
CHAPTER 5
 

TRANSFERS TO THE LUNAR SURFACE
 

5.1 EXECUTIVE SUMMARY 

In this chapter techniques are developed that allow an analysis of a range of different 
types of transfer trajectories from the Earth to the lunar surface. Trajectories ranging 
from those obtained using the invariant manifolds of unstable orbits to those derived 
from collision orbits are analyzed. These techniques allow the computation of 
trajectories encompassing low-energy trajectories as well as more direct transfers. A 
conceptual illustration of the types of trajectories discussed in this chapter is given in 
Fig. 5-1. The range of possible trajectory options is summarized, and a broad range 
of trajectories that exist as a result of the Sun’s influence are computed and analyzed. 
The results are classified by type, and trades between different measures of cost are 
discussed. The information in this chapter is largely derived from papers presented 
by Anderson and Parker [192–195], and the results as presented here are oriented as 
a guide for mission design. 

The problem of designing transfers to the lunar surface is approached here as fol­
lows. First, an analysis is given showing the types of trajectories that exist as a result 
of the Sun’s influence in both the planar and spatial problems. A significant set of 
trajectories at high Jacobi constants, or low energies, is found to exist when the Sun’s 
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Figure 5-1 The profiles for both a direct and a low-energy transfer from the Earth to the 
lunar surface. 

influence is taken into account. This result indicates that for trajectory design in this 
energy regime, trajectories traveling to the Sun–Earth Lagrange points and following 
the invariant manifolds of orbits around these points deserve careful consideration. 
Monthly variations are examined, and it is determined that the monthly variations 
capture the majority of the variations seen in the studied transfer trajectories. The 
greatest variation over a month occurs between the cases traveling to the Moon when 
it is at its apoapse and periapse. These trajectories are described for the spatial case 
initially with trajectories normal to the surface, which illustrates in a succinct man­
ner the types of options available. A more detailed analysis of trajectories arriving 
at various angles to the surface is also presented, and these trajectory options are 
summarized using several different plots of various parameters. These trajectories 
may serve as initial guesses for future mission design, and they provide a general 
overview of the range of trajectory options. Invariant manifold trajectories traveling 
to the lunar surface are also described, and some sample trajectory options traveling 
from libration orbits to the lunar surface are given. 

The numerical results presented in this chapter are given primarily relative to the 
Jacobi constant (C) of trajectories encountering the lunar surface. The velocity of the 
trajectories varies little over the surface of the Moon for each Jacobi constant, and in 
each case an approximate value of the velocity corresponding to each Jacobi constant 
may be obtained by referring to Fig. 5-2. From this plot, a Jacobi constant of 2.5 gives 
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Figure 5-2 Mean inertial velocities relative to the Moon at each Jacobi constant for the cases 
with velocities normal to the surface [192] (Copyright © 2011 by American Astronautical c
Society Publications Office, San Diego, California (Web Site: http://www.univelt.com), all 
rights reserved; reprinted with permission of the AAS). 

a mean velocity at the Moon of approximately 2473.3 meters per second (m/s), while 
a Jacobi constant of 3.0 gives a mean velocity of 2365.0 m/s. In the planar analysis it 
is shown that trajectories from the Earth to the Moon exist without the Sun’s influence 
up to a Jacobi constant of 2.78, while they exist up to a Jacobi constant of 3.16 when 
the Sun’s influence is included in the computations. As expected, the time of flight 
of the trajectories generally increased and the launch injection energy parameter 
(C3) generally decreased as the Jacobi constant increased. For the spatial case with 
trajectories encountering the Moon perpendicular to the surface, the minimum time 
of flight varied from approximately 3.4 days at C = 2.2 to around 101.0 days and 
78.7 days at C = 3.0 and 3.1, respectively. The range of possible elevation angles 
that generate missions to the surface is very dependent on the Jacobi constant and 
the target location on the surface. For the selected grid size, the maximum elevation 
angle range for points on the surface changed from 0 deg to 90 deg at C = 2.6 to 
between 57 deg and 90 deg at C = 3.1. Likewise the minimum elevation angle 
range decreased from 0 deg to 72 deg at C = 2.6 to between 0 deg and 15 deg at 
C = 3.1. These numbers are given to present a rough idea of the kinds of results that 
are discussed in this chapter. The details of these cases along with a wide variety of 
launch and approach parameters are contained in the plots presented throughout the 
chapter. 

5.2 INTRODUCTION FOR TRANSFERS TO THE LUNAR SURFACE 

A wide variety of Earth–Moon trajectories have been employed for past missions, 
ranging from the more direct transfers used for the Apollo missions [196] to more 
recent missions such as ARTEMIS [4] that make use of the multi-body dynamics 
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of the Earth–Moon and Sun–Earth–Moon systems. The design of trajectories in 
multi-body systems is a particularly rich problem because the two-body model is 
often insufficient to compute accurate trajectories, and the gravity of the Sun, Earth, 
and Moon combine to form a highly nonlinear dynamical environment. These facts 
limit the applicability of traditional patched-conic techniques commonly used for 
interplanetary missions, and the three-dimensional aspects of the problem further 
complicate real-world missions. Mission designers must take into account the orien­
tation of each body in addition to the relative orientations of the orbits of the Earth 
and the Moon over time. Parker et al. [44, 47, 183] have studied trajectories that 
include many of these complicating factors for insertion into a variety of orbit types 
near the Moon. This chapter focuses on an analysis including these types of effects 
with a focus on trajectories traveling to the lunar surface. 

Lunar landing trajectories often have a different set of constraints from those of 
orbiters, and the nature of this problem makes it possible to approach it with a different 
set of techniques. Indeed, a theoretical basis for analyzing lunar landing trajectories 
may be found in the computation of collision orbits. Collision orbits have been 
studied extensively in the mathematical community by Easton [197] and McGehee 
[198]. Anderson and Lo [199], Villac and Scheeres [200], and Von Kirchbach et 
al. [201] have previously analyzed collision orbit trajectories for the Jupiter–Europa 
system and categorized the different regions and trajectories that exist for orbits that 
terminate or originate at Europa’s surface. While the theoretical basis for collision 
orbits is focused on trajectories that intersect the surface of the selected body normal 
to the surface, this type of analysis can be extended to trajectories coming in at 
the various flight path angles and declinations of interest to mission designers. A 
study of these trajectories is almost directly applicable to impactor missions such as 
the Lunar Crater Observation and Sensing Satellite (LCROSS) [202]. This mission 
used an 86 deg impact angle relative to the lunar surface for the impact trajectory. 
The techniques developed here are also easily applied to systems including the full 
ephemeris and multiple bodies. Much of the work to design low-energy trajectories 
from the Earth to the Moon has focused on the use of libration point orbits along with 
their stable and unstable manifolds [39, 45, 51, 203]. These techniques have proven 
to be quite successful, and they are increasingly used for the design of Earth–Moon 
trajectories. The invariant manifolds of libration orbit trajectories are also studied 
here with an emphasis on their applicability to landing trajectories. 

A wide range of trajectory types for lunar landing trajectories were computed for 
the results given here, and presenting a complete picture of the possible trajectory 
categories while remaining easily accessible was a goal of this research. In keeping 
with this goal, the problem is approached and presented using several different levels 
of analysis with increasing complexity. Presenting all different combinations of 
velocities encountering the surface of the Moon with all different magnitudes and 
orientations makes it difficult to see the relevant structures in the solution space, so two 
divisions were made in the approach to the analysis. The problem is first approached 
by analyzing planar cases covering selected velocities or energies with the trajectories 
encountering the Moon at various angles relative to the surface. The characteristics 
of these trajectories are observed to lay the groundwork for understanding the spatial 
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trajectory cases. The spatial case is then attacked using the results from the planar 
analysis to understand the dynamics in this more complex model. These trajectories 
are categorized with the goal of providing a broad survey of the trajectory types 
that may be available for transfers to the lunar surface from the Earth. The specific 
trades between launch costs and time of flight (TOF) are quantified and summarized 
in addition to the topological characteristics of the trajectories. Other parameters 
relevant to mission design such as the launch orientation are computed. The regions 
of the Moon attainable using different types of trajectories are also characterized. 
These results are summarized with the goal of providing a tool for mission designers 
to quickly understand the trades between various measures of cost and time when a 
particular mission is being designed to land on the Moon. 

The results in this chapter are also presented using two key concepts. The first 
is to view the problem in terms of the limiting bounds that a mission designer 
could use to refine the search space. This practically takes the form of computing 
parameters such as the velocities for which trajectories exist that travel from the 
Earth to the Moon or the launch energies required to reach such trajectories. The 
second, which is an overall theme of this work and one of the primary results, is 
related to computationally examining in a more comprehensive sense the trajectories 
available when the Sun’s perturbations are taken into account. To achieve this 
objective, comparisons involving several different models are made. Many traditional 
trajectories were computed using the Earth–Moon model or the circular restricted 
three-body problem (CRTBP), and in general, similar types of trajectories exist in 
the full ephemeris model. If simpler models are used, however, some solutions in 
the full problem may be ignored. Some particular solutions employing the effects of 
the Sun for transfers in the Earth–Moon system have been examined more recently. 
The 1991 Japanese mission MUSES-A (Hiten) used the effects of the Earth, Moon, 
and Sun for its transfer to the Moon [30]. Koon et al. provided techniques for 
systematically reproducing missions similar to Hiten using the invariant manifolds 
of libration orbits [38]. In each of these techniques the Sun’s effects were included in 
the mission design. Parker and Lo examined trajectories within the Sun–Earth–Moon 
spatial problem and looked at multiple trajectories for transfer to lunar halo orbits 
[39, 46]. The work here seeks to broaden the search space for landing trajectories 
traveling to the Moon and characterize the effects of the fourth-body perturbations 
of the Sun on the potential trajectories that may be used. A direct approach isolating 
the effects of the Sun is taken here by comparing trajectories in the CRTBP, the 
Earth–Moon system, and the Sun–Earth–Moon system. 

5.3 METHODOLOGY 

Two primary models are used for the analyses contained in this chapter. The first 
model, the CRTBP, closely approximates real world systems, and a significant set of 
tools exists within this model to bring to bear on the problem. The qualitative insights 
gained in this model are very helpful in providing an overview of the categories of 
trajectories that are available. The trajectories developed within the CRTBP are 
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also generally transferable to the full ephemeris although trajectories developed with 
the effects of other bodies may not be transferable to the CRTBP. Refer back to 
Section 2.5.1 for a more complete description of the CRTBP. The ephemeris model, 
implemented using point masses, is used to capture additional types of trajectories 
that are not found using the CRTBP model. Although the variations in the orbits of 
the Earth and Moon are important, this model is primarily used to search for members 
of the broad category of trajectories utilizing the Sun’s perturbation for Earth–Moon 
transfers. See Section 2.5.3 for more details on the use of the ephemeris. 

5.4	 ANALYSIS OF PLANAR TRANSFERS BETWEEN THE EARTH AND 
THE LUNAR SURFACE 

The procedure described next involves varying the location of the landing site on 
the Moon, the orientation of the incoming trajectory, and the energy/velocity of 
the trajectory. Each trajectory must also be characterized or evaluated using some 
figure of merit. While this can provide a relatively complete picture of the potential 
trajectory options, it is helpful to first gain insight into the dynamics by limiting the 
scope of the problem to allow the results to be easily visualized. 

Several different techniques have been used to achieve this goal in the Jupiter– 
Europa system, and it is useful to consider their application here. One technique used 
by Anderson and Lo [199] varied the Jacobi constant for trajectories intersecting 
Europa on a sphere for several different trajectory orientations and characterized the 
origin of the trajectories. Von Kirchbach et al. [201] examined the planar case for the 
Jupiter–Europa system for additional velocity orientations leaving the surface. Both 
of these techniques are applied here to the Earth–Moon system, and it is interesting 
to start with the planar problem in order to gain some initial insight. First, the planar 
results are computed in the Earth–Moon CRTBP system to allow for a comparison 
with the results from Von Kirchbach et al. [201] in the Jupiter–Europa system. This 
technique is then used to extend the analysis to the ephemeris case with the Earth and 
Moon and then to the case where the Sun is included. The effect of adding the Sun 
is examined in detail over a range of Jacobi constants. 

For this planar analysis, a set of trajectories was integrated backward in time from 
the surface of the Moon. Specifying the Jacobi constant gives the velocity magnitude 
for each trajectory, while the location of the trajectory and the orientation of the 
velocity are specified using α and θ as shown in Fig. 5-3. Multiple simulations have 
been performed using these techniques, and the results for several selected Jacobi 
constant values are given in Fig. 5-4. The resulting points are colored according to 
the original location of each trajectory. Note that if a trajectory integrated backward 
in time were to intersect the Moon and then encounter the Earth at an earlier time, 
the trajectory would be gray. The (α, θ) point corresponding to the intermediate 
intersection of the Moon would then be blue. The fact that points with only slightly 
different initial conditions in the plot can travel to either the Earth or the Moon 
confirms the known existence of chaos in this problem. Comparison with the results 
from the Jupiter–Europa system in Von Kirchbach et al. [201] reveals that the divid­



ANALYSIS OF PLANAR TRANSFERS BETWEEN THE EARTH AND THE LUNAR SURFACE 269 

Figure 5-3 Diagram showing location and orientation of the velocity vector as it intersects 
the lunar surface. The xy axes shown here are centered on the Moon in the same orientation 
as the axes in the rotating frame [192] (Copyright © 2011 by American Astronautical Society c
Publications Office, San Diego, California (Web Site: http://www.univelt.com), all rights 
reserved; reprinted with permission of the AAS). 

ing lines between different regimes of motion are less distinct at equivalent Jacobi 
constants for the Earth–Moon system. This existence of chaos indicates that it may 
be possible to design trajectories that cover a relatively wide range of the surface 
by carefully selecting landing sites. It is useful to note here again that Moon–Earth 
transfers may be derived from Earth–Moon transfers, and the plot corresponding to 
these trajectories may be obtained from Fig. 5-4 for the planar problem using x → x, 
y → −y, ẋ → − ẋ, and ẏ → ẏ. The transformation in position gives α → 2π − α 
and then from examination of the transformed velocity vector, θ → −θ. 

As can also be seen from the results, a significant percentage of the trajectories do 
not encounter either the primary or the secondary over the given time span. However, 
it is useful to note that for low Jacobi constants (higher energies), a significant 
percentage of the trajectories do originate at the Earth. Determining the Jacobi 
constant where Earth–Moon transfer trajectories no longer exist in the planar problem 
can help provide a rough limit on energies or velocities for these trajectories and 
provide a method for determining the potential benefits of perturbations from other 
bodies in trajectory design. To determine the approximate Jacobi constant above 
which Earth–Moon trajectories computed in this simulation no longer exist, a series 
of runs were made in parallel to step through the Jacobi constant. The grid resolution 
used for this step was one degree in both α and θ. The percent of the total number 
of trajectories that encountered the Earth for each Jacobi constant was computed and 
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Figure 5-4 Plots showing the origin of each trajectory as a function of the position and 
orientation of the velocity vectors as the trajectories encounter the Moon’s surface. Blue 
points indicate that the trajectory originated at the Earth and gray that it originated at the 
Moon. If no point is plotted the integrated trajectory did not encounter the surface of either 
body over the given time span of 200 days (Earth–Moon CRTBP) [192] (Copyright c© 2011 
by American Astronautical Society Publications Office, San Diego, California (Web Site: 
http://www.univelt.com), all rights reserved; reprinted with permission of the AAS). (See 
insert for color representation of this figure.) 

plotted in Fig. 5-5. As expected from the previous plots, the number of trajectories 
originating at the Earth generally decreases with increasing Jacobi constant, but it is 
interesting that the slope of the curve varies significantly over the plotted range. It is 
also interesting that although the curve approaches zero percent near a Jacobi constant 
of 2.7, for Jacobi constants as high as 2.78, the percent of trajectories originating at 
the Earth remains at approximately 0.03 percent or approximately 19 out of 64800 
trajectories. So even for this relatively low energy, some trajectories manage to travel 
from the Earth to the Moon. 

For mission design, it is helpful to be aware of the velocities of the trajectories as 
they intersect the surface. They will actually vary somewhat as the constant for the 
computations so far has been the Jacobi constant rather than velocity. In general the 
inertial velocities relative to the Moon only vary at the m/s level. Figure 5-2 shows 
the average velocities for the case with velocities normal to the surface as a reference 
for each Jacobi constant. 
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Figure 5-5 Percent of trajectories originating at the Earth for each Jacobi constant (CRTBP) 
[192] (Copyright c© 2011 by American Astronautical Society Publications Office, San Diego, 
California (Web Site: http://www.univelt.com), all rights reserved; reprinted with permission 
of the AAS). 

Although the CRTBP is known to provide an accurate approximation to real-world 
trajectories, an obvious question for mission designers is related to how much the 
inclusion of real-world effects would affect selected trajectories. This question can 
be addressed by using planetary ephemerides and replicating the analysis for the 
CRTBP in this model. This analysis was first performed in the ephemeris model 
initially including only the gravity of the Earth and Moon. The initial velocities were 
computed for a given Jacobi constant in the CRTBP in the rotating frame, and then 
the states were initialized in the integrator relative to the Moon in an instantaneous 
rotating frame aligned with the Earth–Moon frame on an epoch of January 1, 2015. 
As the distance between the Earth and the Moon varies over the course of the orbit, it is 
difficult to obtain a direct comparison to the results from the CRTBP, but this method 
was selected because it was found to provide a good approximate comparison using 
the important mission design parameter of velocity at the lunar surface. Although 
the Jacobi constant will vary along the trajectory in this model, the final impact 
velocities at the Moon will be the same in each system. So the Jacobi constant 
labels in the ephemeris model plots in this study serve to indicate the velocities that 
were used at the lunar surface as they were computed in the CRTBP. The initial 
conditions were originally planar for this case, but the trajectory was free to vary in 
three dimensions for this problem. Using this method for a system including the Earth 
and Moon ephemerides, the trajectories were integrated, and the results are plotted 
in Fig. 5-6. Comparing the results for this system with the results in Fig. 5-4 reveals 
few obvious differences. The Earth impacting cases for C = 2.6 have some slight 
differences, but in general the trajectories match the expectation that the CRTBP is 
a good approximation to the three-body problem including the ephemerides. If the 
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Figure 5-6 Plots showing the origin of each trajectory as a function of the position and 
orientation of the velocity vectors as the trajectories encounter the Moon. Blue points 
indicate that the trajectory originated at the Earth and gray that it originated at the Moon. 
If no point is plotted the integrated trajectory did not encounter either body over the given 
time span of 200 days (Earth–Moon only Ephemeris system) [192] (Copyright © 2011c
by American Astronautical Society Publications Office, San Diego, California (Web Site: 
http://www.univelt.com), all rights reserved; reprinted with permission of the AAS). (See 
insert for color representation of this figure.) 

percent of trajectories originating at the Earth are compared, some differences in the 
shape of the curve can be found, but the overall trends are very similar. In this case, 
the percent of trajectories in Fig. 5-7 originating at the Earth decreases down to 0.006 
percent at C = 2.76, approximately the same Jacobi constant cutoff as the CRTBP. 

Next, the same procedure was performed including the Sun in the integration, 
and the results are plotted in Fig. 5-8. Now, comparison with the results in both 
the CRTBP and the Earth–Moon systems reveal some obvious differences. Several 
new bands of trajectories originating at the Earth spring into existence. The overall 
structure remains generally similar, but the points appear chaotic. A new band of 
solutions remains for C = 2.8 and a significant number of Earth origin trajectories 
still exist at C = 3.0. Remember that the final velocities at the Moon are the same as 
the other models, but the Jacobi constant will vary as a result of the Sun’s influence. 
In this sense, the Sun may be thought of as changing the trajectory’s energy or Jacobi 
constant to provide the transfer. If the percent of trajectories originating at the Earth 
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Figure 5-7 Percent of trajectories originating at the Earth for each Jacobi constant (Earth– 
Moon only Ephemeris system) [192] (Copyright c© 2011 by American Astronautical Society 
Publications Office, San Diego, California (Web Site: http://www.univelt.com), all rights 
reserved; reprinted with permission of the AAS). 

is examined in Fig. 5-9(a), it can be seen that at C = 3.0, 0.3 percent of the trajectories 
still originate at the Earth. Indeed, as high as C = 3.16, 0.15 percent of the trajectories 
still originate at Earth. 

One immediate question that arises is whether the selected epoch for lunar arrival 
would significantly affect these results, so three additional cases seven days apart were 
computed and plotted in Fig. 5-9(b). Some variation is observed as the Moon travels 
through its orbit with one case starting with a lower percent of trajectories for low 
Jacobi constants and two of them possessing peaks just before C = 3.0. However, all 
of them have approximately the same upper Jacobi constant cutoff of approximately 
C = 3.16 where the percent of trajectories drops to near zero. The existence of 
the additional bands of trajectories and the increase in the Jacobi constant where 
trajectories connecting the Earth and Moon exist in this system raises the question 
as to where these trajectories come from. These trajectories were plotted in both the 
Earth–Moon system and the Sun–Earth–Moon system to examine the differences, 
and a sample of one of these trajectories plotted in both rotating frames is given in 
Fig. 5-10. As can be seen from the plots, the trajectory ends up in very different 
places depending on whether the Sun is included in the integration or not. In the 
Earth–Moon rotating frame with the Sun included, the trajectory travels far away 
from the system with no close periapses until it approaches the Earth, while the case 
without the Sun has two relatively close periapses at approximately the lunar distance 
and ends up far from the Earth. The most telling plots, however, are in the Sun– 
Earth rotating frame. Here, the characteristic shape of a trajectory using the libration 
point dynamics of the Sun–Earth system is apparent when the Sun is included. The 
trajectory travels out toward the L1 point, lingers there, and then finally falls back 
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Figure 5-8 Plots showing the origin of each trajectory as a function of the position and 
orientation of the velocity vectors as the trajectories encounter the Moon. Blue points 
indicate that the trajectory originated at the Earth and gray that it originated at the Moon. 
If no point is plotted the integrated trajectory did not encounter either body over the given 
time span of 200 days (Sun–Earth–Moon Ephemeris system) [192] (Copyright c© 2011 
by American Astronautical Society Publications Office, San Diego, California (Web Site: 
http://www.univelt.com), all rights reserved; reprinted with permission of the AAS). (See 
insert for color representation of this figure.) 

toward the Earth. Without the Sun, the trajectory stays out near the Moon until it 
eventually wanders further away from the system, unless there is a lunar flyby. 
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Figure 5-9 Percent of trajectories originating at the Earth for each Jacobi constant (Sun– 
Earth–Moon Ephemeris system) [192] (Copyright c© 2011 by American Astronautical Society 
Publications Office, San Diego, California (Web Site: http://www.univelt.com), all rights 
reserved; reprinted with permission of the AAS). 
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Figure 5-10 Comparison of a single trajectory at C = 2.8 (α ≈ 197.5 deg, θ ≈ 9.5 deg) 
integrated with and without the Sun’s gravity in different rotating frames [192] (Copyright 
c© 2011 by American Astronautical Society Publications Office, San Diego, California (Web 

Site: http://www.univelt.com), all rights reserved; reprinted with permission of the AAS). 
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5.5	 LOW-ENERGY SPATIAL TRANSFERS BETWEEN THE EARTH AND 
THE LUNAR SURFACE 

5.5.1 Trajectories Normal to the Surface 

While the planar cases discussed up to this point are quite complicated, it is still 
possible to plot many of the salient features of the design space given the relatively 
small dimension of the problem. With the increase in dimension that occurs for the 
spatial problem, the visualization of the resulting trajectories and their characteristics 
becomes an even more difficult issue. One of the stated objectives of this analysis is 
to capture the characteristics of the major trajectory categories while also providing 
adequate information to evaluate the usefulness of each trajectory. With this objective 
in mind it is worth noting that if the plots in Figs. 5-4, 5-6, and 5-8 are examined, it can 
be seen that the majority of the dominant types of trajectories seen in the figures may 
be captured by making a particular cut at θ = 0. The trajectories obtained with θ = 0 
correspond to those trajectories impacting the Moon normal to the lunar surface. 
As previously mentioned, these types of trajectories are particularly applicable to 
impactor missions similar to LCROSS. Given the results from the planar case, they 
can also provide a good initial overview of the different categories of Earth–Moon 
landing trajectories, including those with different flight path angles. The results 
presented next are restricted to those computed using impacts normal to the surface 
for an epoch of January 1, 2015. They provide accurate results for impactor-type 
trajectories, and they also give a good indication of the types of trajectories that may 
exist for trajectories coming in at other flight path angles. 

To allow for easy visualization of the trajectory characteristics, the results are 
presented for each energy level, which corresponds to a slightly varying velocity 
magnitude relative to the Moon that depends on the location of the final point on the 
trajectory at the Moon’s surface. The velocity can be used to provide an indication 
of the change in velocity (ΔV) required for landing, although the specific ΔV 
will depend on the particular landing trajectory. The regions of the Moon that 
are accessible for each energy level can be evaluated for particular mission design 
requirements by using the desired parameters plotted over the surface of the Moon 
in α and β. α and β are measured in the rotating frame with α positive in the same 
direction as shown in Fig. 5-3. β is measured like latitude and is positive above the 
xy plane. Understanding how to connect the trajectory to the Earth becomes more of 
a challenge in the spatial problem because a large number of possible Earth-relative 
orientations and methods of injection onto the trans-lunar trajectory are possible. 
For this reason, a specific set of trajectory characteristics was selected for plotting. 
The procedure in each case was to begin with the final point on the trajectory with 
a velocity normal to the lunar surface at the given α and β. The trajectory was then 
propagated backward in time until it either encountered the Earth or the Moon, or 
the trajectory duration reached 200 days. For those trajectories not encountering the 
Earth or the Moon in this time period, a search was then made for the periapse closest 
to the Earth. Several quantities were then computed using the point at encounter 
or periapse. They included the periapse radius relative to the Earth, the TOF, the 
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launch energy (C3), and inclination in the Earth Mean Equator and Equinox of J2000 
(EME2000) frame. 

Results showing the origin of each trajectory encountering the Moon are given 
in Fig. 5-11. For these cases three-dimensional effects are included, and it is now 
possible for the trajectory to miss encounters with the Earth and Moon by traveling 
above or below them. A significant number of encounters are still observed though, 
and the features seen for the θ = 0 cases in the planar model may still be observed 
here where β is 0 deg. Although a significant number of Earth-origin trajectories 
are observed for low Jacobi constants, as the Jacobi constant increases (energy 
decreases), the number of Earth–Moon transfers decreases. Once a Jacobi constant 
of 2.8 is reached, there are no more of these types of trajectories in the Earth–Moon 
ephemeris model. However, there are still a significant number of Earth–Moon 
trajectories in the Sun–Earth–Moon ephemeris model. Indeed, a significant number 
still exist as the Jacobi constant is increased, even above 3.1. As in the planar case, 
the Sun may be thought of as changing the energy or Jacobi constant of the trajectory 
while the velocities at the Moon remain the same in each model. This observation 
emphasizes the need to include the Sun’s influence in the trajectory design process, 
but it raises the question as to what types of Earth–Moon trajectories exist at these 
energies and how long are their times of flight? It is difficult to answer these questions 
completely since trajectories are constantly changing with energy, but it is interesting 
to observe some of the trajectories that exist in the Sun–Earth–Moon system with no 
corollary in the Earth–Moon system. Two sample trajectories from the line of Earth 
origin trajectories at C = 2.6 that do not exist in the Earth–Moon system are given 
in Fig. 5-12. The majority of cases found in this line are similar to the trajectory in 
Fig. 5-12(a), and they exhibit the characteristics of known trajectories designed to 
utilize the dynamics of the invariant manifolds of libration orbits. They approach the 
L1 Lagrange point from the Earth in the Sun–Earth system and then fall away toward 
the Moon. Although almost all of the trajectories follow this type of orbit, some do 
have characteristics similar to the trajectory in Fig. 5-12(b). In this case, the Sun’s 
gravity is still influential, but an intermediate flyby is inserted. 

It is also interesting to observe the types of trajectories that exist for higher Jacobi 
constants, or lower velocities, at the lunar surface in the Sun–Earth–Moon system 
where no analogues in the Earth–Moon system have been found. Several samples 
are shown along with the trajectory origin plots in Fig. 5-13 to provide an overview 
of these types of trajectories. Here, an interesting phenomenon occurs. As the Jacobi 
constant increases to 3.0, the trajectories originating at the Earth are scattered across 
the map. The majority of the Earth-origin trajectories seem to require multiple flybys 
of the Earth or the Moon. The sample trajectories shown in Fig. 5-13(a) are intended 
to be representative of the types of trajectories found across the map. Although a few 
trajectories, such as those found in the lower left corner of the map, utilize the libration 
dynamics more directly, the majority seem to require variations on different phasing 
flybys as shown by the various trajectories. As the Jacobi constant is increased further 
to a value of 3.1 in Fig. 5-13(b), a line of trajectories appear. These trajectories, as 
shown in the figure, once again utilize the libration orbit dynamics more directly, 
sometimes making use of a single flyby along the trajectory. The remaining scattered 
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Figure 5-11 Plots showing the origin of the spatial collision trajectories. Black indicates 
the trajectory originated at the Earth, and gray indicates it originated at the Moon. If it is 
white, no encounter occurred within 200 days (for epoch of January 1, 2015) [192] (Copyright 
c© 2011 by American Astronautical Society Publications Office, San Diego, California (Web 

Site: http://www.univelt.com), all rights reserved; reprinted with permission of the AAS, 2006) 
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Figure 5-12 Sample trajectories at C = 2.6 for the Sun–Earth–Moon system. The 
trajectories correspond to the line of trajectories not found in the Earth–Moon plots [192] 
(Copyright © 2011 by American Astronautical Society Publications Office, San Diego, c
California (Web Site: http://www.univelt.com), all rights reserved; reprinted with permission 
of the AAS). 
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Figure 5-13 Plots showing the origin of the spatial collision trajectories. Black indicates 
the trajectory originated at the Earth, and gray indicates it originated at the Moon. If it is 
white, no impact occurred within 200 days. Trajectories are shown for select points in the 
Earth-centered Sun–Earth rotating frame. The gray circular orbit is the Moon’s orbit while 
the Sun is in the indicated direction. The scale is the same for all trajectories shown, and 
the trajectories all originate at the Earth [192] (Copyright © 2011 by American Astronautical c
Society Publications Office, San Diego, California (Web Site: http://www.univelt.com), all 
rights reserved; reprinted with permission of the AAS). 

trajectories found near the center of the plot continue to use multiple gravity flybys 
to connect the Earth and the Moon. 

Another interesting characteristic to include in the analysis is the TOF required 
for each trajectory originating at the Earth. More specifically, what are the minimum 
TOF values that may be achieved at each energy? The TOF values provide an 
indication of whether the trajectories at each Jacobi constant fall more in the category 
of direct transfers, low-energy transfers, or somewhere in between. The existence 
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of trajectories in the Sun–Earth–Moon system that do not exist in the Earth–Moon 
system already indicates the presence of trajectories utilizing multi-body effects that 
would be expected to fall more in the low-energy category. The minimum TOF values 
for selected Jacobi constants are listed in Table 5-1. These values were computed 
using a grid with the points spaced at one-degree intervals in each variable. As 
expected, the TOFs start near the 3-day values seen for the Apollo program’s direct 
transfers for a Jacobi constant of 2.2, and climb to over 100 days for a Jacobi constant 
of 3.0. It is surprising though that the minimum TOF at a Jacobi constant of 3.1 drops 
to 78.7 days. Although this point is lower than most of the others at this energy, 
a number of trajectories still exist in the 90-day time range. The reasons behind 
this drop in the TOF may be more clearly understood by reexamining the typical 
trajectories plotted for the Jacobi constants of 3.0 and 3.1 in Fig. 5-13. As mentioned 
previously, the majority of the trajectories computed for the Jacobi constant of 3.0 
required multiple phasing flybys, while the C = 3.1 trajectories typically utilize the 
libration dynamics without these phasing loops. This phenomenon would explain the 
lower minimum TOF value at C = 3.1, since many of the trajectories at this energy 
actually use a more direct approach. 

The analysis so far has focused on categories of trajectories originating at the 
Earth, with the expectation that trajectories from a given category may often be 
modified to meet the particular requirements of a mission when they are supplied. 
Often, however, trajectories that originate within some distance of the Earth may be 
used by targeting them from low Earth orbit. It is also important to quantify the 
orbital parameters of the initial conditions of the analyzed trajectories relative to the 
Earth in order to determine the suitability of the trajectories for particular missions. 
For example, if a launch from Cape Canaveral is selected, an inclination relative to 
the Earth’s pole of 28.5 deg would be desirable. Particular quantities relevant to 
mission design are presented next with the objective of presenting an overview of the 
possible trajectories so that initial estimates may be made for future mission design. 

Table 5-1 Minimum TOF values from the computed trajectories originating at the 
Earth for selected Jacobi constants. 

C TOF (days) 

2.2 3.4 
2.4 29.8 
2.6 58.3 
2.7 57.8 
2.8 74.0 
2.9 94.9 
3.0 101.0 
3.1 78.7 
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The analysis here focuses on the Sun–Earth–Moon system so as to encompass the 
complete range of trajectories. 

The closest periapse values obtained over 200 days for selected Jacobi constants 
in the Sun–Earth–Moon system are plotted in Fig. 5-14. Note that some of the gaps in 
(a) are Earth intersection trajectories as can be seen be reexamining Fig. 5-13. It can 

Figure 5-14 Periapse radius values for the computed trajectories plotted over the surface 
for a range of Jacobi constant values [192] (Copyright c© 2011 by American Astronautical 
Society Publications Office, San Diego, California (Web Site: http://www.univelt.com), all 
rights reserved; reprinted with permission of the AAS). 
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immediately be seen from the plots that the majority of the trajectories never come 
near the Earth. In general, the trajectories originating near α = 90 deg produce the 
most trajectories with periapses closer to Earth. This does shift with Jacobi constant, 
as was seen in the earlier Europa study [199]. As the Jacobi constant increases and 
energy decreases, it appears that fewer trajectories come as close to the Earth, but 
the majority stay near the system. The chaos present in the system can especially be 
observed for C = 3.0, where trajectories very close to each other alternate with low 
and high periapses. 

From the analysis so far, it appears that a large portion of the lunar surface may 
be physically accessible to trajectories coming from the Earth or near the Earth, but 
the feasibility of flying these trajectories will depend on mission design parameters 
such as TOF, launch energy (C3) at Earth, and inclination. It is uncertain what two-
body orbital element parameters (such as C3 and inclination) mean when they are 
computed where multi-body perturbations are significant, but this problem may be 
alleviated by computing these parameters where multi-body effects are minimized. 
With this objective in mind, only parameters for trajectories with periapses lower 
than geosynchronous radius are plotted in the following figures. For these plots, 
the parameters are now included for those trajectories originating at the Earth, and 
in those cases their values are computed using the initial conditions at the Earth’s 
surface. 

The TOFs and C3 values are plotted in Fig. 5-15 for those trajectories with periapsis 
relative to the Earth of less than geosynchronous radius. The immediate feature that 
can be noticed is the sparsity of points compared to the previous plots, confirming that 
a large number of trajectories ending at the lunar surface never come near the Earth. 
Indeed, for lower Jacobi constants, the locations between approximately 180 deg and 
360 deg have almost no trajectories originating near the Earth. Curiously, around 
a Jacobi constant of 3.0, the trajectories are more randomly distributed across the 
surface with a combination of C3 values. This feature may be partly explained by 
returning to the TOF values. From the plots, it can be confirmed that the minimum 
TOFs generally increase with Jacobi constant. The minimum TOF values at C = 3.0 
are significantly larger, indicating that low-energy trajectories under the influence of 
chaos are beginning to be more common. Given the variety of trajectory types and 
the TOFs involved, it is not surprising that more of the lunar surface is potentially 
covered. Examining the trends in the TOF plots, it may also be observed that 
longer TOF trajectories appear to exist at each energy level. The lines of long TOF 
trajectories correspond to low-energy trajectories using the Sun’s perturbations and 
approaching the libration points of the Sun–Earth system. It is also worth noting that a 
variety of C3 options are available at each energy level for transfers to the Moon. Even 
for low Jacobi constants, there still exist some relatively low C3 options, although 
the minimum is higher than that found for the higher Jacobi constant cases. It is 
important to realize that a small change in the landing location can result in a drastic 
change in the required C3 even with similar TOFs and the same velocity at the Moon. 
This fact is important for mission designers, as it may sometimes be possible to 
move the landing site slightly to improve ΔV, or a similar effect may be obtained by 
targeting with maneuvers along the trajectory. Trajectory correction maneuvers may 
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Figure 5-15 TOF and C3 for each trajectory plotted over the surface for a range of Jacobi 
constants [192] (Copyright © 2011 by American Astronautical Society Publications Office, c
San Diego, California (Web Site: http://www.univelt.com), all rights reserved; reprinted with 
permission of the AAS). 

http:http://www.univelt.com


286 TRANSFERS TO THE LUNAR SURFACE 

also help aid in reducing the ΔV. In general, it is useful to be aware of the chaotic 
nature of the design space as seen from these plots. 

Finally, it is important for most mission designs to consider the inclination. The 
inclination results in the EME2000 coordinate frame are given in Fig. 5-16. One of 
the important features to notice here is that a variety of inclinations are possible. A 
choice of trajectories exist with the lower inclinations suitable for launch from Cape 

Figure 5-16 Inclination computed relative to the Earth in the EME2000 coordinate frame 
[192] (Copyright c© 2011 by American Astronautical Society Publications Office, San Diego, 
California (Web Site: http://www.univelt.com), all rights reserved; reprinted with permission 
of the AAS). 
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Canaveral. The particular inclinations needed for a mission will depend on the target 
location on the Moon and the particular constraints of the mission. They are provided 
here as a sample of the range of the values that are possible. 

5.5.2 Trajectories Arriving at Various Angles to the Lunar Surface 

The planar CRTBP provides a convenient framework in which to understand and 
visualize the relationship between invariant manifolds and lunar approach trajectories, 
but the design of real-world equivalent trajectories often requires a landing at either 
higher or lower latitudes. Indeed, many of the recently proposed landing sites at 
the Moon are at northern or southern latitudes [204], and one of the locations that is 
currently a focus for a lunar lander is more southern latitudes in the Aitken Basin. 
In this analysis, lunar landing trajectories are analyzed over the three-dimensional 
surface of the Moon, and the approach geometry of the trajectories in three dimensions 
is also analyzed. 

The landing geometry of trajectories traveling from the Earth to the Moon is of 
particular importance for mission design. In the previous section and in Anderson and 
Parker [192, 195] we analyzed trajectories encountering the Moon normal to the sur­
face to determine whether these trajectories originated at the Earth within the previous 
200 days. Given this elevation angle constraint, only some locations of the Moon’s 
surface were found to be accessible from the Earth. For this analysis, trajectories 
were allowed to approach each point on the lunar surface from all directions. These 
directions were specified relative to the surface at each point. The azimuth angle (Ω) 
is measured clockwise from north where north is the lunar orbit’s North Pole, rather 
than the Moon’s North Pole, to be consistent with the results from the CRTBP. The 
elevation angle (φ) is measured positive above the Moon’s surface, with a trajectory 
encountering the Moon’s surface normal to the surface having an elevation angle of 
90 deg. (Note that this is different from θ used for the planar case, but it was chosen 
to be more consistent with typical mission design parameters.) While the previous 
analysis was ideal for impactors, the trajectories computed here are applicable for 
a wide range of mission types traveling to the lunar surface. Additional parameters 
for each trajectory related to the original characteristics relative to the Earth may be 
computed, but the focus here is on characterizing the approach geometry. For the 
following analysis the trajectories were computed over the surface of the Moon using 
1-deg increments in α and β. The same definition is used for α that is used in the 
planar problem in Fig. 5-3. As described earlier, β is measured like latitude and 
is positive above the xy plane. Two different grids were used for the azimuth and 
elevation angles. In each case, the elevation angle was varied in even increments, 
and the steps taken in azimuth angle were specified initially for an elevation angle of 
0 deg. The number of azimuth points were then decreased with cos(φ) so that the 
number of points decreased with elevation angle. Both a fine grid and a coarser grid 
were used in this analysis. For the fine grid case, 1-deg increments were taken at 
0-deg elevation for Ω, and 1-deg increments were used for elevation. For the coarser 
grid, 10-deg increments were used for Ω at 0-deg elevation, and 3-deg increments 
were used for elevation. This coarser grid was found to provide a good approximation 
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that conveyed the overall trends of the fine grid, while allowing for a more reasonable 
computation time. Even with this coarser grid, computing trajectories over the entire 
surface in the ephemeris problem for each Jacobi constant required approximately 
seven days running in parallel on 40 processors. Unless otherwise stated, this coarser 
grid is the one used throughout the analysis. 

As an initial step in the analysis, the set of trajectories was computed in the 
CRTBP for a Jacobi constant of 2.6. The trajectories were computed for both the 
fine grid and the coarser grid. Comparing the maximum and minimum elevation 
angles resulted in trajectories that originate at the Earth as shown in Fig. 5-17. 
Using the symmetry about the xy plane mentioned earlier, it can be seen that the 
northern and southern latitudes will be reflected for the elevation plots in the CRTBP. 
Note that the azimuth angles would need to account for the reflection if they are 

Figure 5-17 Maximum and minimum elevation angles for trajectories originating at the 
Earth and encountering the Moon at each point on the surface. These cases are computed in 
the CRTBP for C = 2.6. Results from two different grids (in elevation and azimuth angle) 
are shown [193] (Copyright © 2011 by American Astronautical Society Publications Office, c
San Diego, California (Web Site: http://www.univelt.com), all rights reserved; reprinted with 
permission of the AAS). (See insert for color representation of this figure.) 
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plotted, and although similar results would be expected in the ephemeris problem, 
the variations in the ephemeris require that the northern and southern hemispheres be 
computed independently. Using this symmetry the values computed for the northern 
and southern hemispheres were reflected in Fig. 5-17 to save computation time. By 
comparing the plots, it can be seen that, as might be expected, the finer grid captures 
more trajectories at higher and lower elevation angles that originate at the Earth, 
however, the overall trends in the data remain the same for both grids. In each 
case the range of elevation angles from minimum to maximum is shifted higher near 
α = 90 deg and lower near α = 270 deg. Referring back to Fig. 5-3, the 90-deg 
direction corresponds to the leading edge of the Moon, and the 270-deg direction to 
the trailing edge. The coarser grid is used in the remainder of this analysis, so it 
should be remembered that details in the plots may change with a finer grid, but the 
overall trends can still be observed. 

An analysis of trajectories for a Jacobi constant of C = 2.8 confirmed our earlier 
result for trajectories encountering the Moon normal to the surface of the Moon 
that no Earth-return trajectories were found for this Jacobi constant or higher ones 
in the CRTBP. However, it is expected that Earth-origin trajectories with velocities 
consistent with higher Jacobi constants in the CRTBP will exist in the ephemeris 
problem because these trajectories may use the Sun’s perturbations to travel from 
the Earth to the Moon. Those higher Jacobi constants, especially those approaching 
the values near CL1 and CL2 are especially relevant for the computation of the 
invariant manifolds of libration point orbits, which is useful for the comparison later 
in this study. The elevation angle range results are shown in Fig. 5-18 for Jacobi 
constants ranging from C = 2.6 to 3.1 in the ephemeris problem. Note that, as in 
Anderson and Parker [192, 195], the Jacobi constant for the ephemeris plots is used 
as a shorthand for a particular set of velocities computed around the Moon in the 
CRTBP. These same velocities are attached to the Moon in the ephemeris problem 
referenced to the instantaneous orbital plane of the Moon’s orbit around the Earth. 
The symmetry used to simplify the computations in the CRTBP is no longer present 
for the ephemeris problem, and trajectories were directly computed for the entire 
plot. Once the trajectory is integrated backward from the Moon, the Jacobi constant 
of the trajectory will vary in both the Earth–Moon and Sun–Earth systems. 

Comparing the results from Fig. 5-17 for the Jacobi constant case of 2.6 in 
the CRTBP and the ephemeris problem results reveals that they are quite similar. 
The maximum and minimum elevation values still occur at approximately the same 
locations on the surface for each case. However, several new bands of high-elevation­
angle cases occur for the ephemeris case near α = 180 deg for the maximum elevation 
angle case and from approximately α = 290 deg to 360 deg. Additional bands also 
seem to exist for the minimum elevation angle case, especially for high and low 
latitudes. It is natural to expect from past work that these bands may represent 
trajectory options that exist as a result of the Sun’s influence, and it is interesting that 
these types of bands remain up through C = 2.8 (Figs. 5-18(a) through 5-18(d)). An 
interesting topic planned for future study is to determine how these characteristics 
vary with a finer grid. However, the comparison performed here is with the same 
grid in each case, indicating that these additional trajectories exist. 
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Figure 5-18 The minimum and maximum elevation angles of trajectories originating at 
the Earth for each point on the lunar surface. These trajectories are computed in the 
Earth–Moon ephemeris system including the Sun’s perturbations [193] (Copyright © 2011c
by American Astronautical Society Publications Office, San Diego, California (Web Site: 
http://www.univelt.com), all rights reserved; reprinted with permission of the AAS). (See 
insert for color representation of this figure.) 
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As the Jacobi constant increases even more as seen in Figs. 5-18(e) through 
5-18(h), the range of elevation angles for lunar landing at each point seems to increase 
even more. The location of the peaks also seems to shift, and for the maximum 
elevation angle plots, the peaks move to the right or eastward with increasing Jacobi 
constant. When a Jacobi constant of 3.1 is reached, the maximum elevation angle 
for points containing a trajectory originating at the Earth never drops below 57 deg, 
and the minimum elevation angle for the same points never goes over 15 deg. It 
is important to mention that although the points look dense across the surface in 
the plots, this is because of the size of the plot and the points used for plotting. 
There are individual points on the surface where no Earth-origin trajectory exists 
for this grid, but there are always nearby points where such a trajectory exists. For 
real-world mission design, a small ΔV can be used to target slightly different points, 
and the surface of the Moon is covered in practice for mission design purposes. It 
has also been found for particular points that if a much finer grid is used, typically 
some Earth-origin trajectories are found, and these points will be included in future 
studies. The points with no Earth-origin trajectories for this grid are not included in 
the elevation angle ranges listed in the plots. These results for higher Jacobi constants 
agree generally with the normal trajectory cases seen in our previous work [192, 195]. 
The additional range of geometries available for landing at these energies appears 
to be a result of the increasingly chaotic nature of the system as the Jacobi constant 
approaches the values at the L1 and L2 libration points. In other words, the trajectories 
are more able to take advantage of chaos to arrive at different elevation and azimuth 
angles. This also indicates that these Jacobi constants are of particular interest for 
comparison with the invariant manifolds of libration orbits. One interesting statistic 
to examine with a fixed grid is the maximum number of trajectories at a particular 
point that originate at the Earth. Although this number is generally quite low, there 
are some points where it peaks. The maximum number of trajectories at a particular 
point is listed in Table 5-2 for different Jacobi constants. The higher values are 
found for a Jacobi constant of 2.6 and 3.1. The C = 2.6 results include more direct 
trajectories that still exist in the CRTBP and do not require the Sun’s influence, and 
the C = 3.1 results include those trajectories that are heavily influenced by the Sun. 
The total number of Earth-origin trajectories follows the same trend. These numbers 

Table 5-2 Maximum number of Earth-origin trajectories at a single point on the lunar 
surface for a fixed grid including the corresponding location and the total number of 
Earth-origin trajectories for various values of Jacobi constant. 

Jacobi Constant Maximum at a Point Location (α, β) Total Number 

2.6 
2.8 
3.0 
3.1 

27 
16 
14 
36 

(193 deg, −36 deg) 
(213 deg, −18 deg) 
(225 deg, −11 deg) 

(192 deg, 7 deg) 

290,672 
114,684 
162,061 
298,621 
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are a function of the grid that is being used and can be refined by using a denser grid; 
however, they do align with the results from the trajectories computed normal to the 
lunar surface seen in our earlier work. 

Because the trajectories are computed in the ephemeris problem for the cases just 
discussed, the results will naturally vary with the initial epoch of the integration. 
A sample of the results was computed for four different epochs around the Moon’s 
orbit (with the time intervals each at approximately one-quarter of the Moon’s orbit) 
to determine how they might vary with the initial epoch. Representative results for 
a Jacobi constant of 2.8 are shown in Fig. 5-19. The salient features of the plots 
remain generally the same for each epoch in that the maximum values still occur near 
α = 90 deg and the minimum values occur near α = 270 deg. The January 7 and 21 
cases have more locations with higher elevation angles, especially near α = 270 deg, 
mixed in with lower elevation angle points. These two cases appear better positioned 
to take advantage of the Sun–Earth libration point dynamics, which could increase 

Figure 5-19 Comparison of maximum elevation angle results around the lunar orbit at 
seven day intervals for C = 2.8 [193] (Copyright © 2011 by American Astronautical Society c
Publications Office, San Diego, California (Web Site: http://www.univelt.com), all rights 
reserved; reprinted with permission of the AAS). (See insert for color representation of this 
figure.) 
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the range of elevation angles that may be obtained for approaching the Moon. Overall 
though, given this comparison, it is expected that the results from this study may be 
extrapolated to other epochs without drastically changing the outcome. 

Another important aspect of the approach for mission design is, of course, the 
azimuth angle of the trajectory. Plotting this information in a global sense is difficult, 
but a sample of the types of results obtained for each Jacobi constant may be visualized 
in Fig. 5-20 for a subset of the points. The azimuth angles are plotted for each point on 
a grid computed at 30-deg intervals in both α and β. For these plots, the fine grid was 
used at each point on the surface (which of course produced more trajectory options), 
and the trajectories were limited to those with C3 < 0.0 km2/s2 at the Earth. The 
orientation of the lines centered on each point indicates the azimuth angle, and the 
color is used to designate the corresponding elevation angle of each trajectory. Note 
that the ± 90-deg cases used azimuths that were rotated differently at each elevation 
as a result of the transformation used to compute them. So the specific results differ, 
but they generally show similar trends. It is interesting that there are definite regions 

Figure 5-20 Azimuth angles at points on a 30-deg grid on the lunar surface. The plotted lines 
at each gridpoint are oriented in the proper azimuth direction for each individual trajectory. 
The color corresponds to the elevation angle of that trajectory. The trajectories shown here 
are limited to those with C3 < 0.0 km2/s2 at the Earth [194] (first published in Ref. [194]; 
reproduced with kind permission from Springer Science+Business Media B.V.). (See insert 
for color representation of this figure.) 
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where the majority of Earth-origin trajectories appear to have similar elevation angles. 
In each case though, there are often just a few high or low trajectories that result in 
the extremes seen in the elevation angles plots. This fact is worth keeping in mind 
for mission design since a particular elevation angle may be available in combination 
with only a few azimuth angles. In general it appears that higher-elevation options 
are more available as the Jacobi constant increases, although there are typically at 
least a few low elevation angle options at each point. The combinations of available 
elevation and azimuth angles are evaluated in more detail for C = 3.1 in the following 
comparison with invariant manifolds, which helps explain the features seen in these 
plots a little more directly. In general, these plots can provide a broad overview of 
the available trajectory options. 

5.6	 TRANSFERS BETWEEN LUNAR LIBRATION ORBITS AND THE 
LUNAR SURFACE 

A general framework and understanding does exist in regard to the relationship 
between invariant manifolds of unstable orbits and the Moon. (Refer to Section 
2.6.10 for more background on invariant manifolds.) Much of the work to design 
low-energy trajectories from the Earth to the Moon has focused on the use of libration 
point orbits along with their stable and unstable manifolds [39, 45, 51, 203]. Koon, Lo, 
Marsden, and Ross examined this problem for the planar case [37], and Parker studied 
approach cases to lunar libration orbits using invariant manifolds in his dissertation 
[46]. Baoyin and McInnes analyzed some specific cases of transfers from libration 
points and planar Lyapunov orbits to the lunar surface [205]. In particular, they 
searched for the Jacobi constant that would provide complete coverage of the lunar 
surface by the invariant manifolds of the selected Lyapunov orbit. Von Kirchbach 
et al. [201] looked at the characteristics of the invariant manifolds of a Lyapunov 
orbit as they intersected the surface of Europa in the context of the escape problem. 
Alessi, G ́omez, and Masdemont [206] examined the locations of the Moon reachable 
by the stable manifolds of a range of halo orbits and square Lissajous orbits. They 
computed the intersections of these invariant manifolds with the surface of the Moon 
with the expectation that they could be used for astronauts to escape to a libration 
point orbit if necessary. Anderson [207] examined the approach problem within the 
context of the invariant manifolds of unstable resonant and Lyapunov orbits as the 
trajectory ties into the resonances of the Jupiter–Europa endgame problem following 
invariant manifolds [158, 208–210]. 

One focus of the transfer to the lunar surface using invariant manifolds is on 
the final approach from a desired libration orbit to the lunar surface. The problem 
may be most easily approached using the planar CRTBP and Lyapunov orbits. Two 
sample Lyapunov orbits found in Anderson and Parker [192, 195] are replotted here 
in Fig. 5-21. The Jacobi constants for these orbits were chosen so that the invariant 
manifolds of the Lyapunov orbits just graze the surface of the Moon. The Jacobi 
constants where the Lyapunov orbits cover the surface of the Moon were computed 
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Figure 5-21 Invariant manifolds of libration orbits computed for Jacobi constants where 
the manifolds are tangent to the surface of the Moon [193] (Copyright c 2011 by © 
American Astronautical Society Publications Office, San Diego, California (Web Site: 
http://www.univelt.com), all rights reserved; reprinted with permission of the AAS). (See 
insert for color representation of this figure.) 

by Baoyin and McInnes [205] as approximately C = 3.12185282430647 for an L1 

Lyapunov orbit and C = 3.09762627497867 for an L2 Lyapunov orbit. 
As a first step in the comparison, the lunar landing geometry of the invariant 

manifolds of various halo orbits is analyzed. Alessi, G ́omez, and Masdemont [206] 
examined similar trajectories for escaping the surface of the Moon to various halo 
orbits and summarized the areas on the Moon from which such escape trajectories 
are possible. We are concerned here with a combination of the landing location along 
with the landing geometry, therefore, a similar technique to that used in Fig. 5-20 is 
employed here. In subsequent figures, the intersections of the unstable manifolds of 
the L1 halo orbits are indicated by a red point, and the intersections for the L2 halo 
orbits are orange points. The azimuth angle and the elevation angle are indicated by 
the direction and the color of the line segments, respectively. 

The results for a halo orbit at C = 3.1 are shown in Fig. 5-22. It can be immediately 
seen that for this energy, the L1 halo orbit invariant manifolds generally fall on the 
leading edge of the Moon in its orbit, and the L2 halo orbit invariant manifolds fall 
on the trailing edge of the Moon. As expected, the intersections of the northern 
and southern halo orbits are reflected about β = 0. The elevation angles are some­
what lower for the L1 halo orbits than the L2 halo orbits. All together, the unstable 
manifolds provide relatively broad coverage of much of the lunar surface, although 
significant regions are still not intersected by the invariant manifolds. This may be 
remedied by examining the invariant manifolds at additional energies. The unstable 
manifold intersections with the Moon can change significantly with the Jacobi con­
stant as can be seen for the intersections plotted with a Jacobi constant of 3.08 in 
Fig. 5-23. The intersections for the L1 case have divided into two different regions, 
and the L2 intersection case has grown tighter together. It should be reiterated that 
the unstable manifold intersections can increase if larger time intervals are used for 
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Figure 5-22 Unstable manifold intersections of the specified orbits with the Moon for 
C = c3.1 [193] (Copyright © 2011 by American Astronautical Society Publications Office, 
San Diego, California (Web Site: http://www.univelt.com), all rights reserved; reprinted with 
permission of the AAS). (See insert for color representation of this figure.) 
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Figure 5-23 Unstable manifold intersections of the specified orbits with the Moon for 
C = 3.08 [193] (Copyright c© 2011 by American Astronautical Society Publications Office, 
San Diego, California (Web Site: http://www.univelt.com), all rights reserved; reprinted with 
permission of the AAS). (See insert for color representation of this figure.) 

the integration, and these plots focus on short-duration trajectories. The unstable 
manifold intersections also change even more as energy continues to change, but 
these energies appear to provide some of the most direct transfers. 

This analysis shows that the unstable manifolds of halo orbits can provide broad 
coverage for landing at various points on the Moon, although not with the nearly 
complete coverage found from the previous results. It is also interesting to explore 
the relationship between the unstable manifolds and these Earth-origin trajectories 
from the general analysis. A similar examination to the one made for the planar 
problem would be desired, but the nature of the three-dimensional problem makes 
this drastically more complex. One possible method for performing this comparison 
is to examine the origin of the trajectories coming from all azimuth and elevation 
angles at each point that the unstable manifolds intersect the surface of the Moon. In 
this case, only one unstable manifold intersection is plotted for each location on the 
Moon relative to the trajectories coming in from all angles, but it still allows this point 
to be placed in context of the dynamics indicated by the source of each trajectory. 
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5.7	 TRANSFERS BETWEEN LOW LUNAR ORBITS AND THE LUNAR 
SURFACE 

Information about transfers from low lunar orbits to the lunar surface is provided in 
Section 4.6 on page 258. 

5.8	 CONCLUSIONS REGARDING TRANSFERS TO THE LUNAR 
SURFACE 

A wide variety of trajectory options exist for transfer to the lunar surface. These range 
from more direct trajectories that may be primarily computed using just the influence 
of the Earth and Moon, to those at lower energies that require the influence of the Sun 
to compute. The invariant manifolds of libration orbits may be used for transfers to 
the lunar surface, and in combination with transfers to these libration orbits from the 
Earth, can be used as a complete transfer from the Earth. The trajectories computed 
for various Jacobi constants shown in the selected plots in this chapter may be used 
to obtain an initial idea of the types of trajectories available for different energy 
regimes. These energy regimes correspond to the constraints dictated by a particular 
mission, such as the available launch vehicle. Once the general type of trajectory that 
may be of interest is selected, more detailed initial guesses for particular trajectories 
may be obtained from the various plots showing trajectories coming in at various 
angles to the surface or from the invariant manifolds results. A mission designer may 
then modify and constrain these trajectories, while incorporating the mission design 
constraints of interest, to compute the final desired trajectory. 




