Appendix A
Antenna Location

One of the practical problems faced when trying to array antennas is that of
providing good a priori information to the combiner. The definition of “good”
depends on the technique, and, as was pointed out in Chapter 3, full-spectrum
combining in general requires higher-accuracy a priori information.

A particularly important piece of information is the location of the antenna
intersection of axes for each element of the array, expressed in a common
coordinate system. This is required in order to calculate the difference in phase
delay between all elements of the array. It can be a difficult quantity to
determine because, in many parabolic antennas designs, the intersection of axes
is buried in the middle of a steel shaft or casing, and its location can only be
inferred. If the antenna is located inside of a radome, the problem may be even
more complicated. In this appendix, a concept is outlined by which the location
of the axes could be inferred with high accuracy.

Consider Fig. A-1, which shows a parabolic antenna located somewhere on
the face of the Earth. It is assumed that a Global Positioning System (GPS)
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Fig. A-1. Diagram for visualizing the determination
of the intersection of axes.
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receiver can be placed on the backside of the antenna subreflector (if it is a
Cassegrain feed) or the backside of the feed package (if it is a prime-focus
feed). Measurement is desired of the quantity R, the vector from the center of
the geocentric coordinate system, defined by the dynamics of the GPS
constellation, to the intersection of axes of our antenna. The GPS antenna is
offset from the intersection of axes by the vector R’, and, at any given instant of
time, the GPS receiver will measure the vector sum R + R’. Thus, the problem
is reduced to the determination of R’

In order to simplify the concept, first it is assumed that the antenna in
question has already been aligned in a local coordinate system. The angular
readouts have been adjusted to know precisely the direction of true north, i.e.,
the offsets in azimuth and elevation are known. If a measurement M, is made
with the antenna pointed so that azimuth = 4, and elevation = £, then three
pieces of data are obtained: the X1, Y1, and Z1 coordinates of the GPS antenna
relative to the center of the Earth. These are related to the three coordinates of
the intersection of axes X, Y, and Z together with the magnitude of the offset
vector |R’|. This results in three equations with six unknowns. Next, the antenna
is pointed to another position, so that azimuth = 4, and elevation = E,, and
another GPS measurement is made. Denote this measurement as M,, providing
X2, Y2, and Z2. This results in six pieces of data with six unknowns and allows
a solution for the unknowns.

In practice, the azimuth and elevation offsets for the antenna may not be
known beforehand. It is a relatively simple matter to include this in the vector
formulation and, when this is done, eight quantities must be estimated. This
will require the antenna to be moved to a third position, M; to obtain three
additional pieces of data from which it is possible to solve for the eight
unknowns, etc. The essence of this concept is the employment of the
mathematics of multiparameter estimation to solve for something that cannot be
measured directly. Critical to this approach is a model (i.e., a set of equations)
that relates exactly how the quantity that can be measured relates to what can be
inferred.

Real antennas are hardly ever as simple as has been assumed. Their axes
never can be made to be exactly orthogonal, the offsets never determined
exactly, one or both axes may wobble, etc. Real antennas sag and bend due to
thermal effects. In principle, however, all of these effects can be modeled
mathematically as rotation matrices and the parameters in the model determined
by a sufficient number of measurements, as outlined above.

Obtaining an estimate of the intersection of axes is, of course, only the first
part of the problem. It is necessary to understand the accuracy of that estimate,
and that requires an error analysis. Measurement errors must be estimated and
propagated through the estimation process in order to determine the error on the
estimated quantity.
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Measurement errors often can be reduced by using appropriate techniques.
For instance, raw GPS measurements from a single-frequency receiver have a
quoted accuracy of 30 m—hardly adequate for the problem previously
described. However, understanding that propagation errors (troposphere and
ionosphere) comprise the bulk of the error budget for a GPS measurement
allows a considerable reduction of this error. For instance, location of a second
GPS receiver somewhere in the vicinity of the GPS receiver on the antenna
permits the use of differential measurements. While the individual GPS
measurements might be accurate to 30 m, the differential measurements taken
at the same time have a potential accuracy of a few mm and can be exploited to
determine very precisely the model for the antenna.
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