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2.1 INTRODUCTION

This section is presented first because time is discussed in all of the other
sections of this report. The various time scales used in programs PV and Regres
of the ODP are described in Section 2.2. A time difference is the difference
between values of an epoch recorded in two different time scales. Section 2.3
describes the time differences and gives the equations used for calculating them.
Some of the time differences are obtained by interpolation of input files, which
are described in Section 2.4. Section 2.5 presents time transformation trees. These
figures indicate how to transform an epoch in one time scale to the
corresponding epoch in any other time scale by adding and/or subtracting the
intervening time differences. Time transformation trees are given for reception
or transmission at a tracking station on Earth and at an Earth satellite.

Time in any time scale is represented as seconds past January 1, 2000, 12h

in that time scale. This epoch is J2000.0, which is the start of the Julian year 2000.
The Julian Date for this epoch is JD 245,1545.0.

2.2 TIME SCALES

2.2.1 EPHEMERIS TIME (ET)

Ephemeris time (ET) means coordinate time, which is the time coordinate
of general relativity. It is either coordinate time of the Solar-System barycentric
space-time frame of reference or coordinate time of the local geocentric space-
time frame of reference, depending upon which reference frame the ODP user
has selected. It is the independent variable for the motion of celestial bodies,
spacecraft, and light rays. The scale of ET in each of these two reference frames is
defined below in Section 2.3.1.

2.2.2 INTERNATIONAL ATOMIC TIME (TAI)

International Atomic Time (TAI) is based upon the SI second
(International System of Units). From p. 40�41 of the Explanatory Supplement to
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the Astronomical Almanac (1992), it is defined to be the duration of 9,192,631,770
periods of the radiation corresponding to the transition between two hyperfine
levels of the ground state of the cesium-133 atom. It is further stated that this
definition applies on the geoid (mean sea level). TAI is obtained from a
worldwide system of synchronized atomic clocks. It is calculated as a weighted
average of times obtained from the individual clocks, and corrections are applied
for known effects.

Time obtained from a clock on board an Earth satellite will be referenced
to satellite International Atomic Time. Satellite TAI is an imaginary time scale
obtained from an ideal atomic clock on the satellite. It agrees on average with
TAI obtained from atomic clocks on Earth.

2.2.3 UNIVERSAL TIME (UT1 AND UT1R)

Universal Time (UT) is the measure of time that is the basis for all civil
time-keeping. It is an observed time scale, and the specific version used in the
ODP is UT1. It is used to calculate mean sidereal time, which is the Greenwich
hour angle of the mean equinox of date, measured in the true equator of date.
Adding the equation of the equinoxes gives true sidereal time, which is used to
calculate the position of the tracking station relative to the true equator and
equinox of date. The equation for calculating mean sidereal time from observed
UT1 is given in Section 5.3.6. From p. 51 of the Explanatory Supplement to the

Astronomical Almanac (1992), the rate of UT1 is chosen so that a day of 86400 s of
UT1 is close to the duration of the mean solar day. The phase of UT1 is chosen so
that the Sun crosses the Greenwich meridian at approximately 12h UT1.

Observed UT1 contains 41 short-period terms with periods between 5 and
35 days which are caused by long-period solid Earth tides. The algorithm for
calculating the sum ∆UT1 of the 41 short-period terms of UT1 is given in Section
5.3.3. If ∆UT1 is subtracted from UT1, the result is called UT1R (where R means
regularized). If UT1R is input to the ODP, the sum ∆UT1 must be calculated and
added to UT1R to produce UT1, which is used to calculate mean sidereal time.
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2.2.4 COORDINATED UNIVERSAL TIME (UTC)

Coordinated Universal Time (UTC) is standard time for 0° longitude. Since
January 1, 1972, UTC uses the SI second and has been behind International
Atomic Time TAI by an integer number of seconds. UTC is maintained within
0.90 s of observed UT1 by adding a positive or negative leap second to UTC. A
leap second is usually positive, which has the effect of retarding UTC by one
second; it is usually added at the end of June or December. After a positive leap
second was added at the end of December, 1998, TAI − UTC increased from 31 s
to 32 s; at the beginning of 1972, it was 10 s. The history of TAI − UTC is given in
International Earth Rotation Service (1998), Table II-3, p. II-7.

2.2.5 GPS OR TOPEX MASTER TIME (GPS OR TPX)

GPS master time (GPS) is an atomic time scale, which is used instead of
UTC as a reference time scale for GPS receiving stations on Earth and for GPS
satellites. Similarly, TOPEX master time (TPX) is an atomic time scale used as a
reference time scale on the TOPEX satellite. GPS time and TPX time are each an
integer number of seconds behind TAI or satellite TAI. As opposed to UTC, these
atomic time scales do not contain leap seconds. Therefore, the constant offsets
from TAI or satellite TAI do not change.

2.2.6 STATION TIME (ST)

Station time (ST) is atomic time at a Deep Space Network (DSN) tracking
station on Earth, a GPS receiving station on Earth, a GPS satellite, or the TOPEX
satellite. These atomic time scales depart by small amounts from the
corresponding reference time scales. The reference time scale for a DSN tracking
station on Earth is UTC. For a GPS receiving station on Earth or a GPS satellite,
the reference time scale is GPS master time (GPS). For the TOPEX satellite, the
reference time scale is TOPEX master time (TPX). Note, the TPX and GPS time
scales can be used for any Earth-orbiting spacecraft.
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2.3 TIME DIFFERENCES

2.3.1 ET − TAI

2.3.1.1 The Metric Tensor and the Metric

This section gives the equations for the n-body metric tensor and the
corresponding expression for the interval ds. All of the relativistic equations in
programs PV and Regres of the ODP can be derived from these equations or
from simplifications of them. The components of the Parameterized Post�
Newtonian (PPN) n-body point-mass metric tensor, which contains the PPN
parameters β and γ  of Will and Nordtvedt (1972), are given by the following
equations, where the subscripts 1 through 4 refer to the four space-time
coordinates. Subscripts 1, 2, and 3 refer to position coordinates, and 4 refers to
coordinate time t multiplied by the speed of light c.
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where the indices j and k refer to the n bodies and k includes body i, whose
motion is desired. Also,

  µ j = gravitational constant for body j.
= Gmj, where G is the universal gravitational constant and

mj is the rest mass of body j.
c = speed of light.

Let the position, velocity, and acceleration vectors of body j, with rectangular
components referred to a non-rotating frame of reference whose origin is
located at the barycenter of the system of n bodies, be denoted by :

      

r r rj

j

j

j

j

j

j

j

j

j

j

j

x

y

z

x

y

z

x

y

z

=
















=
















=
















; ú
ú
ú
ú

; úú
úú
úú
úú

(2�7)

where the dots denote differentiation with respect to coordinate time t. Then,   ri j

and     
ús j

2 can be obtained from:

      ri j j i j i
2 = − ⋅ −( ) ( )r r r r (2�8)

      
ú ú ús j j j

2 = ⋅r r (2�9)

From Eq. (2�8), the first and second partial derivatives of   ri j  with respect to
coordinate time t (obtained by holding the rectangular components of the
position vector of body i fixed) are given by:
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Since this equation is used to evaluate the last term of Eq. (2�6) which is of order

    1
4c , and higher order terms are ignored, the acceleration of body j can be

evaluated from Newtonian theory:
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where k includes body i whose motion is desired.

The invariant interval ds between two events with differences in their
space and time coordinates of dx1, dx2, dx3, and dx4 is given by

    ds g dx dxpq
p q2 = (2�13)

where the repeated indices are summed over the integers 1 through 4 and gpq is
the n-body metric tensor given by Eqs. (2�1) to (2�6) and related equations. The
four space-time coordinates are the three position coordinates of point i (where
the interval ds is recorded) and the speed of light c multiplied by coordinate
time t:
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Substituting the components of the metric tensor and the differentials of (2�14)
into (2�13) gives

    

ds g c dt g dx dy dz

g dx cdt g dy cdt g dz cdt

i i i

i i i

2
44

2 2
11

2 2 2

14 24 342 2 2

= + + +( )
+ + +

(2�15)

All of the terms of this equation are required in order to calculate the n-body
point-mass relativistic perturbative acceleration in the Solar-System barycentric
frame of reference (Section 4.4.1). However, all other relativistic terms in
programs PV and Regres of the ODP can be derived from Eq. (2�15), where each
component of the metric tensor contains terms to order     1

2c  only. Substituting
terms to order     1

2c  from Eqs. (2�1) to (2�6) into Eq. (2�15) and scaling the four
space-time coordinates by the constant scale factor l gives
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where the subscript i has been deleted from the position components of point i,
and U > 0 is the gravitational potential at point i which is given by

  

U
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(2�17)

where the summation includes the bodies of the Solar System in the Solar-
System barycentric frame of reference. In the local geocentric frame of reference,
U is the gravitational potential due to the Earth only. The scale factor l, whose
value is very close to unity, will be represented by

    l L= +1 (2�18)

The scale factor l does not affect the equations of motion for bodies or light.
However, it does affect the rate of an atomic clock, which records the interval ds

divided by the speed of light c. The definitions for L which apply for the Solar-
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System barycentric frame of reference and for the local geocentric frame of
reference are defined below in Sections 2.3.1.2 and 2.3.1.3. Numerical values for L
in these two frames of reference are not required in this section in order to
obtain the various expressions for ET − TAI. However, they are required in
Section 4.3 to transform the geocentric space-fixed position vector of the tracking
station from the local geocentric frame of reference to the Solar-System
barycentric frame of reference. They are also used in that section to transform
the gravitational constant of the Earth from its value in the Solar-System
barycentric frame of reference to its value in the local geocentric frame of
reference.

An approximate solution to Einstein�s field equations for the case of a
massless particle moving in the gravitational field of n massive bodies was first
obtained by Droste (1916). de Sitter (1915�1916 and 1916�1917) extended the
work of Droste to account for the mass of the body whose motion is desired.
However, he made a theoretical error in the calculation of one of his terms,
which was corrected by Eddington and Clark (1938). The Droste/de
Sitter/Eddington and Clark metric tensor is the same as Eqs. (2�1) to (2�6) and
Eq. (2�11), if the PPN parameters β and γ are set to their general relativistic
values of unity. The PPN metric of Will and Nordtvedt (1972) has a different
form. However, Shahid-Saless and Ashby (1988) used a gauge transformation to
transform the PPN metric to the Eddington and Clark metric. The resulting
metric tensor given by Eqs. (11) to (13) of Shahid-Saless and Ashby (1988), with
the PPN parameters ζ1 and ζ2 set to their general relativistic values of zero, is
equal to (the negative of) the metric tensor given by Eqs. (2�1) to (2�6) and
(2�11) above. The corresponding n-body Lagrangian was first derived by
Estabrook (1971). The n-body point-mass relativistic perturbative acceleration
given in Section 4.4.1 can be derived from the n-body metric tensor or the
corresponding Lagrangian.

2.3.1.2 Solar-System Barycentric Frame of Reference

This section presents two expressions for coordinate time ET in the Solar-
System barycentric frame of reference minus International Atomic Time TAI. In
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the expression given in Subsection 2.3.1.2.1, TAI is obtained from a fixed atomic
clock at a tracking station on Earth. In the expression given in Subsection
2.3.1.2.2, TAI is obtained from an atomic clock on an Earth satellite. As stated
above in Section 2.2.2, satellite TAI agrees on average with TAI obtained from
fixed atomic clocks on Earth. An approximation for either of these two
expressions for ET − TAI is given in Subsection 2.3.1.2.3.

In both expressions for ET − TAI, coordinate time ET and International
Atomic Time TAI run on average at the same rate. Both of these expressions
contain the same constant offset in seconds plus periodic terms. The specific
coordinate time (ET) used in the ODP is referred to as Barycentric Dynamical
Time (TDB) on p. 42 of the Explanatory Supplement (1992). From p. 41 of this
reference, TDB shall differ from TAI + 32.184 seconds (exactly) by periodic terms
only. Hence, the constant offset appearing in the expressions for ET − TAI will be
32.184 s. The Explanatory Supplement (1992) also refers (on p. 46) to Barycentric
Coordinate Time (TCB) which differs from TDB in rate. This alternate form of
coordinate time (TCB) is not used in the ODP.

The differential equation relating coordinate time ET in the Solar-System
barycentric frame of reference and International Atomic Time TAI at a tracking
station on Earth or on an Earth satellite can be obtained from Eq. (2−16). Since
the differential equation and the resulting expression for ET − TAI will contain
terms to order     1

2c  only, the second factor containing the gravitational potential
U can be deleted. The resulting expression for the interval ds (which is called the
metric) is the Newtonian approximation to the n-body metric.

An interval of proper time dτ recorded on an atomic clock is related to the
interval ds along its world line by

  
d

ds
c

τ = (2�19)

Proper time τ will refer specifically to International Atomic Time TAI. In
Eq. (2�16), t will refer specifically to coordinate time (ET) in the Solar-System
barycentric frame of reference. In Eq. (2�18), it will be seen that the constant L is
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of order     1
2c . Substituting Eqs. (2�19) and (2�18) into (2�16), expanding and

retaining terms to order     1
2c  gives the differential equation relating TAI and ET:
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where U is the gravitational potential (2�17) at the tracking station on Earth or at
the Earth satellite, and v is the Solar-System barycentric velocity of the tracking
station on Earth or the Earth satellite, given by
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From Eq. (2�20), TAI will run on average at the same rate as ET if the constant L
has the value

    
L

c
U v= 〈 + 〉1 1

22
2 (2�22)

where the brackets 〈 〉  denote the long-term time average value of the quantity
contained within them. From (2�20) and (2�22), it can be seen that the desired
expression for ET − TAI at a tracking station on Earth or at an Earth satellite can
be obtained by integrating periodic variations in the gravitational potential U at
this point and periodic variations in the square of the Solar-System barycentric
velocity of this point.

The value of the constant L, which applies in the Solar-System barycentric
frame of reference, is obtained in Section 4.3.1.2 by evaluating Eq. (2�22) at mean
sea level on Earth. If L were evaluated at the location of an Earth satellite, a
different value would be obtained. This offset value of L is used in Eq. (2�20) in
order to force satellite TAI to run on average at the same rate as coordinate time
ET in the Solar-System barycentric frame of reference. Any departure in the rate
of atomic time on the Earth satellite from the rate of satellite TAI can be
absorbed into the quadratic time offset described below in Section 2.3.5.
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2.3.1.2.1 Tracking Station on Earth

Eq. (2�20) was evaluated in Moyer (1981) for proper time τ equal to
International Atomic Time TAI obtained from an atomic clock located at a fixed
tracking station on Earth. This equation was integrated to give an expression for
coordinate time ET in the Solar-System barycentric frame of reference minus TAI
obtained at a fixed tracking station on Earth. The derivation was simplified by
using a first-order expansion of the gravitational potential and integration by
parts. This technique was first applied to this problem by Thomas (1975). Moyer
(1981) gives two different expressions for calculating ET − TAI at a tracking
station on Earth. Eq. (46) of Part 1 is the �vector form� of the expression. It is a
function of position and velocity vectors of various celestial bodies of the Solar
System and the geocentric space-fixed position vector of the tracking station on
Earth. This equation was converted to a function of time given by Eq. (38) of
Part 2 and related equations. The ODP previously calculated ET − TAI as a
function of time. However, it currently calculates ET − TAI from the vector form
of the equation. The vector form is more accurate and easier to calculate.
Furthermore, it was easier to modify the derivation of the vector form so that
the resulting expression for ET − TAI applied for TAI obtained at an Earth
satellite. However, evaluation of ET − TAI from the vector form of the equation
sometimes requires the use of an iterative procedure because the required
vectors are not always available until after the time difference is calculated.

Appendix A of Moyer (1981) describes the calculation of the computed
values of two-way (same transmitting and receiving station) and three-way
(different transmitting and receiving stations) range and doppler observables
and shows how the ET − TAI time differences are used in these calculations. It
also gives equations for the direct and indirect effects of various types of terms
of ET − TAI on the computed values of these observables. The indirect effects are
due to the effects of ET − TAI on the reception time at the receiving station, the
reflection time at the spacecraft, and the transmission time at the transmitting
station. Changes in these epochs have an indirect effect on the computed
observables. Appendix B of Moyer (1981) develops criteria for the retained terms
of ET − TAI. The accuracy of two-way range observables of the DSN is currently
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about 1�2 m in the one-way range ρ from the tracking station to the spacecraft.
It was desired to limit the direct effect of neglected terms of ET − TAI on ρ to an
RSS error of 1�2 m at a range ρ of 10 Astronomical Units (AU). The RSS direct
error in computed two-way range observables due to neglected terms of ET −
TAI, expressed as the equivalent change in the one-way range ρ, is 0.13 m per
AU or 1.3 m at 10 AU. The accuracy of two-way doppler observables of the DSN
is about 0.4 x 10�5 m/s in the one-way range rate   úρ  under the very best of
conditions. The RSS direct error in computed two-way doppler observables due
to neglected terms of ET − TAI, expressed as the equivalent change in   úρ , is 0.4 x
10�6 m/s per AU or 0.4 x 10�5 m/s at 10 AU. The RSS value of neglected terms of
ET − TAI is about 4.2 µs. For a range rate of 30 km/s, this produces an indirect
error in ρ of 0.13 m. For a spacecraft in heliocentric cruise, the indirect error in   úρ
is negligible. However, for a spacecraft near Jupiter where the acceleration can
be about 25 m/s2, the indirect error in   úρ  can be up to 10�4 m/s. For a Jupiter
flyby, estimation of the spacecraft state vector relative to Jupiter will eliminate a
constant error in ET − TAI, and consequently, the indirect error in   úρ  will be
reduced to less than 10�6 m/s. For a Jupiter orbiter, the indirect error can be
reduced by estimating the spacecraft state and a time-varying clock offset at the
tracking station.

The vector form of the expression for coordinate time ET in the Solar-
System barycentric frame of reference minus International Atomic Time TAI
obtained from an atomic clock at a tracking station on Earth is Eq. (46) of Part 1
of Moyer (1981):
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where
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      r ri
j

i
jand ú = space-fixed position and velocity vectors of point i

relative to point j, km and km/s. They are a function of
coordinate time ET, and the time derivative is with
respect to ET.

       Superscript or subscript C = Solar-System barycenter, S = Sun, B = Earth-
Moon barycenter, E = Earth, M = Moon, J = Jupiter,
Sa = Saturn, and A = location of atomic clock on Earth
which reads TAI.

  µ µ µS J Sa,  ,  = gravitational constants of the Sun, Jupiter, and Saturn,
km3/s2.

c = speed of light, km/s.

All of the vectors in Eq. (2�23) except the geocentric space-fixed position
vector of the tracking station on Earth can be interpolated from the planetary
ephemeris or computed from these quantities as described in Section 3.
Calculation of the geocentric space-fixed position vector of the tracking station is
described in Section 5. Section 7 gives algorithms for computing ET − TAI at the
reception time or transmission time at a tracking station on Earth or an Earth
satellite.

Eq. (2�23) for ET − TAI contains the clock synchronization term (listed
below in the next paragraph) which depends upon the location of the atomic
clock which reads International Atomic Time TAI and five location-independent
periodic terms. The sum of the location-independent terms can also be obtained
by numerical integration as described in Fukushima (1995). There are several
alternate expressions for ET − TAI which have greater accuracies than Eq. (2�23)
and more than 100 additional periodic terms. Fairhead and Bretagnon (1990) give
an expression containing 127 terms with a quoted accuracy of 100 ns. They also
have an expression containing 750 terms with an accuracy of 1 ns. Hirayama et al.
(1987) present an expression containing 131 periodic terms with a quoted
accuracy of 5 ns. Fukushima (1995) developed an extended version of this
expression containing 1637 terms. These expressions were fit to the numerically
integrated periodic terms of Fukushima (1995) for the JPL planetary ephemeris
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DE245 (obtained from E. M. Standish1). In fitting the more accurate expression of
Fairhead and Bretagnon (1990) to the numerical terms, some analytical terms
were deleted, and the coefficients of an empirical correction term were
estimated. The numerical minus analytical residuals for this modified expression
(containing 515 terms) were less than 3 ns. For the other four unmodified
expressions, the residuals varied from �131 ns to +64 ns.

2.3.1.2.2 Earth Satellite

The derivation of Eq. (2�23) is given in Moyer (1981). This derivation has
been modified so that it applies for coordinate time ET in the Solar-System
barycentric frame of reference minus satellite International Atomic Time TAI
obtained from an atomic clock on an Earth satellite. The resulting expression for
ET − TAISAT, where the subscript indicates that TAI is satellite TAI, is Eq. (2�23)
with one term changed plus one new periodic term. The term of (2�23), which is
changed, is the third periodic term on the right hand side:

      

1
2c
úr rE

C
A
E⋅( )

In this term, the point A no longer refers to the location of the tracking station
on Earth. For this application, it refers to the position of the Earth satellite. The
new periodic term is PSAT:

      
P

c
SAT SAT

E
SAT
E= ⋅( )2

2
úr r (2�24)

where     r rSAT
E

SAT
E and ú  are the geocentric space-fixed position and velocity vectors

of the Earth satellite interpolated from the satellite ephemeris as a function of
coordinate time ET of the Solar-System barycentric frame of reference. Applying
these two changes to Eq. (2�23) gives the desired expression for coordinate time
ET in the Solar-System barycentric frame of reference minus satellite TAI
obtained from an atomic clock on an Earth satellite:

                                                
1 Unofficial interim version, never released.
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    ET TAI ET TAISAT A SAT SAT− = −[ ] += P (2�25)

where the first term on the right hand side means Eq. (2�23) evaluated with     rA
E

equal to the geocentric space-fixed position vector of the Earth satellite,     r SAT
E ,

and PSAT is given by Eq. (2�24). Interpolation of the planetary ephemeris and the
satellite ephemeris at the ET value of the epoch will give all of the vectors
required to evaluate Eq. (2�25).

2.3.1.2.3 Approximate Expression

A number of algorithms require an approximate expression for
coordinate time ET in the Solar-System barycentric frame of reference minus
International Atomic Time TAI at a tracking station on Earth or an Earth satellite.
The approximate expression consists of the first two terms on the right hand side
of Eq. (2�23) converted to a function of time. The second of these two terms is
the 1.6 ms annual term. The remaining periodic terms of (2�23) have amplitudes
of 21 µs or less. The second term on the right hand side of Eqs. (37) and (38) of
Part 2 of Moyer (1981) is the 1.6 ms annual term with an analytical expression
and a numerical value for the amplitude, respectively. The amplitude of this term
is proportional to the eccentricity e of the heliocentric orbit of the Earth-Moon
barycenter, which is given by the quadratic on p. 98 of the Explanatory

Supplement (1961). Changing the value of e from its J1975 value of 0.01672 to its
J2000 value of 0.01671 changes the amplitude of the 1.6 ms term from 1.658 ms to
1.657 ms. Hence, the approximate expression for ET − TAI in seconds at a
tracking station on Earth or an Earth satellite in the Solar-System barycentric
frame of reference is given by

    ET TAI− = + × −32 184 1 657 10 3. . sinE (2�26)

where the eccentric anomaly of the heliocentric orbit of the Earth-Moon
barycenter is given approximately by Eq. (40) of Part 2 of Moyer (1981):

    E M M= + 0 01671. sin (2�27)
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The mean anomaly M of the heliocentric orbit of the Earth-Moon barycenter  is
given by (in radians):

    M t= + × −6 239 996 1 990 968 71 10 7. , . , , (2�28)

where t is ET or TAI in seconds past J2000.0. This linear expression is tangent to
the cubic given on p. 98 of the Explanatory Supplement (1961) at J2000.

2.3.1.3 Geocentric Frame of Reference

The expression for the interval ds in the local geocentric frame of
reference is Eq. (2�16) with the gravitational potential U replaced by the term of
(2�17) due to the Earth. This is the one-body metric of Schwarzschild expressed
in isotropic coordinates and containing all terms in the metric tensor to order

    1
2c .

This section presents two expressions for coordinate time ET in the local
geocentric frame of reference minus International Atomic Time TAI. In the
expression given in Subsection 2.3.1.3.1, TAI is obtained from a fixed atomic clock
at a tracking station on Earth. In the expression given in Subsection 2.3.1.3.2, TAI
is satellite TAI obtained from an atomic clock on an Earth satellite.

In both expressions for ET − TAI, coordinate time ET in the local
geocentric frame of reference and International Atomic Time TAI or satellite TAI
run on average at the same rate. Both of these expressions contain the same
constant offset of 32.184 s. The specific coordinate time ET used in these
expressions is referred to as Terrestrial Dynamical Time (TDT) or Terrestrial
Time (TT) on pp. 42 and 47 of the Explanatory Supplement (1992). This reference
also refers (on pp. 46�47) to Geocentric Coordinate Time (TCG), which differs
from TT in rate. This alternate form of coordinate time (TCG) in the geocentric
frame is not used in the ODP.

The differential equation relating International Atomic Time TAI at a
tracking station on Earth or satellite TAI recorded on an atomic clock on an Earth
satellite (both denoted by τ), and coordinate time ET in the local geocentric frame
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of reference (denoted as t) is given by Eq. (2�20), where the constant L (denoted
as LGC in the geocentric frame of reference) is given by Eq. (2�22), the
gravitational potential U is replaced by the term of (2�17) due to the Earth, and v
given by (2�21) is the geocentric velocity of the tracking station or the Earth
satellite.

The value of the constant LGC which applies in the local geocentric frame
of reference is obtained in Section 4.3 by evaluating Eq. (2�22), as modified in the
preceding paragraph, at mean sea level on Earth. If LGC were evaluated at the
location of an Earth satellite, a different value would be obtained. This offset
value of LGC is used in Eq. (2�20) in order to force satellite TAI to run on average
at the same rate as coordinate time ET in the geocentric frame of reference. Any
departure in the rate of atomic time on the Earth satellite from the rate of
satellite TAI can be absorbed into the quadratic time offset described below in
Section 2.3.5.

2.3.1.3.1 Tracking Station on Earth

For a fixed atomic clock at a tracking station on Earth, the gravitational
potential at the clock due to the Earth and the geocentric velocity of the clock are
nearly constant, and periodic variations in these quantities will be ignored.
Hence, the constant values of U and v in (2�20) cancel the corresponding values
in (2�22) and (2�20) reduces to

    

d
dt
τ = 1 (2�29)

and coordinate time ET in the local geocentric frame of reference minus
International Atomic Time TAI at a tracking station on Earth is a constant:

  ET TAI  s− = 32 184. (2�30)

From pp. 42 and 47 of the Explanatory Supplement (1992), Terrestrial Dynamical
Time (TDT) or Terrestrial Time (TT), denoted here as coordinate time ET in the
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local geocentric frame of reference, minus International Atomic Time TAI is
equal to 32.184 s.

2.3.1.3.2 Earth Satellite

For satellite International Atomic Time TAI obtained from an atomic clock
on an Earth satellite which is moving on a geocentric elliptical orbit, the
gravitational potential U at the satellite due to the Earth and the square of the
geocentric velocity v of the satellite in Eq. (2�20) will vary periodically from their
average values in (2�22) due to the eccentricity of the elliptical orbit. Using the
point-mass gravitational potential due to the Earth, Eqs. (2�20) and (2�22) can be
integrated to give the following expression for coordinate time ET in the local
geocentric frame of reference minus satellite TAI:

    ET TAI  sSAT SAT− = +32 184. P (2�31)

where PSAT is given by Eq. (2�24). The geocentric space-fixed position and
velocity vectors of the Earth satellite in (2�24) are interpolated from the satellite
ephemeris at the ET value of the epoch. Note that the form of PSAT, which is due
to the elliptical orbit of the satellite about the Earth, is the same as the first
periodic term of (2�23), which is due to the elliptical orbit of the Earth-Moon
barycenter about the Sun. In each case, one-half of the term is due to the
variation in the gravitational potential of the central body, and the other half of
the term is due to the variation in the square of the velocity.

2.3.2 TAI − UTC

From Section 2.2.4, TAI − UTC is an integer number of seconds. Its value
at any given time can be obtained by interpolating either of the input files for
time differences discussed below in Section 2.4 with the UTC value of the epoch
as the argument.
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2.3.3 TAI − GPS AND TAI − TPX

From Section 2.2.5, TAI − GPS and TAI − TPX are constants. The user can
input the values of these constants to the ODP on the General Input Program
(GIN) file.

2.3.4 TAI − UT1 AND TAI − UT1R

Universal Time UT1 and its regularized form UT1R were discussed in
Section 2.2.3. The value of TAI − UT1 or UT1R can be obtained by interpolating
either of the input files for time differences as discussed in Section 2.4.

2.3.5 QUADRATIC OFFSETS BETWEEN STATION TIME ST AND UTC

OR (GPS OR TPX) MASTER TIME

Section 2.2.6 discussed station time ST at a DSN tracking station on Earth,
a GPS receiving station on Earth, a GPS satellite, and the TOPEX satellite. Each of
these atomic time scales departs by a small amount from the corresponding
reference time scale. The reference time scale is UTC for a DSN tracking station
on Earth, GPS Master Time (GPS) for a GPS receiving station on Earth or a GPS
satellite, and TOPEX Master Time (TPX) for the TOPEX satellite. The time
differences UTC − ST, GPS − ST at a GPS receiving station on Earth or a GPS
satellite, or TPX − ST are all represented by the following quadratic function of
time:

    UTC or GPS or TPX ST( ) − = + −( ) + −( )a b t t c t t0 0
2 (2�32)

where a, b, and c are quadratic coefficients specified by time block with start time
t0 at each station or satellite, and t is the current time. The time scale for t and t0 is
either of the two time scales related by (2�32).

2.4 INPUT FILES FOR TIME DIFFERENCES, POLAR
MOTION, AND NUTATION ANGLE CORRECTIONS

Some of the time differences used in the ODP are obtained by
interpolation of either of two different input files that the ODP can read. The
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older of these two files is the so-called STOIC file (named after the program
which originally created it) which contains the TP (timing and polar motion)
array. This array contains the time differences TAI − UTC and TAI − UT1 or
UT1R, the X and Y coordinates of the Earth�s true pole of date relative to the
mean pole of 1903.0 (defined in Section 5.2.5), and the time derivatives of each of
these four quantities at each time argument, which is specifically UTC. The fixed
size of the TP array limits the timespan of the data to about three years if the
data is spaced a month apart. The newer of these two files is the Earth
Orientation Parameter (EOP) file. It contains the four quantities which are in the
TP array plus the corrections δψ and δε to the nutations in longitude ∆ψ and
obliquity ∆ε, respectively (defined in Section 5.3.5). The nominal values of the
two nutation angles are obtained from the 1980 IAU (International Astronomical
Union) Theory of Nutation (Seidelmann, 1982). The EOP file contains the values
of these six quantities at each time argument, which is UTC. It does not contain
the time derivatives of the six quantities. The file is open-ended and the data
spacing is usually about a day.

For each quantity in the TP array, the value and rate at each of two
successive time points defines a cubic. The cubic and its time derivative can be
evaluated at the interpolation time. The only exception to this is TAI − UTC
which is constant between two successive time points. Interpolation of each
quantity on the EOP file, except TAI − UTC, requires the value of the quantity at
each of four successive time points. The algorithm and code are due to X X
Newhall. The first three points are fit to a quadratic, which is differentiated to
give the derivative at the second point. Applying the same procedure to the last
three points gives the derivative at point three. The values and derivatives at
points two and three produce a cubic that is valid between these two points. The
cubic and its time derivative can be evaluated at the interpolation time which
must be between points two and three. Note that interpolation of each of these
two files produces a continuous function and its derivative.

Interpolation of the TP array yields TAI − UT1 or UT1R, whichever is
input. If it is the latter, program Regres calculates ∆UT1 (see Section 2.2.3) and
subtracts it from TAI − UT1R to give TAI − UT1. If the EOP file contains
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TAI − UT1, the interpolation program converts it internally to TAI − UT1R, which
is the quantity that is always interpolated. The program calculates ∆UT1, which is
subtracted from the interpolated quantity to give TAI − UT1, which is always the
output quantity.

The quantities on the EOP file, Earth-fixed station coordinates (see
Section 5), quasar coordinates (Section 8), and the frame-tie rotation matrix
(Section 5) are determined on a real-time basis at the Jet Propulsion Laboratory
(JPL) by fitting to Very Long Baseline Interferometry (VLBI) data, Lunar Laser
Ranging (LLR) data, and data obtained from the International Earth Rotation
Service (IERS). The data in the TP array currently comes from the same solution.
Previously, it was obtained from the IERS.

2.5 TIME TRANSFORMATION TREES

This section presents two time transformation trees that show how the
reception time in station time ST or the transmission time in coordinate time ET
at a fixed tracking station on Earth or an Earth satellite is transformed to all of
the other time scales. Each time transformation tree shows the route or path that
must be taken to transform the ST or ET value of the epoch to the corresponding
values in all of the other time scales. In general, each time transformation tree is
not an algorithm which must be evaluated at a particular place in the code.
Instead, each time transformation tree is broken into several parts, which are
evaluated in different parts of the code. When the calculation of time
transformations is described in the various sections of this report, the
corresponding parts of the calculations described in the following five
subsections will be referenced.

In the time transformation trees, ET refers to coordinate time in the Solar-
System barycentric frame of reference or to coordinate time in the local
geocentric frame of reference, depending upon which frame of reference has
been specified by the ODP user.

The reception time in station time ST is the known data time tag for a
range data point. For a doppler data point, it is the time tag for the data point
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plus or minus one-half of the count interval (see Section 13). For quasar VLBI
data points, the reception time in station time ST at station 1 is the data time tag
for wideband data. For narrowband data, it is the time tag plus or minus one-
half of the count interval (see Section 13). The transmission time in coordinate
time ET at a tracking station on Earth or an Earth satellite is obtained from the
spacecraft light-time solution. The reception time in coordinate time ET at
station 2 for a quasar VLBI data point is obtained from the quasar light-time
solution.

2.5.1 RECEPTION AT DSN TRACKING STATION ON EARTH

Fig. 2�1 shows the time transformation tree used at the reception time or
transmission time at a tracking station on Earth. For a DSN tracking station,
Coordinated Universal Time UTC is used and GPS master time is not used. This
section will evaluate the time transformations in Fig. 2�1 at the reception time t3

at a DSN tracking station on Earth.

Calculate UTC − ST from Eq. (2�32) using t3(ST) as the argument. Add
UTC − ST to t3(ST) to give t3(UTC). Use it as the argument to interpolate the TP
array or the EOP file for the value of TAI − UTC. Add it to t3(UTC) to give
t3(TAI). Use it as the argument to calculate ET − TAI from Eq. (2�23) or (2�30)
using the algorithm given in Section 7.3.1. Add ET − TAI to t3(TAI) to give t3(ET).
The algorithm for computing ET − TAI also produces all of the position, velocity,
and acceleration vectors required at t3(ET).

One of these vectors is the geocentric space-fixed position vector of the
tracking station, which is computed from the formulation of Section 5. In order
to calculate this vector, the argument t3(ET) must be transformed to t3(UTC) and
used as the argument to interpolate the TP array or the EOP file for TAI − UT1,
the X and Y coordinates of the Earth�s true pole of date, and, if the latter file is
used, the nutation corrections δψ and δε. The time difference TAI − UT1 is
subtracted from t3(TAI) to give t3(UT1).
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ET

TAI

UTC or GPS UT1, X, Y, δψ, δε

ST

Figure 2�1 Time Transformations at a Tracking Station on Earth

The transformation of t3(ET) to t3(UTC) is accomplished as follows.
Calculate ET − TAI from Eq. (2�23) in the Solar-System barycentric frame of
reference or from (2�30) in the local geocentric frame of reference. In the former
case, the geocentric space-fixed position vector of the tracking station is
computed as a function of ET from the simplified algorithm given in Section
5.3.6.3. Subtract ET − TAI from t3(ET) to give t3(TAI). Use it as the argument to
interpolate the TP array or the EOP file for TAI − UTC, and subtract it from
t3(TAI) to give t3(UTC). Use it as the argument to re-interpolate the TP array or
the EOP file for TAI − UTC and subtract it from t3(TAI) to give the final value of
t3(UTC). Near a leap second in UTC, the second value obtained for UTC may
differ from the first value by exactly one second.

2.5.2 RECEPTION AT GPS RECEIVING STATION ON EARTH

For a GPS receiving station on Earth, ST (see Fig. 2�1) is referred to GPS
(GPS master time) and not to UTC. Calculate GPS − ST from Eq. (2�32) using
t3(ST) as the argument. Add GPS − ST to t3(ST) to give t3(GPS). Obtain TAI − GPS
from the GIN file and add it to t3(GPS) to give t3(TAI). Use it as the argument to
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calculate ET − TAI from Eq. (2�23) or (2�30) using the algorithm given in Section
7.3.1. Add ET − TAI to t3(TAI) to give t3(ET). The algorithm for computing
ET − TAI also produces all of the position, velocity, and acceleration vectors
required at t3(ET). The last two paragraphs of Section 2.5.1 also apply here.

2.5.3 RECEPTION AT THE TOPEX SATELLITE

Fig. 2�2 shows the time transformation tree used at the reception time or
transmission time at an Earth satellite. For the TOPEX satellite, station time ST is
referred to TPX (TOPEX master time). Calculate TPX − ST from Eq. (2�32) using
t3(ST) as the argument. Add TPX − ST to t3(ST) to give t3(TPX). Obtain TAI − TPX
from the GIN file and add it to t3(TPX) to give t3(TAI). Use it as the argument to
calculate ET − TAI from Eq. (2�25) or (2�31) using the algorithm given in Section
7.3.3. Add ET − TAI to t3(TAI) to give t3(ET).

The algorithm for computing ET − TAI also produces all of the position, velocity,
and acceleration vectors required at t3(ET).

ET

TAI

GPS or TPX

ST

Figure 2�2 Time Transformations at an Earth Satellite
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2.5.4 TRANSMISSION AT DSN TRACKING STATION ON EARTH

The time transformation tree shown in Fig. 2�1 is used at the transmission
time t1(ET) at a DSN tracking station on Earth. It is also used at the reception
time t2(ET) at station 2 on Earth for a quasar VLBI data point. This epoch, which
will be denoted here as t1(ET), and all of the required position, velocity, and
acceleration vectors at this epoch are available from the spacecraft light-time
solution (see Section 8.3) or the quasar light-time solution (Section 8.4). The
geocentric space-fixed position vector of the tracking station is calculated in
either of these two light-time solutions by using the time transformations
described above in the last two paragraphs of Section 2.5.1.

Using t1(ET) as the argument, calculate ET − TAI from Eq. (2�23) or (2�30).
In the former equation, all of the required position and velocity vectors are
available from the light-time solution. Subtract ET − TAI from t1(ET) to give
t1(TAI). Using t1(TAI) as the argument, interpolate the TP array or the EOP file
for TAI − UTC and subtract it from t1(TAI) to give t1(UTC). Using it as the
argument, re-interpolate the TP array or the EOP file for TAI − UTC and subtract
it from t1(TAI) to give the final value of t1(UTC). Use it as the argument to
calculate UTC − ST from Eq. (2�32), and subtract it from t1(UTC) to give t1(ST).

2.5.5 TRANSMISSION AT A GPS SATELLITE

The time transformation tree shown in Fig. 2�2 is used at the transmission
time t2(ET) at a GPS satellite. This epoch and all of the required position, velocity,
and acceleration vectors at this epoch are available from the spacecraft (the GPS
satellite) light-time solution (Section 8.3).

Using t2(ET) as the argument, calculate ET − TAI from Eq. (2�25) or (2�31),
where all of the required position and velocity vectors are available from the
light-time solution. Subtract ET − TAI from t2(ET) to give t2(TAI). Obtain
TAI − GPS from the GIN file and subtract it from t2(TAI) to give t2(GPS). Use it as
the argument to calculate GPS − ST from Eq. (2�32), and subtract it from t2(GPS)
to give t2(ST).
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