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Chapter 8
Correlation Algorithms

There are several algorithms that possibly can be employed in those
circumstances when correlation of signals is the method used to determine the
phase and delay offsets between the array antennas (FSC, CSC, BA). If the
SNR of the signal from each antenna is high enough to obtain a strong
correlation for all the antenna pairs, then no special processing is necessary, and
the phase and delay offsets derived from the correlation can be used directly to
align the signals. However, when the signal SNR from each antenna is low,
usually some other approach is necessary to take advantage of all possible
antenna pairs. In this chapter, we discuss several approaches that have been
analyzed and implemented with the arrays used in the DSN, including some
discussion of their relative merits.

8.1 General

The output of an array is a weighted sum of the input signals applied to the
combiner, where each of these input signals comes from the various antennas in
the array. Here we assume that the input signals to the combiner have been
corrected using predicts so that the residual delay and phase between the signals
are slowly varying. The complex weights, providing corrections for both the
amplitude and phase of the signals, can be derived in a number of ways from
the cross-correlation matrices of the signal plus noise and of the noise itself.
These matrices are derived by summing each combiner input over a symbol
length, multiplying the sums from each pair of antennas, and accumulating long
enough to obtain an adequately high signal-to-noise ratio. An array of
L antennas will yield an L × L hermitian matrix of correlation components. The
length of time over which the elements of the matrices can be accumulated is
limited mostly by phase variations in the input signals caused by the
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troposphere (instrumental phase variations usually are much smaller). A noise
cross-correlation matrix can be obtained by moving off the signal source either
spatially (for broadband sources) or spectrally (for narrowband sources such as
spacecraft). In general, the amplitude of the weights is proportional to the input
signal voltage divided by its variance, which takes into account both the signal-
to-noise ratio and gain of the signals [1].

In an actual implementation, the delay and phase corrections are applied to
the antenna signals before correlation in the form of a locking loop for each of
these parameters. The purpose of the loops is to drive the delay and phase
residuals to zero. Since delay is expected to vary much more slowly compared
to phase, the order of the delay loop is smaller and its bandwidth is narrower.
The phase-locked loop is second order and typically uses a 0.1-Hz bandwidth
(10-s integration). The delay-locked loop is first order and typically uses a 0.01-
Hz bandwidth (100-s integration). In addition, a history of the delay residuals is
accumulated and used in such a way as to allow even narrower effective
bandwidths (longer integrations) for this loop, permitting the delay residuals to
be even more well-determined.

8.2 Simple

The Simple algorithm is diagramed in Fig. 8-1. One of the antennas in an
array of L elements is designated as the reference antenna. This usually is the
antenna with the largest G/T, although this is not an absolute requirement. Since
the reference antenna becomes the phase center for the array, one may have
reason to choose another antenna for this role. The signal from each of the
remaining (L – 1) antennas is then correlated with the signal from this reference
antenna to yield (L – 1) complex correlation amplitudes. This corresponds to
one row of the correlation matrix mentioned above and is simple to implement
since the amount of processing needed is proportional to the number of
antennas. These complex amplitudes are used to correct the individual antenna
signals to bring them into phase and delay coherence with the reference antenna
signal. The resulting L signals then can be added to give an improvement in
SNR. The improvement will depend on how well the corrected signals line up
in phase. Limitation on the accuracy of the correction phases is determined by
the averaging time that can be used in obtaining the correlation amplitudes. As
mentioned above, this averaging time is largely restricted by phase variations in
the antenna signals due to their passing through the troposphere

8.3 Sumple

The Sumple method is diagramed in Fig. 8-2. It can be described as the
cross-correlation of each antenna with a reference antenna composed of the
weighted sum of all the other antennas. It is an iterative method and can be used
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Fig. 8-1.  Diagram for the Simple method of combining.
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Fig. 8-2.  Diagram for the Sumple method of combining.
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for weaker signals than can the Simple method. The processing required is
more complicated than the Simple method, but it is still proportional to the
number of antennas. A single iteration is accomplished by rotating through each
of the L  antennas, correlating it with the complex weighted sum of the
remaining antennas. The weights begin as unit vectors of zero phase. After each
iteration, the previous weights are replaced with the new weights, and the
process is repeated. The method appears to always converge from a random
state in a few iterations (between 4 and 8), primarily because the weighted sum
of all the antennas (minus one) is nearly a constant vector (albeit initially of
small amplitude for a large numbers of antennas). Unlike the Simple method,
the various antennas are not brought into alignment with a single reference
antenna, but instead line up to a kind of floating reference. Simulations suggest
the phase wandering of this reference is larger at lower SNR, but never
becomes much more than a fraction of a cycle per hour, somewhat smaller than
other sources of phase instability.

8.4 Eigen

The Eigen method of deriving the complex weights is given in [2] and uses
both the signal matrix and the noise matrix mentioned above. It appears to be
very general. The amount of processing required is proportional to the number
of antennas squared, but the method does take into account off-diagonal noise
coming from, for example, a background planet. In this case, the complex
weights will maximize the SNR of the combined signal by a blend of aligning
the phases of the desired signals and de-aligning the phases of the interfering
signal (the planet).

8.5 Least-Squares

The Least-Squares method takes advantage of the fact that for an array of
N antennas there are only N  – 1 unknown relative phases and N  (N  – 1)/2
independent measurements in the correlation matix. The N  – 1 phases are
adjusted using an iterative procedure to minimize the difference between the
predicted and measured cross-correlation matrices. Like the Eigen method, the
processing is proportional to the square of the number of antennas.

8.6 Simulations

While only the Simple and Sumple algorithms were actually implemented
in the 34-m arraying system, all four methods were simulated in a general-
purpose computer. Of greatest interest is their performance at low SNR with
various numbers of antennas. Figure 8-3 gives some of the results. As can be
seen from the diagram, all give similar losses when the loop integration time is
long. For short integration times, the Sumple algorithm performs best, but is
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very similar to the Least-Squares method. What is surprising is that Sumple is
better than Eigen, even though it also uses all of the correlation pairs. One
guess as to the reason for this difference in performance is that Eigen, being
more general, is less constrained and therefore more sensitive to noise.
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Fig. 8-3.  Simulation of combining loss verses loop integration time.
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