these concepts and discuss more 
sophisticated analysis techniques to extract detailed geophysical information 
from polarimetric radar data.  
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