
REDUCING THE COST OF GROUND SYSTEM DEVELOPMENT AND
MISSION OPERATIONS USING AUTOMATED XML TECHNOLOGIES

Colette Wilklow
Jet Propulsion Laboratory,

California Institute of Technology
4800 Oak Grove Drive,

 MS 301-240, Pasadena, CA
91109-8099

phone + 1 818 354-4674
fax + 1 818 393-4100

email: colette.wilklow@jpl.nasa.gov

Jesse Wright
Jet Propulsion Laboratory,

California Institute of Technology
4800 Oak Grove Drive,

 MS 264-214, Pasadena, CA
91109-8099

phone + 1 818 393-7971
fax + 1 818 393-5247

email: jesse.wright@jpl.nasa.gov

David Noble
Jet Propulsion Laboratory,

California Institute of Technology
4800 Oak Grove Drive,

 MS 264-214, Pasadena, CA
91109-8099

phone + 1 818 393-2917
fax + 1 818 393-5247

email: david.noble@jpl.nasa.gov

Kathryn Sturdevant
Jet Propulsion Laboratory,

California Institute of Technology
4800 Oak Grove Drive,

 MS 301-240, Pasadena, CA
91109-8099

phone + 1 818 354-1147
fax + 1 818 393-4100

email: kathryn.sturdevant@jpl.nasa.gov

Joseph Snyder
Jet Propulsion Laboratory,

California Institute of Technology
4800 Oak Grove Drive,

 MS 264-522, Pasadena, CA
91109-8099

phone + 1 818 393-2341
fax + 1 818 393-2347

email: joseph.snyder@jpl.nasa.gov

ABSTRACT

Limited time and resources continue to challenge
today’s ground system development and mission
operations personnel. As the missions we develop
become increasingly complex and sophisticated, we
are faced with the demands of reduced schedules and
shrinking budgets. Additionally, we must meet the
need to share knowledge, tools and personnel across
a variety of projects. These factors require a system
that is robust enough to handle these constraints, and
elegant enough to ensure mission success.

To meet this challenge, JPL software developers have
implemented a new system, which provides an
efficient common interface between flight and
ground software systems. This system is based in the
application of automated XML (eXtensible Markup
Language) technologies. In the past, flight to ground
software interfaces have been tediously defined such
that changes in flight software definitions could take
two weeks or more to propagate into the ground
system environment. Earlier missions with longer
development schedules were somewhat equipped to
handle delays in the flight to ground process,
however as mission development resources and
personnel continued to decrease, it became clear that
this could no longer be an effective way of doing

business. The demands of today’s schedules and
budgets require that flight and ground system
development occur in parallel, thus the need for a
well-structured interface.

This new system has reduced ground system
turnaround time from two weeks or more to
approximately four hours with minimal staffing.
Command and telemetry definitions are described
using XML. The ground system interfaces to these
XML definitions generated by the flight software
developers. This enables the ground software
developers to create code that does not require
modification for new flight software definitions.
Telemetry definitions include sensor data (called
channels for historical reasons), event messages
(printed messages from flight software), and flight
software data products or files. Spacecraft data
products can be assembled from CCSDS
(Consultative Committee for Space Data Systems)
packets and converted to text and XML
representations for use by a variety of tools, including
but not limited to those written in Java, Perl and
Python. Operations personnel will benefit from the
automated generation of downlink reports provided
by this system. XML related technologies, such as
Extensible Stylesheet Language (XSL), have further
extended the sophistication of the system via data

transformations to desirable formats such as HTML
and PDF. This paper discusses our experiences using
this XML intensive system and the improvements
and tradeoffs of this emerging technology.

INTRODUCTION

The demands of today’s compressed mission
development schedules dictate that the development
of spacecraft flight and ground systems occur in
parallel. This introduces a significant challenge to
ground software developers in that the ground system
must be adaptable to design changes in the flight
system as they occur. Also, ground system
development frequently begins before operations
personnel are brought onto a project, thus it is
desirable to design a configurable ground system that
will be flexible enough to meet future needs of
mission operators.

In order to meet these challenges for the Mars
Exploration Rovers (MER) project, we identified the
need for well-structured interfaces between the flight,
ground and mission operations systems. If such
interfaces were available, updates to the ground
system could be automated. Additionally, a well-
defined interface to ground system tools would
enable mission operations personnel to reconfigure
the system to meet their needs without being required
to possess advanced programming skills. Due to its
rising acceptance as a robust and well-structured way
to describe data, XML was a logical choice for
defining these interfaces

BACKGROUND

XML is a meta-markup language with a look and feel
similar to the familiar HyperText Markup Language
(HTML). Like HTML, data is expressed within a
series of tags (e.g. <html></html>). Tags used in
HTML are pre-defined. Someone writing an HTML
file would consult the latest standard to find out how
to describe his or her HTML file. XML is referred to
as a “meta” markup language because unlike HTML,
the definition of allowable tags is left to the user.
The definition of what is allowed in a specific XML
document is referred to as the document schema.

Unlike HTML, XML is used only to describe data
and does not in itself allow for descriptions of how
data will be formatted. XSL transformations are
frequently used to define the output formats.
Additionally output formats can be established via
XML processors written in Java, Perl, Python or any
other language capable of processing text.

Figure 1: A single XML source file can be processed
in a wide variety of ways resulting in the ability to

create many different outputs with consistent content

DICTIONARY MANAGEMENT

Modification to the flight system command and
telemetry dictionaries must be propagated through
the ground system. In the past, changes to these
dictionaries were costly, taking up to two weeks for a
change to be reflected in affected telemetry and
command processing and documentation because
each change would require personnel to manually
update affected software and documentation. On
MER, we implemented a dictionary management
system with the purpose of streamlining this process.

The dictionary management system provides
software tools that allow widespread deployment of
the MER command and telemetry dictionaries in a
variety of formats. The flight software team provides
an XML version of both dictionaries, as well as XML
definitions for flight software data products and event
reports.

For each XML delivery, the ground software
development team generates the configuration files
that are used by the ground software to process the
telemetry and generate commands. Automation
scripts are used to accelerate this process. Once built,
the output products from this process are deployed to
testbed and mission support areas as appropriate.

HTML and PDF formats of the dictionaries are also
created and deployed. Running the XML file against
a series of XSL stylesheets using an XSLT processor
creates the HTML and PDF formats of the
dictionaries.

Each command and telemetry XML file contains
change log entries made by those who directly
modify the command and telemetry XML files –
these logs are captured and transformed into HTML

Figure 2: As long as the processing tools adhere to the XML document’s schema, a change in content will not
require a change to the processing tool

and PDF formats. Additionally, there exists a set of
Java classes that capture changes automatically,
looking for whether or not a command or channel has
been added, deleted or was subject to selected
changes.

The primary benefit of describing the data via XML
is that processing a single source file can create all of
the desired output formats. (Figure 1) For example
the file may be processed using XSL
Transformations, or by software using SAX (Simple
API for XML) or DOM Document Object Model
parsers for XML (where SAX is an event based
parser allowing rapid processing and DOM is a tree
based parser which loads the XML document into
memory, allowing for random access of document
elements). This reduces the complexity and errors
that might be introduced because all changes only
need to occur in one place. For example, one source
XML file contains all of the telemetry channel
definitions. This file is processed by various tools to
produce documentation in HTML and PDF formats,
as well as for producing configuration files for
telemetry monitor and display. Since each of these
tools can process the standard format of the source
XML file, the addition, modification or deletion of a
new telemetry definition will not require a software
change in the processing tools (Figure 2).

During development, changes to mission command
and telemetry dictionaries occur frequently. In the
last year, the GDS team for MER has processed over
one hundred new command and telemetry dictionary
deployments. Fortunately, very few of these
deployments have required a change to the GDS
software used to process these dictionaries. The few
times that code changes were needed were because of

changes to the dictionary’s schema as the definitions
evolved.

The most notable result of the dictionary
management system has been the significant
reduction in time to propagate a flight software
change through the ground system. Based on our
experiences on the MER project, we estimate that on
average it takes approximately one full time
employee about four hours to complete this process
per dictionary from the time that the XML source file
is delivered from flight software. This is a significant
reduction from the estimated two weeks or more this
process took on other projects.

REPORT GENERATION

In developing ground system software, it is critical
that the data acquired from the spacecraft be
presented to the operations team as clearly,
accurately, and concisely as possible. Mission
engineers and scientists must be able to evaluate the
data quickly to plan for the next uplink opportunity.

Early in mission ground software development it can
be difficult to identify how best to express spacecraft
data to operations personnel. There are many
variables that may impact what data might be
important to various operators. The software must be
highly adaptable to changes and additions to the
needs and desires of the operations team.

We facilitate this highly dynamic development
environment through the MER report generator
(Figure 3). MER Report Generation refers to a suite
of XML definitions, Java and Python tools, and XSL
transformations. The report generator can process

Figure 3: MER Report Generator

telemetry channel data, event reports and flight
software data products and output this information in
various formats including ASCII text, Encapsulated
Comma-Separated Value (ECSV), Extensible
Markup Language (XML), HyperText Markup
Language (HTML), and Portable Document Format
(PDF). This suite is used to process mission data for
the purpose of automatically populating outputs that
would otherwise be hand generated by operations
personnel. These outputs are to be used by the
spacecraft team to aide in the generation of the
spacecraft downlink report, to use as input to various
software tools, and to provide relevant mission
information to operations personnel.

This system is highly configurable so it may be used
to create a wide variety of reports. For each report
type, there exists a definition describing the desired
content (Figure 4). This definition file is expressed
via XML where the data describes which telemetry,
products and event reports to which the report
generator should subscribe.

These subscriptions are designated with one of
several capabilities that describe how the data should
be collected. Currently we have capabilities for

Figure 4: An Example Report Definition Described in XML

subscribing to packet application identifier counts,
event reports, latest telemetry channels, telemetry
channels on change, all telemetry channels, new
product availability and values to be plotted by an
external plotting tool.

The subscription results in an output XML file which
contains the collected data with associated ground
processing algorithms having been applied. For
example, the XML output may contain raw data
values as well as ground-derived values. Each
capability may also have associated properties. For
example telemetry capabilities have properties for
defining subsets of telemetry channels and which
algorithms to apply to those channels. Event report
capabilities have properties allowing for the output to
be sorted in various ways.

In addition to defining subscriptions and their
associated capabilities, the definition file allows
specification of processing tools and associated
stylesheets that should be applied to the XML output
files containing the collected data. New reports can
be created by producing a new definition file
containing the desired capabilities and properties for
that report.

At the heart of the report generator is the report
application. The report application accepts command
line parameters that define which report type is to be
generated, which data set is to be reported on, the
data source and other options for specifying
spacecraft specific items (on MER we have two
rovers) and output directories. The report application
also parses the definition file and kicks off the
subscriptions for the designated report type. Once
the capability output XML files are generated, the
report application runs the appropriate processing
tools on those files and writes the outputs to the
specified directory.

Once the reports are generated, they are made
available for ingestion to other tools or for evaluation
and annotation by the mission operations team for
use in planning the next uplink session.

LESSONS LEARNED

We have found through our experiences using this
XML intensive system, that it is worthwhile to spend
time upfront carefully defining the document schema.
Spending time defining the data to be expressed will
save time in later development.

Also, it’s important to consider using multiple XML
files if some of the data you wish to express is

orthogonal to the rest of the data. Attempting to
define a schema with data that doesn’ t fit together
nicely can make it cumbersome for others to
compose and process XML files using the schema.
Generally, XML is only as useful as the data it
describes.

Lastly, it’s important to have some understanding of
the pros and cons of using a SAX or DOM parser for
processing XML files. We began our telemetry
channel processing for documentation using a DOM
based parser. However, our source XML file
eventually evolved into a >100,000 tag document.
Processing a file this large with a tree parser can be
extremely slow. We found that there are at least two
alternatives that can speed up the processing. The
first is to split the source XML file into several XML
files and process the smaller files. The second is to
write a SAX (event based) parser that does not store
the entire document in memory. The main thing to
keep in mind is that there are multiple ways to
process XML files and its worthwhile to spend some
time learning to understand the pros and cons of
each.

FUTURE WORK

The described command and telemetry dictionary and
report generation processing tools are currently
mission specific to MER. We are in the process of
converting these tools to become a standard toolkit
for new missions.

Another area that we are investigating is in automatic
generation of XSL stylesheets and report definitions.
This would further enhance the speed and reliability
of our tool set.

CONCLUSION

XML works! Using automated XML technologies,
we have developed a system that provides a well-
defined interface between the flight, ground and
mission operations systems. This has allowed us to
develop the ground system in parallel with the flight
system and to produce a highly configurable system
to meet the needs of the mission operations team.
We have supported these efforts with minimal
staffing and have designed a system that will be
applied to future missions, thus reducing cost to this
and future projects. Through our use of this system
we have seen significant improvement in our ability
to define and process information efficiently, and
have demonstrated a significant reduction in system
turnaround by using XML and related technologies.

ACKNOWLEDGEMENTS

This work was performed by the Jet Propulsion
Laboratory, California Institute of Technology, under
contract with the National Aeronautics and Space
Administration.

REFERENCES

Elliotte, R. H. and Means, W. S., 2002, XML in a
Nutshell, 2nd Edition – A Desktop Quick Reference,
O’Reilly and Associates, Inc, New York City

Burke, E.M., September, 2001, Java and XSLT,
O’Reilly and Associates, Inc, New York City

McLaughlin, B. September, 2001, Java & XML, 2nd
Edition - Solutions to Real-World Problems, 2nd
Edition, O’Reilly and Associates, Inc, New York
City

Tidwell, D., August, 2001, XSLT, O’Reilly and
Associates, Inc, New York City

Pawson, D., August, 2002, XSL-FO – Making XML
Look Good in Print, O’Reilly and Associates, Inc,
New York City

Beazley, D. M., 2001, Python Essential Reference,
2nd Edition, New Riders Publishing, Indianapolis

W3 Schools Home Page, Tutorials – XML, XSL,
Schema, Xpath, DOM, 2003,
http://www.w3schools.com/2003

The Apache XML Project Home Page, 2003,
http://xml.apache.org

The SAX Project Home Page, 2003,
http://www.saxproject.org

The World Wide Web Consortium (W3C) XML
Homepage, 2003, http://www.w3.org/XML

The Java Home Page, 2003, http://java.sun.com

The Python Home Page, 2003,
http://www.python.org

