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Mars Exploration Timeline
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Program Drivers on Comm/Nav 
Infrastructure
• Increased science data return (e.g., for multi-spectral surface

pancam imagery)
• Complexity of MSR surface operations, with the resulting need for 

frequent command cycles and rapid, low-latency engineering data 
return to support operations planning

• Robust, high-accuracy radio-based approach navigation (e.g., ~<1 
km entry knowledge for aerocapture or precision landing)

• Capture of real time engineering telemetry during critical events 
such as EDL, aeromaneuvering, MAV launch, etc., for feed-
forward fault diagnosis in the event of anomaly

• Energy-efficient relay telecommunications for energy- and mass-
constrained scout-class missions

• Radio tracking of orbiting sample canister to support in-orbit 
sample rendezvous

• Surface position determination to support long-range rover 
navigation
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Mars Telecommunications: 
Representative Capabilities

Orbiter Direct-to-Earth Link
� 10 kbps - 1 Mbps to 34m @ 2.7 AU
� Example:  MGS

� 25 kbps
� 1.5 m HGA
� 25 W TWTA

Large Lander Direct-to-Earth 
Link
� 1 kbps - 10 kbps to 70m @ 2.7 AU
� Example:  MER

� 2 kbps
� 28 cm HGA
� 15 W SSPA

Lander Relay Link
� 100 kbps - 1 Mbps
� Example:  MER

� 128 kbps
� Omni UHF antenna
� 10 W SSPA

No DTE capab ility 
for Scout-class 
landers
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Direct-to-Earth Communications

• Keys to increased 
DTE link capability:

– Transmit power
– Transmit aperture
– Frequency (Ka-band offers 

~4x improvement over X-
band

– Earth receive aperture (70m 
offers ~4x improvement 
over 34m)

• Mass, power constraints 
imply landed DTE 
capability will always fall 
well below orbital DTE 
capability

Mars-to-Earth Deep Space LinkMars-to-Earth Deep Space LinkMars-to-Earth Deep Space LinkMars-to-Earth Deep Space Link
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Key Aspects of Relay 
Communications

User:
- Transmit power
- Antenna gain/steering
- Power/energy constraints

Proximity Link:
- Frequency band
- Comm protocols
- Multiple Access 

Scheme

Orbiter Deep Space Link:
- Data rate (~power x gain)
- Frequency (X, Ka)
- Range variation (25x comm performance)

Orbiter Proximity 
Link:

- Data Rate
- Antenna gain/steering

Orbit:
- Slant range
- Connectivity
- Global Coverage
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Proximity Link Characterisitics
• Omni-to-omni links

– Simple ops for lander and orbiter
– Link performance scales as 1/freq2

– Current ~400 MHz UHF band represents balance between link 
performance and RF component size

• Omni-to-directional links
– Increased orbiter antenna gain can significantly improve link performance 
– To first order, for fixed orbiter aperture size, link performance is 

frequency-independent
– However, orbiter antenna pointing requirements scale with frequency

• Directional-to-directional links
– Opens possibility for very high link performance, event over long slant-

range links
– Requires antenna pointing at both ends of link

– Link performance scales as freq2
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Proximity Link Communications
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Critical Event Communications

Sun SPK

Mars01

To Earth

Orbiter

Lander

• Program policy is to ensure 
realtime communications for 
critical mission events
– Entry, Descent, and Landing
– Mars Ascent Vehicle Launch
– Aerocapture MOI

• Options:
– DTE “semaphores” can 

provide ~ 1 bps capability
– High-rate prox link (will be 

required to characterize more 
complex 2nd-gen systems)

• Infrastructure orbiters
• Converted cruise stage
• Black box
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Orbit Changes for EDL SupportOrbit Changes for EDL SupportOrbit Changes for EDL SupportOrbit Changes for EDL Support

0.01

0.1

1

10

100

1000

10000

100000

0100200300400500600700

Time Interval (days)Time Interval (days)Time Interval (days)Time Interval (days)

180 deg In-Orbit
Phasing
6-hr Local Time
Nodal Plane Change

Orbital Changes to Support 
EDL Communications

Nodal
Plane
Change

Orbit
Phasing

• Use of low-altitude science orbiter 
for EDL comm relay requires 
orbit adjustment to ensure EDL 
visibility

• Preliminary analysis of ∆V partial 
derivatives

– In-plane orbit phasing: ~0.26 m/s per deg/day
– Nodal plane change:  ~326 m/s per deg/day
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Key Aspects of Relay Navigation

Precision Approach Navigation
� X-band Doppler on HGA link 

between approach s/c and orbiter
� Capability:  <0.5 km B-plane error 

@ E-1 day

Orbiting Sample 
Canister Tracking
� 1-way or 2-way Doppler 

tracking on UHF link
� Open-loop recording for weak 

signals
� Capability:  <100 km 1-way

<100 m 2-way

Surface Positioning
� 1-way or 2-way Doppler/range 

tracking on UHF link
� Capability:  <10 m position 

uncertainty within 1 sol
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Mars Approach Navigation
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Trade Space:  Relay Orbits

Orbit Pros Cons
Low-altitude polar Global coverage; low slant-

range for energy-efficient relay
comm, even with simple omni
antennas

Very limited connectivity,
particularly in equatorial band

Low-altitude equatorial Frequent contact to equatorial
region (can complement polar
orbiters); low slant range

No coverage to mid-lat and
polar regions

Mid-altitude (e.g., alt =
4450 km, incl = 130
deg)

Global coverage with uniform
connectivity from pole to pole;
longer and more frequent pass
durations

Larger slant range (can be
compensated to some extent
by increasing orbiter antenna
gain)

Areostationary (alt =
17,000 km)

Continuous contact to one
region of planet

Large slant range; hi-rate links
will require directivity from
surface user; no global
coverage

ÒHigh-NoonÓ elliptical
orbits

Several orbits exist with
precession such that apoapse
is fixed near local noon,
resulting in long daytime
passes

Large slant range at apoapse;
hi-rate links will require
directivity from surface user;
variable slant range over orbit
increases ops complexity
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Low-Altitude Relay Orbiters

• Polar orbit provides 
global coverage but 
limited coverage of low-
latitude sites

• Equatorial orbit 
provides frequent 
contact, increased data 
return for low-latitude 
sites, but no coverage 
beyond +- 30 deg

Telesat Coverage vs. Mars Surface Latitude
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Mid-Altitude Orbiters

• 4450 km altitude 
provides increased 
coverage
– Large ground track
– 4-5 hrs contact per sol, nearly 

uniform in latitude
– Multi-Gb/sol with steered 

orbiter antenna

Telesat Data Return vs. Mars Surface Latitude
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Areostationary and Highly Elliptical 
Orbiters
• Areostationary

– 17,000 km altitude
– Continuous view of one region of planet (~25% of planet centered

about sub-satellite point; no view of polar regions)
– High-rate (~1 Mbps) continuous relay to Earth with directional 

surface antenna (satellite at fixed point on sky w.r.t. surface user)
– Lower-rate (~10 kbps) continuous relay to Earth with simple omni 

surface antenna 

• HEO
– Several “sun-sync” orbits exist with apoapse at a fixed local time 

(e.g., local noon); long daytime passes
– Large slant range at apoapse -> similar link considerations as for 

areo:  directional surface antenna req’d for high rate (but now 
satellite moves on sky w.r.t. surface user) 
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2007 Marconi Comm/Nav Orbiter

• Joint ASI/NASA mission
– ASI provides:

• Spacecraft
• ATLO
• S/C flight engineering 

– NASA provides:
• Launch vehicle
• Prox link comm/nav payload
• Deep space-specific engineering support
• Mission ops

• First dedicated Mars 
telecommunications and 
navigation orbiter

– Mid-altitude orbit optimized for comm/nav 
role, improving performance relative to 
low-altitude science orbiters

– Will provide comm (EDL and surface 
relay) and nav (approach nav, surface 
position, orbital rendezvous) services to 
other elements of Mars program
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Electra Proximity Link Payload

• Effort is underway to develop a next-generation 
standardized Mars proximity link payload
– To be flown on all Mars orbiters, starting with MRO’05 - provides 

de facto interoperability and enables gradual implementation of 
Mars orbital comm/nav infrastructure at low incremental cost

– Flight reconfigurable/reprogrammable over long mission lifetime
– Greater flexibility (wider range of supported data rates; swappable 

txmt/rcv bands, multi-channel operation)
– Addition of X-band (8.4 Ghz) proximity comm/nav capability
– Improved navigation/timing performance
– Improved performance (coding, low-loss half-duplex mode, 

reduced NF, increased PA efficiency, …)
– Modularity to allow scaling for low-mass lander/scout applications
– Portability to facilitate integration with variety of orbiters
– Self-contained relay functionality (including relay data 

management) for improved testability
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Electra Physical Configuration
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Electra Functional Block Diagram
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Protocols

• CCSDS Proximity-1 Space Link Protocol 
– Provides standards for the physical and data link layers for Mars 

proximity communications
– First implementation on Mars Odyssey
– Will be key for achieving interoperability among MER A/B, 

Beagle 2, Mars Exp, Odyssey

• CCSDS File Delivery Protocol
– Provides reliable end-to-end file delivery
– Addresses unique aspects of deep space communications

• Long RTLT
• Intermittent connectivity
• High BER links
• Multi-hop store-and-forward relays
• Custody transfer to minimize onboard storage rqmts
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Key Technologies

• The Mars Technology Program is funding a 
number of important comm/nav technology 
task:
– Deep Space Communications

• High-EIRP RF Technologies (B. Lovick)
• Optical Comm Flight Demo (K. Wilson)

– Mars Proximity Communications
• Electra Advanced Development (T. Jedrey)
• UHF Antennas (K. Kelly)

– Radio-Based Navigation
• ST5 Flight Demo (W. Bertiger)
• In Situ Navigation (J. Guinn)

– Communications Protocols and Coding
• Proximity Link Protocols (L. Clare)
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Evolution of Mars 
Telecommunications Capability
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Evolution of Mars 
Radio-Based Navigation Capability
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� Autonomous on-board processing
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Some Parting Questions...
• How do we manage and operate a heterogenous collection of 

orbital relay spacecraft as an integrated Mars comm/nav 
infrastructure?

• What is the science value of increased bandwidth and 
connectivity?  
– How would a continuous high-rate areostationary relay change our surface 

operations concepts?
• When is it cost-effective to transition to:

– Demand access proximity service concept?
– On-board radiometric data processing?
– Higher-frequency directional lander links?

• How should our proximity link standards evolve?
– Physical layer
– Modulation and coding
– Higher layers of data management
– Ultimate interface with IPN vision



A Real-World Example:  
MER EDL Communications
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EDL Sequence of Events Overview

1) Direct Entry from Hyperbolic Approach

2) Cruise Stage Separation: E- 15 minutes

3) Atmospheric Entry: ~125 km altitude

4) Parachute Deploy: ~10 km A.G.L., ~E+ TBD s

5) Heatshield Jettison: 20 s after chute deploy

6) Bridle Descent: 20 s after heatshield jett., 10 s to 
complete

7) Radar Acquisition of Ground: ~2.4 km A.G.L

8) Airbag Inflate: ~4 s prior to retrorocket ignition

9) Rocket Ignition: ~160 meters A.G.L

10) Bridle Cut: ~15 meters A.G.L, 0 m/s vertical 
velocity

11) First Contact w/ Ground: ~E+ TBD s
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MERA EDL: Pt/No for Backshell LGA 
and Rover LGA

(2 sigma dynamics and min.  
measured antenna gain on MPF mockup)

No dynamics
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No dynamics

MERB EDL: Pt/No for Backshell LGA 
and Rover LGA 

(2 sigma dynamics and min.  
measured antenna gain on MPF mockup)
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MER-A Approach Geometry
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MER-B Approach Geometry

Approach Trajectory
�  V∞ = 3.02 km/s 
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Mars Program Assessment of Available 
Assets to Support MER EDL

Mars 
Program
Selection

Potential  EDL
Communications

Assets

Pros Cons

Odyssey  Mars
2001 Orbiter

• Odyssey aerobraking will
be complete
• UHF radio compatibility is
well understood (same UHF
radios on both vehicles)

• Requires change in orbit
which significantly reduces
the science return of the GRS
instrument

Mars Global
Surveyor (MGS)

� Currently at Mars and
operational
� Prime science mission will
be completed
� Orbit provides good
geometry for both MER
EDL events

� Extended lifetime will
require careful propellant
management and ops
strategy

Mars Express ESA
Orbiter

• Planned to be at Mars
during MER landings

• Arrives only 10 days prior to
MER-A EDL
• The potential large ranges
due to orbit geometry may
prevent MER EDL support
• More complex inter-agency
interface


