LOW-POWER IMPLEMENTATION OF AN OFDM BASED CHANNEL RECEIVER IN
REAL-TIME USING A LOW-END MEDIA PROCESSOR

P. Op de Beeck, C. Ghez, E. Brockmeyer, M. Miranda, F. Catthoor and G. Deconinck

IMEC. Kapeldreef 75, 3001 Leuven, Belgium

ABSTRACT

The implementation of advanced channel receivers us-
ing low-end multimedia instruction set processors is a pro-
ductive, flexible and cost effective alternative to custom hard-
ware. The stringent real-time and low-power requirements
become attainable on condition that for these applications
the impact of the data transfer and storage related issues is
first drastically reduced.

This paper illustrates the implementation of a real-time
and low-power OFDM based channel receiver on a TriMe-
dia TM21300 processor. This is the result after applying
our Data Transfer and Storage Exploration methodology.
In particular we focus on the exploration of data formating
alternatives of background memory for efficient sub-word
level acceleration. The outcome of our approach is an opti-
mized source code description of the channel receiver which
optimally exploits the existing memory hierarchy while mak-
ing use of the available SIMD instructions in a cost effective
manner. Following this approach we have achieved more
than an order of magnitude reduction in energy consumed in
the memory hierarchy while executing in real-time. More-
over, the slack achieved in execution time makes it possible
to lower the frequency, and thus the V4 of the CPU core to-
wards the minimum recommended by the processor’s spec-
ification. This allows an extra 36% energy reduction in the
CPU core.

1. INTRODUCTION

In the near future mobile radios will be equipped with Dig-
ital Audio Broadcasting (DAB) reception. A DAB broad-
caster is able to provide a combination of services up to a
total of about 1.8Mbps [1, 2]. The transmission system in
the DAB standard is based on an Orthogonal Frequency Di-
vision Multiplex (OFDM) transportation scheme using up
to 1536 carriers (Mode I) for terrestrial broadcasting. Other
standards making use of OFDM include ADSL, 802.11a
and DTV.

The implementation of such advanced channel receivers
using low-end multimedia instruction set processors is a
productive, flexible and cost effective alternative to custom

hardware. We have chosen the TriMedia TM1300 [6] be-
cause of its sub-word level or SIMD processing capabilities.
This combined with the VLIW nature of its instruction set
architecture gives large room for exploiting concurrency at
the instruction level, hence for further speed-up.

Unfortunately, the exploration of the application spe-
cific SIMD acceleration capabilities is not supported by Tri-
media’s compiler and it typically requires the designer to
manually insert calls to optimized assembly libraries at the
source code level. Still, even if this is done so, the data
format required for the SIMD operation does not typically
match that one chosen for background data storage. The
consequence is that the potentially obtainable speed-up is
hidden by the cycle overhead of the extra data formating
instructions (e.g. SIMD (un)pack operations). These ex-
tra formatting operations are necessary to combine/split the
data words before/after these are processed by the SIMD
unit. Our goal is to show how that overhead can be avoided
by adapting the data storage organization in a platform de-
pendent way. This is complemented with background mem-
ory data-layout techniques for improved cache hit behavior
and some high level address- and processor specific opti-
mizations.

In this paper we show how we can obtain a real-time and
low-power implementation of a DAB channel receiver on
the TriMedia TM1300 processor. We firstly give an overview
of how the data transfer and storage related implementa-
tion bottlenecks, which are truly target implementation in-
dependent, have been eliminated. The main focus however
is on the platform dependent exploration of background data
format alternatives for the OFDM block. These formatting
transformations allow to reduce the number of cache misses
and to efficiently utilize the special instruction set provided
in the TM1300.

At the DAB decoder side the OFDM carrier spectrum
is reconstructed by doing a forward 2048-point FFT (Mode
I) on the received OFDM symbol. In our reference code,
an optimized industrial C code implementation of the stan-
dard, this kernel takes up 57% of the total execution time,
measured by compiling and running this reference code us-
ing TriMedia’s native tool set. In total this has resulted in
3.7 seconds execution time for a 1 second input stream, thus

not achieving real-time. Likewise, this kernel is responsible
for the dissipation of 60% of the total data memory energy
consumption of 500m.J.

Following the illustrated approach we have achieved more
than an order of magnitude reduction in energy consumed in
the data memory hierarchy while achieving real-time execu-
tion. Moreover, the slack obtained in execution time makes
it possible to lower the frequency, and thus the V34 of the
CPU core towards the minimum recommended by the pro-
cessor’s specification. This allows an extra 36% energy re-
duction in the CPU core. We have estimated that an 82%
energy reduction has been achieved in the platform inde-
pendent optimized version of the application code. This is
reduced further to become only 6.25% in the final version
after the exploration of platform dependent alternatives or
in other words a factor 16 gain in data memory energy con-
sumption when compared to the initial reference.

2. RELATED WORK

In 1995 the first instruction set processors have been intro-
duced with support for SIMD operations [17, 18]. These op-
erations apparently strengthen the interaction between the
data path and the way data is stored in memory. From a
methodological standpoint this is unfortunate because the
background memory problem should better be decoupled
from data path issues.

In [14] the data packing is tackled during the code selec-
tion phase. Only the data needed together is packed together
in background memory. However, no prior code transfor-
mations are explored to create more freedom. Instead, a
constraint integer linear problem is formulated which en-
forces a particular horizontal data layout. Recently [15]
has proposed a method that horizontally orders the scalar
data during address assignment to improve program perfor-
mance in SIMD processors. The use of a variable access
graph obtained after operation scheduling is required. This
however limits the freedom during memory management in
general and for background data merging in particular [13].

Our approach reverses this bottom-up strategy and as
we show in this paper there is still enough freedom for ef-
ficient SIMD level operation scheduling. Interesting in this
context is the work in [16] where it is shown that the interac-
tion between SIMD exploitation and (background) memory
transformations can be decoupled.

Transformations for merging signals within background
memory have been addressed in different contexts. For in-
stance in [10] memory accesses are coalesced in order to
more efficiently use a processors memory system. The pro-
posed algorithm is limited to merging consecutive memory
references, which are being exposed by loop unrolling. Fur-
thermore, runtime checks are inserted to determine alias and
misalignment hazards. In our approach these tests are obso-

lete because data merging happens before data is assigned
to any specific memory address and pointers are avoided.
In [11] scalar data is clustered into larger words to mini-
mize the number of compulsory misses in the data cache.
Both previous techniques are limited to scalar level merg-
ing. Moreover, they require the scheduling to happen be-
forehand with the limitations mentioned above. Another ap-
plication for background data merging is described in [12].
The goal is to exploit wide busses with explicit wide load
and store operations. The algorithm works with an extended
dependence graph and is applied before modulo scheduling.

Finally, also in the custom processor domain data merg-
ing has been explored [13]. The main goal is to reduce the
number of memory accesses and additionally it also reduces
the bit waste. This approach is targeted toward dynamically
allocated record types. The additional freedom of mani-
festly specified arrays is not looked at. Both approaches do
not consider constraints coming from the (SIMD) operation
format which is the focus of this paper.

3. PLATFORM INDEPENDENT OPTIMIZATIONS

In this section we give an overview of the platform indepen-
dent Data Transfer and Storage Exploration (DTSE) carried
out on the full DAB decoder. These stages already give
a large cost reduction compared to a non-trivial industrial
ASIC implementation [19] implementing such functional-
ity. A simplified view off the DAB decoder before and after
the platform independent stages is shown in Fig. 1.

Platform independent
optimized implementation

Reference implementation

NULL detector

NULL detector
2048x2:

2X(oa24) 236,19]

l FFT Processor

e

l Differential demodulator l

l Frequency deinterleaver l

lSubchanne\ section l

1

IFFT Processor 2 l
1

l Differential demodulator l
1

l Frequency deinterleaver l

l Time deinterleaver l
l Subchannel section l
l Viterbi decoder 2]

l Time deinterleaver

4 m Every delay+1CU

l Viterbi decoder 5 2 l

m

Figure 1. The DAB channel receiver before and after the
platform independent DTSE.

(K

wasdad inter block buffer

intra block buffer

The reference model is used as a starting point for the
DTSE optimizations. The platform independent phase is

subdivided in three steps. The first step is removing all the
redundant accesses by means of data-flow transformations
and to break data-flow bottlenecks which limit the freedom
for subsequent transformations. One good example in DAB
is moving the sub channel selection to the start of the de-
coding chain, thus only processing OFDM symbols which
are really needed.

The next step will improve the global locality and stor-
age size by performing global loop transformations [20].
For instance, in the reference many functional blocks re-
quire inner-block communication buffers (see left hand side
of Fig. 1) rather then reusing the available buffers inside
the blocks (right hand side). This phase is applied aggres-
sively. During the platform dependent phase, where timing
is important, buffers will be carefully re-introduced to meet
real-time constraints.

Finally a data reuse step will explore the opportunities
for making local data copies. There are very few such op-
portunities in DAB.

The platform independent cost function is defined in
terms of access count, (square root of) storage requirements
and estimated energy cost [5]. This cost function is appro-
priate to estimate the energy cost at the high level and to
make a relative comparisons between different explorations.
The totals that make up this cost function are shown in Ta-
ble 1.

buffer size #accesses relative
Implementation count (KBits) (108) energy
Industrial reference 19 776 1 1
Platform independent ‘ 12 636 0.11 0.12

Table 1. Improvements in storage, accesses and energy for
platform independent DTSE.

The platform independent DTSE stage has been suc-
cessfully applied on the DAB channel receiver. According
to our high level energy model a relative gain of a factor 8
is obtained compared to an industrial reference. Although
the presented stages in this section are not the focus of this
paper they must be applied beforehand in order to max-
imally benefit from the platform dependent optimizations
presented next [3].

4. PLATFORM DEPENDENT OPTIMIZATIONS

After compiling and running the platform independent code
on the Trimedia TM1300 we observe an 82% gain in data
memory energy consumption and about the same in terms
of time reduction. However, the FFT kernel now takes up
a considerable 72% of the total data memory energy con-
sumption. To reduce this impact the application of platform
dependent optimizations have been considered. In concrete,
several background data format alternatives for both an effi-
cient utilization of the sub-word level acceleration capabili-

ties as well as an optimal use of the data memory hierarchy
of the processor have been explored. Furthermore we have
done vertical data layout transformations for cache miss re-
duction. Finally, high-level address and processor specific
optimizations have been carried out. These different steps
will be further elaborated on in the following subsections.

4.1. Background data format exploration

OFDM at the receiver side is implemented as a forward
complex FFT. The FFT kernel is a butterfly operation re-
quiring 8 data inputs (4 real and 4 imaginary values) and
6 coefficients (3 cosines and 3 sinus values). Figure 2(a)
illustrates this.

(b)

Figure 2. Representative part of the FFT butterfly before (a)
and after (b) SIMD acceleration

The regular structure of the FFT butterfly makes it a
good candidate for sub-word level acceleration. The map-
ping onto the Trimedia instruction set is shown in Figure 2(b).
The two multiplications and one addition at the end of the
butterfly can for instance be performed by one iFIR16 in-
struction, outlined in Figure 3. The key feature is to re-
interpret the content of a register as two sub-words. In this
way the total amount of word-level arithmetic operations
has been reduced by more than a factor 2. However, many
extra packing (pack) instructions are introduced to correctly
feed the SIMD operations. This penalty in extra cycles can
be avoided when data is already packed in the background
memory. With that a large reduction in data accesses is ob-
tained for free. This is not to be confused with byte ad-
dressable memory, with sub-word sized content, where the
number of cache accesses is not reduced.

32 bit 32 bit

[[dr] d2] [c1] 2]

dl*cl + d2*c2

Figure 3. The iFIR16 operation.

Basic group structuring (BGS) is a transformation [5]
that horizontally merges the elements of different arrays.
Usually these are elements that are processed together. BGS
can have a large impact on data memory -power, -size and
-bandwidth.

This section describes how the exploration of BGS al-
ternatives has been applied on the FFT kernel. BGS ex-
ploration is coupled to the exploitation of SIMD operations
since it changes the layout of the arrays, the way they are ac-
cessed, and hence it also changes the types of operations as-
sociated with them. Since the variety of SIMD instructions
in the TriMedia ISA is limited there are only a few BGS al-
ternatives which are interesting to explore. A description of
the different Basic Group Structuring opportunities is illus-
trate in Figure 4.

short (10 short (102 short (10) short (10) int (20) short (10) short (10)
Re Im Sin() Cos() Re Im Sin() Cos()
@) (b)
int (20) int (20) int (20) int (20) int (20)
Re Im Sin() | Cos() Cos() |-Sin() Re Im Sin() | Cos()

(© (d)
Figure 4. BGS exploration: (a) no BGS at all; (b) partial-
1 BGS with packed Re/Im input data; (c) aggressive BGS
with Re/Im packing and two (redundant) coefficient arrays;
(d) partial-2 BGS with Re/Im packing and one coefficient
array. The declared type for each (packed) array is indicated
together with the number of useful bits (within brackets).

4.1.1. Partial-1

To compute one FFT butterfly, data from the Real- and Imag-
inary part are always read and written together. Two 16-bit
arrays of 2048 elements are declared in the initial code ver-
sion, hence two load/store operations are required for trans-
ferring these elements to the FUs. After BGS only one
load/store remains accessing a 32 bit wide array. The co-
efficients are untouched in this particular version. However,
since we intend to use SIMD operations these values need
to packed inside the kernel, incurring an amount of cycles.

4.1.2. Aggressive

To completely eliminate the previously mentioned penalty,
we explore an aggressive packing strategy where for all oc-
curring layouts present in the code the coefficient arrays are
packed accordingly. In the FFT this results in two packed
versions of the coefficient arrays (see Figure 4(c)). One has
the format sin/cos and the other -sin/cos. Clearly all pack-
and unpack overhead has been eliminated. On the other
hand, one still needs 2 load/store operations to access the
coefficients.

4.1.3. Partial-2

In a third version we reduce this number of load/stores to 1
by keeping a single coefficient format (e.g. sin/cos). This
reintroduces some cycle overhead because to reconstruct the
-sin/cos format we need to do an unpack, a negate and a re-
pack operation. It is not immediately clear which BGS op-
tion is the best. This shows that BGS exploration is strongly
related to the type of instructions available in the instruction
set. For instance, having a special instruction that negates
only one part of a word would be very useful in this partic-
ular case.

4.2. Data layout transformations for cache miss reduc-
tion

The data cache of the Trimedia TM1300 has a block size of
64 bytes. Hence, each time a cache miss occurs, 16 coeffi-
cient values of 4 bytes are transferred from main memory.

In the reference code the stride between two consecu-
tive accesses to the coefficient array is fairly large. This
means there is high probability that the 15 other elements,
which are brought to the cache anyway, are being flushed
before they are actually needed. This is highly undesir-
able because firstly cycles are wasted because data has to
be flushed to make room in the cache and secondly cycles
are wasted during the cache miss when the flushed data is
later on requested again.

To alleviate this pressure a vertical data layout is ap-
plied. This amounts to rewriting address expressions in such
a way that the largest multiplicative constant associated to
each loop iterator is assigned to the outer loop index and so
on. Naturally the array elements need to be reordered ac-
cordingly. All BGS versions can benefit from such a trans-
formation, but the problem was especially noticeable in the
aggressive case, simply because the cache pressure is higher
there.

4.3. High-level address and processor specific optimiza-
tions

All code versions have been complemented with high-level
address optimizations[8, 9]. These are mainly devoted to

further reduce execution time of cycles spend on address
arithmetic computations. In addition some TriMedia spe-
cific foreground memory oriented transformations have been
considered. More specifically inlining and loop unrolling to
move small arrays in the critical path of the FFT kernel to
the register file. This last transformation should be applied
with care to avoid register spilling.

5. EXPERIMENTAL FRAMEWORK

We have generated different DAB version tracks, each start-
ing from the platform independent code. Each track corre-
sponds to one of the BGS options and contains intermedi-
ate versions for all the sub steps in the platform dependent
stage. The experiments are carried out by linking the DAB
decoder to a test bench that generates a DAB stream of 10
frames (i.e. 1 second). Real-time therefor means an execu-
tion time smaller than 1 second.

All versions have been compiled with -O2 using the
native Trimedia compiler and have been executed on the
TM1300 development board which has a clock frequency
of 166MHz.

Execution time is measured with the standard C library
function clock(). The cycle and access count measurements
are done via hardware counters present on the TM1300 it-
self. Total energy spend in the data memory is obtained
using an energy model defined as

_ tag+data ta
Etot - Nhits xE + Nmiss S T

cache cache

+(Nmiss + Ncb) * Esram

With Npis, Nmiss and N, the number of cache hits,

; ; tag+data ;
cache misses and copybacks respectively. E;297 74 s the
energy per access to the cache activating both tag and data
lines. Es.qm is the energy per access to the main memory.
We use Cacti [4] with a .35um sram technology to estimate

the energy per access.

6. RESULTS

In our experiments we mainly focus on the data memory
energy consumption and the overall execution time. We are
also interested in the trade-off between the total number of
data accesses and the total CPU cycles. These cycles are
defined as the total number of execution cycles in the ideal
case where there are no instruction or data stalls. It is pre-
cisely this trade-off that is being explored during the BGS
step. Finally we capture the cache behavior by counting the
number of cache misses.

6.1. Exploration of BGS alternatives

We first like to evaluate the effect of BGS applied before
SIMD transformations on the FFT data path. For that pur-
pose we obtained 4 versions corresponding to a version where
only SIMD transformations have been applied and the other
being the three BGS exploration tracks taken right before
data layout.

Energy = Execution #read/writes #misses CPU cycles
Implementation (mJ) time(secs) (10%) (10%) (10%)
Pl 91.6 0.708 59.67 1.15 87.7
SIMD only 91.7 0.716 59.74 1.15 88.87
Partial-1 53.0 0.559 34.31 1.02 67.97
Aggressive 54.2 0.555 35.12 1.06 67.32
Partial-2 48.2 0.374 2041 0.71 66.49

Table 2. Impact of BGS on SIMD acceleration, no data lay-
out or processor specific optimizations have been applied

Table 2 shows that all BGS options outperform the SIMD
only version, mostly due to a decrease in the number of
data accesses. In fact, compared to the platform indepen-
dent (PI) code, only doing SIMD transformations is slightly
worse. This is because of the increased number of CPU cy-
cles coming from extra pack/unpack operations. Because
of this poor result we have rejected the SIMD only version
from the exploration phase.

The next step is to find out which of the three BGS alter-
natives is optimal in terms of energy consumed in the data
memory and execution time. In Table 3 we list all the BGS
tracks after the platform dependent stages. The numbers re-
ported are for the full decoder. The same view is given in
Table 4 but for the FFT kernel alone.

Energy Execution #read/writes #misses CPU cycles
Implementation (mJ) time(secs) (10%) (10%) (10%)
PI 91.6 0.708 59.67 1.15 87.7
Partial-1 325 0.383 21.30 0.30 55.98
Aggressive 32.6 0.379 21.38 0.29 55.38
Partial-2 311 0.374 20.41 0.25 55.44

Table 3. BGS exploration for the full DAB decoder

Energy Execution #read/writes #misses CPU cycles
Implementation (mJ) time(secs) (10%) (10%) (10%)
Pl 67.1 0.411 43.55 1.07 39.89
Partial-1 6.9 0.075 4.41 0.18 8.33
Aggressive 7.0 0.072 4,50 0.20 7.65
Partial-2 55 0.068 3.55 0.15 7.86

Table 4. BGS exploration inside the FFT kernel

We can conclude that the second partial data format re-
sults in the best code both in data memory energy and exe-
cution time. Even though the total CPU cycles are slightly
higher than in the aggressive alternative. In Partial-1 there
is even more extra packing going on, in other words even
more CPU cycles, but in this case the execution time does
become slower. This clearly demonstrates the trade-off be-
tween CPU cycles and number of data accesses.

6.2. Impact of platform dependent optimizations

Table 5and 6 give the breakdown into the different platform
dependent sub steps for the Partial-2 alternative.

Energy Execution #read/writes #misses CPU cycles
Implementation (mJ) time(secs) (10%) (10%) (10%)
Reference 498 3.70 326.5 4.2 599.2
PI 91.6 0.708 59.67 115 87.7
+BGS 48.2 0.506 31.37 0.71 66.49
+Data Layout 47.4 0.473 30.92 0.53 66.15
+Proc. Spec. 311 0.374 20.41 0.25 55.44

Table 5. Impact of different platform dependent steps for the
full DAB decoder

In the first step we introduce BGS on top of SIMD trans-
formations. This reduces the number of data accesses by
almost a factor of 2. There is also a 25% gain in CPU cy-
cles due to the smaller number of instructions that have to
be executed after SIMD transformations.

During data layout we try to reduce the cache pressure
by reordering the accesses to intermediate buffers. The gain
is best observed in the aggressive BGS alternative where
the 1.05 million cache misses after BGS are reduced to 0.56
million. This number is close to the 0.53 million misses in
Partial-2.

The final step has the largest impact because at that stage
you can simplify address computations, functions calls can
be eliminated by inlining code and small intermediate buffers
can be permanently moved to the register file. 1t should be
emphasized that all these optimizations are only made pos-
sible by the previous sub steps.

In Table 6 you can verify that the overall gains truly
originate from optimizing the FFT kernel. Initially the FFT
kernel takes 57% of the overall execution time and 60% of
the total energy consumption in the data memory. In the end
this share is reduced to 18% in time and about the same in
energy. The FFT bottleneck clearly has been removed.

Energy Execution #read/writes #misses CPU cycles
Implementation (mJ) time(secs) (10%) (10%) (10%)
Reference 299 211 195.9 2.58 162.2
PI 67.1 0.411 43.55 107 39.89
+BGS 226 0.198 14.47 0.60 18.92
+Data Layout 217 0.166 14.03 0.42 18.77
+Proc. Spec. 55 0.068 355 0.15 7.86

Table 6. Impact of different platform dependent steps for the
FFT kernel

6.3. Overall gain

Table 7 summarizes the obtained energy reduction in the
data memory hierarchy and the final speed-up. In an ASIC
design we could achieve a data memory energy consump-
tion of 25m.J, estimated using a .35um sram power model
from an industrial partner. With an energy gain of a factor

of 16 on the TM1300 we come close to this number (i.e.
31.1mJ).

‘ Normalized Energy ~ Normalized Execution

Implementation (%) time(%)
Reference 100 100
Platform Independent 18.29 (5x) 19.16 (5x)
Platform Dependent 6.25 (16x) 10.12 (10x)

Table 7. Normalized data memory energy and time at the
different reference points, within brackets the gain is re-
ported

Since the final version of the channel receiver is only
taking 0.37 seconds, the slack achieved in execution time
makes it possible to lower the frequency, and thus the V4
of the CPU core towards the minimum recommended by the
processor’s specification. In the TM1300, V4 can be low-
ered from 2.5V to 2.0V [7]. Assuming a linear relationship
between frequency and V;; we should already be able to
reach the minimum 2.0V in the platform independent ver-
sion. Ultimately this leads to a 36% energy reduction in the
CPU core while still running at real-time.

7. CONCLUSION

In this paper, we illustrate the application of a Data Transfer
and Storage Exploration for the implementation of a low-
power Digital Audio Broadcast channel receiver in real-time
using a TriMedia TM1300 processor. We show how the
platform independent data transfer and storage related bot-
tlenecks are first eliminated. In a second phase the result-
ing application source code can be adapted to optimally ex-
ploit the available memory hierarchy while efficiently using
the sub-word level acceleration capabilities provided by the
architecture. These optimizations have brought sufficient
speed-up improvements so as to allow real-time execution
of the decoder with a factor of 3 reduction in energy con-
sumption in the data memory hierarchy on top of the plat-
form independent optimized code. Overall this energy has
been reduced with a factor of 16.

8. ACKNOWLEDGEMENTS

This work is partly funded by FWO (Fonds voor Weten-
schappelijk Onderzoek).

9. REFERENCES

[1] European Telecommunication Standard ETS 300 401, “Radio
broadcasting systems; Digital Audio Broadcasting (DAB) to mo-
bile, portable and fixed receivers”, RE/JTC-00DAB-4, May 1997,
Second Edition

[2] Digital Audio Broadcasting: Principles and Applications, ISBN 0-
471-85894-3, W.Hoeg and T.Lauterbach editors, J.Wiley & Sons
Publ., New York, 2001

[3]

[4]
[5]

[6]
[7]
(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

F.Catthoor, K.Danckaert, C.Kulkarni, E.Brockmeyer,
P.G.Kjeldsberg, T.Van Achteren, T.Omnes, Data access and
storage management for embedded programmable processors,
ISBN 0-7923-7689-7, Kluwer Acad. Publ., Boston, 2002
http://research.compag.com/wrl/people/jouppi/CACTI.html
F.Catthoor, K.Danckaert, C.Kulkarni, T.Omnes, Data transfer and
storage architecture issues and exploration in multimedia proces-
sors, book chapter in “Programmable Digital Signal Processors: Ar-
chitecture, Programming, and Applications” (ed. Y.H.Yu), Marcel
Dekker, Inc., New York, 2001.

"Trimedia TM1300 Preliminary Data Book”, Philips Electronics
North America Corporation, 1997.
www.semiconductors.philips.com/trimedia/products/media_proc_ic/
M.Miranda, F.Catthoor, M. Janssen, H.De Man, High-Level Address
Optimization and Synthesis Techniques for Data-Transfer Intensive
Applications, IEEE Trans. on VLSI Systems, no.4, vol.6, Dec. 1998.
C.Ghez, M.Miranda, A.Vandecappelle, F.Catthoor and D.Verkest,
Systematic high-level Address Code Transformations for Piece-
wise Linear Indexing: lllustration on a Medical Imaging Algorithm,
In Proc. Workshop on Signal Processing Systems (SIPS), 2000.
J.W. Davidson and S. Jinturkar, “Memory Access Coalescing: A
Technique for Eliminating Redundant Memory Accesses”, in Pro-
ceedings of PLDI, June 1994, pp. 186-195.

P.R. Panda, N.D. Dutt and A. Nicolau, “Memory Data Organization
for Improved Cache Performance in Embedded Processor Applica-
tions”, in Design Automation of Electronic Systems, vol. 2, no. 4,
pp. 384-409, 1997.

D. Lopez, M. Valero, J. Llosa and E. Ayguade, “Increasing Memory
Bandwidth with Wide Buses: Compiler, Hardware and Performance
Trade-offs”, in Proceedings of ICS-11, July 1997, pp. 12-19.

P. Ellervee, M. Miranda, F. Catthoor and A. Hemani, “System-level
Data-format Exploration for Dynamically Allocated Data Struc-
tures”, in IEEE Trans. on Computer-Aided Design, vol. 20, no. 12,
pp. 1469-1472, December 2001.

R. Leupers and S. Bashford, “Graph based Code Selection Tech-
niques for Embedded Processors”, in ACM Design Automation of
Electronic Systems, vol. 5, no. 4, pp. 794-814, October 2000.

M. Lorenz, D. Kottman, S. Bashford, R. Leupers and P. Marwedel,
“Optimized Address Assignment for DSPs with SIMD Memory Ac-
cesses”, in Proceedings of ASP-DAC, January 2001.

K. Masselos, F. Catthoor, C.E. Goutis, H. De Man, “Interaction
between Sub-word Parallelism Exploitation and Low Power Code
Transformations for VLIW Multi-media Processors”, in IEEE \Volta
Memorial Workshop on Low-Power Design, March 1999.

S. Julien and N. Drach-Temam, “Memory Bandwidth: The True
Bottleneck of SIMD Multimedia Performance on a Superscalar Pro-
cessor”, in Proceedings of EuroPar, August 2001, pp. 439-447.

E. Salami, J. Corbal, M. Valero, “An Evaluation of Different DLP
Alternatives for the Embedded Media Domain”, in Proceedings of
1st Workshop on Media Processors and DSPs, November 1999.

J. Huisken, F. van de Laar, M. Bekooij, G. Gielis, P. Gruijters, F.
Welten, “A Power-Efficient Single-Chip OFDM Demodulator and
Channel Decoder for Multimedia Broadcasting”, IEEE Journal of
Solid-Sate Circuits, Vol. 33, nr 11, pp.1793-1798, Nov. 1998.
K.Danckaert, F.Catthoor, H.De Man, “A loop transformation ap-
proach for combined parallelization and data transfer and storage
optimization”, Proc. ACM Conf. on Par. and Dist. Proc. Techniques
and Applications, PDPTA’00, pp.2591-2597, Las Vegas NV, June
2000.

