
APPENDIX A 

LOCATING THE LAGRANGE POINTS 

A.1 INTRODUCTION 

The discussion given here, previously authored by Parker [46], is devoted to deriving 
analytical expressions for the Lagrange points in the circular restricted three-body 
problem (CRTBP). Szebehely provides more details and a clear description of this 
derivation [86]. Other authors have provided similar derivations, including Moulton 
[106] and Broucke et al. [236]. 

A.2 SETTING UP THE SYSTEM 

Let us begin with a system of two masses, m1 and m2, such that m1 ≥ m2. 
Furthermore, each of these masses is orbiting the center of mass of the system in 
a circle. Then there exist cases where a third body, m3, of negligible mass can be 
placed in the system in such a way that the force of gravity from both bodies and 
the rotational motion in the system balance to produce a configuration that does not 
change in time with respect to the rotating system. That is, each body rotates about 
the center of mass at exactly the same rate and is seemingly fixed in the rotating frame 
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of reference. Euler and Lagrange located five of these cases, and those locations have 
henceforth been known as the five Lagrange points in a three-body system. 

To locate the Lagrange points, we begin with the three bodies stationary in the 
corotating frame of reference. That is 

θ̇ 1 = θ̇ 2 = θ̇ 3 = θ̇(t) (A.1) 

where θ̇ i is the angular velocity of the body of mass mi about the center of mass. 
Furthermore, if the shape of the configuration does not alter over time, the relative 
distances r12(t), r23(t), and r31(t) are given by 

r12(t) r23(t) r31(t) 
= = = f(t) (A.2) 

r12(t0) r23(t0) r31(t0) 

So far, there are no constraints on the relative size of the configuration, only on the 
angular velocity and the shape of the configuration. 

Next, we move the origin to the center of mass of the configuration. Then RRi 

describes the vector position of the ith mass, satisfying the constraint 

33 
mi 

RRi = 0 (A.3) 
i=1 

Equation (A.3) may be written 

(m1 + m2 + m3)RR1 + m2(RR2 − RR1) + m3(RR3 − RR1) = 0, 

or 
MRR1 = −m2Rr12 − m3Rr13 (A.4) 

where M is equal to the sum of the masses in the system. Squaring this relationship 
produces 

2 2 2 2M 2R1 
2 = m2r12 + m3r13 + 2m2m3Rr12 • Rr13 (A.5) 

where Ri and ri denote the magnitudes of the vectors RRi and Rri, respectively. Since 
we know that the relative shape of the configuration does not change, as seen above, 
we may substitute in the relationships for the relative angles and distances (Eqs. (A.1) 
and (A.2)) into Eq. (A.5) to find that, in general 

Ri(t) = Ri(t0)f(t) (A.6) 

If Fi is the magnitude of the force per unit mass acting on the mass mi, then the 
total force acting on mi is miFi and the equation of motion of that mass along the 
direction of the force satisfies   

¨ θ̇2 miFi = mi Ri − Ri (A.7)i

Since all of the particles are rotating at the same rate, we can reduce this relationship 
to the following r 

θ̇2 miFi = mi Ri(t0)f ̈ (t) − Ri 
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or equivalently r 
¨ miFi = Rimi f(t)/f(t) − θ̇2 (A.8) 

Hence, we have the proportionality relationship 

F1 : F2 : F3 = R1 : R2 : R3 (A.9) 

There are two cases that will satisfy the conditions given in Eqs. (A.8) and (A.9). 
The two cases are 

¨ 
RR i × FRi = 0 or RR i × RR i = 0 (A.10) 

When we set i = 1 and look at the first particle, we have the following force function 

¨ m1m2 m1m3 
m1RR1 = G Rr12 + Rr13 (A.11)3 3r r12 13 

When we take the cross product of RR1 with each side of Eq. (A.11), we obtain the 
following expression 

m2 m3R RR2 + RR3 = 0 (A.12)R1 × 3 3r r12 13 

Using the center of mass relationship given in Eq. (A.3), this can be simplified to 

m2RR1 × RR2 
1 − 

1 
= 0 (A.13)3 3r r12 13 

Once, again, there are two similar equations for the other two particles. For Eq. (A.13) 
to hold, either of the following expressions must be true 

r12 = r23 = r31 = r (A.14) 

(the equilateral triangle solution), or 

RR1 × RR2 = RR2 × RR3 = RR3 × RR1 = 0 (A.15) 

(the collinear solution). 
The triangular and collinear cases are addressed separately in Sections A.3 and 

A.4. 

A.3 TRIANGULAR POINTS 

In the equilateral triangle case given in Eq. (A.14), we arrive at the following rela­
tionship for the first particle 

R¨ R1
RR1 + GM1 = 0 (A.16)

R3 
1 
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where 
3/22 2m2 + m3 + m2m3 

M1 = (A.17)2
(m1 + m2 + m3)

This result is the familiar two-body equation of motion. In this case, the first particle 
moves about the center of mass of the system in any conic orbit as if it had unit mass 
and a mass of M1 were placed at the center of mass of the system. Each particle 
moves in a corresponding trajectory, and the figure remains in an equilateral triangle 
configuration (although its size may oscillate or grow indefinitely). 

A.4 COLLINEAR POINTS 

In the collinear case given in Eq. (A.15), we can also first show that each particle’s 
orbit is a conic section. Beginning with the first particle, we can take the collinear 
axis to be the x axis; the force acting on m1 is then 

(x2 − x1) (x3 − x1)
F1 = m2 + m3 (A.18)3 3x x12 13 

But we also know from Eq. (A.6) that 

xi(t) = xi(t0)f(t) 

so that 
1 (x2 − x1) (x3 − x1) constant 

F1 = m2 + m3 = (A.19)
f2 x3 x3 f2 

12 13 0 

Since f is proportional to distance, m1 is acted upon by an inverse-square-law central 
force. Hence, the particle’s orbit is a conic section. 

Now we will impose the condition from Eq. (A.9) that 

F1 : F2 : F3 = x1 : x2 : x3. 

This condition introduces the proportionality constant A, such that 

F1 = Ax1 

F2 = Ax2 (A.20) 
F3 = Ax3 

or equally 

Ax1 = m2 
x2 − x1 

x3 
12 

+ m3 
x3 − x1 

x3 
13 

Ax2 = m3 
x3 − x2 

x3 
23 

+ m1 
x1 − x2 

x3 
21 

(A.21) 

Ax3 = m1 
x1 − x3 

x3 
31 

+ m2 
x2 − x3 

x3 
32 
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We are looking for the placement of the particle of mass m3 with respect to the other 
two particles such that the relative positions are constant in the rotating frame. The 
equilibrium positions possible for m3 are in the arrangements m1 − m3 − m2 (case 
132), m1 − m2 − m3 (case 123), and m3 − m1 − m2 (case 312). Each case will be 
observed separately. 

A.4.1 Case 132: Identifying the L1 point 

For case 132, we are looking for a positive value of X such that 

x2 − x3 x32
X = = 

x3 − x1 x13 

x2 − x1 x12
X + 1 = = 

x3 − x1 x13 

⎫ ⎪⎬ ⎪⎭ 
(A.22) 

We identify X using a series of steps. We first subtract Ax1 from Ax3 and Ax3 from 
Ax2 from Eq. (A.21) to arrive at Ax13 and Ax32 

m1 + m3 1 1 
Ax13 = − + m2 −2 2 2x x x13 32 12 (A.23) 

m2 + m3 1 1 
Ax32 = − + m1 −2 2 2x x x32 13 12 

Using Eq. (A.22), we know that x32 = X x13 and x12 = (X + 1)x13. When we 
substitute these relationships into Eq. (A.23), we find two different relationships for 
the quantity Ax3 When we set them equal and arrange in powers of X , we arrive 13. 
at Lagrange’s quintic equation 

(m1 + m3)X
5 + (3m1 + 2m3)X

4 + (3m1 + m3)X
3 

(A.24)
− (3m2 + m3)X

2 − (3m2 + 2m3)X − (m2 + m3) = 0 

We can use a quintic solver to solve for X (see Section A.5). Since the coefficients 
of Eq. (A.24) change sign only once, there can be only one positive real root. We can 
then use that value for X to determine the relative location of the massless particle, 
that is, the location of L1, with respect to the other two particles by solving for x3 in 
Eq. (A.22) 

x2 − x3 x2 − x1
X = ⇒ x3 = x1 + (A.25) 

x3 − x1 X + 1 

A.4.2 Case 123: Identifying the L2 point 

For case 123, we are looking for a positive value of X such that 

x3 − x2 x23
X = = 

x2 − x1 x12 

x3 − x1 x13
X + 1 = = 

x2 − x1 x12 

⎫ ⎪⎬ ⎪⎭ 
(A.26) 
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In order to identify X , we follow a similar derivation as in case 132. We first subtract 
Ax2 from Ax3 and Ax1 from Ax2 from Eq. (A.21) to arrive at Ax23 and Ax12 

m2 + m3 1 1 
Ax23 = − + m1 −2 2 2x x x23 12 13 (A.27) 

m1 + m2 1 1 
Ax12 = − + m3 −2 2 2x x x12 23 13 

We then substitute in X and (X + 1) from Eq. (A.26) as before, eliminate Ax3 
12 

between the resulting equations and arrange in powers of X to produce Lagrange’s 
quintic equation 

(m1 + m2)X
5 + (3m1 + 2m2)X

4 + (3m1 + m2)X
3 

(A.28)
− (m2 + 3m3)X

2 − (2m2 + 3m3)X − (m2 + m3) = 0 

Once again, we can use a quintic solver to solve for X (see Section A.5), knowing 
that again there is only one real positive root. We can then use that value for X to 
determine the relative location of the massless particle, that is, the location of L2, 
with respect to the other two particles by solving for x3 in Eq. (A.26) 

x3 − x2
X = ⇒ x3 = x2 + X(x2 − x1) (A.29) 

x2 − x1 

A.4.3 Case 312: Identifying the L3 point 

For case 312, we are looking for a positive value of X such that 

x2 − x1 x12
X = = 

x1 − x3 x31 

x2 − x3 x32
X + 1 = = 

x1 − x3 x31 

⎫ ⎪⎬ ⎪⎭ 
(A.30) 

In order to identify X , we follow a similar derivation as in case 132. We first subtract 
Ax1 from Ax2 and Ax3 from Ax1 from Eq. (A.21) to arrive at Ax12 and Ax31 

m1 + m3 1 1 
Ax31 = − + m2 −2 2 2x x x31 12 32 (A.31) 

m1 + m2 1 1 
Ax12 = − + m3 −2 2 2x x x12 31 32 

We then substitute in X and (X + 1) from Eq. (A.30) as before, eliminate Ax3 
31 

between the resulting equations and arrange in powers of X to produce Lagrange’s 
quintic equation 

(m1 + m3)X
5 + (2m1 + 3m3)X

4 + (m1 + 3m3)X
3 

(A.32)
− (m1 + 3m2)X

2 − (2m1 + 3m2)X − (m1 + m2) = 0 
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Once again, we can use a quintic solver to solve for X (see Section A.5), knowing 
that again there is only one real positive root. We can then use that value for X to 
determine the relative location of the massless particle, that is, the location of L3, 
with respect to the other two particles by solving for x3 in Eq. (A.30) 

x2 − x1 x2 − x1
X = ⇒ x3 = x1 − (A.33) 

x1 − x3 X 

A.5 ALGORITHMS 

The quintics given in Eqs. (A.25), (A.29), and (A.33) provide analytic determinations 
of the locations of the first, second, and third Lagrange points, respectively, in 
the circular restricted three-body system. Szebehely outlines a fixed-point iterative 
scheme that may be implemented to identify the single positive real root of each of the 
quintic equations [86]. The fourth and fifth Lagrange points make equilateral triangles 
with the primaries; hence, their locations are easily determined using geometry. 

Sections A.5.1–A.5.3 provide pseudo-code that may be used to implement a 
fixed-point iterative scheme to find the x-coordinate of L1 – L3, respectively. The 
coordinate axis and the definition of µ are defined in Section 2.5.1. 

A.5.1 Numerical Determination of L1 

1/3 
µ(1 − µ)

γ0 = 
3
 

γ = γ0 + 1
 

while|γ − γ0| > tol
 
γ0 = γ 

µ(γ0 − 1)2 1/3 

γ = 
3 − 2µ − γ0(3 − µ − γ0) 

endwhile 
xL1 = 1 − µ − γ 
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A.5.2 Numerical Determination of L2 

1/3 
µ(1 − µ)

γ0 = 
3 

γ = γ0 + 1 

while|γ − γ0| > tol 
γ0 = γ 

µ(γ0 + 1)2 1/3 

γ = 
3 − 2µ + γ0(3 − µ + γ0) 

endwhile 
xL2 = 1 − µ + γ 

A.5.3 Numerical Determination of L3 

1/3 
µ(1 − µ)

γ0 = 
3 

γ = γ0 + 1 

while|γ − γ0| > tol 
γ0 = γ 

(1 − µ)(γ0 + 1)2 1/3 

γ = 
1 + 2µ + γ0(2 + µ + γ0) 

endwhile 
xL3 = −µ − γ 




