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8.1Background 75

line-of-sightsignallevel. On the otherhand,terrestrialsystemscanapplyhigherpowerlevels
and do not need to establisha line-of-sightsignalpath. They normallyoperateby utilizing
the scatteredmultipathsignals. In contrast,satellitesystemsmust utilize the lineof-sight
componentfor communications,and multipathscatteringrepresentsinterference.

In responseto the needsof experimentersand systemdesigners,severaldistinct types of
LMSSmodelshavebeen developed. Three classesof models are describedin the following
paragraphs.They are classifiedhereas: (1) empiricalregressionfits to data, (2) probability
distributionmodels,and (3) geometric-analyticmodels. The empiricalregressionfits to data
modelsdescribeprobabilitydistributionsof fadesbasedon experimentalmeasurements.The
second class, statisticalprobability distributionsmodels, are based on the utilizationof a
composite of severalprobability density functionscustomarilyused in radio wave propa-
gation; namely,Rayleigh, Rician, and lognormalstatistics. Among these, some combine
densitiesbased on physicalreasoningabout the propagationprocess,while othersadd the
use of fade state or fade state transitionprobabilities. The third class of models employ
geometricalanalyticalproceduresfor predictingthe eff@ctsof singleand multiplescatterers.

The choice as to which model is most appropriatedependsvery much on the intended
applicationand whichpropagationphenomenonone wantsto predict. Of the differenttypes,
empiricalmodelsdo not provideinsightinto the physicsof propagationprocesses,but they
characterizethe sensitivityof the resultsto importantparameters.Statisticalmodelsbuild
upon an understandingof the processeswhich cause signalvariations,but with simplify-
ing assumptions.Analytical models attempt to describea particularpropagationscenario
deterministically,but thenhaveto use statisticsto extendthe resultsto realisticsituations. -

In this chapter are described backgroundinformationassociated with the important
elementsof modeldevelopment.Also describedarethe dominantLMSSpropagationmodels
of the above types, their input and output parameters,as well as their advantagesand
limitations.

—
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8 BackmoundInformationAssociatedwith Model Develo~ment 76

Background Information Associated with Model
Development

8.2.1 DifFusely Scattered Waves

To explainsignalvariationsspecificto LMSStransmissionsbetweena satelliteand a moving
vehicle,the interactionsof two importantsignalcomponentshaveto be considered:lineof-
sightanddiffuselyscatteredwaves.Weignorethegroundreflectedwavessinceit ispresumed
that for LMSSscenarios,
be outside its beamwidth

The direct wave may
sight path, with most of

any energydirectedtowardsthe antennanear the horizontalwill
and be filteredout by the low gain patternfunctionvalues.

be approximatedby a plane wave propagatedalong the lineof-
the power transmittedthroughthe centralfew Fresnelzones. It

may be completelyobscuredby obstaclessuchas mountains,buildings,or overpasses,or it
may be partiallyshadowedby roadsidetreesor utility poles. The shadowingprocessmay
be explainedby absorption,diffraction,scattering,or a combinationthereof. The frequency
of the direct wave is shiftedby an amountproportionalto the relativespeed betweenthe
satelliteand the vehicle.

A scenariofor diffusescatteringfor mobilereceptionmaybe describedas follows. Trans-
missionsfrom a satelliteilluminateobstaclesin the vicinity of the vehicle resultingin re-
flectedenergyemanatingfrom multiplescatterers.Wavesfrom thesescatterersarriveat the -
receivingantennawith random,polarizations,amplitudes,and phase,wherethe individual
contributionshave been delayedby the amount of time correspondingto the extra path
traveled. In addition, the individualcontributionsundergoa Doppler shift proportionalto
the relativespeedbetweenany particularscattererand the vehicle. It is limitedto a band

. of frequenciesrelativeto the zero speedcenterfrequencygivenby,

o AfD= + ~ (81).

wherev is the vehiclespeedin m/s and Ais the wavelengthin m. The + and – signsdenote
anincreaseand decreaseof frequencyassumingthe illuminatedobstaclesaredirectlyin front
of andbehindthevehicle,respectively.This,of course,representsa worstcasescenariowhich
may occur at locations wherethere are sharpbends in the road. As an example,a vehicle
travelingat 25 m/s (- 55 mi/h) receivingL-Band (1.5 GHz or ~ = 0.2 m), will experience
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8.2BackgroundInformationAssociatedwith Model Development 77

8.2.2 Faraday Rotation

Faradayrotation effects [Davies, 1990; Flock, 1987] are potential contributorsto signal
strengthvariationswhichcan be neglectedfor LMSSsystemswhich employ circularpolar-
ization. The ionospherecontainsfree electronsin a relativelystatic magnetic field. This
combinationcausespolarizationrotationof linearlypolarizedwavesas givenby (for f >100
MHz)

# = 1.35X 106‘e ;Ec (deg) (82)●

where where f is the frequency in Hz and Be is the effective earth’s magnetic field in
Weberslm2definedby

and
flux

# .
B ~ NBcos~ dt

e =
TEC

(83).

where 0~ is the angle betweenthe directionof propagationand the earth’s magnetic
densityvector. TEC is the total electroncontent(#/m2) givenby

JTEC = N de (#of electrons/m2) (84).

where/ is the path length through the ionosphereand N (#/m3) is the electron density
along the path. Assuming,extremevaluesof TEC and Be given by ICCIR, 1986b (Report
263-6)],

TEC = 1.86 x 1018 (#lm2) (85).

Be = 0.43 x 10-4 (Webers/m2) (86).

polarizationrotationsof 142.7°and48.0°occurat f = 870MHzandf= 1.5GHz,respectively.
It is apparentthat at UHF frequencies,significantsignalloss due to polarizationmismatch
may occur. As mentioned,this is normallyavoidedby transmittingand receivingcircular
polarizedsignalssincethe receivingantennais insensitiveto the samepolarizationshiftsof
the orthogonallinearcomponentscomprisingthe circularpolarizedwave.

8.2.3 Ground Specular Reflection

This type of specularreflectionis generatedon the ground nearthe vehicle,wherethe ray
from the reflectionpoint to the antennais below the horizontal. This coherentreflection

—
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8 EmpiricalRegressionModels 78

comesfrom an areaaroundthe interceptpoint the sizeof a few Fresnelzones. Its strength,
relativephase shift, and polarizationdepend on the roughnessand dielectricpropertiesof
the groundand areelevationanglesensitive. In a systemutilizinga low-gainantenna(e.g.,
a dipole) whichcan geometricallyseethe specularpoint and also has gain in that direction,
destructiveinterferencebetweenthespecularreflectionandthe directwavecan producedeep
fades ICCIR, 1986a(Report 1008);Flock, 1986].

The antennascontemplatedfor use in LMSS are either low-cost, medium gain, fixed
pointed or higher-cost,high gain, trackingantennas. A typical mediumgain antennais a
crosseddrooping dipole, which has azimuthallyomni-directionalgain of about 4 dB from
15°to 60° elevation.At lowerelevationanglesits gaindecreasesrapidly,thusprovidingpro-
tectionagainstboth specularreflectionfromthegroundnearthe vehicleaswellasmultipath
scatterfrom elevatedobjects at largerdistances.A high-gainantenna,typically a mechani-
cally or electronicallyscannedarray,achievesevengreaterrejectionof multipathpowerand
a concomitantnarrowingof the Doppler spectrum. Isolationfrom ground specularscatter
is furtherenhancedby placingthe antennaon the centerof the vehicleroof which acts as a
groundplane and helpsto direct the patternupward.

Someadditionalrejectionof the specularreflectioncan be achievedbecausecircularpo-
larizationis reversedwhenthe grazingangleof reflectionis largerthanthe grazingBrewster
angles.In particular,thesegrazinganglesarein the rangeof 15° to 35° for verywet to very
dry land, respectively[Reedand Russel,1966].

8 E R

Empiricalregressionmodelscorrespondto fadedistributionsderivedfromexperimentalmea-
surementsat differentfrequencies,elevationangles,vehicleheadings,sidesof road, types of
terrain,and extent of shadowing.They all have the commonadvantageof being based on
actual data and hence they may be used with a certain degreeof confidencefor the pre-
diction of fade distributionsover similartypes of roads. Although they are derivedfrom
‘time-series”of fadingevents,this informationis lost in the derivationof the distributions.
The physics associatedwith the empiricalmodels exist to the extent that the models are
based on the categorizedmeasureables,such as frequency,elevationangles,heading, and
percentageof shadowingdue to trees.
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8 EmDiricd ReimmsionModels 79

I.

*

The commondisadvantageassociatedwith thesemodels is that difficultiiximay exist in
extrapolatingthesemodelsto casesnot considered;suchas other “road-types” and f@uen-
ciesoutsidethe intervalof scaling.

8.3.1 Large Scale - Small Scale (LS-SS) Coverage Model

The first propagationexperimentstargetedtowardsland mobile satellitecommunications
wereconductedby observing860MHzand 1550MHztransmissionsemanatingfrom NASA’s
ATS-6 spacecraft [Hess,1980]. Using the data base from measurementstakenover about
1200km in or nearnine cities of the Westernand MidwesternUnited States,an empirical
modelwasderivedrelatingthe probabilitiesof exceedingfadesfor largescale (LS) and small
scale (SS) ‘coverage.” Coveragein broadcastingis definedeither in terms of percentage
of locations within an areaor percentageof time at a particularlocation that there exists
satisfactoryservice. For LMSS scenarios,signallevel variationsas a function of time are
produced by vehicularmotion. The model underdiscussion(denoted by LS-SS) describes
statisticsfrom measureddata for small and large spatial scales. Small scale coverage(as
definedby Hess) representsa driving intervalof 100 m. For a vehicle speed of 25 m/s
(- 55 mi/h), this convertsto a time intervalof 4 secondsor the time intervalof a short
conversationalsentence.Foreach 100m interval,Hessderiveda cumulativefadedistribution
givenby

~si(A, &J = psi [A < Aq] (87).

wheretherighthandsideof (8.7) is readas ‘the probabilitythat the attenuationA is smaller
thana designatedattenuationlevelA~for the ith smallscaledistribution.” The ‘large scale”
distributionfunctionPLmaybe derivedasfollows.We firstconstructa largefamilyof small
scaledistributionsof the type depictedby (8.7) on a graph. We next intersecteachof these
distributionsby a fixed percentage(e.g., Ps = 90%) and arriveat a family of fade levels&
fromwhicha new cumulativefade distributionmaybe derived.We call thisnewcumulative
distributionthe ‘large scale” case and representit by

PL(A) = PL [A < & IPs] (88).

The right hand side may be read as “the probabilitythat the attenuation A exceeds a
designatedthresholdlevelAqgiventhe conditionthat the smallscaleprobabilityPs assumes
a particular value (Ps = 90% for the givenexample). The physicalsignificancethat may
be attributed to (8.8) is that it predicts the probabilitythat the fade will be less than a

\.
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8.3 EmpiricalRegressionModels 80

particularfadelevelovermanykilometersof driving,assuminga givenPs whichdenotesthe
likelihoodof successfulreceptionovera 100m drivingdistance.

Familiesof distributionsof the type given by (8.7) and (8.8) were derivedfrom data
collectedfor differentvehicleenvironmentsand path geometries.A normaldistributionwas
fit to (8.8) from which a ‘mean excess path loss, p,w and ‘standard deviation, u“ were
derived. The model equationsof Hessfor Ps = 90% valid in the range of PL from 50% to
90% are givenby:

A (PL) = p + k(PL) o (89).

where
p = aO+ al ENV + az HEAD+ as FREQ + af SIDE+ as ELEV (8.10)

a = bO+ bl ENV + bz HEAD+ bs FREQ + bf SIDE+ bs ELEV (8.11)

In (8.9), k is the numberof standarddeviationsfor various

(o PL= 50%

k=

{

1.28 PL= 90%
1.65 PL= 95%
2.33 PL= 99%

The modelparametersENV, HEAD, FREQ, SIDE,and

valuesof PL and aregiven by

(8.12)

ELEVare definedin Table 8.1.
We note that the model containsthe followingelements:(1) the local environment(ENV),
such as urban, semi-urban(commercial)and suburban, (2) the vehicle heading (HEAD)
with respect to the satelliteazimuth,(3) the frequency(FREQ); UHF or L-Band, (4) the
side (SIDE) of the road driven (satellitelocated acrossopposing lane or not), and (5) the
elevationangle(ELEV) to thesatellite.Thedowntownareaof a city,withmanytallbuildings
and a rectangularstreetgrid would be characterizedas urban. Streetslined by shopping
centersas wellas by businesseswith off-streetparkinglots are classifiedas commercial,and
areaswith smallone-or two-storyhousesalongmoderatelytreelined roadsdefinesuburban
environment.Data acquiredin ruralsurroundingsare included in the suburbancategory.
The coefficientsfor the meanfade p and slope a givenin (8.10) and (8.11), respectively,are
summarizedin

The overall

Table 8.2, alongwith theirstandarderrors.

standarderrorsof p and a are

S.E.(p) = 3.65dB (8.13)

—.
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Table 8.1: ParameterDefinitionand Valuesfor HessModel

Parameter Rangeof Values

Environment 1 = Urban,O= Commercial,–1 = Suburban/Rural

HEADing – cos2(Az~d. – Azti,~t.)

FREQuency 1 = UHF, 1.8 = L-Band

SIDE of road +l=Satellite acrossroad, –l=On sameside

ELEVation 15° to 50°

S.E.(a) = 2.5 dB

In orderto extendthe small-scalecoveragefrom the modeledvalueof Ps = 90% as
by (8.9)-(8.11) and Table 8.2 to othervaluesof Ps, we use the followingformulation:

Urban and Commercial

A(P~, Ps) =
{

(Ps - 90)X 0.6+ A(P~) 95% 2 Ps 2 90%
(Ps - 90)x 0.2+ A(P~) 50% < Ps < 90%

Suburban-Rural

A(PL, Ps) = (Ps – 90) x 0.1+ A(PL)

(8.14)

given

(8.15)

.
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Table 8.2: CoefficientsIn LS-SSFadeModel

MeanFade,p StandardDeviation,a

r

Coeffic. Value (dB) Std Error (dB) Coeffic. Value (dB) Std Error (dB)

aO 9.55 bO 3.75

al 4.46 0.42 bl 2.62 0.29

a2 3.41 0.61 b~ 0.98 0.42

aa 1.66 0.91 b3 0.046 0.62

ad –0.35 0.36 b4 –0.24 0.25

as –0.052 0.045 b~ 0.04 0.031

r
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8.3EmpiricalRegressionModels 83

Example: LS-SS Model

I

b

To illustratethe proceduresby which we executethe LS-SSmodel, considerthe following
example. Assumethat a receivercan recoverthe LMSScoded errorsas long as the small-
scalecoverageis at leastPs = 70%. The systemoperatesat L-Bandin a suburbanareawith
an elevationangleto the satelliteof 45°. It is desiredto determinethe requiredfade margin
to achievea largescaleprobabilityof PL = 95%.

We assumea worst case headingand conditionof roadside,with the satelliteat a right
angleto and right of the vehicle. Hence,we employ the followingparametervaluesfrom
Table 8.1:

ENV = –1 (Suburban/Rural)
HEAD = +1 (=”ehide– az~t, = 90°)
FREQ = 1.8 (L – Band) (8.17)
SIDE= –1 (SatelliteSameSide) .
ELEV = 45°

Substitutingthe above into (8.10) and (8.11), we obtain

p = 9.5 dB (8.18)

ti = 4.23 dB (8.19)

Substituting(8.18), (8.19) and k = 1.65 (from (8.12) for p~ = 95%) into (8,9) resultsin

A= 16.5dB Ps = 90% (8.20)

The fade given by (8.20) correspondsto a large scale probability of PL = 95% and small
scaleprobabilityof Ps = 90%. To convertthe above to the desiredsmallscaleprobability
Ps = 70 %, substitute(8.20) into (8.16). Hence,

A= 14.5dB Ps = 70% (8.21)

An estimateof the standarddeviationassociatedwith (8.20) may be derivedby substi-
tuting (8.13) for p and (8.14) for a in (8.9) and calculatingthe squareroot of the sum of
the squaresof each of the terms(with k = 1.65). This givesa predictionerrorof 5.5 dB.

In Figure8.1 is givena familyofgurves of the large-scalecumulativedistributionsPLfor
elevationanglesof 20°, 30°, and 45° with small-scaleprobabilitiesof Ps = 90Y0,70Y0,and

.
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EmpiricalRegressionModels 85

50%. Thesedepict an overalldrivingconditionas each curverepresentsthe averageof four
distributions;rightside of road, left side of road, and differencein vehiclesatelliteazimuth
directionsof 90° and OO.We note that PL is relativelyinsensitiveto elevationanglebut is
highlysensitiveto Ps.

Discussion

The LS-SSmodel of Hessis derivedfrom an extensivedata base of measurementresults,
whichis especiallyweightedfor urbanto suburbanenvironments.It is simpleto useandhas
realisticparameterizationfor the most importantenvironmentalvariables.

The model wasderivedfrom data takenwith linearlypolarizedquarterwavelengthwhip
antennas. Such a systemwill not provide isolationfrom ground specularreflectionsas do
low gain LMSS type antennaspreviouslydescribed. While shadowingloss measurements
were not affected by the antennachoice, multipathand speculareffects were most likely
enhanced.This may havecausedoverpredictionof signalvariationsespeciallyin open rural
areaswhereshadowingis statisticallylesssignificantthanmultipath. It is also importantto
note that the experimentemphasized
data base for ruralareaslessreliable.

8.3.2Empirical Roadside

urban over ruralareas,makingpredictionsfkomthe

Shadowing Model

Sincethe empiricalroadsideshadowingmodel was addressedin Section3.3, the model de-
tails will not be describedhere. A short summarydiscussionis presentedin the following
paragraphs.

Discussion

The ERS model is based on extensivemeasurementsin rural and suburbanenvironments
in centralMarylandusinga realisticLMSSantennacomprisedof a crosseddroopingdipole
(previouslydescribed). The model is based on systematicallyrepeatedmeasurements(at
UHFand L-Band) alongthe samesystemof roadsat differentelevationanglesrangingfrom

-&_

.

A

20° to 60°. The fde distributionsare simpleto calculate. They are a manifestationof an
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8.4ProbabilityDistributionModels 86

overallaveragefkde condition for both left and right side driving and variousdegreesof
roadsideshadowing(55Y0to 75Yo).It has been independentlyvalidatedto within a few dB
employingmeasurementts in Australia.

Becauseof the limiteddynamicrangeof the measurements,only the mediandistribution
of many90 secondintervalscould be determinedand modeled. The higherpercentiledistri-
butions(e.g., 90thor 95th) werebeyondthemeasurementrangeof the equipmentin the 20%
to l~o rangeof fade exceedance.The variabilityof the distributionscould thereforenot be
modeled. As is the casewith the LS-SSmodel, the ERS model does not provideinformation
about fade dynamicsand thereforecannotbe usedto generatesimulateddata. This model
is also biasedin favorof the geometricconditionwheremaximumshadowingoccurs;namely,
the line-of-sightpath is dominantlydirectedperpendicularto the lineof roadsidetrees. The
model is only valid in the rangeof elevationangles20° to 60°.

8.4 Probability Distribution Models

Probabilityfunctionsused to describeLMSSpropagationare the Rayleigh and Rician for
multipatheffectsand the lognormalfor shadowing.Thesestatisticsare usefulto the extent
that they accuratelydescribethe shadowingand multipathscenarios.

Modelsof thesetype correspondto homogeneouscasesfor whichline-of-sightfadingand
multipatharesimultaneouslypresent,or only multipathis presentunderthe conditionsof no
shadowingor completeblockage.They do not accountfor scenariosin whichthe vehiclemay
passfromshadowingto non-shadowingconditions(causingburstsof fadingand non-fading)
typical at higherelevationangles(e.g., 45°) in ruraland suburbanenvironments.

Their usefulnessis also based on the ability to tailor parametersof the distributionsto
actual measurements.The parametersof importanceare standarddeviation, mean, per-
centageof shadowing,and ratio of line of sight to multipathpower. These parametersare
howevertunedto “light” or ‘heavy” shadowing,“zeroto frequent”percentageof shadowing,
and ‘urban”, “suburban”, or ‘highway scenes.n They representa ‘rough” tuning to the
model whichis basedon measurementsat fixed elevationangles.It is, for example,difficult
to relatethesemodels to otherelevationangleswhichare knownto criticallyinfluencefad-
ing. Furthermore,it is difficultto extractfromthesestatisti~ “timeseriesnof fadingevents
for simulationpurposeswithoutthe employmentof experimentaldata.

,
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In the followingsection is given an overviewof the densityfunctionsused in modeling
procedures.A furthercharacterizationis givenby the CCIR ICCIR, 1986a(Report 1007)].

8.4.1Density ~nctions Used In Propagation Modeling

Ricianor Nakagarni-RiceDensity R.mction

The voltagephasorsfrom all the reflectionsourcescanbe combinedinto two independentor-
thogonalvectorsx andy, the in-phaseandquadraturecomponents,havingnormalenvelopes
anduniformphasedistributions.When receivedtogetherwith a directsignalvoltage a, the
two-dimensionalprobabilitydensityof the receivedvoltagecan be expressedas

1

[

(x - a)2 + y2
fxy(x,y) = ~ ‘w – 2(72 1 (8.22)

wherec is the standarddeviationof the voltage. The signalenveloperepresentsthe length
of the voltage vector z. It is givenby

z I/= X2+ y’

from whichwe derivethe Rician densityf.(z) IPapoulis,1965]

where~ is the zerothordermodifiedBed function.

The normalizedlineof-sight poweris givenby

and the average (normalized)multipath power is given by

wherewe denotethe powersby a primeto distinguishit
two powersdefinesthe K value whichcharacterizesthe
the signaldistribution.Hence,

—

(8.23)
,-

(8.24)

(8.25) ~

(8.26)

hornprobability.The ratio of these
influenceof multipathscatteringon

(8.27)

--

-



8 ProbabilityDistributionModels 88

Usually,the K factor is quoted in termsof dB. That is,

K(dB) = 10 log (*)=,o,og(:) (8.28)

It is apparentfrom (8.27) that the lowerthe relativelevelof the multipathpower,the larger
the K value,and conversely.FurthernormalizingP~ SUChthat p~ = 1, reduc= the Ricim
density(8.24) to a singleparameterdensityfunctionof the voltage,whichcan be writtenas
a functionof K by

f,(z) = K z exp[-K(~+l)llO(Kzfi)(8.29)

where
K=+ (8.30)

RayleighDensity Function

The Rayleighdensityis a specialcaseof the Rician distributionand ariseswhenno line-of-
sightpoweris received. Settinga = Oin (8.24)

()22
f=(z)= $ exp –—

202
(8.31)

Even though no direct signal is received,the Rayleigh density can also be definedin
termsof a K-factor

K=+ (8.32)

Substituting(8.32) into (8.31)

()f.(z) = K z exp –K$ (8.33)

Note that the Rayleighdistributionhas but a singleparameter(namely,u or K). For
Rayleighscattering,the averagescatteredpoweris variable,but the standarddeviationon
a dB scale is constantand equalto 5.57 dB. As a ruleof thumb,basedon the CentralLimit
TheoremIPapoulis,1965],at least six randomscatteringsourcesare requiredto produce a
Rayleigh(or Rician) distribution. -
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LognormalDensity lh.mction

Shadowingis a manifestationof the absorptionand scatteringof the incidentdirect wave by
roadsidetreesor other obstaclesas it is transmittedvia the line-of-sightbetweenthe satellite
and the vehicle. The cumulativedistributionfunctionof the receiwxlpowerexpressedin dB
can often be fit to a straightline whenplotted on a normalprobability scale. The voltage
variationdue to shadowingis thenlognormal.The lognormaldensityfunctionfor a random
variablez can be derivedfrom the normaldensityfunctionfor x by using

x = in(z). (8.34)

In this case the lognormaldensityof z has the form
.

fs)
1

z
[

exp (in(z)-m)’=—
SZ* – 2s2 1 (8.35)

wherem and s are the meanand standard
(x) is usuallyexpressedin dB, the relation

x = lo log (z)

or
x =20 log (z)

deviationof in (z), respectively.Sincethe power
betweenx (in dB) and z is

z = power(watts) (8.36)

z = voltage(volts) (8.37) .
The lognormaldensityfunctionof powerwhenz is the power in watts is

[
f=(z) = s exp –

(10log(z) - m)2

1
z = power(watts) (8.38)

SZ* 2)2

wherem ands arethemeanandstandarddeviationof 10 log (z), respectively.The Iognormal
densityfunctionof powerwhenz is voltageis

[
f=(z) = = exp –

(2010g(z) - m)’
sz& 2s2

1

wherem and s are the meanand standarddeviationof 20

z = voltage (volts) (8.39)

log (z), respectively.

.
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8.4ProbabilityDistributionModels 90

8.4.2Loo$s Distribution Model

A statisticalmodel for land mobile satellitepropagationbased on probabilitydensityfunc-
tionsof multipathand shadowingpropagationhasbeen developedby Loo [1985;1987].The
followingassumptionsaremade: (a) the receivervoltagedue to the diffuselyscatteredpower
is Rayleighdistributed,and (b) the voltagevariationsdue to attenuationof the Iineof-sight
signalare lognormallydistributed. The two voltagesare consideredcorrelated,as attenua-
tion by treesis causedby both absorptionand scattering,some of the latter directedinto
the receiver.The model employsthe parametersK as givenby (8.32), as well as the mean
m and standarddeviations previouslydefinedfor lognormalfading. The mean scattered
power in the model is set constantat a level that dependson the severityof the shadow-
ing relevantto a particularenvironment.While the line-of-sightattenuationis constant,a
conditionalRician distributionof the signalenvelopeholds. The overallprobabilitydensity
is found by integrationof the conditionaldensitymultipliedby the lognormalprobabilityof
the line-of-sightenvelope. The resultingprobabilitydensityfunctionof the signalenvelope
is

f“(v) =
(in(z) -m)’ K(v2+z2)

%~m:exp[- 2s2 - 2 I’”(KVZ)’Z(8.40)

For signal voltages much greater and much less than the standard deviation of the
Rayleighprocess, the density function is lognormalor Rayleigh, respectively,and can be -
simplifiedto

[
fv(v) = ~ exp –

1

(in(v)-m)’ v> 1
sv~ 2s2

I/R

and

()KV2
fv(v) = Kvexp –~

1
v<—

a

(8.41)

(8.42)

&-

At intermediatevaluesof v, f,(v) is found by numericalintegration.
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Table 8.3: Parametersfor Loo’s Model .

ghadowingClass Rayleigh Lognormal
Scatter Shadowing

K m s

Infrequentlight 6.3 0.115 0.115

Frequentheavy 15.8 –3.91 0.805

Overall 4.0 –0.69 0.23

The probabilitythat the receivedvoltageis lessthan or equalto v is

Fv(v) = /’ fV(u)du (8.43)
o

from which the cumulativedistributionfunctionA in dB is found using

A =20 log(v) (8.44)

Valuesof the model parameterswere derivedby Loo from propagationdata measured
over a helicopterto vehicle link with 15° elevationangle in a rural environmentwith two
classesof shadowing:infrequentlight and frequentheavy. The parametersare summarized
in Table 8.3.

Level Crossing Rate and Average Fade Duration

Inadditionto describingthefadecumulativedistributionfunction,Loo’s modelalsoprovides
insightinto the dynamicsof fadingby derivingstatisticalrelationsfor the levelcrbssingrate

-—
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(LCR) and the averagefade duration(AFD). The levelcrossingrate is the expectedrate at
whi&hthe signalenvelopecrossesa specifiedsignallevelwith a positive slope. The average
fade durationis the expected time or distancethe signalenvelopeis below the specified
signallevel. The inverseof the levelcrossingrateis the sumof the averagefadeand non-fade
durations.The derivation,basedon earlierworkby Rice and Jakes, hingeson the statistical
independencebetweenthe signalenvelopeand its time derivative,which is assumedto be
a Gaussianprocessboth for Rician and lognormalfading. The LCR is normalizedby the
maximumpossibleDopplershift ..

f==; (8.45)

wherev is the vehiclespeed and A is the wavelength. The normalizedlevel crossingrate
LC& is basedon the wavelength,independentof speed,and can be writtenas

(8.46)

wherep, now a fourthparameterof Loo’s model, is the correlationcoefficientfor the rate of
changeof the envelopedue to multipathand shadowingeffects. Typically,
coefficientp wasin the rangefrom 0.5 to 0.9 for the data set usedby Loo.

The AFD can be found from LC& by

J ()AFD = ~ L
LC& .

f, V dv

the correlation

(8.47)

With supportinghelicopterdata at 870 MHz and satellitedata at 1542MHz and for
elevationanglesfrom 5° to 30°, it wasshownthat the signalphaseand the rate of changeof
thephasecanbe treatedas Gaussian
deviationwere7.5° and 12.6°at 870

Discussion .

processesILool
MHz, and 7.5°

1987].Valuesof themeanandstandard
and 26° at 1542MHz, respectively.

The Loo model providesa descriptionof primaryand secondaryfade statisticsfor LMSS
scenariosbasedon fourparametersderivedfrommeasurementspesformedin Canada. As all
of the measurementsweremade at elevationanglesbelow 30°, model parametersfor higher
elevationanglesare not available.

.

.
L
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t
b e A i

t data. However,thereare significantdifferencesin the way the
three distributionsare assignedto the two major propagationphenomena,scatteringand
shadowing.As describedin the previoussection,Imocombinesa constantintensityRayleigh
distributedscatteringvoltagewith a lognormallyshadowedline-of-sightsignalvoltage. Lutz
et al., on the other hand, considertwo distinctpropagationlink states; shadowing,and no
shadowing.In the unshadowedstate, the envelopestatisticsare assumedto be Rician with
constantK-factor due to the superpositionof the directwavewith mnstantintensitymulti-
path echoes. When the propagationlink is shadowedby roadsidetrees,the lineof-sight is ‘-
assumedto be totally obscuredand most of its powerconvertedinto scatteredwaves,leav-
ing only multipathsignalswith Rayleighstatistics,but theiraveragestrengthis modeledas
lognormallydistributed. Loo modulatesthe Rician K-factor by shadowingthe lineof-sight
component. Lutz, in the shadowedstate, variesthe intensityof the Rayleigh scattering
process, or the K factor, in the absenceof any lineof-sight signal. In Lutz’s model, the
probabilitydensityof the receivedvoltagefor the unshadowedfraction (l-S) of the driving
distanceis Rician. When expressedin termsof the receivedpowerP’, it has the form w

fP,W(P’) = K exp [-K(P’ + 1)] ~(2K@) (8.48)

where unity line-of-sightpower is assumedand K is the ratio of line-of-sightto average
multipathpower. That is

(8.49) -

For the shadowedfractionS of the total distance,it is Rayleighdistributedand has the
followingform whenexpressedin termsof the receivedpower,P’

fP’,%yk~h(P’)= K exp (-K P’) (8.50)

where K is the reciprocalof the averagemultipathpower as given by (8.32). Lutz et al. -
postulatethis multipathpower Rayleighintensityl/K to be lognormallydistributed. The

.
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densitycan be expressedin termsof the K-factor, the meanm, and the standarddeviation
s of lo log (K) as -

f~(K) = .4”343
K S@ ‘Xp

where
m = E [1(

and

(lolog(K)-In)2
2 s’

log (K)]

s= {E [(1010g(K))2] -m2}1’2

whereE denotesthe “expectedvalue.”

(8.51)

(8.52)

(8.53)

The overallprobability densityof the receivedpower followsby combining (8.48) and
(8.50) with (8.51)

fPl(P’)=(1– S) fPl,W.(P’) + S ~~ fP/,W1~(P’ IK) f~(K) dK (8.54)
o

The cumulativedistributionof the fractionaldistancethe fade exceeds A dB is found
by evaluating(8.54). Model parameterswere determinedby Lutz et al. from regressions
to satellitemeasurementsperformedin variousenvironmentswith a 24° elevationangle.
They aresummarizedin Table8.4 for a vehicleantennawith a hemisphericalpattern. Good
fits of the model to the measuredcumulativedistributionfunctionsof the attenuationwere
obtained.

Discussion

The Lutz et al. experimentswerecarriedout usingthreedifferentreceivingantennas.The
shadowingparameterS derivedfrom the correspondingdata setswasfound to be dependent
on the antenna,whichindicatesa couplingof S to multipathpropagation. Had the model
been a true representationof LMSS propagation,S should have been independentof the
antennapattern.

F
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L

Table 8.4: Typical Parametersfor Total ShadowingModel of Lutz et al. [1986]

Environment s K(dB) m(dB) s(dB)

Urban 0.60 3.0 –10.7 3.0

Suburban 0.59 9.9 –9.3 2.8

Highway 0.25 11.9 –7.7 6.0

.—

8.4.4 Lognormal Shadowing Model

Smith and Stutzman [1986] incorporatedthe idea into a model that differentstatistics
shouldbe used to describeLMSS signalvariationsdependingon whetherthe propagation
path is shadowedor unshadowed.They developeda model whichassignsRayleigh,Rician
and lognormalbehaviorof the receivedsignalvoltagein a mannersimilarto Loo’s model.
In the unshadowedstate, the receivedsignalconsistsof the sum of the direct signaland a
constantaverageintensityRayleighvoltagedue to the diffuselyscatteredmultipathechoes.
The resultingsignalamplitudehas a Rician probabilitydensitycharacterizedby a constant
ratio of direct to scatteredpower. In the shadowedstate, the amplitudeof the line-of-sight
signalis assumedto have lognormalstatistics. When combinedwith constantlevel diffuse
multipath,the probabilitydensity(8.40) derivedby Loo applies.

The overall probability density of the reoeivedvoltage is developedin analogy to the
derivationof (8.54) as

f,(v)
[ (:+1)1’0(Kv)+s8:2v=(1-S) Kv exp -K

-(2010g(z) -m)2 K (V2+22)

‘Jm:ew[ 2s2 - 2 IL(Kvz)dz‘8”55)
whereS, K, K, m, and s are the five model parametersalreadydescribedin the previous
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densitycan be expressedin termsof the ~-factor, the meanm, and the standarddeviation
s of lo log (K) as

[

f~(K) = .4”343 exp –
(lolog(K)-rn)2

Ks& 2s2 1 (8.51)

where
m = E [10 log(K)] (8.52)

and

s= {E [(1010g(K))2] -m2}1’2 (8.53)

whereE denotesthe ‘expected value.”

The overallprobability densityof the receivedpower follows by combining (8.48) and
(8.50) with (8.51)

fP,(P’) = (1 - S) fPt,&(P’) + S J* fP,,til~(P’ IK) f~(K) dK
o

(8.54)

The cumulativedistributionof the bactional distancethe fade exceeds A dB is found
by evaluating(8.54). Model parameterswere determinedby Lutz et al. from regressions
to satellite measurementsperformedin variousenvironmentswith a 24° elevationangle.
They aresummarizedin Table8.4 for a vehicleantennawith a hemisphericalpattern. Good
fits of the model to the measuredcumulativedistributionfunctionsof the attenuationwere
obtained.

Discussion

The Lutz et al. experimentswerecarriedout usingthreedifferentreceivingantennas.The
shadowingparameterS derivedfrom the correspondingdata setswasfound to be dependent
on the antenna,whichindicatesa couplingof S to multipathpropagation. Had the model
been a true representationof LMSS propagation,S should have been independentof the
antennapattern.
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8.4.5 Simplified Lognormal Shadowing Model

This model [Bartsand Stutzman,1991;Bartz et al., 1987]has the inputsK, K, m, s, and
S whichhavebeen definedin the previoustwo sectionsand assumethe valuessummarized
in Table 8.5. The resultantprobability distributionmodel is expressedin terms of the
contributionsfor the ‘no shadowing and ‘shadowing” caseain the followingway

P (A > &) = PM(1 – S) + P, S (8.56)

whereP*, is the probabilitydistributionfor the caseof no shadowingof the lineof sightand
is givenby,

PM(A > ~) = exp[-(AF’)l (8.57)

wherethe parametersU1and U2arefunctionsof K and are givenby

U1= 0.01K2– 0.378K + 3.98 (8.58)

U2= 331.35K-20W (8.59)

In (8.56), P, is the probabilitydistributionfor the caseof shadowingof the line of sight
and is

P. (A > ~) = (50 - A~) $

wherethe parametersV1 and V2 are given by the following
meanm and standarddeviations of the lognormalsignal

(8.60)

functionsof K as well as the

VI= –0.275 K + 0.723m + 0.336s + 56.979 (8.61)

V2 = (–0.006 K – 0.008m+ 0.013s + 0.121)-1 (8.62)

Typical fadepredictionscalculatedfrom (8.56) havebeenplotted in Fig. 8.2 for lightand
heavyaswellas in Fig. 8.3 for mediumheavyshadowing,for infrequent(S=0.25), moderate
(S=0.5) and frequent(S=0.75) shadowingoccurrences. In the worst case scenario: heavy
and frequentshadowing,the calculatedfade probabilitiesmay exceed 1.0, but should be
limitedto that value.

-u-
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Figure8.2: Typical fade distributionscalculatedfrom the SimplifiedLognormalShadowing
Model for light (L), and heavy (H) shadowing,and for infrequent(I; S = 0.25), moderate
(M; S = 0.5), and frequent(F; S = 0.75) shadowingoccurrences..
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Discussion

The model has been shown to fit measuredfade distributions
rameterswere determinedby tailoringthe data to the model.
straightforward.

8.4.6 Models With Fade State Transitions

Two- and Four-State Markov Modeling

A 2-stateMarkovmodel (Gilbert-Elliotmodel) for non-shadowed

when the propagation
Calculationprocedures

pa-
are

(good) andshadowed(bad)
channelconditionsand a 4-stateMarkovmodel,alsowithgood andbad statesand qualified
by eithershort or long duration,have been used to predict errorrates in the land mobile
satellitechannel[Cyganet al., 1988].Channelstatesarerelatedto the presenceor absenceof
shadowingconditionsand both modelsdescribethe transitionprobabilitiesbetweenstates.
Modelparametersaredeterminedfromdata collectedin L-Bandsatellitepropagationexper-
imentscarriedout in a varietyof environmentsat elevationanglesbetween21° and 24°. The
data set on which the parametersare basedis the sameas the one used for the derivation
of the total shadowingmodel.

The 2-statemodelhasa total of fourparameters,of whichtwo aresignalleveldependent
errorratesand two are statetransitionprobabilities.A summaryof its parametersfor three
propagationscenariosis givenin Table 8.6. The derivedbad lengthsappendedto the table
maybe reasonablein theurbanenvironmentwheremuchof the shadowingis due to blockage
by buildings.Fortreeshadowingprevalentin the suburbanenvironment,the 2-statemodelis
lackingin predictingthe effectsof manyshortfadesobservedin realchannelmeasurements.

At the priceof being morecalculationintensive,the 4-statemodelis capableof providing
a morerealisticstatisticalsimulationof errorbursts. It hasa totalof thirten parameters,of
whicheightarestatetransitionprobabilities,two expressthe transitionaldurationsbetween
short and long good or bad states, and three are measuresfor the error probabilitiesin
all good and short and long bad states. Typical valuesof the transitionaldurationsfor
good/bad states are 0.46/1.85 m for urban, 0.92/0.65 m for suburban,and 5.2/2.5 m for
highwaydriving,respectively.Errorprobabilitiesrangefrom 1 x 10-4 – 3.5 x 10-4 for the
good statesto 0.16– 0.37for the bad states,withthe shortbad state’serrorrate about 30%

.

.
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Parameter

PGB

pB~

Table 8.6: Parametersfor 2-StateModel

Remark

Transition
probability

from ‘good” to
‘bad” state

Transition
probability

from ‘bad” to
‘good” state

Errorrate in
‘good” state

Errorrate in
‘bad” state

Derived‘good”
length(m)

Derived‘bad”
length(m)

Urban

3.95 x 10-4

1.05 x 10-4

2.1 x 10-4

0.317

24

88

Suburban

2.1 x 10-4

1.54x 10-4

3.4 x 10-4

0.298

45

60

Highway

2.96 X 10-5

1.29 X 10-4

1.1 x 10-4

0.194

704

161

\
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belowthe long bad state. While the discussionof error probabilities is beyond the scope of
this text, these modelsgive an indication of the levelof complexitythat may be required for
successfullymodeling the LMSSchannel.

Markov Tkangitions, Multipath, and Fade Depth Model

By combiningthree distinct concepts into one LMSSpropagation model, Wakana [1991]has
modeledfading and its spatial characteristics. Fading due to multipath is rendered by Rician
statistics (8.29), while fading of the line-of-sightsignal due to tree shadowing is described
in terms of a Markov model for the transitions between fade states and an attenuation
algorithm for the fade depth. Like the 4-state model described above, this Markov model
considers transition probabilities between four fade states: fade or non-fade, short or long,
but with a total of only six as opposed to eight independent parameters. Of two attenuation
models introduced, one linking the attenuation to the fade state, the other to the fade
duration, the former alternative was used. Besidesthe six state transition probabilities, four
other parameters are required. They are the Rician K-factor for the multipath scattering,
attenuation levels for short and long fades, and a lowpass filter time constant to smooth the
transitions between fade and non-fade states. The ten model parameters were determined
for one particular suburban propagation -path geometry with an optimization procedure
performedon data collected in a helicopter experiment. Simulated data produced using these
parameters are qualitatively similar to real data when time series are compared and have,
of course, similar cumulative distributions of fades, fade durations, and non-fade durations.
Typical parameter valuesare in the range of 0.13 – 0.97for the transition probabilities, 10.7
dB attenuation for both fade states, a 13 dB K-factor, and a 22 Hz lowpass filter cut-off
frequency,correspondingto a spatial filter of about 1 m.

Variations of the signal levelat near line-of-sightpower,whichmaybe due to diffraction
at the fade state transition zone and specular reflectionfrom the ground near the vehicle
have not been considered in the model development and therefore are not replicated by
the simulator. Until parameters are determined for a variety of environments and elevation
angles, the modelingresults cannot readily be applied to other propagation geometries.
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8.5 Geometric Analytic Models

8.5.1 Single Object Models

Point Scatterer Multipath

Frequently,signal variations observed in satellite land-mobilepropagation experiments can
be correlated with the receivingvehiclepassing in the vicinity of a generator of multipath
scattering, such as a utility pole or roadside sign. To increaseunderstanding of these multi-
path reflectionsobservedfrom a movingplatform, a physicalmodel based on the geometry
of a single point scatterer has been developed [Vogeland Hong, 1988]. While the model
does not address the major limitation of LMSS,shadowing,it provides a tool to study the
dependenceof signal variations observedunder clear line-of-sightconditions on parameters
such as antenna pattern, path azimuth and elevation angles, distance of multipath sour-t .
and bandwidth.

Geometricanalytic modelsare useful for gainingphysical insight of the mechanismof fading
and characteristics of signal retrieval. They may also be used to achieve time-series fades
whichmay be interfacedwith simulationtechniques. Unfortunately, the complexitiesof ‘real
life” scenarios do not lend themselves to analytic models and only simplifiedand idealized
scenariosare considered.

.—

A sketch of the propagation scenario considered is shown in Fig. 8.4, in which a vehi-
cle carries an antenna with a given pattern along the x-axis with speed v. A plane wave
transmitted from a satellite propagatesinto the direction(et, @~). In additionto the line-

. of-sightwave, the vehiclealso receivesone multipathcomponentscattered by an object at .L

(%, Y., z,)= The vectorial sum of the two waves constitutes the receivedsignal. In order
to achievesimplicityin the numericalevaluationof the model, the followingassumptions
weremade: 1) there is only one scatterer, 2) it scatters isotropically,and 3) the receiving
antenna’sgain is azimuthallyomnidirectional.The formuladevelopedby Vogeland Hong
[1988] for the receivedelectric fieldstrength E, is
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Figure 8.4: Propagation geometryforsingle object scattering inwhich avehicle travelingat
aspeedv carries an antenna with a givenpattern along the x-axis
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I.

L.

.

E.(t) = E, D(et) exp~w.t -~]

{

@D(es)
x ‘+ 2@ R(t)D(et)

where /3is the phase shift given by

9*

[

.2X
=P IT (w -P - R(t))]} 9 (8.63)

/9= ~ vt sin(et)cos(Ot),

a(t) is the path length from the wavethrough the origin to the antenna given by

a(t) = t sin(e~) cos(@t), (8.65)

p is the path length from the waveplane through the origin to the scatterer given by

p = % sin (Ot) cos(@t)+ y, sin (et) sin (Ot), (8.66)

and where

EO
D(e~)
w~
T

lineof-sight field strength,
antenna voltage directivity versus elevation Q,
transmitter frequency,
transmission of direct wave:
1 = no shadowing,O= completeblockage,
bistatic cross section of scatterer, ‘
path length between antenna and scatterer,
wavelength.

(8.64)

This model has been shown to produce time series of received data that closelymatch
those observed, if appropriate parameters are used. One such example is shown in Fig. 8.5
and Fig. 8.6, which respectively depict experimentally received and calculated signal level
and phase for an L-Band receiver using a crossed drooping dipole antenna and moving at
24 m/s. The transmitter azimuth and elevation angles are 150°and 35°, respectively. The

—
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Figure 8.5: Measured L-Band signal level and phase fluctuations as a function of time relative
to arbitrary reference as receiving vehicle passes by a wooded utility pole with a metal cross
bar. The vehicle closest approach to the pole occurs at 540 ms.
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scattering object is a woodenutilitypole about 3 m to the rightof and4 m abovethe vehicle
with a 32 m2 radar cross section. The model predicts
passingthe pole, an indicationthat the scatteringis in

Evaluatingthe model over a range of parameters
determined:

higherfluctuationsbefore and after
realitynot isotropic.

the following has been empirically

1.

2.

3.

The peak-to-peakfluctuationsof the receivedsignallevel (dB) due to multipathvary
with the inverseof the squareroot of the satelliteelevationangle.

The multipathpower (dB) variesas the inversedistanceto the scatterertakento the
4/3 power.

Assumingtwo frequencies(at L-Band) are simultaneouslyreceived,the rms deviation
of the dB power differencebetweensignallevelsat the respectivefrequenciesis pro-
portional to the frequencydifference. Employingthis result, amplitudedispersionis
found to be negligiblefor narrowband (bandwidth<10 kHz) LMSSsystems.

FresnelApproachesto IYee Shadowing

Severalsimplifyingmethods have been used to assessthe effect of shadowingby a single
tree. Modelinga treetrunkas a very long opaquestripof equalwidth, a diffractionpattern
was obtained by LaGrone and Chapman [1961] and comparedto measurementsat UHF
frequencies. Taking account of the tree crown, two differenttw~dimensionaltree models
havebeenstudied,both capableof achievingroughquantitativeagreementwithobservations
of tr~ shadowing.One assumeda treeto be composedof a numberof finite,cantedopaque
strips of varyingwidth and length, representingthe silhouetteof a tree with branchesof
varioussizes [Vogeland Hong, 1988]. Attenuationsof up to about 12 dB werecalculated
at L-Bandversus8 dB at UHF. Spatialfluctuationsin the shadowof the treewerefound to
be fasterwith highersignalfrequencyand closerproximityto the tree during a simulated
drive-by scenario. The maximumfade was proportionalto the logarithmof the number
of limbs. In the second approach ~oshikawa and Kagohara, 1989], the tree crown was
modeled as a trianglewhich obscuresa wedge of the first Fresnelzone. By comparisons
with measurements,the resultshave been shownto correctlyexplain the averagedecrease
of attenuationwith increasingdistanceof the receiverfrom the tree.

L
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8.5.2 Multiple Object Scattering Models

Two-DimensionalModel

A tw~dimensional geometric LMSS propagation model by Amoroso and Jones [1988] con-
sidered 1000 scatterers randomly distributed in an annular region with an outer radius of
2000 m and an inner radius of 400 m, correspondingto an average scatterer density of 12,000
m2/scatterer. The model has been used to correctly predict multipath Doppler spectra, both
for omnidirectional and directive antennas. The simulated fading record of unmodulated car-
rier power for an omni-directional antenna shows unrealistic peak-to-peak variations of over
20 dB, however. This is the consequence of (1) using a two-dimensional approach, which
eliminates realistic elevation angle and antenna effects, and (2) the avoidance of any scatter- —
ers in proximity to the vehicle, which in field measurements have been shown to dominate
the signal variations in the absence of shadowing. The model therefore also overestimates
delay spread.

Three-DimensionalModel

An extensionto the singlescatterermultipathmodel of
hicleto be driventhrougha regionwith manyrandomly

Vogeland Hong [1988]allowsa re-
distributed,point-sourcemultipath

scatterers[Vishakantaiahand Vogel, 1989]. The output of the drive simulatoryields time
seriesof signalamplitudeand phase as well as Doppler spectra, all for user-specifiedcon-
ditions. These outputs, in turn, can be used to calculatesystemperformanceparameters.
The simulatordoes not considershadowing,and this limitsits applicationto very low fade
marginsystems,wheremultipathfading effectsdeterminesystemperformancemost of the
time.

In orderto obtain the total field at the receiverdue to manyscatterers,the vector sum
of the constantincidentfield and all the scatteredfieldse is formedsimilarlyto (8.63) and
the relativetotal powerand phaseare calculatedfrom

(8.67)

w-

-—
A
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(8.68)

wherethe summationincludesthe realor imaginarypartsof each scatterer’sresponsee to
the incidentwave.

The model wasvalidatedby comparingthe predictedpowerand phase assuminga sin-
gle scatterer to the results from measurements, both with similar parameters as well as by
comparing the calculated power spectral density to the one expected [Clarke, 1968]. Figure
8.7 demonstrates that the model produces the correct Doppler spectrum, centered on the
received carrierfrequency. The shape shows the typical signature of mobile multipath prop-
agation, a sharply bandlimited spectrum with maximum power at the edges. The frequency
deviationof the scatteredwave(+ 120Hz) agreeswiththevalueexpectedfromthe geometry.
The signalleveloutput of the model, assuming1000scattererslocated in an annularregion
with radii of 400 and 2000 m, a drooping dipole antenna,and the heightof the scatterers
randomlydistributedbetweenOand 10 m, showsa peak-to-peakvariationof lessthan 1.5
dB, a value in agreementwith measurementsmade in locationswhereno scatterersare in
the vicinityof the vehicle.

Similarcasesto the one above, except for an outerradiusof 500m and the muchhigher
averagescattererdensityof 625m2/scatterer,wereexaminedwith innerclearanceradiifrom
30 to 400 m. The result demonstratesthat multipathphenomenafor LMSS scenariosare
significantonly if the scatterersare located close to the vehicle. The standarddeviationof
thelogarithmicamplitudedecreasesmonotonicallywithincreasinginnerclearancefrom0.22
dB to 0.07 dB.

As an outgrowthof geometricmodeling,it has been ascertainedthat whenhighergain
antennasareemployed,the side of the road the scattereris located influencesthe multipath
fading ~ishakantaiahand Vogel, 1989]. For example,assumingan antennahaving an 80°
halfpowerbeamwidthin both the azimuthandelevationplanes,the multipathfadingwas10
dB whena simulatedscatterer(e.g., a utility pole) wasplaced betweenthe vehicleand the
satellite.Only 1 dB multipathfading occurredwhenthe vehiclewasbetweenthe scatterer
and the satellite. This diminishedfading for the latter case was causedby filteringof the
signalby the antennapattern. On the other hand, when an azimuthalomni-directional
antennawasused,no changein the multipathfading (e.g., 10 dB) wasobservedfor the two
cases. In an environmentwith many scatterersat random heightsand cross sections,the
reductionof the fade fluctuationsarisingfrom lowerversushighergain antennasis not as
extreme,but stillsignificant.Forthe caseof 500scatterers(havingrandomheightsandcross

.
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Figure8.7: CalculatedDopplerspectrumdue to singlemultipathreflectoraveragedoverone
second,whilethe vehicleis drivingpast the scatterer.
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sections ) located at distances between 10 m to 300 m, the peak-to-peak fade fluctuations
werereducedfrom 3.6 dB (for the lowergain antenna) to 0.8 dB (for the higher gain antenna).

Discussion

Two-dimensional
selectivity of the
either amplitude,

simulationmodels overestimatemultipath, because the elevation angle
receivingantennais neglected. Thereforethey cannot be used to predict
phase,or bandwidtheffectsrealistically.The three-dimensionalsimulator

demonstrates that only scatterers in the immediate vicinity of the receiver matter. AS
a consequence, the delay spread spectrum is narrow and has no detrimental impact on
contemplated systems with channel bandwidths of 5 kHz.

Timeseries produced with this model will give more realistic inputs to systems which
analyze bit error performance than those based on statistical assumptions only as long as
the no shadowing condition holds.

8.6 General Conclusions

The salientconclusionsassociatedwith model executionand developmentmay be summa-
rized

1.

2.

3.

as follows:

When the propagationpath is unshadowed,Rician statisticsapply most of the time,
althoughthe K-factor cannotstrictlybe assumedconstant.

Signal variationsin the clear path case are due to scatteringfrom objects such as
treesand utility polesin the vicinityof the vehicle,as weightedby the vehicleantenna
pattern. Where theseobjects recedefrom or come closerto the vehicle,the K-factor
decreasesor increases,respectively.

When a singlescattererdominates,as might be the case with a utility pole, Rician
statistic are no longer applicableand a geometricalanalyticalmodel must be used.
This case is treatedin Section8.5.1.
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4.

5.

6.

7.

8.

Statisticsof clear path K-factor variationshave not been consideredin any of the
models.

Signal fluctuationsfor LMSS scenarioswhich are solely due to multipathscattering
at path elevation angles above about 15° are less than 2 or 3 dB for 99Y0of the
distance,consequentlytheremay not be a need to havea moreaccuratedescriptionof
‘unshadowedpropagation” than that given by applying Ricean multipathscattering
modelsas givenby (8.29) or by usinggeometric-analyticmodelsof the type described
in Section8.5.

Whentheline-of-sightis completelyblockedby continuousobstaclessuchasmountains,
buildings,or overpasses,not enoughpower is contributedby multipathscatteringto
enableanycommunicationthrougha satellitesystemwith a commercially feasible fade
margin of around 6 to 12 dB. In this case LMSS cannot be functional at all and what is
required is some knowledge of the probability of blockage and its duration for specific
path geometry. No separate statistical evaluations for the incidence of blockage are
currently available.

In view of items 5 and 6, the major propagation model of interest should describe the
condition of shadowing of roadside trees where complete blockage does not occur.

Simulation of time seriea of fade data for various conditions of tree shadowing is a
requirementfor analyticallyaddressingfade mitigation techniquessuch
diversityand errorcorrectionschemes.

as antenna

.—

8.7 Recommendations and Follow-On Efforts

Based on the resultsto date as examinedin this text, the following representsa list of
recommendationsto fill the presentmodelinggaps for LMSSscenarios.

1. A comparativeassessmentof the variousstatisticalmodels describedin this Chapter
is recommended.

2. In the absenceof 1, the authorsrecommendthe following:

—
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3.

4.

* Designers interested in cumulative fade distributions should employ empirical
models such as ERS (Section 3.3) or the Simplified Lognormal Model (Section 8.4.5)
which are derived directly from measured data.

* Designersinterestedin fade durationsand fade rates should employ Lootsmodel
(Section 8.4.2) which appears to be the most mature.

Empirical models describing cumulative fade distributions should be developed from
data bases associated with the following locations:

* regions in which elevation angles range between 0° to 20°. At angles neargrazing,
(e.g., northern latitudes), scintillations and refractive Wects due to the troposphere
may influence the fade statistics.

* regions where ionospheric scintillations are prevalent suchas in the tropics (e.g.,
geostationarysatellitecommunications)or auroralregionsfor casesin which commu-
nicationsexist with polar orbitingsatellites.

Systematicmeasurementsandmodelingof widebanddelayspreadcharacteristics should
be executed.


