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Preface 

This book is a compilation of research results obtained primarily over the 
past two decades in the application of groups of oscillators coupled in various 
configurations to the excitation of phased-array antennas. Much of the work 
was carried out at the Jet Propulsion Laboratory of the California Institute of 
Technology under contract with the National Aeronautics and Space 
Administration (NASA) building on the early work at the University of 
Massachusetts, Cornell University, and the University of California, Santa 
Barbara. More recent work at several institutions in Spain and especially at the 
Centre Tecnologic de Telecomunicacions de Catalunya (CTTC), as well as a 
variety of institutions across Europe and Asia is also described. A motivation 
for much of this work was the promise of a method of providing beam agility at 
electronic speed that is simpler than the conventional method of using a phase 
shifter at each element or module and controlling these phase shifters in a 
coordinated manner. More generally, however, the effort has focused on the 
integration of transmitter, receiver, and antenna including the beam-steering 
function in a single planar package.  

 
The intended audience for the book comprises primarily designers of 

phased-array antennas and the associated electronics, but the book may also be 
of interest to those who may, through understanding the principles presented, 
envision other innovative applications of oscillator arrays such as distribution 
of timing signals and phase locking in general. In the same way, graduate 
students may find inspiration for research work leading to theses or 
dissertations based on extending the work described here. 

 
With regard to the references, as a general rule we have used peer reviewed 

archival journal articles and not conference presentations in the interest of ease 
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of access. We have, however, made a few exceptions in this regard in cases of 
very recent work that, as far as we know, has not yet appeared in the peer-
reviewed literature and in one case for the use of figures with proper attribution. 
We have endeavored to present a comprehensive treatment of the work in this 
field to date but recognize that we cannot be sure that we are aware of everyone 
in the world with interest in and contributions to this fascinating area of 
research. We, therefore, extend apologies to any who feel their work has been 
slighted in any way. Be assured it was unintentional.  

 
The book begins with a note concerning the early use of coupled oscillators 

in the field of mathematical biology wherein researchers used them as an 
artifice in representing the behavior of neurons in what is known as a central 
pattern generator in a manner amenable to mathematical analysis. The 
application to phased array antennas owes its origin primarily to Karl Stephan 
at the University of Massachusetts [1] [2] [3] and to Richard C. Compton at 
Cornell and his student, Robert A. York. [4] [5] [6] [7] However, the modern 
emphasis on the study of the dynamics of such arrays was inspired by the 
interest of James W. Mink of the U. S. Army Research Office [8] in spatial 
power combining at millimeter wave frequencies. Thus, the presentation 
continues with a discussion of the utility of oscillator arrays in phased array 
antennas and a detailed discussion of the mathematical analysis of the dynamic 
behavior of such arrays. The mathematics is at a level that should be easily 
accessible to graduate students in the physical sciences. Advanced calculus, 
linear algebra, complex variables, and Laplace transforms are the primary tools. 

 
The treatment is arranged in two passes. On the first pass in Part I, we 

formulate the analysis in the simplest possible manner while retaining the 
essence of the dynamic behavior, the so-called phase model. Most of the results 
are based on a linearization of the equations valid for small inter-oscillator 
phase differences. This permits introduction of the key features of array 
behavior with a minimum of complexity. We then describe a number of 
experimental demonstrations of this approach to phased array beam agility and 
validation of the approximate theoretical results in Part II. In Part III, we return 
for a second pass at the analysis, this time including a more sophisticated 
theoretical description of the oscillators permitting detailed study of the impact 
of their nonlinear properties. Much of the contemporary research in this area is 
focused on these properties and their potential utility in modern physical array 
implementations with many and varied applications. In Part III the presentation 
of experimental work is integrated with the theoretical as appropriate. 

 
In preparing material for this book, a number of sign errors, typographical 

errors, and, in rare cases, errors of substance were uncovered in the references. 
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Every effort has been made to correct these so that where the book differs from 
the literature; it is the book version that is correct. 

 
 
 

Ronald J. Pogorzelski and Apostolos Georgiadis 
Pasadena, California and Castelldefels - Barcelona, Spain 

June 2011 
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Part I: Theory and Analysis 

 

Chapter 1  
Introduction – Oscillators and 

Synchronization 

Oscillation is among the simplest of dynamic behaviors to describe 
mathematically and has thus been conveniently used in modeling a wide variety 
of physical phenomena ranging from mechanical vibration to quantum 
mechanical behavior and even neurological systems. Certainly not the least of 
these is the area of electronic circuits. Many years ago, van der Pol created his 
classical model of an oscillator including the nonlinear saturation effects that 
determine the amplitude of the steady-state oscillation. [9] Soon afterward, 
Adler provided a simple theory of what is now known as injection locking and 
coupled oscillators became a valuable design resource for the electronics 
engineer and the antenna designer. [10] Moreover, circuit theorists were able to 
apply these principles to long chains and closed rings of coupled oscillators to 
model biological behaviors such as intestinal and colorectal myoelectrical 
activity in humans. [11] [12]. 

1.1 Early Work in Mathematical Biology and Electronic 
Circuits 

Biologists, in trying to understand how neurons coordinate the movements of 
animals, have defined what is known as a “central pattern generator” or “CPG” 
for short. A CPG in this context is a group of neurons that produce rhythmic or 
periodic signals without sensory input. Biologists have found that CPGs are 
conveniently modeled mathematically if treated as a set of oscillators that are 
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coupled to each other, most often using nearest neighbor coupling but 
sometimes using more elaborate coupling schemes. Taking this viewpoint and 
performing the subsequent mathematical analysis has enabled biologists to 
fruitfully study the manner in which vertebrates (such as the lamprey) 
coordinate their muscles in locomotion (swimming) and how bipeds (such as 
you and I) do so in walking or running. The muscles are controlled by signals 
from a CPG. [13] [14] Electronics engineers have also found oscillators to be 
useful but more as a component of a man-made system rather than a model of a 
naturally occurring one as in biology. Legend has it that the first electronic 
oscillator was made by accident in trying to construct an amplifier and 
encountering unwanted feedback that produced oscillatory behavior. In any 
case, to deliberately make an oscillator, one starts with an amplifier and 
provides a feedback path that puts some of the amplifier output into its input 
whence it is amplified and again returned to the input, and so on. The feedback 
signal is arranged to arrive at the input in-phase with the pre-existing signal at 
that point so the feedback is regenerative. Thus, the amplitude of the circulating 
signal would continue to increase indefinitely. However, the amplification or 
gain of practical amplifiers decreases as the signal amplitude increases. Thus, 
an equilibrium is quickly reached where the amplitude is just right so the 
amplifier gain balances the losses in the loop. Then the oscillation amplitude 
stops increasing and becomes constant. This equilibrium occurs at a particular 
frequency of oscillation depending on the frequency response of the amplifier 
and the phase characteristics of the feedback path. Thus, the amplitude and 
frequency become stable and constant. These can be controlled by changing the 
circuit component values. 
 
Before long it was realized that an oscillator could also be controlled by 
injecting a signal from outside the circuit into the feedback loop. This, in a 
sense, adds energy to the circuit at the injection frequency making it easier for 
the circuit to sustain oscillation at that frequency. Therefore, if the injected 
signal is strong enough, the oscillator will oscillate, not at its natural or free 
running frequency but, rather, at the injection signal frequency and the 
oscillator is said to be “injection locked.” If the injection signal comes from 
another oscillator similar to the one being injected and the coupling is 
bidirectional, the pair is said to be “mutually injection locked.” 
 
If many oscillators are mutually injection locked by providing signal paths 
between them, mutual coupling paths, they can be made to oscillate as a 
synchronized ensemble. The ensemble properties of such a system are both 
interesting and useful, and it is this aspect that so intrigued the mathematical 
biologists. However, some years ago, it was noted by antenna design engineers 
that these ensemble properties may be exploited in providing driving signals for 
phased-array antennas. This is because, the phases of the oscillators in a 
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coupled group are coordinated and form useful distributions across the 
oscillator array. These phase distributions will be discussed in great detail in the 
remainder of this book, but, for now, we only note that in, for example, using a 
linear array of mutually injection locked oscillators coupled to nearest 
neighbors, one may create linear phase progressions across the array by merely 
changing the free-running frequencies of the end oscillators of the array anti-
symmetrically; that is, one up in frequency and the other down by the same 
amount. Such a linear distribution of signal phases, when used to excite the 
elements of a linear array of radiating antenna elements, produces a radiated 
beam whose direction depends on the phase slope. This slope is determined by 
the amount by which the free-running frequencies of the end oscillators are 
changed. Electronic oscillators can be designed so that their free-running 
frequencies are determined by the bias applied to a varactor in the circuit. These 
are called voltage-controlled oscillators or “VCOs.” So we have now described 
an antenna wherein the beam direction is controlled by a DC bias voltage, a 
very convenient and useful arrangement that is, in large part, the subject of this 
book. 

1.2 van der Pol’s Model 

Although having published some related earlier results, in the fall of 1934, 
Balthasar van der Pol, of the Natuurkuedig Laboratorium der N. V. Philips’ 
Gloeilampenfabricken in Eindhoven published, in the Proceedings of the 
Institute of Radio Engineers, what has become a classic paper on his analyses 
of the nonlinear behavior of triode vacuum-tube based electronic oscillators [9]. 
The beauty of his work lies in the fact that he included in his model only the 
degree of complexity necessary to produce the important phenomena observed. 
Thus, his mathematical description remained reasonably tractable permitting 
detailed analytical, and more recently computational, study of all the salient 
behaviors of such circuits.  
 
An important aspect that was missing from the earlier, linear treatments was 
that of gain saturation. Recall that it is this saturation of the gain that produces a 
stable steady-state amplitude of oscillation. van der Pol included this as a 
negative damping of his oscillator which depends quadratically on the 
oscillation amplitude and becomes positive for sufficiently large amplitude. He 
also allowed for a driving signal with a frequency different from the resonant 
frequency of the oscillator. The inclusion of these two features in his model will 
enable us to use it to describe in this book both the steady-state and the 
transient behavior of coupled oscillator arrays. 
 
Consider the oscillator of Fig. 1-1 and let YL be a resonant parallel combination 
of an inductor, a capacitor, and a resistor. Application of Kirchhoff’s current 
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law to the node at the top of YL , using phasors with tje  time dependence, 
yields, 

 21
( ) 0D

j
j I C V

L R

      (1.2-1) 

Now, van der Pol recognized that the active device current, id, would be a 
nonlinear function of the node voltage and modeled that nonlinear function in 
the time domain as, 

  3
1 3( ) ( ) ( )Di t g v t g v t   (1.2-2) 

using the constants ε, g1, and g3 for consistency with Section 7.5 where the van 
der Pol model is revisited in the context of circuit parameter extraction. Thus 
we have that, 

 2
1 3( ) ( ) 3 ( ) ( )D

d d d
i t g v t g v t v t

dt dt dt
     (1.2-3) 

or in phasor notation, 

  2
1 33Dj I j g g V V     (1.2-4) 

capital letters denoting phasors. Substituting this into Eq. (1.2-1) yields, 

  2 2
1 3

1
3 0

j
j g g V V C V

L R

        
 

(1.2-5) 

which may be rewritten in the form, 

  2 2
1 3

1
3 0

j
j g g V C V j YV

L R

           
 (1.2-6) 

  
 

 

Fig. 1-1. An oscillator as a negative admittance. 

 

ACTIVE 
DEVICE
Re(YD)<0

YL Y=YD+YL=0
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where, 

  2
1 3

1 1
3Y g g V j C

j L R
 


      (1.2-7) 

  
Now, expanding this admittance in a Taylor series about the resonant 
frequency, 

 0
1

LC
   (1.2-8) 

results in, 

 

 

   

2
1 3

2
1 3 0

0

1 1
3

2
3

Y g g V j C
j L R

jQ
g g V

R

 


  


     

    

 (1.2-9) 

  
where, 

 0Q RC  (1.2-10) 

  
is the traditional quality factor of the oscillator. Use of this expression for the 
admittance is how we will introduce the van der Pol model into our analysis of 
an injection locked oscillator below.  

1.3 Injection Locking (Adler’s Formalism) and Its 
Spectra (Locked and Unlocked) 

To analytically describe the injection locking phenomenon, an oscillator can be 
viewed as an admittance with a negative real part connected to a resonant load 
admittance with a positive real part as shown in Fig. 1-1. Using this 
representation we proceed now to develop a differential equation for the 
dynamic behavior of the phase of the oscillation.  
 
The voltage across the load admittance can be written in time varying phasor 
form as, 
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 ( )( ) j tV A t e   (1.3-1) 

 

where, 

 0( ) ( )t t t     (1.3-2) 

Note that V may also be written, 

 [ ( ) ln ( )]j t j A tV e    (1.3-3) 

 
Kurokawa [15] suggested that the time derivative of this phasor be written in 
the form, 

 0 ln
dV d d

j j A V
dt dt dt

     
 (1.3-4) 

and that the quantity in brackets be identified as the “instantaneous frequency,” 

inst . That is, 

 inst
dV

j V
dt

  (1.3-5) 

where, 

 0 lninst
d d

j A
dt dt

      
 (1.3-6) 

The negative admittance of the device, YD, is a function of both the frequency 
and the amplitude of the oscillating voltage across it. The oscillator operates at 
the frequency and amplitude that makes this negative admittance equal to the 
negative of the load admittance, YL, so that the total admittance is zero. 
Following Chang, Shapiro, and York [16], we may expand the admittance in a 
Taylor series about this operating point in the form, 

 
0

0 0 0( , ) ( , ) ( )inst L D inst
Y

Y A Y Y A


   



    


  (1.3-7) 

where we have neglected the amplitude dependence of YD. Multiplying by V we 
obtain Kirchhoff’s current law at the top node of Fig. 1-1.  
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0

0 0 0

( , )

( , ) ( ) 0

inst

L D inst

Y A V

Y
Y V Y A V V





  





    


  (1.3-8) 

In steady state, the oscillator will oscillate with frequency ω0 and amplitude A0 
making the derivative term zero. Then the load current cancels the oscillator 
current for a total of zero current exiting the node. However, if a signal is 
injected at the node from an external source, this equilibrium is changed to, 

 

0

0 0 0

( , )

( , ) ( ) 0

inj inst

inj L D inst

I Y A V

Y
I Y V Y A V V





  


 


     


  (1.3-9) 

Inserting Eq. (1.3-6) for the instantaneous frequency results in, 

 
0

0 0( , ) ln 0inj D L
d d Y

I Y A V Y V j A V
dt dt 



        

(1.3-10) 

or, 

 

0 0

0 0( , )
ln 0injIY Ad d

j A
Y Ydt dt

V
 



 

        
 

 
(1.3-11) 

We will now substitute the negative admittance appropriate to the van der Pol 
oscillator model and analyze the oscillator assuming that a current, Iinj, is 
injected. 
 
Recall that near ω0 van der Pol’s model gives, 

    2
1 3 0

0

2
3

osc

jQ
Y g g V

R
  


     (1.3-12) 

so that, 
 

 
0 0

2

osc

Y jQ

R 





 (1.3-13) 

Taking the real part of (1.3-11) using (1.3-13) yields, 
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0

Re 0
2

inj

osc

Id
jQdt V
R





 
 
  
 
 
 

 (1.3-14) 

Letting inj osc injV R I , 

 0 Im 0
2

injVd

dt Q V

  
  

 
 (1.3-15) 

Using phasor notation for the injection signal, injj
inj injV A e

  and using 

(1.3-2), 

 
   0 0

0 0Im sin
2 2

injjinj inj
inj

A Ad
e

dt Q A Q A

      
     (1.3-16) 

Defining, 0

2
inj

lock

A

Q A

  , the so-called “locking range,” we have, 

  0 sinlock inj
d

dt

         (1.3-17) 

known as Adler’s equation [10]. Taking the imaginary part of Eq. (1.3-11) 
leads in the same manner to a differential equation for the amplitude dynamics 
but, treatment of that aspect will be postponed until Chapter 7 dealing with 
nonlinear analysis of oscillator arrays. For clarity and simplicity in the initial 
description of the array properties, the amplitude variation will be assumed 
negligible. If you are particularly interested, however, you may wish to consult 
Nogi, et al. [17], Meadows, et al. [18] , and Seetharam, et al. [19] which discuss 
some aspects of amplitude behavior. 
 
Although the differential equation given by Eq. (1.3-17) is first order, it is 
nonlinear. Remarkably, however, it can nevertheless be solved analytically. 
Once the solution is obtained, it can be used to describe the dynamic behavior 
of the locking process and, very interestingly, the spectrum of the oscillations 
under both locked and unlocked conditions. We begin by solving Eq. (1.3-17) 
and then proceed to exhibit the spectral properties of the solution. 
 
First, we define, 
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    0inj inj inj t             (1.3-18) 

so that Eq. (1.3-17) may be written, 

 sin inj
lock

lock

d

dt

  

 

    
 (1.3-19) 

where 0inj inj     . Now defining 
inj

lock
K








 and lockt  , we 

have the deceptively simple looking differential equation, 

  sin
d

K
d

 

    (1.3-20) 

Integrating from an initial time, 0 , to an arbitrary subsequent time, ,  

  0 0

( )

( ) sin

d
d

K

  

  

 



   (1.3-21) 

we arrive at, 

  0

( )
0 ( ) sin

d

K

 

 

 


 
  (1.3-22) 

and it remains to carry out the integration. Using the substitution, 

 tan
2

u
   
 

 (1.3-23) 

the integral may be cast in the form, 

 0 2

1 2
2

1

u

u

du
uK u

K
 

  (1.3-24) 

where, 

 0
0

( )
tan

2
u

    
 

 (1.3-25) 
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By factoring the denominator of the integrand and expanding in partial 
fractions, the integral, Eq. (1.3-24), can be expressed in terms of the natural 
logarithm function in the form, 

 
0

0

2

22 1

1 2 1
ln

2 11

u
u

u
u

u udu
uK u uKu

K

 
    

  (1.3-26) 

where u1 and u2 are the roots of the quadratic in the denominator of the 
integrand. That is, Eq. (1.3-22) becomes, 

 

 

 
 

0

0

( )

( )

( )
2

02 2

( )

sin

tan 1 1
1 2

ln
1 tan 1 1

2

d

K

K K

K K K

 

 

 

 






 





           
         



(1.3-27) 

Recall that the natural logarithm function is related to the inverse hyperbolic 
tangent function by, 

  11
ln 2 tanh

1

x
x

x
    

 (1.3-28) 

if 10 2  x . Upon using Eq. (1.3-28) in Eq. (1.3-27) we obtain, 

 

0

( )

2
1

0 2

( )

2 1
tanh

1 tan 1
2

K

K K

 

 

 




 
   

       

 (1.3-29) 

provided 2 1K  . This condition is equivalent to, 

 inj lock     (1.3-30) 

which means that the injection signal frequency is within one locking range of 
the free-running frequency of the oscillator corresponding to the so-called 
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“locked” condition. If 2 1K  , the oscillator is said to be “unlocked” and the 
solution given by Eq. (1.3-27) becomes, 

 

0

( )

2
1

0 2

( )

2 1
tan

1 tan 1
2

K

K K

 

 

 




 
   

       

 (1.3-31) 

Now, rewriting Eqs. (1.3-29) and (1.3-31) explicitly evaluated at the limits and 
rearranging a bit results in, 

 

 2
0

2 2
1 1

0

1
1

2

1 1
tanh tanh

( ) ( )
tan 1 tan 1

2 2

K

K K

K K

 

   
 

  

  
     

                  

(1.3-32) 

and,  

 

 2
0

2 2
1 1

0

1
1

2

1 1
tan tan

( ) ( )
tan 1 tan 1

2 2

K

K K

K K

 

   
 

   

  
      

                  

(1.3-33) 

We now make use of the following pair of identities. 

 1 1 1 0
0

0

tanh ( ) tanh ( ) tanh
1

x x
x x

xx
    

    
 (1.3-34) 

 
1 1 1 0

0
0

tan ( ) tan ( ) tan
1

x x
x x

xx
    

    
 (1.3-35) 

Applying these to Eqs. (1.3-32) and (1.3-33), respectively, we obtain, 
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 2
0

0

0 0

1
tanh 1

2

( )( )
tan tan

2 2

( ) ( )( ) ( )
tan tan tan tan

2 2 2 2

K

K K

 

  

      

     
            

                    

(1.3-36) 

 

 

 2
0

0

0 0

1
tan 1

2

( )( )
tan tan

2 2

( ) ( )( ) ( )
tan tan tan tan

2 2 2 2

K

K K

 

  

      

     
            

                    

(1.3-37) 

These equations may now be solved for ( )  . The results are, 

 
 

 

20 0
0

1

2 0
0

( )

( ) ( )1
tan tanh 1 tan

2 2 2
2tan

( )1
1 tanh 1 1 tan

2 2

K K

K K

 

    

  





                     
 

                 

(1.3-38) 

 

 
 

 

20 0
0

1

2 0
0

( )

( ) ( )1
tan tan 1 tan

2 2 2
2tan

( )1
1 tan 1 1 tan

2 2

K K

K K

 

    

  





                     
 

                 

 (1.3-39) 

These represent the exact analytic solution of Eq. (1.3-20) giving the dynamic 
behavior of the phase of an externally injection locked oscillator for all time 

subsequent to 0 . While they are actually the same solution, Eq. (1.3-38) is 



Introduction 13 

 
 

conveniently applied when 2 1K  , and Eq. (1.3-39) is conveniently applied 

when 2 1K  . When 12 K , Eqs. (1.3-38) and (1.3-39) are identical. 
 
We will now proceed to study the spectral properties of this solution. It will be 
expedient to return to the logarithmic representation in Eq. (1.3-27). For the 
locked condition we have,  

 

 
 

 
 

 

22 0

2 20

2
0

( )( )
tan 1 1tan 1 1

22
ln

( ) ( )
tan 1 1 tan 1 1

2 2

1

K KK K

K K K K

K

  

   

 

                         
                       

 

 
(1.3-40) 

 

Exponentiating both sides yields, 

 

 
 

 
 

  2
0

22 0

2 20

1

( )( )
tan 1 1tan 1 1

22
( ) ( )

tan 1 1 tan 1 1
2 2

K

K KK K

K K K K

e  

  

   

  

                         
                       

 
(1.3-41) 

 

For simplicity of notation, the second factor in the curly brackets, being a 
constant that depends on the initial conditions, will be defined to be 1/C0. Thus, 

 
 
 

  2
0

2

1
0

2

( )
tan 1 1

2
( )

tan 1 1
2

K
K K

C e
K K

 

 
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(1.3-42) 

Now solving for ( )  , 
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(1.3-43) 

Recall that, 
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 (1.3-44) 

So that Eq. (1.3-43) may be written in the form, 
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(1.3-45) 

Again exponentiating both sides, 
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(1.3-46) 

This can be rearranged as, 
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(1.3-47) 

Equation (1.3-47) gives the dynamic behavior of the oscillator voltage as the 
phase evolves from )( 0 to )( . This behavior is exponential, not 

oscillatory, and the steady-state value of the phase at infinite time is 

)(sin 1 K . Returning to Eq. (1.3-1) and using Eq. (1.3-18) we find that the 
oscillator voltage in steady state is, 

1( ) ( sin ( )( )( ) inj inj injj j K tj t
ssV A t e Ae Ae

          
(1.3-48) 
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Thus, the spectrum is a single line at frequency inj  and there is a steady-state 

phase difference between the oscillator signal and the injection signal of 

)(sin 1 K . 
 
Suppose we allow K to become larger than unity in magnitude. In such a case, 
the injection signal frequency lies outside the locking range around the free 
running frequency and the oscillator will be in the “unlocked” condition 
described by Eq. (1.3-39). Now, however, the spectral properties of the solution 
become more interesting. We follow an approach suggested by Armand. [20] In 
this situation, Eq. (1.3-47) becomes, 
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 (1.3-49) 

or, 
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 (1.3-50) 

where, 
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  2
01T K      (1.3-52) 

and, 
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 (1.3-53) 

Expanding Eq. (1.3-49) in a geometric series yields, 
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Now, the magnitude of the common ratio of the series is, 
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(1.3-55) 

This is less than unity for positive K and the series converges for all T. If, on 
the other hand, K is negative, we instead expand the reciprocal of Eq. (1.3-49), 
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 (1.3-56) 

and the magnitude of the common ratio is, 
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(1.3-57) 

which is less than unity for K negative. Expressions (1.3-54) and (1.3-56) thus 
provide convergent series representations of the solution for the phase 
dynamics under unlocked conditions and we note that they are actually Fourier 
series. As such, the coefficients are the amplitudes of the harmonics of a line 
spectrum representing the oscillator signal. This spectrum has a well-known 
classic form that is easily observed experimentally using a spectrum analyzer 
and is depicted schematically in Fig. 1-2. 
 
 
 

 
Fig. 1-2. Spectra of an unlocked injected oscillator. 
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(This K is Kurokawa’s [15], which is the negative of Adler’s [10] and 
Armand’s [20].) 
 
These mirror-image spectra have a number of interesting features. The most 
obvious feature is that they are one-sided, which may seem puzzling, but is a 
natural result of the analysis. Secondly, the amplitudes decrease linearly on a 
logarithmic scale as one progresses away from the injection frequency. This is a 
consequence of the geometric nature of the series representing the solution. 
Finally, the spacing between the spectral lines decreases with the proximity of 
the injection frequency to the oscillator free running frequency and, when the 
injection frequency differs from the free running frequency by exactly one 
locking range, the spacing goes to zero and the oscillator locks, reducing the 
spectrum to a single line at ωinj. 
 
Before we can legitimately call this analysis of injection locking complete, 
there remains one important issue to consider. The oscillator model shown in 
Fig. 1-1 exhibits a parallel resonance. It is, of course, possible to design an 
oscillator that exhibits a series resonance, and the question then becomes: How 
is this difference manifest in the formalism presented? This question has been 
studied in detail by Chang, Shapiro, and York [16]. They pointed out that the 
Taylor series for the admittance in the parallel resonant oscillator, Eq.(1.2-9), is 
identical in form to the Taylor expansion of the impedance in the series 
resonant case. We can see this by considering the series resonant oscillator 
shown in Fig. 1-3. In this case the resonant load, ZL, on the active device is a 
series combination of an inductor, a capacitor, and a resistor.  
 
The output signal here is the current through this resonant series combination 
rather than the node voltage used in the parallel case. Application of 
Kirchhoff’s voltage law around the oscillator loop yields, 
 
 
 
 

 
Fig. 1-3. An oscillator as a negative impedance. 

ACTIVE 
DEVICE
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ZL Z=ZD+ZL=0
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Using a van der Pol type nonlinearity, the analog of Eq. (1.2-2) is, 

  3
1 3( ) ( ) ( )Dv t ri t r i t   (1.3-59) 

and the analog of Eq. (1.2-7) is, 
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Expanding Y in a Taylor series about the resonant frequency, we arrive at 
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 (1.3-61) 

Comparing with Eq. (1.2-9) we see that the salient difference is the change in 
sign of the linear term in frequency. This in turn induces a change in the 
algebraic sign of the sine term in Eq. (1.3-17) resulting in, 

  0 sinlock inj
d

dt

         (1.3-62) 

and the remainder of the analysis proceeds as for the parallel resonant case 
above. We will further describe the implications of this when we consider more 
than one oscillator. 

1.4 Mutual Injection Locking of Two Oscillators 

Consider now two parallel resonant oscillators, identical except for free-running 
frequency, coupled together so that each injects a signal into the other. Such a 
system was considered by Stephan and Young [3] in which the coupling was 
due to free-space mutual coupling between radiating elements excited by the 
oscillators. We may describe this situation using Adler’s Eq. (1.3-17) for each 
oscillator. That is, 

  1
01 2 1sinlock

d

dt

         (1.4-1) 
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  2
02 1 2sinlock

d

dt

         (1.4-2) 

where the subscripts identify the oscillators. Subtracting these equations yields, 
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We now define, 
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 2 lockt    (1.4-6) 

so that Eq. (1.4-3) becomes, 

  sin
d

K
d

 


  
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

 (1.4-7) 

which is identical with Eq. (1.3-20) except for the tildes and all of the preceding 
results apply. Note that the locking range is replaced by twice the locking range 
in this equation. This happens because the injecting oscillator frequency is 
permitted to change under the influence of the oscillator being injected. The 
result is that the two oscillator frequencies can differ by nearly twice the 
locking range and still maintain lock. This is true because it will turn out that 
the steady-state oscillation frequency of the pair is the average of the two free-
running frequencies, and we can show this as follows. 
 

Recall that in steady state, if 1
~ K  so the oscillators are locked, 

1sin K  
, a constant, so its time derivative is zero. Further, from Eq. (1.4-4) we have, 

 1 2      (1.4-8) 

so that, in steady state, 
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Therefore, 
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or, 
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Similarly, 
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 (1.4-12) 

Thus, we conclude that the steady-state frequency of the two oscillators, when 
mutually locked, that is, the “ensemble frequency,” is the average of their free-
running frequencies. 
 
It now becomes clear how it is that the locking range for the two oscillators is 
twice that for one. One may visualize each oscillator differing from the 
ensemble frequency of the pair by one locking range so that the total difference 
between the free-running frequencies of the two oscillators is, not one, but two 
locking ranges. The term “ensemble frequency” has no relevance when one of 
the oscillators injection locks the other and is not influenced by the injected 
oscillator as discussed previously. In that case, as was demonstrated, the steady-
state frequency is the injection frequency. 
 
Now suppose that the coupling between the oscillators is accomplished via a 
transmission line so that there is a phase delay associated with the coupled 
signal. This coupling phase changes the phase relationship between the coupled 
signal and the oscillator that produced it and thus modifies the behavior of the 
oscillator pair. We can account for this in our formulation by inserting the 
coupling phase shift through the transmission line, 12 , into Eqs. (1.4-1) and 
(1.4-2) resulting in, 

  1
01 2 1 12sinlock

d

dt

           (1.4-13) 
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  2
02 1 2 12sinlock

d

dt

           (1.4-14) 

where we have assumed that the transmission line is reciprocal so that the 
coupling phase is the same in both directions. Using trigonometric identities, 
Eqs. (1.4-13) and (1.4-14) may be re-written in the form, 
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 (1.4-16) 

Again by subtraction we obtain, 
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    


      (1.4-17) 

Comparing with Eq. (1.4-3) we see that the locking range has been modified by 
the cosine of the coupling phase. We define this effective locking range to be, 

 12coseff lock     (1.4-18) 

and using this in place of the unmodified locking range, the preceding theory 
may be applied to the case having non-zero coupling phase. One obvious 
consequence of this is that, if the coupling phase is 90 degrees (deg) or an odd 
multiple thereof, the effective locking range becomes zero and the two 
oscillators cannot be made to lock. 
 
If, instead of subtracting Eqs. (1.3-15) and (1.3-16), we add them, we obtain 

 
       1 2

01 02 12 1 22 sin coslock
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dt

 
    


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and we note that the ensemble frequency Eq. (1.4-12) is replaced by, 
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12 1 2sin cos( )
2ens lock

 
   


      (1.4-20) 

which varies sinusoidally with coupling phase. This variation of ensemble 
frequency with coupling phase has been studied in somewhat more detail by 



Introduction 23 

 
 

Sancheti and Fusco in the context of an active radiator coupling with its image 
in a reflecting object [21] [22]. 
 
Before moving on to study arrays of oscillators we take a quick look at the 
stability of the behavior of two coupled oscillators. Much more detail on this 
subject may be found in Chapter 7. The stability of the solution can be assessed 
by assuming that the oscillators are evolving according to a solution of 
Eq. (1.4-17) and perturbing the phase difference away from that solution by a 
small amount,  . This results in the following differential equation for the 
time dependence of the perturbation. 

  12 1 22 cos coslock
d

dt

            (1.4-21) 

This equation has the solution, 

  12 1 22 cos cos
( ) lock t
t e

          (1.4-22) 

The solution for the oscillator phase difference is stable against the 
perturbation, δ, if the exponent is negative. That is, 

  12 1 2cos cos 0     (1.4-23) 

This means that, if the magnitude of the coupling phase is less than 90 deg, the 
oscillators will lock such that their phases differ by less than 90 deg; while if 
the magnitude of the coupling phase is greater than 90 deg, the oscillators will 
lock such that their phases differ by more than 90 deg; that is, they will tend to 
oscillate out of phase. This behavior was predicted and observed by Stephan 
and Young [3] and formulated and studied in more detail by Humphrey and 
Fusco [23] [24] using an earlier theoretical construct they formulated for linear 
chains of coupled oscillators [25].  
 
Conversely, for series resonant oscillators, the stability condition is, 

  12 1 2cos cos 0     (1.4-24) 

and the behavior of the oscillators will be opposite that described above. These 
properties have been exploited by Lee and Dalman in switching pairs of 
coupled oscillators from symmetric to antisymmetric phase by changing the 
coupling phase [26]. All of these effects have been observed experimentally as 
reported by Chang, Shapiro, and York [16]. Thus, the optimum coupling phase 
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for parallel resonant oscillators is an even multiple of 180 deg, while that for 
series resonant oscillators is an odd multiple of 180 deg. 
 
Very recently, it was pointed out that a given oscillator can present either series 
or parallel resonance depending upon where in the oscillator circuit the 
coupling is implemented [27].  

1.5 Conclusion 

In this Chapter we have developed a theory of oscillator behavior that admits 
the possibility of coupling the oscillators together such that they can mutually 
injection lock and thus oscillate as a coherent ensemble. This behavior is 
central to the remainder of the book as it forms the basis of the applications to 
be discussed. In Chapter 2 this theoretical framework will be applied in 
describing the behavior of arrays containing many oscillators coupled together 
in linear and planar configurations. The coupling for the most part is with 
nearest neighbors only. More elaborate coupling schemes have been studied in 
mathematical biology but remain as a potentially fruitful but largely untapped 
resource in the arena of phased-array antennas.  
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Chapter 2  

Coupled Oscillator Arrays – Basic 
Analytical Description and Operating 

Principles 

In this chaper we will show how to use the theory developed in Chapter 1 to 
mathematically describe a linear array of oscillators coupled to nearest 
neighbors. It was Karl Stephan who first showed that such arrays can be useful 
in providing excitation signals for a linear array of radiating elements in that if 
locking signals are injected into the end oscillators of the array, variation of the 
relative phase of the locking signals can be used to control the distribution of 
the phase of the signals across the array [1]. Later, Liao and York pointed out 
that by merely tuning the end oscillators of the array the phase distribution can 
be controlled without any external injection signals [28]. We will show that, 
while the equations and associated boundary conditions at the array ends can 
describe the nonlinear behavior of the array through numerical solution, if the 
inter-oscillator phase differences remain small, the equations may be linearized. 
The linearized version may be solved analytically for the dynamic behavior of 
the phase, and from this one may obtain the dynamic behavior of the beam 
radiated by the elements of this linear phased array antenna. 
 
An important consideration in the analysis is the manner in which the 
oscillators are coupled. The coupling can be represented as a “coupling 
network” connected to the array of oscillators, and this network can be 
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However, from a practical point of view, it is convenient to have a center point 
at which to inject an external signal from a stable oscillator for the purpose of 
stabilizing the array oscillation. We therefore select the number to be odd. Note 
that, because the end oscillators are coupled to only one other oscillator, they 
are described by differential equations with only one sine term on the right side; 
that is, 

  0 1 , 1sinN
N lock N N N N

d

dt


   

           (2.1-2) 

  0 1 , 1sinN
N lock N N N N

d

dt

            (2.1-3) 

Note further that, because the maximum magnitude of the sine function is unity, 
the end oscillators of the array can be detuned from their nearest neighbors by a 
maximum of one locking range without losing lock whereas the center 
oscillator can be detuned up to two locking ranges. The maximum permitted 
detuning of the other oscillators will lie between one and two locking ranges. 
(See Section 3.1, Eq. (3.1-35).)  
 
This system of simultaneous nonlinear first-order differential equations, 
(2.1-1)—(2.1-3), can be solved numerically beginning with an initial phase 
distribution and oscillator tuning thus providing the phase distribution at all 
subsequent times. However, numerical solution does not provide an intuitive 
grasp of the behavior and how the parameters affect it. This intuitive 
understanding may be more easily gleaned from an approximate analytic 
solution. Then, later, if a more exact result is needed, the numerical approach 
can be applied. 
 
Before proceeding to solve Eqs. (2.1-1) to (2.1-3) by linearization, we remark 
that the oscillator tuning required to produce a desired steady-state phase 
distribution may be easily obtained from these equations. That is, in steady state 
the time derivatives are zero, and from (2.1-1) to (2.1-3) the oscillator tuning is 
merely, 

 
 

 
0 1 , 1

1 , 1

sin

sin

i ref lock i i i i

lock i i i i

    

  

 

 

     

    
 (2.1-4) 

  0, 1 , 1sinN ref lock N N N N               (2.1-5) 



28 Chapter 2 

 

  0 1 , 1sinN ref lock N N N N          (2.1-6) 

where we have defined a new phase variable via, 

 i i ref t     (2.1-7) 

and ref  is taken to be the ensemble frequency of the array. 

 
Let us assume for the moment that the coupling phases are a multiple of π, and 
sum (2.1-4)–(2.1-6) over the 2N+1 array elements. We find that under this 
assumption, 
 

    

   

0

1

1 1
1

1 1

sin sin

sin sin 0

N

i ref
i N

N

lock i i i i
i N

lock N N lock N N

N 

    

     




 
 

   

 

     

      




(2.1-8)

so that, 

 0
1 N

ref i
i NN

 


   (2.1-9) 

the average of the free-running frequencies. Thus, we have shown that for 
coupling phase equal to a multiple of π, the ensemble frequency of the array is 
the average of the free running frequencies of the oscillators. 
 
As an example, in an array with zero coupling phase, a linear phase distribution 
with an inter-oscillator phase difference of   requires, 

 0 0i ref    (2.1-10) 

  0, sinN ref lock       (2.1-11) 

  0 sinN ref lock      (2.1-12) 
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Thus, beginning with all the oscillators tuned to the reference frequency, tuning 
the leftmost oscillator down in frequency by half of the locking range and 
tuning the rightmost oscillator up in frequency by half of the locking range will 
produce a phase distribution across the array with a positive slope of π/6 
radians between oscillators, π/6 being the arcsine of 1/2. If the oscillator 
outputs are used to excite radiating elements spaced a half wavelength 
(π radians) apart, the radiated beam will be directed 9.6 deg from normal to the 
array, that is, the arcsine of 1/6. It is this method of beam-steering that was first 
described by Liao and York. [28] Of course, much more general phase 
distributions are possible and the required oscillator tunings to produce them 
are given by Eqs. (2.1-4)–(2.1-6). 

2.2 Discrete Model Solution (Linearization and Laplace 
Transformation) 

In order to render the analytic solution tractable, we assume that the arguments 
of the sine functions in Eqs. (2.1-1)–(2.1-2) are close to an integral multiple of 
2π. Specifically, we will assume that the coupling phase is zero and that the 
inter-oscillator phase differences are small so that the sine functions can be 
approximated by their arguments. In this approximation, Eq. (2.1-1) becomes, 

  0 1 12i
i lock i i i

d

dt

            (2.2-1) 

Similarly, Eqs. (2.1-2) and (2.1-3) become, 

  0, 1
N

N lock N N
d

dt

    
        (2.2-2) 

  0 1
N

N lock N N
d

dt

         (2.2-3) 

Note that these approximate linearized equations would seem to imply that the 
end oscillators of the array can be detuned by π/2  locking ranges and the center 

one can be detuned by π locking ranges and still remain locked because the 
phase differences between oscillators remain less than or equal to π/2. 
However, from the full nonlinear theory of Section 2.1, we know that this is 
actually not true. These linearized equations only apply when the phase 
differences are small so that the sine functions may be accurately replaced by 
their arguments and π/2 is certainly not a small value in this sense. 
 
In terms of the new phase, Eq. (2.1-7), we find that Eqs. (2.2-1)–(2.2-3) 
become, 
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  0 1 12i
i ref lock i i i

d

dt

              (2.2-4) 

  0, 1
N

N ref lock N N
d

dt

     
         (2.2-5) 

  0 1
N

N ref lock N N
d

dt

           (2.2-6) 

Now we have a system of first-order linear differential equations that describe 
the dynamic behavior of the oscillator array. Unlike the system of first-order 
nonlinear differential equations from which it was derived, this system can be 
solved analytically. 
 
We begin by writing these linear equations, Eqs. (2.2-4)–(2.2-6), in matrix 
form, 

 0
[ ]

[ ] [ ] [ ][ ]ref lock
d

M
dt

         (2.2-7) 

where [ ]  is a 2N+1 element vector of oscillator phases, [ω0] is a similar vector 
of oscillator free-running frequencies, and [M] is a (2N+1) by (2N+1) 
tridiagonal matrix with –2’s on the diagonal, except for the –1’s in the upper 
left and lower right corners, and 1’s on the first super and sub diagonals. 

Dividing by lock  yields, 

 
[ ]

[ ] [ ][ ]tune
d

M
d

 


    (2.2-8) 

where lockt   and 0[ ] i ref
tune

lock

 

 

    
, a vector of oscillator free 

running frequencies relative to the reference frequency (detuning frequencies). 
Laplace transformation with respect to   gives, 

 [ [ ] [ ]][ ] [ ]tunes I M     (2.2-9) 

with the tildes indicating transformed quantities and with [I] being the identity 
matrix. We now define eigenvectors, [v]n , and eigenvalues, λn , of the matrix 
[M] to be such that, 

 [ ]][ ] [ ]n n nM v v  (2.2-10) 
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Our intention is to express the solution of Eq. (2.2-9) as a sum of these 
eigenvectors with unknown coefficients. When this sum is substituted into 
Eq. (2.2-9), the orthogonality of the eigenvectors will be employed to determine 
the coefficients of the expansion and thus obtain the solution in series form. 
Since the number of eigenvectors is finite, this series will be a finite sum; that 
is, a closed form. Moreover, as we will see in the next section, in steady state, 
an approximation of this sum may be carried out to produce a simple functional 
form for the phase distribution. 
 
Note that Eq. (2.2-10) is a three term recurrence relation for the elements of the 

eigenvectors, iv ; that is, 

 1 1(2 ) 0i n i iv v v      (2.2-11) 

with the two auxiliary conditions, 

 1 (1 ) 0N n Nv v     (2.2-12) 

 1 (1 ) 0N n Nv v      (2.2-13) 

Now, Eq. (2.2-11) is satisfied by the Chebyshev polynomials, ( )i nT x  and 

( )i nU x , where, 

 
2

2
n

nx


  (2.2-14) 

so that Eqs. (2.2-12) and (2.2-13) become, 

 1( ) (2 1) ( ) 0N n n N nW x x W x     (2.2-15) 

 1( ) (2 1) ( ) 0N n n N nW x x W x      (2.2-16) 

where Wi is a linear combination of Ti and Ui-1. Equivalently, using (2.2-11) we 
have, 

 1( ) ( ) 0N n N nW x W x    (2.2-17) 

 1( ) ( ) 0N n N nW x W x     (2.2-18) 

These boundary condition equations determine the permissible values, xn. Let 
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 1( ) ( ) ( )i n T i n U i nW x T x U x     (2.2-19) 

so that 

 1( ) ( ) ( )i n T i n U i nW x T x U x     (2.2-20) 

Adding and subtracting Eqs. (2.2-17) and (2.2-18) using Eqs. (2.2-19) and 
(2.2-20) yields, 

 1( ) ( ) 0N n N nT x T x    (2.2-21) 

 1( ) ( ) 0N n N nU x U x   (2.2-22) 

Using the trigonometric expression for T, Eq. (2.2-21) yields, 

 
1 11 1

sin cos ( ) sin cos ( ) 0
2 2n nN x x          

    
 (2.2-23) 

which implies that, 

 
2

cos
(2 1)T n

n
x

N

 
   

 (2.2-24) 

so that the eigenvalues are given by, 

 22
2 cos 2 4 sin

(2 1) (2 1)Tn
n n

N N

 
   

          
 (2.2-25) 

the subscript T indicating that the elements of the corresponding eigenvectors 

are ( )i nT x . Conversely, using the trigonometric expression for U, Eq. (2.2-22) 

yields, 

 
11

cos cos ( ) 0
2 nN x     

  
 (2.2-26) 

which implies that, 

 
 
 
2 1

cos
2 1Un
n

x
N

 
    

 (2.2-27) 

so that the eigenvalues are given by, 
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 
 

 
 

22 1 2 1 / 2
2cos 2 4sin

2 1 2 1Un
n n

N N

 


    
             

(2.2-28) 

the subscript U indicating that the elements of the corresponding eigenvectors 

are 1( )i nU x . In (2.2-25) and (2.2-28) the index n runs from 0 to N after which 

the eigenvalues repeat. Thus, we have arrived at two sets of eigenfunctions, one 
set, the T’s, excited by the symmetric part of the detuning function and the 
other set, the U’s, excited by the antisymmetric part, with respect to the array 
center. 
 
We may now expand the solution of Eq. (2.2-9) in these eigenvectors as, 

 
0

[ ] [ ] [ ]
N

n T n n U n
n

A v B v


   (2.2-29) 

Substituting this expansion into Eq. (2.2-9), we obtain, 

 
0

0

[ [ ] [ ]] [ ] [ ]

( )[ ] ( )[ ] [ ]

N

n T n n U n
n

N

n Tn T n n Un U n tune
n

s I M A v B v

A s v B s v 





  

    



 
(2.2-30) 

Using the orthogonality of the eigenvectors, we may now solve for the 
coefficients An and Bn. 

 
[ ] [ ]

( )[ ] [ ]
tune T n

n
Tn T n T n

v
A

s v v
 


 


 (2.2-31) 

 
[ ] [ ]

( )[ ] [ ]
tune U n

n
Un U n U n

v
B

s v v
 


 


 (2.2-32) 

Substituting into Eq. (2.2-29), 
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0

0

[ ] [ ]
[ ] [ ]

( )[ ] [ ]

[ ] [ ]
[ ]

( )[ ] [ ]

N
tune T n

T n
Tn T n T nn

N
tune U n

U n
Un U n U nn

v
v

s v v

v
v

s v v










 


 

 


 








  (2.2-33) 

and, if the detuning function is a step function at time zero, the inverse Laplace 
transform is, 

  

 

,

1

0

[ ]
2 1

[ ] [ ]
[ ] 1

[ ] [ ]

[ ] [ ]
[ ] 1

[ ] [ ]

Tn

U n

N

tune i
i N

N
tune T n

T n
Tn T n T nn

N
tune U n

U n
Un U n U nn

N

v
v e

v v

v
v e

v v

 

 













 


 
 



 
 









 (2.2-34) 

The first of the three summations, the one arising from the zero eigenvalue, 
indicates that the steady-state ensemble frequency of the array is shifted by the 
average oscillator detuning; i.e., the sum of the elements of the  tune
vector divided by the number of oscillators. 
 
Recall that we assumed at the start of this section that the coupling phase is 
zero. Returning for a moment to Eq. (2.1-1) and using Eq. (2.1-7), we may 
write, 

 
 

 
0 1 , 1

1 , 1

sin

sin

i
i ref lock i i i i

lock i i i i

d

dt

     

  

 

 

     

   
 (2.2-35) 

If the coupling phases are taken to be equal, this can be rearranged to read, 

 
       

     

0 1 1

1 1

sin cos cos

cos sin sin

i
i ref lock i i i i

lock i i i i

d

dt

       

    

 

 

        

      

(2.2-36)

or, 
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      0 1 1sin sini
i ref eff i i i i

d

dt

                 (2.2-37) 

where, 

      1 1sin cos cosref ref lock i i i i               (2.2-38)

and  

  coseff lock     (2.2-39) 

which is the same as Eq. (1.4-18). Thus we conclude that, in a 2N+1 oscillator 
array, a uniform coupling phase modifies the effective locking range according 
to Eq. (2.2-39) just as it did for two oscillators, and the ensemble frequency is 
modified according to Eq. (2.2-38). Interestingly, if the inter-oscillator phase 
difference is 90 deg, the ensemble frequency becomes independent of the 
coupling phase as pointed out by Humphrey and Fusco [25]. 
 
The speed of the array response to the application of a step tuning is determined 
by the smallest nonzero eigenvalue. From Eq. (2.2-28) this is, 

 

2
2

0
/ 2

4sin
(2 1) (2 1)U N N

 
   

          
 (2.2-40) 

This provides the important result that the linear array response time constant is 
roughly proportional to the square of the number of elements, the 
approximation becoming more accurate as the number of elements is increased. 
 
While the time constant is unaffected, the effective steering speed of such 
arrays, as defined by the radiated beam peak neglecting aberration, may be 
increased by “over-steering.” That is, one may apply more detuning than 
necessary to achieve the desired steady-state phase gradient but reduce it to the 
required value during the beam-steering transient. Generalizing this concept, 
one may apply arbitrarily time-varying detuning as suggested by Heath et al. 
[29]. In particular they considered sinusoidal detuning and showed that the 
maximum stable inter-oscillator phase shift is thereby increased from 90 to 
138 deg. 

2.3 Steady-State Solution 

In this section we will investigate the steady-state solution for the phase 
distribution in a bit more detail. From Eq. (2.2-34), the steady-state solution is, 
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in which we have suppressed the linear term in time that merely represents a 
shift in the ensemble frequency due to the detuning. The denominators of the 
terms of the series may be written explicitly as, 
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and, 
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(2.3-3) 

Suppose that one of the oscillators, say the jth one, is step detuned at time zero 
from the ensemble frequency by one locking range. The solution given by 
Eq. (2.3-1) then becomes, 
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(2.3-4) 

Thus, the elements of the vector of oscillator phases may be written, 
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 (2.3-5) 

 
The series given by Eq. (2.3-5) has a finite number of terms so it can be 
summed numerically. As an example, we evaluate this series for N = 10, a  
21-element array, with oscillator number 5 detuned one locking range, and plot 
the phase of each oscillator in Fig. 2-3 as the dots. 
 
Noting that the lowest order terms in n contribute most of the sum, we 
approximate the eigenvalues in the denominators of Eq. (2.3-5) as follows. 
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 (2.3-7) 

Substituting these approximations in Eq. (2.3-5) gives, 
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 (2.3-8) 

If the upper limit of these summations is extended to infinity (adding 
presumably negligible terms), the sum may be written as the simple quadratic 
function, 

      22 21 1
2 1 2 1

2 2 1) 6i i j N j i N
N

           
 (2.3-9) 

Thus, we see that the steady-state phase distribution when one oscillator is 
detuned is approximately parabolic with a slope discontinuity at the detuned 
oscillator. To compare with the earlier example, we evaluate this function for  
N = 10, a 21-element array, with oscillator number 5 detuned one locking range 
and plot the phase of each oscillator in Fig. 2-3 as x’s. Note that the 
approximation is quite accurate. In fact, in the present example, the maximum 
error is only about 4 milliradians (mr) of phase. 
 
Finally, we note that, since the eigenvalues repeat, if the sums in Eq. (2.3-5) are 
continued to an infinite number of terms instead of stopping at N, the result 
would be a set of delta functions, one at each oscillator, with amplitude (area) 
equal to the phase of that oscillator. 
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Fig. 2-3. A possible phase distribution  

for a 21-element array. 

 

2.4 Stability of the Phase Solution in the Full Nonlinear 
Formulation 

In the previous sections of this chapter, we found that linearization provided a 
path to analytic solution for the phase distribution across the array. It was also 
pointed out in passing that the full nonlinear formulation provided the oscillator 
tuning necessary to achieve a desired steady-state phase distribution. In this 
section we discuss the properties of the steady-state phase solution of the full 
nonlinear formulation largely as described by Heath, et al. [29]. Recalling that 
linearization permitted solution of the problem, we expect that the effect of a 
small perturbation of an assumed solution of the nonlinear equations can be 
investigated in a similar manner. This is the approach taken by Heath, et al. 
[29] in determining the stability of the solution in the fully nonlinear case. To 
place this in the framework of our previous analysis we begin with 
Eqs. (2.1-1)–(2.1-3) and introduce (2.1-7) to obtain,  
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N ref lock N N N N

d

dt

              (2.4-3) 

Following Heath, et al. [29], we assume a solution of (2.4-1)–(2.4-3) with a 
uniform inter-oscillator phase difference (linear phase distribution) and uniform 
reciprocal coupling, as was the case in the earlier example given by 
Eqs. (2.1-10)–(2.1-12), and let the phase of each oscillator be changed by a 

small time dependent perturbation, i ; that is, 

 i i ref it       (2.4-4) 

Equations (2.4-1)–(2.4-3) then become, 
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lock N N
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dt
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   1cosN
lock N N

d

dt

          (2.4-7) 

and again we note that the system coefficients matrix multiplying the vector of 
 ’s will be tridiagonal with diagonal elements    2 cos cos    except for 

the upper left and lower right corners which are  cos  

 

and 

 cos   , respectively. The super-diagonal elements are  cos  

 and the sub-diagonal elements are  cos    . 
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From the analysis in Section 2.2, we recall that the stability of the system 
depended upon the eigenvalues of the system matrix, Eqs. (2.2-25) and 
(2.2-28), being negative. So it is in the present case. Thus, we must determine 
the eigenvalues for this new more complicated system matrix. Heath, et al. [29] 
provide us with a prescription for doing this. The first step is to symmetrize the 
matrix by defining new eigenvector elements related to the  ’s as follows. 
 
First, define a new variable,  , via, 
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Now, substitution of Eq. (2.4-8) into Eqs. (2.4-5)–(2.4-7) yields, 
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The system matrix for Eqs. (2.4-9)–(2.4-11) is symmetric. Rearranging these 
equations a bit results in, 
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As in Section 2.2, these equations may be written in matrix form. The stability 

is determined by the eigenvalues, n , of the system matrix, which can be 

found as follows. Let, 
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Now the analogs of Eqs. (2.2-11)–(2.2-13) are, 

 1 1(2cos ) 0i n i iv v v       (2.4-16) 

 1 ( ) 0i
N n Nv e v      (2.4-17) 

 1 ( ) 0i
N n Nv e v 

      (2.4-18) 

and the argument of the Chebyshev polynomials is, 

 
2 cos

2
n

nx
 

  (2.4-19) 

Substituting Eqs. (2.2-19) and (2.2-20) into Eqs. (2.4-17) and (2.4-18) and 

setting the determinant of the coefficients of T  and U  equal to zero gives 

us the following transcendental equation for the eigenvalues. 
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        1 1sin 2 1 cos sin 2 1 cos cosn n nx N x N x          
 (2.4-20) 

So either, 

 cosnx   (2.4-21) 

and, from Eq. (2.4-19) the eigenvalues are zero, or, 

    1sin 2 1 cos 0nN x   
 

 

(2.4-22) 

and the eigenvalues are, 
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 (2.4-23) 

The time dependence of the nth perturbation mode will be, 

    cos cosn lock n
t te e

         
(2.4-24) 

and 

    cos cosn n lock         (2.4-25) 

Substituting Eq. (2.4-23) into Eq. (2.4-25), 

 
   

2 2/ 2
4 sin sin

2 1 2

cos cos

n lock
n

N

  

 

               

    
(2.4-26) 

The nth perturbation eigenmode will be stable if n  has a non-positive real part. 

In general, the phase distribution across the array will be stable if all of the 

sn '  have non-positive real parts. Note that in the typical case where   is an 
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integral multiple of  ,  is zero. Then, if   is less than 2/  all of the 

eigenvalues are real and non-positive so the array phase distribution is stable 
against small perturbations. 
 
In this section we have shown that, by linearizing the equations about an 
arbitrary solution for the phase distribution in a linear array in which only the 
end oscillator free running frequencies are controlled, we may study 
analytically the stability of the solution against small perturbations. Heath, et al. 
[29] have also shown that exact stable constant phase gradient solutions of the 
nonlinear equations with arbitrary time dependence can be obtained if one is 
willing to control the free-running frequencies of all of the oscillators in the 
array rather than just the end ones. 

2.5 External Injection Locking 

It was mentioned in passing in Section 2.1 that we chose the number of 
oscillators in the array to be odd so as to provide a convenient center point at 
which to inject a stabilizing external signal. In this section we discuss the 
needed modifications to the mathematical formulation to accommodate an 
external injection signal and account for its impact on array behavior. 
 
Beginning with Eq. (2.1-1) we envision an external signal injected into the pth 
oscillator and add a term to the equation representing this signal.  
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 (2.5-1) 

where ip is the Kronecker delta function and , ,lock p inj  is the locking range 

between the external oscillator and the injected oscillator in the array. Note that 
the phase of the injection signal must remain within 2/  radians of that of the 
injected array oscillator to maintain lock. For simplicity, let all of the coupling 
phases be zero and assume that the inter-oscillator phase differences are small 
to permit linearization. Then, introducing Eq. (2.1-7) we have, 
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By replacing Eq. (2.2-4) with Eq. (2.5-2) while Eqs. (2.2-5) and (2.2-6) remain 
unchanged, Eq. (2.2-9) now becomes, 

 [ [ ] [ ] [ ]][ ] [ ] [ ]tune injs I M d r        (2.5-3) 

where [d] is a matrix with one non-zero element, r, at position pp on its 

diagonal, [ ]inj is a vector with one non-zero component, the pth one., and  

 
, ,lock p inj

lock

r







 (2.5-4) 

Here again the tilde denotes Laplace transformation with respect to the scaled 
time,  .  Equation (2.2-11) is thus replaced by, 

 1 1(2 ) 0i ip n i iv r v v        (2.5-5) 

And Eqs. (2.2-12) and (2.2-13) are unchanged. 
 
We now postulate eigenvectors with two sets of elements, those to the left of 
and including the injection site I = p labeled “L” and those to the right of and 
including the injection site I = p labeled “R.” That is, 

 ( ) ( ) ( )
1( ) ( ) ( );L L L

n i n i ni T UW x T x U x i p      (2.5-6) 

 ( ) ( ) ( )
1( ) ( ) ( );R R R

n i n i ni T UW x T x U x i p      (2.5-7) 

and we require that the pth elements match at the injection site; that is, 

 ( ) ( )( ) ( )L R
p n p nW x W x  (2.5-8) 

Now Eq. (2.5-5) with i=p, Eq. (2.2-12), Eq. (2.2-13), and Eq. (2.5-8) are four 

equations in the four unknowns, 
( )L
T , 

( )L
U , 

( )R
T , and 

( )R
U . The equations 

are homogeneous, so the determinant of the coefficients must be zero if we are 
to obtain a nontrivial solution. As usual, this condition yields a transcendental 

equation for nx  thus giving the eigenvalues, n . The transcendental equation 

in this case is, 
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   

 (2.5-9) 

Note that if r = 0 we recover the eigenvalues for the uninjected array, Eqs. 
(2.2-24) and (2.2-27). 
 
Proceeding as in the uninjected case, the solution may be expressed in terms of 
the eigenvectors and eigenvalues in the form, 

 
 2

0

[ ] [ ] [ ]
[ ] [ ]

( )[ ] [ ]

N
tune inj n

n
n n nn

v
v

s v v






  


 
 

  (2.5-10) 

and the inverse Laplace transform follows immediately. For practice, you may 
wish to explicitly compute the eigenvalues and eigenvectors and evaluate the 
solution from Eq. (2.5-10). 
 
The beam-steering scheme proposed by Stephan [1] requires two injection 
points, i = pL and i = pR, characterized by two locking-range ratios, rL and rR. 
The solution procedure described above can be generalized to accommodate 
such a situation as follows. We postulate eigenvectors in three parts, one to the 
left of both injection points denoted “L”, one between the injection points 
denoted “B”, and one to the right of both injection points denoted “R.” The 
elements of these vectors are linear combinations of Chebyshev polynomials as 

before. Thus, there will be six unknown coefficients, 
( )L
T , 

( )L
U , 

( )B
T , 

( )B
U ,  

( )R
T , and 

( )R
U . Imposing the end conditions, continuity at each injection 

point, and the modified three term recurrence at each injection point, 

 1 1(2 ) 0
L L Lp L n p pv r v v       (2.5-11) 

 1 1(2 ) 0
R R Rp R n p pv r v v       (2.5-12) 

provides a homogeneous system of six equations for these unknown 
coefficients. Setting the determinant of this system equal to zero yields a 
transcendental equation for the eigenvalues and the solution proceeds as before. 
This transcendental equation is, 
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    1os 0nx 

 (2.5-13) 

 
Note that if either rL or rR is zero, we recover Eq. (2.5-9). Here again you may 
want to perform the detailed calculations to obtain the explicit solution. 
Solutions of this type will be discussed in further detail in connection with the 
continuum model treated in Chapter 3. 
 
In the extreme case where all of the oscillators are injection locked to the same 
external oscillator, the solution simplifies considerably. Returning to 
Eq. (2.5-3), we find that the elements of [d] are all equal as are the elements of 

[ ]inj . So that Eq. (2.5-3) becomes, 

 [ [ ] [ ][ ] [ ]tunes I M     (2.5-14) 

where, 

 [ ] [ ] [ ]M M d   (2.5-15) 

and 

 [ ] [ ] [ ]tune tune injr        (2.5-16) 

Eq. (2.5-14) is now identical in form to Eq. (2.2-9), and the solution in the form 
of Eq. (2.2-34) follows immediately. However, if the injection signals differ 
sufficiently in phase, the elements of the right side of Eq. (2.5-16) can exceed 
unity and the oscillators therefore lose lock. This phenomenon has been 
exploited in discriminating between signals arriving at disparate angles in 
illuminating a phased array. For a given illumination angle the signals at each 
element differ from those of nearest neighboring elements by a constant phase 
difference and, if used to inject the corresponding oscillators of a coupled 
oscillator array, represent the second term on the right side of Eq. (2.5-16). 
Thus, as the incidence angle increases, the phase differences increase and 
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eventually the array loses lock. This permits identification of signals arriving 
outside a given range of incidence angles. [18] 
 
Before proceeding to planar arrays, we remark at this point that one may also 
produce beam-steering via a variant of the Stephan approach in which the 
external injection signals are provided by the end oscillators of the array and 
their phase is controlled by adjusting the coupling phase between the end and 
next to end oscillators [30]. 
 
Finally, we add that, as shown by Heath, control of the coupling phase also 
affords the possibility of creating a so-called “difference pattern” in which a 
null is formed instead of a beam. [31] This is done by switching the phase of 
one interior coupling by π radians. Of course, such a null can also be steered via 
either detuning or injection of the end oscillators. 

2.6 Generalization to Planar Arrays 

Nearly all of the formalism presented in connection with linear arrays of 
oscillators can be generalized to planar arrays. The simplest of planar arrays 
consists of a linear array of linear arrays placed side by side as shown in  
Fig. 2-4. Assuming nearest-neighbor coupling, this implies that each oscillator 
is coupled to four others and can be described mathematically by analogy with 
Eq. (2.1-1). That is, 

 

 
 
 
 

0 1,

1,

, 1

, 1

sin

sin

sin

sin

ij
ij lock i j ij

lock i j ij

lock i j ij

lock i j ij

d

dt


   

  

  

  









    

  

  

  

 (2.6-1)  

where, for simplicity, we have assumed that all of the coupling phases are 
equal. The oscillators are indexed separately in the two orthogonal directions x 
and y in the plane of the array by indices i and j, respectively. The four sine 
terms correspond to coupling to the four nearest neighboring oscillators 
implying that for a zero-coupling phase, the center oscillator may be detuned by 
as much as four locking ranges, and the array will still remain locked. 
Similarly, the corner oscillators may be detuned by two locking ranges. The 
largest permitted detuning of the other oscillators will lie between two and four 
locking ranges.  The effects of a uniform coupling phase can be determined in 
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where, 0[ ] ij ref
tune

lock

 

 

    
, elements of a rectangular matrix. This 

equation may now be written in matrix form by defining a matrix [ ]  with 

elements ij . We now define eigenmatrices, [ ]v , with elements, ijv , and 

eigenvalues, mn , satisfying, 

    1, 1, , 1 , 12 2i j ij i j i j ij i j mn ijv v v v v v v         (2.6-5) 

The key concept enabling analytical treatment of planar arrays is separability of 
the behavior in the two orthogonal directions. That is, if we define the two 
dimensional phase distribution to be the product of two one dimensional 
distributions, 

 ij i jv v v  (2.6-6) 

Then Eq. (2.6-5) becomes, 

    1 1 1 12 2j i i i i j i j mn i jv v v v v v v v v v         (2.6-7) 

Dividing by the product, jivv , results in, 

 
   1 11 1

22 j j ji i i
mn

i j

v v vv v v

v v
     

   (2.6-8) 

The first term on the left is dependent only on i and is independent of j. 
Similarly the second term on the left is dependent only on j and is independent 
of i. The right side of the equation is independent of both i and j. Thus, we have 
a sum of a function of i and a function of j equal to a constant which implies 
that each of these functions must itself be a constant. That is, 

 
 1 12i i i

m
i

v v v

v
  

  (2.6-9) 
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 1 12j j j

n
j

v v v

v
  

  (2.6-10) 

and 

 m n mn     (2.6-11) 

Using the definition of [M] from Eq. (2.2-7), we may write Eqs. (2.6-9) and 
(2.6-10) in the forms, 

 [ ]][ ] [ ]m m mM v v  (2.6-12) 

and 

 [ ]][ ] [ ]n n nM v v  (2.6-13) 

which are identical to Eq. (2.2-10). Thus, the eigenmatrices have been separated 
into the outer product of eigenvectors, one for the i dependence and one for the 
j dependence, and each of these eigenvectors is identical with those of the linear 
array of section 2.2. That is, 

 [ ] [ ] [ ]mn m nv v v   (2.6-14) 

The eigenvectors and eigenvalues of Eqs. (2.6-12) and (2.6-13) were found in 
section 2.2, and we will use them here to express the solution of Eq. (2.6-4) in 
the form,  

 [ ] [ ]mn mn
m n

C v   (2.6-15) 

Substitution of this form into Eq. (2.6-4) gives, 
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n mn mn
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


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
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



 (2.6-16) 

We now make use of the orthogonality of the eigenvectors. Premultiplying by 

[ ]pv  and post multiplying by [ ]qv , we have, 
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so that, 

    
[ ] [ ]

[ ] [ ] [ ] [ ]

p tune q
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p q p p q q

v v
C

s v v v v 
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
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

 (2.6-18) 

And Eq. (2.6-15) becomes, 

    
[ ] [ ]

[ ] [ ]
[ ] [ ] [ ] [ ]

m tune n
mn

m n m m n nm n

v v
v

s v v v v


 
 


   


 (2.6-19) 

the planar analog of Eq. (2.2-33). The stability analysis of Section 2.4 also 
carries over to the planar case as discussed by Heath, et al. [29]. One may 
similarly derive a planar analog of (2.5-10) should there be external injection 
[2]. The dynamic behavior of the phase distribution for these cases will be 
discussed in greater detail in connection with the continuum model presented in 
Chapter 3. However, we remark here that Karl Stephan and his student, 
William Morgan, reported application of his external injection beam-steering 
technique to a four-by-four planar array of mutually injection-locked oscillators 
[2]. They also developed a theory for such arrays in which the coupling is 
accomplished via a general multiport coupling network described by an 
admittance matrix as will be further described in Section 2.7 [2] [3]. They 
considered theoretically the use of such an oscillator array to excite an array of 
tapered slot radiators reasoning that the higher gain of these elements would 
mitigate grating lobes if the array size were increased by using element spacing 
greater than a half wavelength. 

2.7 Coupling Networks 

So far we have focused primarily on the behavior of the oscillators in the array 
but very little on the manner in which they are coupled. We merely asserted that 
the coupling was present with a certain assumed strength and coupling phase. 
In addition, two other parameters are important in the design of coupled-
oscillator arrays, the network quality factor or Q, which is related to the 
bandwidth, and the load presented to the oscillators by the network. Although 
not essential, two simplifying assumptions are quite commonly made. The 
coupling strength is assumed to be weak in a sense to be detailed shortly, and 
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the coupling network Q is assumed to be small relative to the oscillator Q so 
that the network can be assumed to be frequency independent over the 
operating bandwidth of the oscillators. Finally, it is essential that the load 
resistance presented to the oscillators be smaller than the maximum negative 
resistance the oscillator can produce so that oscillation can be sustained. In 
order to systematically design appropriate coupling networks, it is necessary to 
derive relationships between these three parameters and the values of the 
components used in constructing the network. In this section, such relationships 
will be derived. 
 
Before proceeding, we remark that the consequences of violation of the above 
simplifying assumptions have in fact been studied. The case of strong coupling 
was treated in this context by Nogi, et al. [17]. They showed that strongly 
coupled arrays exhibit many modes in which the oscillator amplitudes as well 
as the phases vary across the array and that only one mode has constant 
amplitude. They further suggested that all other modes can be suppressed by 
placing a series resistor at the center point of each coupling line. The principle 
underlying this approach was pointed out very early by Stephan and Young. [3] 
The implications of narrow-band coupling networks were studied by Lynch and 
York [32]. The analysis becomes more complicated than in the broadband case 
[33], but useful results can still be obtained. Very recently these issues were re-
examined by Seetharam and Pearson [19]. They showed that strongly coupled 
oscillator arrays exhibit wider locking ranges and lower phase noise levels but 
that the broadband assumption concerning the coupling network is violated, 
necessitating the use of the more complicated theoretical formalism. 
 
Generally, the oscillators may be viewed as being coupled by a multiport 
passive network to which an oscillator is to be connected at each port. This 
situation was analyzed by Pogorzelski [34]. The network is characterized by its 
complex admittance matrix; and for a linear array, if the desired coupling is to 
nearest neighbors, then the admittance matrix will be tridiagonal. For analytical 
simplicity, we assume an infinitely long array. We want the oscillators to 
operate in identical environments, so we design the network to be periodic with 
period unity in the oscillator index. Its admittance matrix will therefore have 
equal diagonal elements, Y11, and equal off-diagonal elements, Y12. 
 
Focusing now on the network alone, in terms of the complex impedance matrix 
we may write the network equations in the form, 

   port portZ I V        (2.7-1) 
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where the vector components are the port currents and port voltages. Because 

the network is periodic, the elements of the impedance matrix, mnZ  will have 

the form, 

 mn n mZ Z Z    (2.7-2) 

where the port indices, m and n, extend from minus infinity to plus infinity for 
this infinite network. In this sense,  denotes the “distance of the element from 
the main diagonal of the matrix.” Furthermore, the network periodicity implies 

that the components of the eigenvectors, w  , of the impedance matrix will 

have uniform phase progression and uniform amplitude across the network 
ports. That is, the elements of the eigenvector with inter-port phase difference 
  are, 

 jm
mw e   (2.7-3) 

Defining, 

  portI I w  
     (2.7-4) 

and 

  portV V w  
     (2.7-5) 

every equation in the system given by Eq. (2.7-1) becomes, 
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Z e I V
 


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 


 
  
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 

  (2.7-6) 

Now, the tridiagonal admittance matrix gives us, 

  11 12 12
j jI V Y Y e Y e 

 
  

     (2.7-7) 

Combining Eqs. (2.7-6) and (2.7-7), we have, 

  11 12
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Y Y
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  (2.7-8) 
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a Fourier series for which the coefficients, Z , can be found by means of the 

usual integration. That is, 

  11 12

1

2 2 cos

je d
Z

Y Y






 









  (2.7-9) 

The integration can be carried out analytically to yield, 
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  (2.7-10) 

This approach is quite similar to that used in the analysis of phased-array 
antennas to obtain the well-known relationship between the mutual coupling 
coefficients among the elements and the active reflection coefficients of the 
array [35]. The result is that we have expressed the elements of the impedance 
matrix and admittance matrix of the coupling network in terms of the two 
parameters, Y11 and Y12. 
 
We now define the complex coupling coefficient of the coupling network in the 
following way. Let the voltage at the nth port be Vn and the current into the nth 
port be In. We can establish a Norton equivalent circuit at the (n+1)st port as 
follows. The open circuit voltage is, 

 1oc nV I Z  (2.7-11) 

and the short circuit current is, 

 12sc nI VY  (2.7-12) 

Thus, the Norton admittance is, 
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    (2.7-13) 

Now, using the Norton equivalent circuit and connecting load admittance GL to 
the port, the voltage at port n+1 is, 

 
12

1
1

n sc n
L N L N

Y
V I V

G Y G Y   
 

 (2.7-14) 
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The complex coupling coefficient,   , is defined to be the ratio of the voltage 
at port n+1 to the voltage at port n. That is, 
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L N
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G Y
 
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
 (2.7-15) 

In the weak coupling approximation, Y12 is small and to first order in Y12, we 
have, 

 
12

L

Y

G
 
  (2.7-16) 

This coupling factor determines the locking range because the injection signal 
arriving at an oscillator, i, from a neighboring one, j, is the amplitude of the 

oscillator signal, Aj, multiplied by   so the locking range is given by, 

 0 12 0

2 2
ji i

lock
i L

A Y

Q A QG

  
    (2.7-17) 

For comparison, see Eq. (1.3-16).  
 
Before proceeding, we wish to highlight an interesting point regarding the 
nature of the coupling. If a current is injected into the nth port of the network 
with all other ports open circuited, the voltage appearing at port n+m is, from 
the impedance matrix, just Zm/Z0 times the voltage at the injected port. (See 
Eq. (2.7-10).) That is, open-circuit voltages appear at all ports throughout the 
network, not just at the adjacent ports. In this sense, each oscillator really 
influences all the others, and the coupling is “all to all” rather than “nearest 
neighbor” in nature. The fact that the admittance matrix is banded might seem 
to imply nearest-neighbor coupling, but the banded nature of the matrix merely 
implies that, when a voltage is applied to the nth port with all the other ports 
shorted, short-circuit current flows only in the adjacent ports. The limited 
influence results from shorting the ports not from limited coupling. That said, 
we proceed to define the coupling factor of the network, as the ratio of the 
open-circuit voltages at adjacent ports when a current is injected into the nth 
port of the network with all other ports open circuited. From Eq. (2.7-10), that 
ratio is, 

 
2 2

11 12 11

12

4

2

Y Y Y

Y


 
  (2.7-18) 

For weak coupling, this becomes, 
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where we have effectively neglected the coupling to the non-nearest neighbor 
ports by working only to first order in this ratio. This same result is obtained if 
we define the coupling factor by applying a voltage to the nth port, shorting all 
the others and taking the ratio of the (n+1)st port current to the nth port current. 
This obtains because if GL is large compared to Y12, the coupling is weak and 
the ports are all nearly shorted. 
 
The coupling factor appearing in the expression for the locking range given by 
Eq. (2.7-17) depends on both the oscillator load and the coupling network. 
Based on the discussion above, we can separate these by writing Eq. (2.7-16) in 
the form, 
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 (2.7-20) 

so that the first factor,  , characterizes the network coupling and the second 
factor,  , characterizes the coupling of the oscillators to the network. 
 
The second important parameter in network design is the network quality factor 
or Q. Fundamentally, Q is defined in terms of energy stored and energy lost per 
unit time, but equivalently, Q can also be defined in terms of the frequency 
dependence of the port admittance near resonance; that is, 
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a unitless quantity. For our coupling network we thus have the formula, 
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And, for our formulation to apply, this must be much smaller than the Q of the 
oscillators. 
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Finally, the third parameter in the design of these arrays is the amount of 
negative resistance that must be provided by the oscillators. When operating 
normally, the current entering each port of the network is related to the port 
voltage by the port admittance; that is,  
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Y Y Y
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     (2.7-23) 

Since the inter-oscillator phase difference cannot exceed π/2 and Y12 has a 
negative real part, the maximum susceptance presented to the oscillator by the 
network is Re(Y11). Thus, we conclude that the oscillator must be designed to 
provide a minimum of this amount of negative susceptance plus an amount 
sufficient to compensate for the internal load susceptance, GL, to maintain 
oscillation when connected to the network. 
 
Let us now consider a concrete example of a network of the sort commonly 
used in experimental studies of linear coupled oscillator arrays. Each unit cell 
consists of a one wavelength long transmission line of characteristic impedance 
ZC, two parallel resistors to reduce the network Q by reducing reflections at the 
transmission line ends, and two series resistors to control the coupling strength. 
Such a network is shown in Fig. 2-5 wherein the circles indicate terminals 
where the oscillators are connected at each end of the unit cell. Using the 
definitions of the elements of the admittance matrix, we may determine that, 
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 (2.7-24) 

so that from Eq. (2.7-19) for weak coupling, 
 

 
Fig. 2-5. Unit cell of an infinite one-dimensional coupling network. 
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and the oscillators must provide negative susceptance, -Gosc, where, 
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In order to determine the network Q using Eq. (2.7-22), it is necessary to 
explicitly display the frequency dependence of the admittance parameters 
induced by the transmission lines. That is, from transmission line theory, we 
have, 
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where ZR is the impedance of the parallel combination of Rp and Rs, and γ is the 
propagation constant of the transmission line. The frequency dependence arises 
because   is linear in  . Using these expressions in Eq. (2.7-22), we find 
that, 
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(Note that this does not agree with equation (18) of [34] due to an algebraic 
error in the derivation of that equation.) Typical oscillators used with this 
network have Q’s on the order of 100. To minimize the Q of the network, we 
chose parameter values to minimize reflections at the ends of the transmission 
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lines. That is we chose R CZ Z
 so that for small inter-oscillator phase 

differences we have, 
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and for resistors of comparable value, the network Q is of order unity, clearly 
much smaller than the oscillator Q as assumed in the mathematical model. 
 
Another particularly simple coupling network was proposed by Humphrey and 
Fusco; that of a single capacitor between adjacent ports of the network. [36] 
The corresponding parameters can be derived from the previous example by 
setting Rp to infinity and replacing Rs by 1/(2jωC). Thus, 
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Note that the approximation of Eq. (2.7-19) is not valid for this network so 
Eq. (2.7-18) must be used and we obtain, 
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(2.7-32) 

Note further that the coupling phase is zero. 
 
The approach outlined above for coupling networks designed for linear arrays 
of oscillators can be generalized to the case of planar arrays in which, for 
example, each oscillator is coupled to its four nearest neighbors via the network 
unit cell shown in Fig. 2-5. The admittance matrix is then block tridiagonal, and 
each diagonal block is tridiagonal while the off-diagonal blocks are diagonal. 
The matrix is symmetric, and the elements along any diagonal are equal. Thus, 
the admittance matrix has only three independent elements. The diagonal 
elements are denoted by Yd, the off diagonal elements of the diagonal blocks by 
Yx, and the diagonal elements of the off-diagonal blocks by Yy.. As shown in 
[34], the integral in Eq. (2.7-9) then becomes the two dimensional integral, 
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The impedance matrix, though full, also has a block structure. The elements 
along any diagonal within a block are equal. Similarly, the blocks along any 
block diagonal are equal. Using a generalization of the notation used previously 
for the linear case, the first subscript indicates the “distance” from the diagonal 
within each block and the second subscript indicates the “distance” of the block 
from the block diagonal. 
 
The integrals given by Eq. (2.7-33) for nearest neighbors, Z01 and Z10, as well as 
the integral for the diagonal elements Z00, can be expressed in terms of elliptic 
integrals. That is, 
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(2.7-36) 

where K is the complete elliptic integral of the first kind and   is the elliptic 
integral of the third kind. [37] The analogs of the voltage ratio of Eq. (2.7-18) 
are, 
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and 
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These expressions are quite cumbersome. However, as shown in Ref. [34], one 
may obtain more manageable expressions by evaluating the integrals 
asymptotically for large subscript via the method of stationary phase when the 
other subscript is zero. While technically only valid for large index, the form of 
these expressions exhibits a common ratio between the ports which may be 
taken to be a measure of the coupling. That is, one obtains, 
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and 
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as the analogs of Eq. (2.7-18). For weak coupling, Yx and Yy are small compared 
with Yd and we obtain, 

 2
x

x
d y

Y

Y Y
  


 (2.7-41) 

and 
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Similarly, the analogs of Eq. (2.7-20) are,  
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The network Q can again be expressed as the logarithmic derivative of the port 
admittance with respect to frequency. That is, 
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Finally, the oscillators must provide negative resistance such that, 
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For a network using the coupling configuration shown in Fig. 2-5, 
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so that, 
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and, 
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For R CZ Z
 and small inter-oscillator phase differences we again have,  
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which is typically much smaller than the oscillator Q. 
 
In this section we have discussed the analysis of coupling networks for infinite 
arrays both linear and planar. Although, in practice the arrays are of course 
finite, the analysis of infinite arrays is more tractable and provides insight into 
how the circuit parameters affect the array behavior. Thus, relatively simple 
approximate formulas obtain for the coupling strength, network Q, and needed 
oscillator negative resistance in terms of circuit element values facilitating the 
design of such networks. 

2.8 Conclusion 

In this chapter, the oscillators of the arrays were treated as individual circuits 
capable of oscillation in themselves. These were coupled to form a mutually 
injection-locked system of oscillators. In that sense, the modelling was discrete, 
and the phase distributions studied were distributions of the phases of the 
individual oscillator outputs, which (of course) have meaning only in terms of 
the individual oscillator output signals. In the next chapter, however, we will 
introduce the concept of the continuum model in which the phase distributions 
are continuous functions. It is emphasized that the values of these continuous 
functions still only have physical meaning when the functions are evaluated for 
arguments corresponding to individual oscillators. Arguments between these 
are for mathematical convenience and the corresponding function values have 
no physical significance. 
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Chapter 3  
The Continuum Model for Linear Arrays 

All of the analysis presented so far has treated each oscillator as a discrete 
device with an injection port and an output port from which a signal emanates 
having a discrete phase value relative to a phase reference. For this reason, the 
mathematical model represented has been termed the discrete model. We 
emphasize that the discrete model encompasses the dynamic behavior of the 
oscillator array both nonlinear and, if desired, linearized. No new phenomena 
are added to this range of capability by means of the formulation to be 
discussed in the present chapter. However, it will be shown that, provided one 
is willing to linearize, the so called “continuum model” offers considerable 
advantage in terms of insight and applicability of familiar mathematical 
techniques. Although the continuum model is fundamentally approximate 
primarily because of the linearization, it nevertheless provides intuitive 
understanding of the behavior of coupled oscillator arrays with small inter-
oscillator phase differences, an important special case in terms of practical 
application. Moreover, it provides a basis for understanding the impact of 
nonlinearity when the inter-oscillator phase differences increase beyond the 
limits of accurate linear approximation. 
 
The continuum model in this context was suggested by Pogorzelski, et al. [38]. 
In essence we replace the index identifying the oscillators with a continuous 
variable such that, when the continuous variable takes on the value of the index 
for a given oscillator, a continuous function of that variable takes on the value 
of the phase of that oscillator. Thus, only the values of the function at integer 
values of its argument have physical meaning. The values between integer 
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values of the argument serve only to facilitate the formulation in terms of a 
differential equation. 

3.1 The Linear Array without External Injection 

To derive the continuum model of a simple linear array of oscillators coupled to 
nearest neighbors, we begin with Eq. (2.2-4) for the linearized discrete model 
with zero coupling phase and replace the discrete index i with a continuous 
variable, x. 
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where 1x  . Now treating ( , )x t  as a continuous function of x, expanding 
each term in a Taylor series about x, and retaining terms up to second order in 

x , we obtain, 
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Finally, dividing by the locking range and using the normalized time variable, 

lockt  , we have, 
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This is the fundamental equation for the continuum model of a simple linear 
array of oscillators with nearest neighbor coupling and no external injection. It 
is the well-known diffusion equation. Laplace transformation with respect to 
time results in, 
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a simple second-order linear differential equation for the transform of the phase 
distribution. 
 
Suppose that the array is infinitely long and that one oscillator is step detuned at 
time zero by C locking ranges where C is less than two. Without loss of 



The Continuum Model for Planar Arrays 67 

 
 

generality, we may select the detuned oscillator to be the one at x=0. For this 
situation, Eq. (3.1-4) becomes, 

 
2

2

( , )
( , ) ( )

d x s C
s x s x

sdx

   
   (3.1-5) 

As discussed in Ref. [38], it might be considered more correct to use, in place 
of the delta function, a square pulse one unit wide to represent the detuning. 
However, it is shown in Ref. [38] that the difference in the results is very small, 
and (in the spirit of the continuum model) the use of the delta function affords 
considerable convenience with minor impact on the results. 
 
The differential equation given by Eq. (3.1-5) has an exact solution in closed 
form. It is, 
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and the inverse Laplace transform is, 
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Figure 3-1 shows a plot of this function over the range 10 10x    from time 
zero to time equal to 250 inverse locking ranges for C = 1. Note that as time 
goes to infinity, the phase diverges as the square root of the time, never 
reaching a steady state. This may be viewed as a manifestation of the branch cut 
of Eq. (3.1-6) in the complex s plane. However, differentiating the phase with 
respect to time gives the simple expression for the frequency, 
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and thus the frequency converges to the reference frequency at infinite time as 
one over the square root of the time. This function is plotted in Fig. 3-2 for C 
equal to unity. 
 
Next, let us consider a finite length array over the range  

1 1

2 2
a x a     .   For example,  if  a = 10 there will be 21 oscillators in the 
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Fig. 3-1. Dynamic phase behavior of an infinite  

linear array. 
 

 
Fig. 3-2. Dynamic frequency behavior of an infinite  

linear array. 
 
array and the overall length will be 2a+1 or 21 unit cells. Now, in addition to 
using Eq. (3.1-4), we must determine the boundary conditions at the ends of the 
array in order to obtain the solution. These conditions can be easily obtained via 
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an artifice outlined in Ref. [38]. That is, we imagine two additional fictitious 
oscillators added to the array, one at each end and coupled to the corresponding 
end oscillator. These oscillators are dynamically tuned so that at all times their 
phase is maintained equal to the phase of the corresponding end oscillator of 
the true array. Under these conditions, as may be seen from Eqs. (1.4-1) and 
(1.4-2), there will be no mutual injection between the end oscillators and the 
fictitious ones. Thus, the fictitious ones may be removed without effect. 
However, since the phase of the end oscillator and the corresponding fictitious 
oscillator are always equal so that the phase difference is zero, and since in the 
continuum model this difference is represented by the derivative with respect to 
x, one may conclude that the appropriate boundary condition is that the 
derivative of the phase with respect to x must be zero; that is, a Neumann 
boundary condition. At this point, having both the differential equation 
Eq. (3.1-4) and the boundary conditions, we are in a position to treat the case of 
a finite length linear array via the continuum model. This will be accomplished 
using two alternative approaches described below both of which, of course, 
yield the same result. 
 
Before proceeding on this course however, we note an interesting result 
obtainable directly from the differential equation and the boundary conditions. 
Suppose we integrate Eq. (3.1-3) over the length of the array. 
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The first term is zero by virtue of the Neumann boundary conditions at the 
array ends. Thus, we may write, 

 

1 1
2 2

1 1

2 2

1 1
( , ) ( , )

2 1 2 1

a a

tune

a a

x dx x dx
a a

  


 

   


 

     (3.1-10) 

or, 
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Now from Eq. (1.3-6), neglecting amplitude variation, we have that the 
instantaneous frequencies of the oscillators are given by, 

 inst ref t

  
 


 (3.1-12) 

Substituting this into (3.1-11), 
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
    (3.1-13) 

That is, the average over the array of the instantaneous oscillator frequencies is 
equal to the average over the array of the oscillator tuning (or free running) 
frequencies. In steady state the instantaneous frequency is equal to the 
ensemble frequency. So, we can conclude that the steady-state ensemble 
frequency of the array is the average of the oscillator tuning frequencies. 
(Recall the assumption of zero coupling phase.) 
 
We now set ourselves the problem of determining the phase dynamics of a 
finite linear array when one oscillator in the array is step detuned at time zero. 
The solution of this problem will be a Green’s function permitting solution for 
an arbitrary distribution of detuning including the antisymmetrical detuning of 
the end oscillators for beam-steering as suggested by Liao and York [28]. The 
first approach will be to construct a solution as a superposition of a particular 
integral and two homogeneous solutions of the differential equation. The 
particular integral is known from the solution of the infinite array problem. It is 
essentially Eq. (3.1-6) generalized to accommodate detuning an arbitrary 
oscillator at x = b instead of the one at x = 0. That is, 

 ( , )
2

x b s
p

C
x s e

s s
    (3.1-14) 

Adding to this two independent homogeneous solutions with unknown 
coefficients, CR and CL, we postulate the desired solution in the form, 

 ( , )
2

x b s x s x s
R L

C
x s e C e C e

s s
       (3.1-15) 
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The two unknown coefficients are now determined by applying the boundary 

conditions at the two ends of the array, 1

2
x a   and 1

2
x a  , resulting in 

the two simultaneous linear equations, 
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where, 
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(3.1-18) 

Solving Eqs. (3.1-16) and (3.1-17) simultaneously for CR and CL, we obtain, 
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 (3.1-19) 

and, 
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 (3.1-20) 

The solution given by Eq. (3.1-15) is then, 
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(3.1-21) 

which simplifies to, 

    
 
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 (3.1-22) 

Note that, despite the presence of square roots of s, there are no branch cuts in 
the s plane because this function is even in the square root of s. Thus, the 
inverse Laplace transform can be computed purely via residue calculus. The 
poles, sn, are located by, 

  sinh 2 1 0n n ns s a s   
 (3.1-23) 

Thus, 
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 (3.1-24) 

Except for the double pole at s = 0, the residues at these poles are, 
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 (3.1-25)

and the residue at the double pole is, 
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 (3.1-26) 

The inverse Laplace transform is thus, 
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This may be rewritten in the form, 
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(3.1-28)

The overall time constant of the array dynamics is determined by the smallest 
eigenvalue. In general, this is given by the n = 0 term in Eq. (3.1-28); that is, 

 
2

0 2 1a

     
 (3.1-29) 
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However, if the detuned oscillator happens to be the center one, the residues of 
the n series are zero and the smallest eigenvalue is the one for m = 1; that is, 
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0
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2 1a

     
 (3.1-30) 

Thus, when the center oscillator is detuned, the array responds four times faster 
than if any other oscillator is detuned. (There is an error in Ref. [38] where this 
response is claimed to be only twice as fast.) 
 
Recall now that from Eq. (3.1-13) the ensemble frequency of the array is the 
average of the tuning frequencies. When one oscillator out of the 2a+1 
oscillator array is detuned by C locking ranges, the ensemble frequency of the 
array measured in locking ranges will thus change by C/(2a+1) locking ranges. 
This is manifest in the solution Eq. (3.1-28) as the linear time dependence of 
slope C/(2a+1) as a function of the scaled time,  . Aside from this linear 
term, from Eq. (3.1-28) we see that the steady-state phase distribution across 
the array is given by, 
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(3.1-31) 

a Fourier series which can be summed in closed form to yield the simple 
expression, 
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(3.1-32) 

This may be compared with the result from the discrete model where we 
approximated the eigenvalues and extended the sums to an infinite number of 
terms to arrive at the simple approximate result Eq. (2.3-9). Recall that in the 
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linearized discrete model the eigenvalues repeat so, if the sums are continued to 
an infinite number of terms, a set of delta functions results. Here, in contrast, 
the sums are in fact infinite and result in a smooth function passing through the 
correct value of oscillator phase as x passes through the corresponding index of 
that oscillator. Thus, the two results, discrete and continuum, are only equal at 
the oscillators and not in between. 
 
As indicated in Ref. [38], because the inter-oscillator phase difference cannot 
exceed 2/ , this steady-state result indicates that the detuning C is limited by,  

  
(2 1)

2

a
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a b

 



 (3.1-33) 

However, when operating near the limits of lock, this is not a very good 
approximation so it is suggested in [38] that the sine terms be approximated by 

defining an effective locking range, lock  , as follows. 
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  (3.1-34) 

For small phase differences the effective locking range will be nearly equal to 
the true locking range, but near the limits of lock, it will be /2  times the true 
locking range. Thus, as pointed out in Ref. [38], though still approximate, the 
maximum detuning is more accurately given by, 

  max
(2 1)

lock
a

a b
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  


 (3.1-35) 

Let us now return to the problem of determining the phase dynamics of a finite 
linear array when one oscillator in the array is step detuned at time zero and 
solve it via an alternative approach. We wish to solve Eq. (3.1-5) subject to 
Neumann boundary conditions at the array ends. Following Pogorzelski, et al. 
[38] in this alternate approach we first determine the eigenfunctions and 
eigenvalues defined by, 
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such that, 
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and 
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  (3.1-38) 

Clearly, the appropriately normalized eigenfunctions are, 
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and 
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and the eigenvalues are given by, 
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 (3.1-41) 

and 
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 (3.1-42) 

Thus the explicit eigenvalues are, 
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and 
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 (3.1-44) 

We now express the solution of Eq. (3.1-5) as a sum of these eigenfunctions. 
That is, 
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Substituting this into Eq. (3.1-5) generalized to an arbitrary detuned oscillator 
at x = b gives, 
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Now using the orthogonality of the eigenfunctions over the length of the array, 
we obtain, 
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The solution is then immediately written as, 
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or, inserting the explicit expressions for the eigenfunctions, 
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 (3.1-50) 

Except for the zero eigenvalue term, m = 0, each term of these series has one 
simple pole at s equal to the corresponding eigenvalue. Thus, the inverse 
Laplace transform follows immediately as the sum of the residues at the pole in 
each term of the series, 
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(3.1-51)

which is, of course, identical to Eq. (3.1-28). For the case where a = 10 and 
b = 5, this solution is plotted as a function of time in Fig. 3-3. Note that the 
shape of the distribution at late times is very much like the corresponding 
steady-state solution shown in Fig. 2-3. Being the solution for a delta function 
source on the right side of the differential equation, this is the Green’s function 
for the problem and as such it can be used to obtain solutions for arbitrary 
detuning distributions. 
 

 
Fig. 3-3. Linear array phase distribution under  

step detuning of the oscillator at x = 5. 
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To summarize, we have described two methods of solving the continuum-
model partial-differential equation for the dynamic behavior of the phase across 
a linear array of mutually injection locked oscillators. Both methods entailed 
Laplace transformation with respect to the scaled time. The first method was a 
direct solution of the resulting second-order ordinary differential equation by 
postulating a solution as a superposition of a particular integral and two 
homogeneous solutions with unknown amplitude coefficients. The coefficients 
were determined by the Neumann boundary conditions at the array ends. The 
inverse Laplace transform was obtained as a sum of the residues of at the poles 
of the transform. In the second method, the Laplace transformed equation was 
solved by postulating a solution as a sum of eigenfunctions of the second order 
differential operator each satisfying the Neumann boundary conditions at the 
array ends. Recognizing this to be a self-adjoint boundary value problem of 
Sturm-Liouville type, it should not be surprising that the solution for the 
desired Green’s function can be written as a sum of these eigenfunctions. 
Conveniently, each term of the sum, except the one corresponding to the zero 
eigenvalue, has one simple pole so that the inverse Laplace transform is 
immediately obtainable as a sum of the corresponding residues, one for each 
term of the eigenfunction series. 

3.2 The Linear Array with External Injection 

Thus far, the continuum model has been applied to arrays in which the phase 
control is accomplished by detuning one of the oscillators. The beam-steering 
method proposed by Stephan [1] requires that two or more array oscillators be 
injected with an externally derived signal. Thus, to accommodate this, it is 
necessary to generalize the continuum model along the lines followed in 
Section 2.5. Following Pogorzelski, et al. [39], we begin with Eq. (2.5-2) 
rewritten in terms of the continuous variable, x, and the scaled time, , as, 
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 (3.2-1) 

Now we define, 
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and expand in a Taylor series about x keeping terms up to second order in x
so that Eq. (3.2-1) becomes, 
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2

2
( ) ( ) ( )tune inj

d
V x V x

dx

   



   


 (3.2-3) 

Here the spatial distribution of the external injection signals is given by V(x) 

while the temporal dependence is given by ( )inj   so we have implicitly 

assumed that these dependences are separable; that is, all of the injection signal 
phases have the same time dependence. While this is a convenient 
simplification, it is not essential in that one could include more than one such 
injection term in the equation and obtain a solution albeit somewhat more 
complicated than the one presented here. Equation (3.2-3) is the generalization 
of Eq. (3.1-3) required to accommodate external injection for our purposes and 
we will use it to study the phase dynamics of such an externally injected array.  
 
Suppose we consider an infinitely long linear array wherein all of the oscillators 
are tuned to the ensemble or reference frequency and the oscillator at x = b is 
externally injection locked to an oscillator of strength C with C0 radian step 
time dependence of its phase. Our generalized differential equation then 
becomes, 

 
2

02
( ) ( ) ( )tune

d
C x b CC x b u

dx

    



     


 (3.2-4) 

where, 

 
, ,lock p inj

lock
C








 (3.2-5) 

Laplace transformation with respect to the scaled time results in, 

 
2

0
2

( ) ( )
C

C x b s C x b
sx

    
    



    (3.2-6) 

We now define, 

 0
1

C

s
     (3.2-7) 

so that Eq. (3.2-6) becomes, 

 
2

1
1 1 02

( )C x b s C
x

   
   



    (3.2-8) 
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The particular integral of this equation is, 

 0
1p

C

s
    (3.2-9) 

We postulate a homogeneous solution of the form, 

 
1 1

s x b
h C e    (3.2-10) 

so that our proposed solution is, 

 0
1 1

s x bC
C e

s
      (3.2-11) 

Now integrating Eq. (3.2-8) across the delta function at x = b, we find that, 

 1
1( )

x b

x b

d
C b

dx

 









   (3.2-12) 

Imposing this condition on the solution given by Eq. (3.2-11), we obtain, 

  
0

1
2

C C
C

s s C



 (3.2-13) 

Substituting this into the solution given by Eq. (3.2-11) gives, 

 0
1 1

2
s x bC C

e
s s C

   
   

  (3.2-14) 

and from Eq. (3.2-7), 

  
0( , )

2

s x bC C
x s e

s s C
  


  (3.2-15) 

Finally, the inverse Laplace transform of Eq. (3.2-15) is,  

 
2

0

/2 /4

( , )
2

( )
2 2

C x b C

x b
x C erfc

x b
e e erfc C u

 


 




  
   

  
 

     

 (3.2-16) 
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(See Ref. [37] equation 29.3.89.) This is the phase distribution across the 
infinite array as a function of time. It is zero at time zero and smoothly evolves 
to a final value of C0 at infinite time as shown in Fig. 3-4 for C0 = 1 radian and 
C = 1. Note that the injection frequency as well as the initial and final ensemble 
frequencies are all the same. Because it is the solution for injection at a single 
point in the array, you might think that it is a Green’s function that can be used 
to construct solutions for arrays injected at multiple points. However, as we 
shall see in Section 3.4 when we discuss Stephan’s beam-steering scheme [1] 
involving two injection points, this is not the case because the form of 
differential equation itself differs from Eq. (3.2-6) when there are multiple 
injection points. 
 
The corresponding problem where the injected frequency is step shifted by C0 
locking ranges at time zero was treated by Pogorzelski, et al. [39]. In that case 
the array oscillator frequencies evolve from the ensemble frequency at time 
zero to the injection frequency at infinite time. 
 
Next, we consider an array of finite length, 2a + 1, in which all of the 
oscillators are tuned to the same frequency, taken to be the reference frequency 
and one of the oscillators, the one at x = b, is injected with an externally 
generated signal of strength C defined by Eq. (3.2-5) that is step phase shifted 
at time zero by C0 radians. Equation (3.2-6) applies, but this time we wish to 
solve it subject to Neumann boundary conditions at the array ends. Here again 
we have a choice of two methods of solution. Let us begin by postulating the 
solution in the form of a particular integral plus two complementary functions 
that are solutions of the homogeneous equation. That is, using Eqs. (3.2-7), 
(3.2-9), and (3.2-10) we have, 
 

 0
1

s x b x s x s
b R L

C
C e C e C e

s
        (3.2-17) 
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Fig. 3-4. Phase distribution versus time for an infinite  

linear array with one oscillator externally injected. 
 
with the three conditions, 

 1
1( )

x b

x b

d
C b

dx

 









   (3.2-18) 

 1 0
x a

d

dx







 (3.2-19) 

 1 0
x a

d

dx







 (3.2-20) 

Now, Eqs. (3.2-18), (3.2-19), and (3.2-20) can be used to determine the three 
constants, Cb, CR, and CL. Then, using Eq. (3.2-7), we get, 

     0

( , )

cosh 2 1 cosh
2 ( )

x s

C
C a x b s C x b s

sD s

 

          


(3.2-21) 

where, 
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 ( ) sinh 2 1

1 1
cosh cosh

2 2

D s s a s

C a b s a b s

    
                     

 
(3.2-22) 

 

Here again there are no branch cuts, and the inverse Laplace transform is 
expressible as a sum of residues at the poles; that is, the zeros of D(s), all of 
which lie on the negative real axis of the s plane. Note that Eq. (3.2-22) is very 
reminiscent of Eq. (2.5-9) of the discrete model of this array. Comparing these 
two equations, we may ascertain that the continuum approximation is 

particularly accurate for small values of s when  sinhs s  which, of 

course, corresponds to late time. In fact, the pole closest to the origin of the 
s plane provides us with the time constant of the array which determines the 
late time behavior. Let us examine Eq. (3.2-22) to see if we can estimate the 
location of this pole.  
 
In anticipation of the fact that the pole lies on the negative real axis, we define 
  so that, 

 s i i       (3.2-23) 

Then, 

 

 sin 2 1

1 1
cos cos

2 2

D a

C a b a b

 

 

     
                     

 (3.2-24) 

Setting D equal to zero, yields the transcendental equation, 

 

1 1
2 sin cos

2 2

1 1
cos cos

2 2

a a

C a b a b

  

 

                    
                     

 (3.2-25) 

For small  , the solution occurs where the cosine functions are near zero and 
the sine function is near unity. Thus, we define a new variable, 

 
2 1a

  


 (3.2-26) 

and write Eq. (3.2-25) in the form, 
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2 1 2 2 2 2
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2 2 2 1

1
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2 2 2 1

a a
a

b
C a b

a

b
a b

a

    

 

 

                             
         
          

(3.2-27) 

or 

 

1 1
2 cos sin

2 1 2 2

1
sin

2 2 1

1
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2 2 1

a a
a

b
C a b

a

b
a b

a
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



                           
         

         

 (3.2-28) 

Using the identity for the sine of a sum, we arrive at, 

 

1 1
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2 1 2 2

1
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2 2 1

1
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1
cos

2
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a
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a

a b
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







                           
                 

                 
                 

      
sin

2 1

b

a

  
    

 (3.2-29) 

Near 0  , 
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(3.2-30) 

which is a quadratic equation for . That is, 
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2 2

2 2

1

2

sec 2 tan tan 0
2 1 2 1 2 1

a b

b b b
b

C a a a



   

     
   

                       

 (3.2-31) 

We can now look at two limiting cases. First, if C is small, the solution 
becomes that of the uninjected array, namely, 0  . If, on the other hand, C is 
large, 
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2

1
2
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2 11

2

b a
b

a
a b



                  
   

 (3.2-32) 

and 
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2

b a
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a a
a b

 

                   
   

 (3.2-33) 
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If b is small; that is, if the injection point is near the center of the array, 
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1
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2 1 2 11
2

b a
b

a a
a b

 

                   
   

 (3.2-34) 

Choosing the sign in the numerator to obtain the solution nearest the origin of 
the s plane, we have, 

 
2 1 2a b

 
 

 (3.2-35) 

Thus, 

 
 

2

min 2 1
s

a b

 
    

 (3.2-36) 

and that the late time behavior of the array goes as, 

  

2

2 1a b
e




 

 
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 

 

(3.2-37) 

The formula given by Eq. (3.2-33) fails if b is at either end of the array because 
we have effectively divided by zero in the derivation. We can no longer assume 
that C is infinite. Retaining a finite value of C and rewriting the transcendental 
equation results in, 

  t a n 2 1a C      (3.2-38) 

If C is small, the solution is approximately, 

 
2 1

C

a
 


 (3.2-39) 

but if C is large, 
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 2
1

(2 1)a
C



 
 

 (3.2-40) 

Interestingly, for large a, Eq. (3.2-40) is consistent with Eq. (3.2-35) if b is at 
the either end of the array so, for large C and large a, these formulas agree. 
 
Returning now to Eq. (3.2-21), the poles are easily found by iterative bisection 
because they are all on the negative real axis. The residues are easily computed 
once the poles are known and the residue series gives the inverse Laplace 
transform. As an example, this inverse transform is plotted in Fig. 3-5 for the 
case where a = 10, b = 5, C0 = 1, and C = 10. The time constant of this array is 
96.12 inverse locking ranges, whereas the approximate formula Eq. (3.2-36) 
gives 103.75 inverse locking ranges. Note that for the injected oscillator x = 5, 
the response is much faster than that of the entire array. This is because for this 
oscillator, the residues of the poles close to the origin of the s plane are small 
and the more distant poles hold sway. 
 

 
Fig. 3-5. Oscillator phases for oscillator 5  

externally injected. 
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As discussed in connection with the detuned linear array, the above analysis 
can also be performed by expanding the solution in eigenfunctions of the 
differential operator. The relevant operator in this case is, 

 
2

2
( )C x b

x


 


 (3.2-41) 

The presence of the delta function produces a slope discontinuity in the 
eigenfunctions which must satisfy, 

 
2

2
( )n

n n n
w

C x b w w
x

 
  


 (3.2-42) 

and the boundary conditions, 

 0n

x a

dw

dx 
  (3.2-43) 

 0n

x a

dw

dx 
  (3.2-44) 

The solution is postulated in the form, 

 n n nx b x x
n b R Lw C e C e C e        (3.2-45) 

Now we note something interesting about Eq. (3.2-42); that is, it is essentially 

Eq. (3.2-6) with C0 set to zero and s set to n . Therefore, we can obtain the 

eigenfunctions by means of a limiting process applied to Eq. (3.2-21) instead of 
solving for the three constants using Eqs. (3.2-42), (3.2-43), and (3.2-44). 
Suppose we set, 

 0C   (3.2-46) 

and, 

 ns     (3.2-47) 

in Eq. (3.2-21) and take the limit as  approaches zero where n is the nth 

value of s for which D(s) equals zero. In this limit both the numerator and 
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denominator of Eq. (3.2-21) approach zero, but the ratio is finite and 

approaches nw . That is, 

     
 

0

( )

cosh 2 1 cosh

2 ( )

n

n n

n n

w x

C a x b C x b

D


     


   
 



             
    

 (3.2-48)

But, except for a factor of C0, this is nothing but the residue of Eq. (3.2-21) at 
the nth pole. Not only have we found the eigenfunctions, but they are already 
multiplied by the coefficients needed to form the solution by summation except 
for an overall multiplicative constant of C0. In effect, in Eq. (3.2-48) we are 
computing, 

 

( )
( ) ( )

,
n

n n
n n n

Cf b
w x f x

f f


   (3.2-49)

where the bracketed expression in the denominator is the normalizatiintegral; 
that is, the integral of the square of the arbitrarily normalized eigenfunction, fn, 
over the array length and, 

    ( ) cosh 2 1 coshn n nf x C a x b C x b              (3.2-50)

The desired solution is therefore, 

 
0 0

( ) ( )
( , ) ( )

,
n n

n
n n nn n

f b f x
x s C w x C C

f f



 

  
 (3.2-51)

the well-known form of the solution as a sum of eigenfunctions. 
 
Thus, we see that the inverse Laplace transform of the eigenfunction sum 
representing the solution, ( , )x  , is just the sum of the residues of 

Eq. (3.2-21) multiplied by the Laplace transform kernel, se . This same 
property was evident in the treatment of the linear array with one oscillator 
detuned. It is the reason why Eqs. (3.1-28) and (3.1-51) are identical. Thus, in 
the present case, we can rest assured that, had we pursued the eigenfunction 
expansion approach to completion, the result would have been exactly that 
plotted in Fig. 3–5. The two approaches, the residue series based on the 
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eigenfunction sum and the residue series based on the particular integral and 
complementary function are not just equivalent, they are in fact identical. 

3.3 Beam-steering via End Detuning 

The beam-steering concept suggested by Liao et al. [28] involves 
antisymmetric detuning of the end oscillators of the linear array. The phase 
dynamics produced in this situation can be analyzed by means of the continuum 
model presented in Section 3.1. Beginning with Eq. (3.1-51), we may superpose 
two such solutions, one with b equal to minus a and the other with b equal to 

plus a and with C’s of opposite sign. Let, /T lockC     and, 

 ( ) ( ) ( )tune ref T Tx x a x a           (3.3-1) 

Then we obtain, 
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The steady-state phase distribution is then given by, 
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which can be summed in closed form to yield, 

  , T

lock

x x
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 (3.3-4) 

a linear phase distribution as indicated in Ref. [28]. 
 
The function given by Eq. (3.3-2) is plotted in Fig. 3-6 for end oscillators of a 
21-oscillator array step detuned at time zero by one half locking range. 
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Figure 3-7 shows the corresponding far-zone radiated field if the oscillator 
outputs are used to excite the elements of a half wavelength spaced array of 
isotropically radiating elements. It shows that the beam is steered from normal 
to the array initially, to 9.16 deg from normal corresponding to the steady-state 
inter-element phase difference of a half radian or 28.65 deg given by 

Eq. (3.3-4) when 1

2T lock    . The linearization of the sine functions in the 

full nonlinear theory introduces some error, but the qualitative behavior is well 
represented. In fact, the actual steady-state inter-element phase difference is 
30 deg resulting in beam-steering to 9.59 deg rather than the 9.16 deg given by 
the linearized theory.  
 
These plots depict the dynamic behavior for an interval just a little longer than 
one array time constant. 
 
We have shown that the beam-steering scheme suggested by Liao and York 
[28] is indeed treatable using the continuum model of coupled oscillators and 
that the phase transient ensuing from antisymmetric step detuning of the end 
oscillators produces a smoothly scanning beam in the far zone.    The maximum 
 

 

Fig. 3-6. Oscillator phases for a 21-oscillator linear array with end 
elements antisymmetrically detuned by half the locking range. 
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Fig. 3-7. Far-zone radiated field of a 21-element half 
wavelength spaced phased array excited by the 
oscillators of Fig. 3-6. 

 
scan angle is limited by the maximum permissible inter-oscillator phase 
difference. However, this can be mitigated by frequency multiplication of the 
oscillator outputs, which similarly multiplies the phase excursion [40]. 

3.4 Beam-steering via End Injection 

The beam-steering scheme proposed by Stephan [1] requires that each of the 
end oscillators be externally injected. The phase distribution across the array is 
then controlled by adjusting the relative phase of these injection signals by 
means of a phase shifter which thus controls the beam direction. The dynamic 
behavior in this situation can be analyzed using the continuum model, but the 
analysis presented in Section 3.2 for a single injection point cannot be directly 
applied. If, for example, we represent the solution as a sum of eigenfunctions, 
the eigenfunctions for two injection points differ from those for one. Similarly, 
if we approach the analysis using a particular integral and complementary 
function, both of these will differ from those for one injection point. Thus, it 
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will be necessary to reformulate the problem for two injection points from the 
beginning. 
To be definite, we assume that the oscillators of the array are all initially tuned 
to the reference frequency and are thus in-phase with each other and that two 
arbitrary oscillators in the array at x = b1 and x = b2 are injection locked to 
external signals which are initially in-phase with the oscillators of the array and 
that at time zero the phase of each of these signals is stepped to a finite constant 
value. The strengths of the two injection signals are denoted by B1 and B2, and 
the amplitude of the corresponding temporal step functions are denoted by p1 
and p2, respectively. Then, Eq. (3.2-3) becomes, 
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Laplace transformation results in, 
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Now, as shown previously, we may solve this equation either by means of an 
eigenfunction expansion or by means of superposition of a particular integral 
and a complementary function. In the former approach, the complexity arises in 
the normalization of the eigenfunctions, which involves integration of the 
square of the eigenfunctions of the array. In the latter, this is automatically 
taken care of by the residues. Thus, we elect to proceed with the latter approach 
as was done in [39]. 
 
The solution of (3.4-2) is postulated in the form, 

 1 2
1 2

s x b s x b x s x s
R LC e C e C e C e         (3.4-3) 

The four unknown constants are determined by the boundary conditions at the 
array ends, Eqs. (3.2-19) and (3.2-20), and the conditions on the derivatives at 
the injection points, Eq. (3.2-18). These four constraints yield four equations 
for the four unknowns in Eq. (3.4-3). The solution is, 
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where, 
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(3.4-5) 

Note that, if either of the B’s is zero, we recover Eqs. (3.2-21) and (3.2-22) for a 
single injection point. The form of the solution presented in Ref. [39] is slightly 
different but fully equivalent except for a typographical error in  

the  1 2sinh 2s b b x     term, which should have been 

 1 2sinh 2s b b x    . The pole locations on the negative real axis of the 

s plane are easily found by iterative bisection, and the inverse Laplace 
transform is then obtainable as a residue series. 
 
As a first example, we compute the solutions when unit strength injection 
signals are applied to the end oscillators of a 21-oscillator linear array, and at 
time zero their phase is step shifted antisymmetrically by one radian producing 
a phase difference of two radians. The dynamic behavior of the resulting phase 
distribution is shown in Fig. 3-8. 
 
An analytic expression for the steady-state solution for the phase can be 
obtained by application of the final value theorem to the transform (3.4-4) and 
(3.4-5). The result is, 
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For the case shown in Fig. 3-8, this expression reduces to, 
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Fig. 3-8. Phase dynamics for injected end elements. 

 

Notice that the steady-state phases of the injected oscillators at x = 10 and at  
x = –10 are not equal to the phases of the corresponding injection signals, plus 
and minus one radian. This is because the end oscillators are also injected by 
virtue of their coupling to their nearest neighbor in the array, and the phase of 
that neighbor differs from the phase of the external injection signal. Thus, the 
total injection of the end oscillator is not in phase with the external injection 
signal. However, as the strength of the injection signals is increased (large 
values of the B’s are used), the steady-state phase of the end oscillators will 
approach the phase of the corresponding injection signals because the signal 
from the corresponding neighboring oscillators becomes negligible. 
 
We again remark, as in Section 2.5, that the injection signals may be derived 
from the end oscillators of the array and used to inject the next to end 
oscillators to achieve beam-steering. The continuum model has been used to 
study this approach also [41]. 
 
Recall that the phase of the injection signals can differ from the initial phase of 

the injected oscillators by no more than π/2  radians for a maximum total phase 

difference of  π radians across the array. Thus, for strong injection, the beam-
steering angle is limited to a maximum of 
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 (3.4-8) 

where S is the electrical radiating element spacing in radians. In our present 
example, if the element spacing is a half wavelength so S = π, then the 
maximum steering angle is 2.73 deg, a disappointingly small angle. 
Fortunately, this problem is easily eliminated by gradually increasing the 
injection phase instead of stepping it. [1] That way, the phase difference 
between the injected oscillator and the injection signal can be maintained less 
than π/2 radians while the phase difference between the two injection signals is 
increased to a large value. The new limit on steering angle is now imposed by 
the requirement that the inter-oscillator phase difference be less than 
π/2 radians to maintain overall lock, a limitation also present in the detuning 
case. In the present example, this limits the steering angle to 30 degrees, a 
certainly more acceptable limit.  
 
As an example of this enhanced beam-steering scheme, we compute the 
response of the array of the previous example, but this time we gradually 
increase the injection-signal phase difference by convolving the step function 
with a temporal Gaussian. By virtue of the linearity of the p dependence of the 
equation, we may obtain the corresponding phase response by convolving the 
step response with the same Gaussian. Since the solution is a residue series, 
each term has simple exponential time dependence so the convolution can be 
carried out analytically term by term as described in detail in Ref. [39].  
 
Let the Gaussian be, 

 
2( 6) /100( )g e     (3.4-9) 

Then, setting p2 equal to 2  radians and p1 equal to 2  radians for a total 
phase difference of 4 radians, the expected steady-state beam-steering angle 
of a half wavelength spaced array will be 10.48 deg. The steady-state inter-
oscillator phase difference is 0.628 radians, for which the sine functions are 
approximated by their argument with about 7-percent accuracy. However, there 
are times during the transient at which this difference becomes as large as 
0.878 radians near the array ends. At these times, the sine functions are 
approximated with only 14-percent accuracy. Thus, the actual inter-oscillator 
phase difference will be somewhat larger. The phase behavior for these 
parameters and unit amplitude injection as predicted by the continuum model is 
shown in Fig. 3-9, and the corresponding far zone beam is shown in Fig. 3-10. 
 
We have shown the utility of the continuum model in analyzing the transient 
behavior of linear arrays of mutually injection locked oscillators with external 
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injection. Beam-steering of linear phased arrays of radiating elements can be 
achieved by externally injecting the end oscillators of the array and varying the 
relative phase if the injection signals as suggested by Stephan [1]. In order to 
achieve significant beam-steering angles via this approach, it is necessary to 
apply the phase shift to the injection signals gradually so as to avoid excessive 
inter-oscillator phase differences resulting in loss of lock. Here, as in the 
detuning approach, the steering angle range may be extended via frequency 
multiplication. 
 
 
 
 
 
 
 

 

Fig. 3-9. Phase dynamics for gradually changing  
injection phase. 
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Fig. 3-10. Far-zone radiated field of a 21-element 
half-wavelength-spaced phased array excited by 
the oscillators of Fig. 3-9.  

3.5 Conclusion 

In this chapter, the continuum model was shown to provide considerable 
physical insight into the general behavior of one-dimensional coupled oscillator 
arrays. It highlights the fact that the phase behavior is governed by the diffusion 
equation, and as a consequence, the transient response time is proportional to 
the square of the array length. In the next chapter we extend the continuum 
model to planar arrays. This broadens the nearest neighbor coupling concept to 
a wider range of topologies. That is, in the planar case we can envision not only 
the Cartesian scheme discussed in Chapter 2, in which each oscillator is 
coupled to its four nearest neighbours, but also hexagonal and triangular 
schemes in which each oscillator is coupled to three or six nearest neighbours, 
respectively. By means of the continuum model, we will see that these coupling 
topologies produce similar phase behavior but result in differing response times 
for the arrays. 
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Chapter 4  
The Continuum Model for Planar Arrays 

As described in Section 2.6, coupled oscillator arrays can be constructed in a 
planar geometry in which each oscillator is coupled to more than the two 
nearest neighbors of the linear array case. In that section a Cartesian coupling 
topology is described in which each oscillator is coupled to four nearest 
neighbors, and the array boundary is rectangular. In such an arrangement, the 
phase distributions suitable for beam-steering are obtainable either by detuning 
the edge oscillators [42] or by injecting them with external signals with 
adjustable phase [43]. Both of these approaches are treatable via the continuum 
model. Further generalizing the planar arrangement, one may use alternative 
coupling topologies such as the triangular lattice in which each oscillator is 
coupled to six nearest neighbors and the array boundary is triangular or the 
hexagonal lattice in which each oscillator is coupled to three nearest neighbors 
and the array boundary is again triangular [44] [45]. As will be shown in this 
chapter, these coupling topologies are also treatable using the continuum 
model. 

4.1 Cartesian Coupling in the Continuum Model without 
External Injection 

We begin with Eq. (2.6-3) for a 2M + 1 by 2N + 1 rectangular array with zero 
coupling phase replacing the discrete indices i and j with the continuous 
variables x and y, respectively; and we expand the phase function in a two-
dimensional Taylor series retaining terms to second order. By this process, we 
obtain the two-dimensional analog of Eq. (3.1-3); that is, 
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subject to Neumann boundary conditions at the array edges. (These boundary 
conditions may be ascertained via the fictitious additional oscillator artifice 
described in Section 3.1.) Averaging Eq. (4.1-2) over the two dimensional array 
and using the boundary conditions as in Eqs. (3.1-9) to (3.1-13), it can be 
shown that the ensemble frequency of the array is the average of the tuning 
(free running) frequencies of the oscillators. 
 
Laplace transformation of Eq. (4.1-2) with respect to the scaled time,  , results 
in, 
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where the tilde denotes the transformed function. As in the one-dimensional 
case, this equation can be solved by postulating a solution as a sum of 
eigenfunctions of the two-dimensional differential operator, the Laplacian 
operator, and solving for the coefficients of this expansion. As indicated in 
[42], the eigenfunctions are, 
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where the eigenvalues are, 
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and the normalization constants are, 
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where, 
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The general solution procedure follows that used in the case of the linear array. 
That is, we postulate a two dimensional delta function source to obtain the 
Green’s function as an expansion in the two dimensional eigenfunctions. Then, 
we integrate the product of this Green’s function and the actual source function 
over the array to obtain the phase distribution as an expansion in the 
eigenfunctions. This solution is presented in Ref. [42]. 
 
The Green’s function, ( , , , , )g x y x y s  , is a solution of, 
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The solution of this equation expressed as a sum of eigenfunctions is, 
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This Green’s function can then be multiplied by the detuning function, 

( , , )tune x y s  , and integrated over the array. The inverse Laplace transform 

is easily obtained as the sum of the residues at the poles as in the one 
dimensional case. Recall that the detuning of the oscillators required to produce 
a desired phase distribution across the array can be determined by merely 
substituting the desired phase distribution into Eq. (4.1-2). From the theory of 
uniformly spaced phased array antennas, the steady-state phase distribution 

necessary to produce a beam steered to spherical coordinate angles, 0 0,  , 

with the polar axis normal to the plane of the array, is 

    ( , )
2 2

yx
ss x y x a x a y b y b


        (4.1-10) 

where, 

 
0 0

0 0
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2 sin sin
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h

h

  


  


  

  
 (4.1-11) 

and h is the element spacing while  is the wavelength. Substituting into 
Eq. (4.1-2) with the time derivative set to zero to obtain the steady-state result, 
we find that, 

        tune x yx a x a y b y b                   (4.1-12) 

Thus, we discover that beam-steering requires detuning of only the edge 
oscillators and that the needed detuning is constant along each edge. This leads 
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us to seek dynamic solutions of Eq. (4.1-2) that result from a temporal step 
detuning of the edge oscillators that is constant along each edge. That is, we 
limit ourselves to detuning functions of the general form, 
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1 2
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(4.1-13) 

For step temporal dependence, the Laplace transform of the detuning is, 
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
 (4.1-14) 

The presence of the delta functions facilitates integration of the product of the 
Green’s function and the tuning function leading to the solution. 
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(4.1-15) 
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which is the solution for the special case of constant detuning along each edge 
of the array. In steady state, this reduces to Fourier series that can be summed 
in closed form resulting in, 
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(4.1-16) 

which clearly shows that symmetric detuning gives rise to parabolic steady-
state phase distributions whereas antisymmetric detuning results in linear 
steady-state phase distributions. In the antisymmetric case where 

1 2x x x  
 and 1 2y y y     , Eq. (4.1-16) reduces to 

Eq. (4.1-10). 
 
The phase distribution as function of time for beam-steering to 10 deg of polar 
angle at –110 deg of azimuth as given by Eq. (4.1-15) is shown in Fig. 4-1. 
Note that during the transient, the phase distribution is not planar, but in steady 
state at infinite time it becomes planar. Figure 4-2 shows the beam peak and  
3-dB contour of the far-zone radiated field of a half-wavelength spaced array of 
isotropic radiating elements excited by this two-dimensional oscillator array 
during the transient period at intervals of 10 inverse locking ranges. Because 
the phase during the transient is not planar, the directivity of the antenna is 
decreased. Assuming no losses, the gain is equal to this directivity. The gain is 
plotted as a function of time in Fig. 4-3 and compared with the ideal gain were 
the phase planar. The gain reduction observed in steady state relative to the 
initial gain is characteristic of phased-array antennas and is commonly referred 
to as “projected aperture loss” due to scanning. This term derives from the fact 
that for large arrays this loss is quite accurately approximated by the cosine of 
the beam-steering angle from normal as if the effective aperture of the array is 
reduced by projection in the direction of the beam peak. 
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where 

 
lock

injC






  (4.2-3) 

and 
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1 1 2 2
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( ) ( ) ( )
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 

    
    

 (4.2-4) 

so that Eq. (4.2-1) becomes, 
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 
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 (4.2-5) 

where for notational convenience, we have separated the injection phases 
associated with the P(x) and Q(x) distributions of injection signals into the two 

functions, ,inj x and ,inj y . Laplace transformation gives, 
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 
 (4.2-6) 

Following [43], we now determine the eigenfunctions of the differential 
operator, 

 
2 2

2 2
( ) ( )CP x CQ y

x y

 
  

 
 (4.2-7) 

subject to the Neumann boundary conditions at the array edges. Let the 
eigenfunctions be products of an x dependence and a y dependence; that is, 

( , ) ( , )x yX x s Y y s  so that by separation of variables we have,  

 
0

0
x

y

X CPX s X

Y CQY s Y

   
   

 (4.2-8) 

where the double primes indicate the second spatial derivative. Using 
Eq. (4.2-4), we obtain, 
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 (4.2-9) 

First, consider the x dependent part. As in [43] the x region is divided into three 
parts, and a solution is postulated in each of these ranges of x. That is, 
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 (4.2-10) 
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(4.2-11) 
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(4.2-12) 

This postulated solution satisfies the Neumann conditions at the array edges. 

The constants, 1A  and 2A  and the eigenvalues xs , are determined by 

imposing the slope discontinuities across the injection points, 1x  and 2x . That 
is, 
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 (4.2-13) 

These conditions lead to two homogeneous linear equations for 1A  and 2A  

which may be written in the form, 
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 (4.2-14) 

in which, 
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 (4.2-15) 
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 (4.2-17) 

 

22

2 2 2

sinh (2 1)

1 1
cosh cosh

2 2

x x

x x x

M s s a

C s a x s a x

   
                       

 (4.2-18) 

Setting the determinant of the two-by-two matrix in Eq. (4.2-14) equal to zero 
to permit a nontrivial solution for the A’s provides a transcendental equation for 
the eigenvalues, sx. The eigenvalues all lie on the negative real axis of the s 
plane and can thus be easily computed numerically by any one-dimensional 
root finding method, such as the Newton-Raphson method. [46] For each value 
of sx for which the determinant is zero, sm, we have either that, 
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or that, 
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 (4.2-20) 

These two possible solutions are, in fact, the same to within a multiplicative 
constant but this constant has no effect once the eigenfunctions are normalized. 
Thus, either Eq. (4.2-19) or (4.2-20) may be used and the ultimate result will be 
the same. Normalization of the eigenfunctions is, of course, accomplished by 
integrating their square over the range of x; that is, from –(2a + 1)/2 to 
(2a + 1)/2. This integration can be carried out giving a rather complicated but 
nevertheless closed-form result for the eigenfunction, X(x,sm). 
 
Proceeding in the same manner one may obtain a corresponding closed form 
expression for Y(y,sn) and the Green’s function, g~ , that satisfies, 
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 (4.2-21) 

may then be expressed in the form, 
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Now the solution to Eq. (4.2-6) is, 
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(4.2-23) 

where P and Q are given by Eq. (4.2-4). The presence of the Dirac delta 
functions in Eq. (4.2-4) facilitates the integration. Let, 
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so that the injection phase time dependence is a step function. The inverse 
Laplace transform is then computable as a sum of the residues, Rmn(x,y), at the 
poles in Eq. (4.2-22) where s = sm + sn. Thus, the solution takes the form, 
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

 

     (4.2-25) 

Note that while there is a pole at s = 0, its residue is zero so Eq. (4.2-22) does 
not have a double pole at s = 0 and the inverse Laplace transform does not have 
a term linear in time. Therefore, there is no frequency shift as there was in the 
case of perimeter detuning. Because there is no detuning, the ensemble 
frequency of the array does not change. The injection frequencies are all equal 
to this ensemble frequency so all oscillation remains at this same frequency. 
Were the injection frequency different from the ensemble frequency, the 
steady-state oscillation frequency would be equal to the injection frequency and 
a term linear in time would appear in the solution. 
 
The desired steady-state solution (for infinite time) is a planar phase 
distribution. We can determine the injection phases needed to produce that 
steady state directly from Eq. (4.2-5). Let us use uniform-strength injection 
signals so that, 

 2 1 2 1x x y y injC C C C C     (4.2-26) 

At infinite time, Eq. (4.2-5) becomes, 
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       

(4.2-27) 

The right side of this equation is zero except on the extended perimeter of a 
rectangle defined by, 

     1 2 1 2 0x x x x y y y y         (4.2-28) 

Thus, the left side must also be zero except on these four lines. The solution we 
seek is linear in x and y, and will have slope discontinuities on the rectangle 
defined by Eq. (4.2-28). The slope of the phase surface will be set by the 
desired beam direction as in Eq. (4.1-11). Thus, 
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yx
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            (4.2-29) 

Substituting Eq. (4.2-29) into Eq. (4.2-27) , we obtain, 
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(4.2-30) 

so that the required injection phases may be written, 
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 (4.2-31) 
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 (4.2-32) 

For these injection phases, at late times, Eq. (4.2-25) is very slowly converging. 
However, we may remedy this as follows. If the Fourier series for the steady-
state solution Eq. (4.2-29) is subtracted from the solution Eq. (4.2-25), the 
resulting series converges rapidly for late times. Then to obtain the complete 
late time solution one merely adds the steady-state solution Eq. (4.2-29) to this 
rapidly converging series. This solution conveniently complements the form 
given by Eq. (4.2-25) that converges rapidly for early times. (Convergence 
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acceleration of this sort may also be applied in steering via detuning and in the 
one-dimensional cases treated in Chapter 3 if desired.) 
 

If injC  is large (strong injection), the last two terms in each of Eqs. (4.2-31) 

and (4.2-32) are negligible, and the injection phase equals the desired steady-
state phase at the injection points as in the one-dimensional case. This strong 
injection assumption was implicit in the analyses presented in Refs. [39] and 
[43] because the small terms were neglected in accelerating the series, but this 
fact was not explicitly noted. 
 
As an example, the solution given by Eq. (4.2-25) was computed for a 21-by-21 
element array with injection signals of strength parameter C equal to 0.7 on the 
perimeter phased to steer the beam 10 deg from normal at –110 deg of azimuth. 
This requires that we apply the phase shift gradually as discussed in 
Section 3.4. We choose to do this linearly over an interval of 50 inverse locking 
ranges, after which the injection phases become constant. The solution for 
linear-injection phase can be obtained from that for constant-injection phase by 
integration with respect to time or division by s in the Laplace domain. The 
phase distributions across the array at four instants of time are shown in  
Fig. 4-5. Figure. 4-6 shows the corresponding trajectory of the beam peak and 
3-dB contour during the beam-steering transient at intervals of 10 inverse 
locking ranges. Here again, as shown in Fig. 4-7, because of the phase 
aberration (deviation from planarity) across the aperture during the transient, 
the directivity of the antenna decreases, but this loss is recovered in steady state 
when the phase distribution again becomes planar. The so-called “projected 
aperture loss” discussed in Section 4.1 is also clearly visible. Finally, Fig. 4-8 
shows the result of applying a sequence of injection phases resulting in 
sequential beam-steering to several angles.  

4.3 Non-Cartesian Coupling Topologies 

The planar arrays presented so far have made use of a Cartesian coupling 
topology in which oscillators on a Cartesian lattice were coupled to four nearest 
neighbors. However, this is by no means the only coupling topology leading to 
planar arrays that admit beam-steering. In this section we treat, via the 
continuum formulation, two other possible topologies, triangular (Fig. 4-9) and 
hexagonal (Fig. 4-10). 
 
In the triangular case, shown in Fig. 4-9, the unit cells are hexagons and each 
interior oscillator is coupled to six nearest neighbors. [44] The oscillators are 
identified with pairs of integer values of the coordinates p and q ranging from 
1 to N. 
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Fig. 4-8. Sequential bream-steering (τ varies from 0 to 400 in 
increments of 10). (Reprinted from [43] with permission, ©2001 
IEEE.) 

 

Using these coordinates, the discrete model yields the system of differential 
equations, 
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 (4.3-1) 
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Fig. 4-9. Oscillators coupled on an equilateral triangular lattice. (Reprinted with 

permission from [44], ©2004 IEEE.) 

 

 
Fig. 4-10. Oscillators coupled on a hexagonal lattice. (Reprinted with permission 

from [44], ©2004 IEEE.) 
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where we have assumed that the coupling phases are multiples of 2π. We 
remark that this system of nonlinear equations can be solved numerically to 
yield the full nonlinear solution for the dynamic behavior of the phase 
distribution. However, as mentioned earlier, the analytic solution of the 
linearized formulation provides more insight. Linearizing and expanding in 
Taylor series to second order leads to, 

 
2 2 2

2 2
2 ( , )tune p q

p qp q
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 (4.3-2) 

where, as before, lockt   and ( ) /tune tune ref lock      . 

Transforming to Cartesian coordinates, x and y, we arrive at, 
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 (4.3-3) 

and Ttri = (3/2)τ. This equation is very much like Eq. (4.1-2) for the Cartesian 
case except for the scaling of the time and the detuning. 
 
In the hexagonal case, shown in Fig. 4-10, the unit cells ar triangular and each 
interior oscillator is coupled to three nearest neighbors [44]. Following a 
procedure analogous to that presented above for the triangular case leads to,  
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 (4.3-4) 

and Thex = τ/4. Again, this equation is very much like Eq. (4.1-2) for the 
Cartesian case except for the scaling of the time and the detuning. 
 
Finite arrays using the triangular and hexagonal coupling schemes may be 
constructed with equilateral triangular boundaries, and the boundary conditions 
on the phase will again be of the Neumann type. Just as was the case for 
rectangular arrays, if the oscillators on the triangular boundary are detuned, the 
steady-state interior phases are governed by Laplace’s equation, and planar 
distributions are an obtainable special case. The desired steady-state solution to 
produce a beam steered to spherical coordinate angles, 0 0( , )  , is, 

 0 0 0 0
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d N
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(4.3-5) 
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where d is the separation of the radiating elements in the y coordinate for fixed 
x, and  is the wavelength. Substituting this desired steady-state phase 
distribution, Eq. (4.3-5), into the partial differential equations, Eqs. (4.3-3) and 
(4.3-4), gives the required detuning of the perimeter oscillators. 
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 (4.3-6) 

where A is the length of a side of the array, Nd , and  is 1/ 3  for the 

triangular coupling and 3  for hexagonal coupling. Note that the sum of these 
detunings is zero for all steering angles so that the ensemble frequency of the 
array is unchanged. 
 
At this point we note for later reference that it is possible to obtain the needed 
tuning for a given planar steady-state phase distribution from the full nonlinear 
formulation Eq. (4.3-1). Inserting the desired phase Eq. (4.3-5) into Eq. (4.3-1) 
and evaluating on the boundary of the triangle we obtain, 

 

0 03

0 0

0 03

0 0

0 03/2

1 2
sin sin cos

63

1 2
sin sin cos

23

1 2
sin sin cos

63

1 2
sin sin cos

23

1 2 5
sin sin cos

3

tune x y

tune x y

tune x A

d

d

d

d

d

  


  


  


  


  








        
       
        
       

  

0 0

6

1 2 5
sin sin cos

63

d



  


  
    

       

(4.3-7) 
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which reduces to Eq. (4.3-6) for small θ0;. that is, for small inter-oscillator 
phase differences when the linearization is accurate. Note that the sum of these 
detunings is exactly zero regardless of steering angle. 
 
We propose that the solutions of the partial differential equations, Eq. (4.3-3) 
and Eq. (4.3-4), be obtained as series of the eigenfunctions of the differential 
operators subject to Neumann boundary conditions on the triangular boundary 
of the arrays. These eigenfunctions have been studied in the context of 
waveguides of triangular cross section and are thus well known. They are 
expressed as sums of three products of two of the trigonometric functions, sine 
and cosine. These eigenfunctions and their useful properties are summarized in 
the appendix of Ref. [44].   
 
We wish to solve, 
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 (4.3-8) 

with the detuning function given by Eq. (4.3-6), and we will assume that the 
detuning is a step function in time. Laplace transformation of Eq. (4.3-8) gives, 
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    (4.3-9) 

The solution will be of the form, 

  ( )( , , ) ( , ) 1 ( )mnTi
mn mn

mn

x y C H x y e u T     (4.3-10) 

where the H functions are the normalized eigenfunctions on the triangle with 
the superscript denoting even or odd symmetry of the function in y. Thus, the 
unknown coefficients may be found from the desired steady-state phase 
distribution, Eq. (4.3-5), by setting T to infinity in Eq. (4.3-10) and setting the 
resulting sum equal to the steady-state solution. Then, the orthogonality of the 
eigenfunctions permits us to find the coefficients, Cmn. This procedure is 
completely equivalent to expressing the Green’s function as a sum of the 
eigenfunctions and then integrating the product of the Green’s function and the 
desired steady-state phase distribution as was done in the Cartesian case. 
 
As was done in Ref. [44], we now provide a number of computed examples 
demonstrating the dynamic behavior obtained via the various formulations of 
the problem; that is, the nonlinear model, the linearized discrete model, and the 
continuum model for both the triangular and hexagonal coupling topologies. 
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We begin with triangular coupling with N = 28 resulting in a 435-oscillator 
array. We completely preclude the appearance of grating lobes in the visible 
region by selecting the radiating element spacing, d, to be / 3 . We note, 
however, that, because the maximum permissible phase difference between 

coupled oscillators is 90 deg, the element spacing can be as large as 3/2  
without the appearance of visible grating lobes. The array size, A, in the 
continuum model is taken to be ( 1)( 2)d N N   instead of Nd because that makes 

the array area equal to the sum of the unit cell areas, resulting in a more 
accurate directivity. Figure 4-11 shows the aperture phase distribution for four 
instants of time computed using the continuum model with perimeter detuning 
given by Eq. (4.3-6) and unit step temporal dependence and steady-state beam-
pointing angles θ0, φ0) = 10 deg, 45 deg). Note the rather severe phase 
aberration at time equal to 10 inverse locking ranges. Figure 4-12 shows the 
directivity (gain in the absence of loss) computed by pattern integration as a 
function of time during the beam-steering transient. The solid curve is the result 
of planar phase distribution, and “projected aperture loss” is again evident. In 
the left plot, the continuum result is compared with the full nonlinear solution 
obtained numerically, and in the right plot the numerical solution of the 
linearized discrete model is compared with the nonlinear solution. Note that the 
dip in gain at about 10 inverse locking ranges correlates with the severe 
aberration at that time in Fig. 4-11. The nonlinear solution used Eq. (4.3-7) 
while the linear ones used Eq. (4.3-6) as detuning. Because the angle from 
normal is only 10 deg, the error in the linear approximation of the sine 
functions is less than 6.5 percent, and the linearized and continuum results 
agree well with the full nonlinear result taken to be the correct behavior. 
Figure 4-13 shows the trajectory of the beam peak and 3-dB contour during the 
beam-steering transient as computed via the three formulations, and, as should 
be expected for this small steering angle, they agree very well. 
 
Now, if the final beam angle is increased from 10 deg to 25 deg, the error in the 
linear approximation of the sine function is almost 49 percent, and the 
discrepancy between the linear and nonlinear results in Fig. 4-14 show the 
impact of this in that the gain error at the dip is about 2 dB, and the curves are 
slightly different in shape. However, there is still qualitative agreement between 
the linear and nonlinear results.  
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Now let us revisit in more detail the matter of the steady-state phase 
distribution in a hexagonally coupled array. We begin by formulating the full 
nonlinear set of differential equations for such an array. Following Pogorzelski 
[45], we write for each oscillator, 

 

,

, 3 3
, ,

2 2 2 2

sin( ) sin( ) sin( )

xy
tune xy ref lock

xy x y xy xy
x y x y

t

   


  

     
   


  


 
      
 
 

 (4.3-12)

in which the coupling phase is assumed to be a multiple of 2π and 3/1 , the 
spacing between coupled oscillators. We have particular interest in the steady 
state so we set the time derivative equal to zero and get, 
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(4.3-13)

Recall that the desired phase distribution is given by Eq. (4.3-5). Substituting 
Eq. (4.3-5) into Eq. (4.3-13), we obtain for the non-perimeter oscillators, 

  0 0 0
2 2

sin cos sin cos sin cos 0
3 3

D D D
                             

  

  (4.3-14) 

where 0
2

sin
3

d
D

 


 . Now Eq. (4.3-14) can be rewritten in the form, 

  0 0 0
2 2

sin cos sin cos sin cos 0
2 2 3 2 3

D D D                            
(4.3-15) 

and it is clear that for small D; that is, small θ0, this equation holds 

approximately true. Moreover, it holds exactly true for 0 6 3

n    for integer 
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values of n. However, it does not hold true for arbitrary D and 0 . Thus, we 

conclude that no possible detuning of the perimeter oscillators can result in a 

planar aperture distribution for azimuth angles other than 0 6 3

n    . 

 
Pogorzelski noted, however, that if one postulates a phase distribution of the 
form, 

 

0 0 0 0

2
( , )

sin cos sin sin
3

xy

d
x y

N
x y



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 

  
      
  

(4.3-16) 

in which the ambiguous sign denotes alternation from one oscillator to its 
neighbor, an exact solution for the perimeter detuning that will produce it is 

possible provided xy is set to the proper value. Substituting Eq. (4.3-16) into 

Eq. (4.3-13) yields for the non-perimeter oscillators, 
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(4.3-17) 

and solving for xy , we obtain, 

 
11

tan
2xy

Num

Den
      

 
 (4.3-18) 

where, 
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sin cos sin cos

3

2
sin cos
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Num D D
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 (4.3-19) 
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 (4.3-20) 

Finally substituting Eq. (4.3-16) with Eq. (4.3-18) into Eq. (4.3-13) yields the 
perimeter detuning required to produce this non-planar phase distribution. The 
result is, 
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(4.3-21) 

for the edge elements and 
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(4.3-22) 

for the corner elements. Because of Eq. (4.3-17), the sum of these detunings is 
always zero so that the ensemble frequency of the array remains constant. 
Figure 4-21 shows a typical phase distribution for such an array. Figure 4-21(a) 
shows the phase distribution, and Fig. 4-21(b) shows the deviation, ±4.67 deg, 
from planar. 
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not the case. The power that would have been radiated by a planar phase 
distribution is partially shifted by the phase alternation into the invisible region. 
Thus, this part is not radiated, and the power input to the antenna is decreased 
by the same amount. As a result, the directivity is unaffected by the phase 
alternation! The only circumstance resulting in a decrease in the gain is when 
the combination of element spacing and steering angle results in one or more 
grating lobes in the visible region. Analytical estimation of this effect is 
discussed in Ref. [45]. 
 
Finally, we remark that a planar steady-state phase distribution is of course 
attainable if one is willing to detune all of the oscillators in the hexagonally 
coupled array. This would require that alternate oscillators be detuned in 
opposite directions in frequency by an amount that depends on the scan angle. 

4.4 Conclusion 

In this chapter we have discussed a variety of coupling topologies for planar 
arrays, and we have shown that the continuum model can be used to describe 
the dynamic behavior of the phase distribution over these arrays. By this means 
we have demonstrated that beam-steering can be accomplished by detuning the 
perimeter oscillators or in the Cartesian case by injection locking them to 
external signals. Beam-steering by external injection in the triangular case was 
not treated but appears to be possible, though the analysis may become 
somewhat more challenging. 
 
In the next chapter we point out that all of the preceding results are 
fundamentally non-causal in that the response begins immediately upon 
application of the detuning or phase shift of the external locking signal 
regardless of the physical separation of the cause and effect. A modified 
formulation is proposed to render the solutions causal. 
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Chapter 5  
Causality and Coupling Delay 

In the analysis presented in the preceding chapters, it was tacitly assumed that 
the coupling was implemented using nondispersive transmission lines 
characterized by a phase shift of   generally taken to be an integral multiple of 
2  (plus   in the case of series resonant oscillators). However, the theory 
made no provision for the transit time through the coupling line. As a result, the 
solutions were non-causal. That is, each oscillator in the array responded 
immediately upon changing the tuning of an oscillator or the phase of an 
injection signal no matter what the distance between the excitation and the 
response. This is characteristic of the diffusion equation that arises from the 
continuum model. Heat conduction analyzed in this manner is similarly non-
causal. Following Pogorzelski [47], we propose to remedy this situation by 
explicitly introducing time delay in the coupling. This time delay is determined 
by the physical length of the line and its propagation velocity.  

5.1 Coupling Delay 

A nondispersive transmission line introduces a pure time delay in that the signal 
applied at one end of the line is duplicated at the other end after the delay time. 
At that point the signal is reflected if the termination is not matched to the line 
impedance. For our analysis we will assume a matched termination. Now, if the 
analysis is done via Laplace transformation of the applied signal, the transform 

of the delayed signal is merely the original transform multiplied by sde  where 
d is the delay time and s is the transform variable conjugate to the time variable.  
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Suppose now that we envision an array of coupled oscillators and take the 
reference frequency to be the initial ensemble frequency of the array. We define 
the coupling phase delay using this reference frequency. That is, 

 
ref

ref
p

d
v


 


 (5.1-1) 

where  is the physical length of the line and vp is the phase velocity. The line 
length is chosen so that the coupling phase is a multiple of 2 (plus   in the 
case of series resonant oscillators). Now, using the reference frequency, we 
define the phase, , of the phasor signal voltage, V, by 

 ( )( ) j tV A t e   (5.1-2) 

where, 

 ( ) ( )reft t t     (5.1-3) 

Recall from Chapter 1 that V can be written in the form, 
 

 [ ( ) ln ( )]j t j A tV e    (5.1-4) 

so that, 

  Im ln( ) ( )refV t t    (5.1-5) 

Crucial to our analysis is the fact that any function of the input signal will be 
delayed by the nondispersive transmission line in the same manner as the signal 
itself so that the Laplace transform of any function of the input signal 

multiplied by sde  will be the transform of the same function delayed. Thus, 
we may apply this delay factor to the Laplace transform of ( )t given by 
Eq. (5.1-5) to obtain the transform of the phase delayed by the coupling line. 
This forms the basis of our introduction of coupling delay into the analysis of 
coupled oscillator arrays. 
 
The following question regarding this treatment of time delay was posed by a 
particularly astute student so we thought it appropriate to answer it here as you 
may be similarly puzzled. Slightly paraphrased, the student asked that we 
consider a linear array in which one of the oscillators is detuned upward, thus 
changing the ensemble frequency of the array. “Is it not then true,” he asked, 
“that the coupling phase produced by coupling lines of fixed length would be 
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changed and would thus be no longer a multiple of 2 ?” To clarify this point, 
recall that, assuming that the reference frequency is held constant, the solution 
for the time evolution of the oscillator phases will contain terms linear in time 
representing the shift in ensemble frequency (as in Eq. (3.1-51)). The slope of 
this linear dependence relates the time delay to an equivalent phase shift 
through the transmission line. So, for example, if the phase at the input end of 
the line is, 

 ( )in t t   (5.1-6) 

then the phase at the output end of the line is, 

 ( ) ( ) ( ) ( )out in int t d t d t d           (5.1-7) 

an effective coupling phase delay of d . Conversely, due to the linear time 
dependence, the new ensemble frequency will be  

 ens ref     (5.1-8) 

and the effective coupling phase will be, 

  ens
eff ens ref

p
d d d

v

            


 (5.1-9) 

So, we conclude that indeed the coupling phase has changed but, that change is 
embodied in the linear time dependence of the phases arising from the change 
in ensemble frequency and need not be explicitly imposed on the formulation 
by a change in the   parameter. 

5.2 The Discrete Model with Coupling Delay 

Returning to the linearized discrete model of a linear array of (2N + 1) 
oscillators discussed in Section 2.2 we have, 
 

  0 1 12i
i ref lock i i i

d

dt


             (5.2-1) 

  0 1
N

N ref lock N N
d

dt


    

        (5.2-2) 

  0 1
N

N ref lock N N
d

dt

           (5.2-3) 
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Laplace transformation with respect to lockt   results in, 

  , 1 12i tune i i i is             (5.2-4) 

  1N tune N Ns            (5.2-5) 

  1N tune N Ns          (5.2-6) 

and, introducing the coupling delay factors for delay of d inverse locking 
ranges, we have, 

  , 1 12sd sd
i tune i i i is e e    

          (5.2-7) 

  1
sd

N tune N Ns e  
          (5.2-8) 

  1
sd

N tune N Ns e   
       (5.2-9) 

Rearranging yields, 

 1 1 ,( 2)sd sd
i i i tune ie s e   
         (5.2-10) 

 1 ,( 1)sd
N N tune Ne s 

         (5.2-11) 

 1 ,( 1) sd
N N tune Ns e  

       (5.2-12) 

These equations may be written compactly in matrix form as, 

 [ [ ] [ ]][ ] [ ]tunes I M     (5.2-13) 

in which [M] is given by, 
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 

 
  



 

 (5.2-14) 

We now have two alternative approaches available for solving this system of 
linear equations. We can expand the solution as a sum of eigenvectors of the 
matrix [I]s – [M], or we can solve the system via Cramer’s rule. Following 
Pogorzelski [47], we choose the Cramer’s rule approach. The result is, 

 
  

 
0 1 2 0 1 2

,2 2
0 2 1 0 2 2 2 3

( 1)
2

N n N n N n N nn n
i tune j

N N N

a U bU a U bU

b a U a bU b U
     

       

  

  
   
  
 

  

  (5.2-15) 

where U is the Chebyshev polynomial of the second kind of argument a/(2b), 

0 1a s  , 2a s  ,and sdb e  . Now, U can be written in the form, 

 

  1

1

sin 1 cos
2

( )
2

sin cos
2

m

a
m

ba
U

b a

b





       
  

    

 (5.2-16)  

and defining Q to be, 

 
1 1 2 2cos sec

2 1
2 2

a b
i h

b a a a
Q e e

b b

         
            

 
(5.2-17) 

U becomes, 

 

    ( 1) 1
1

2
( ) ( 1)
2

2 1
2

m m
m

m
Q Qa

U
b a

b

  
 

 
   
 

 
(5.2-18) 

Substituting Eq. (5.2-18) into Eq. (5.2-15) yields, 



142 Chapter 5 

 

 
  

 
(2 1) (2 1)
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2 2(2 1)2 2 14

n n n nN N
tune j

i N

Q RQ Q Q RQ Q

R Qa b


       

 

    
   


 (5.2-19)

in which, 

 
1

Q b
R

bQ





 (5.2-20) 

In Eq. (5.2-19), n> is the greater of i and j while n< is the lesser. The form of 
Eq. (5.2-19) is suggestive of an image series produced by reflections at the ends 
of the array, where Q plays the role of a “propagator.” The series may be 
obtained by expanding in powers of the reflection coefficient, R. When R is set 
equal to zero, we obtain the solution for an infinite array, 

 
,

2 24

tune j n n
i Q Q

a b
  





  (5.2-21) 

or, using Eq. (5.2-17), 

 

1 2
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2,

2 2( 2) 4
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i j h
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i sd
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s e
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  

   
 






 


  (5.2-22) 

Consider now an example of a 17-element array with coupling delay of two 
inverse locking ranges (ILRs) and step detuning of the center oscillator by one 
locking range. The inverse Laplace transform of Eq. (5.2-19) may be easily 

obtained by expanding it in powers of sdb e  . Each term of the resulting 
series will be of the form, 

 1

( )

( 2)

sd p

p

C e

s s




 (5.2-23) 

which has a known inverse transform, 

 2

0
!

pd
pC
e d

p


 


   (5.2-24) 

The solution is plotted in Fig. 5-1. This solution exhibits several easily 
understandable features. First, the center oscillator is the only one detuned, and 
it is detuned at time zero. Thus, its nearest neighbors on either side do not 
change phase until one delay time has elapsed, giving the influence of the 
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0

( , )
( )

( , ) 2 ( , ) ( , )

ref

lock

d x t
x

dt
x x t d x t x x t d

  

   

 

         
 (5.3-1) 

Introducing the scaled time, τ, and the detuning function, ΔΩtune, as before, 
Laplace transformation leads to, 

 
( , )

( , ) 2 ( , ) ( , )

tune

sd sd

s x s

x x s e x t x x s e



   



      



  
(5.3-2) 

Then, expanding in Taylor series to second order in x , 

  
2

2

( , )
2 2 ( , ) ( , )sd sd

tune
d x s

s e x s x s e
dx

      
   (5.3-3) 

the analog of Eq. (3.1-4). Setting, 

 
1

( , ) ( )tune x s x y
s
    (5.3-4) 

corresponding to step detuning of the oscillator at x = y at time zero by one 
locking range, we obtain the Green’s function, 1

~g , as the differential equation 
solution, 

 
( 2) 2

1( , , )
2 ( 2) 2

sdx y s e
sd

sd

e
g s x y e

s s e

   


 

  (5.3-5) 

At this point, a serious difficulty is encountered with respect to causality. If one 
were to compute numerically the inverse Laplace transform integral for 
Eq. (5.3-5), one would find that the influence of the nearest neighbors of the 
detuned oscillator begins at time d. This violates causality because, as pointed 
out in Section 5.2, this influence must not begin until time 2d, the round trip 
transit time between the detuned oscillator and its neighbors. Following 
Pogorzelski [48], we begin our study of this apparent paradox by comparing the 
denominator of Eq. (5.3-5) with that of Eq. (5.2-22) known to be causal. That 
is, the denominator of Eq. (5.2-22) is, 

 2 2( 2) 4 ( 2) 2 ( 2) 2sd sd sds e s e s e         (5.3-6) 

while the denominator of Eq. (5.3-5) is, 
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 ( 2) 2 sds e   (5.3-7) 

Thus, the two solutions, the causal one Eq. (5.2-22), and the present one, 
Eq. (5.3-5), have different branch points in the complex s plane. Solution 

Eq. (5.3-5) has branch points where 2 2 sds e   whereas the causal solution 

Eq. (5.2-22) has these plus additional branch points where 2 2 sds e   . 
Now, computing the inverse Laplace transform via integration on the 
Bromwich contour will involve deformation of the contour around the branch 
cuts associated with these branch points. Thus, it becomes clear that the 
solution Eq. (5.3-5) will be missing the contribution from half of the branch 
cuts in the causal solution Eq. (5.2-22). As shown in [48], this is the root of the 
causality difficulty. 
 
Why do we find ourselves in this situation? Our approach was successful in the 
absence of coupling delay, but something went wrong when delay was 
included. This can be understood by looking at the nature of the solutions 
corresponding to the two sets of branch cuts shown in Fig. 5-5 where the dots 
correspond to Eq. (5.3-7) and the circles to the remaining branch points of the 
complete set, Eq. (5.3-6).  
 
We have assumed in deriving the partial differential equation Eq. (5.3-3) that 
the solution will be smoothly varying in the interior of the array so that the 
inter-oscillator phase differences are small validating the linearization of the 
sine functions in Adler’s formalism. Thus, in the interior of the array where the 
detuning is zero, the second derivative will be small and 

  2 2sds e   (5.3-8) 

 
corresponding to the dot branch points in Fig. 5-5. However, we can switch 

from the dots to the circles by replacing sde  with sde . Doing this in Eq. 
(5.3-2) we obtain, 
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    (5.3-9) 
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and expand in Taylor series to obtain, 

  
2

2
22

( , )
2 2 ( , ) ( , )sd sd
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d x s

s e x s x s e
dx

       
  (5.3-12) 

corresponding to the circle type branch points. Thus, it becomes clear that our 
assumption of slowly varying phase, implicit in the use of the Taylor series, 
eliminated the solutions associated with the circle type branch points. The 
Green’s function corresponding to these branch points is, 

 
( 2) 2
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2( , , )

2 ( 2) 2
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sd j x y
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e
g s x y e

sj s e


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 


 
  (5.3-13) 

and the causal Green’s function is a linear combination of Eq. (5.3-5) and 
Eq. (5.3-13); that is, 
 

 
2 ( 2) 2 ( 2)

( )( , , )
2 2 ( 2) 2 2 ( 2)

sd sdj x y s e j x y s e
sd sd j x y

sd sd

e e
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
       

  
   

  (5.3-14) 

where A + B = 1 so that the proper detuning function is generated on the right 
side of the differential equation. It remains to determine A and B. 
 
For large values of s, far from the origin of the s plane, we can obtain a fairly 
accurate estimate of the branch point locations. These locations are defined by, 

  2 2 sds e   (5.3-15) 

where the upper sign corresponds to the dots and the lower one to the circles. 
Inserting s j   , 

  2 2 d j dj e e        
 

(5.3-16) 

For 2   , 

  /22 j dde e      (5.3-17) 

Thus, 
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 2
2pd p
    (5.3-18) 

and we have 
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 (5.3-19) 

for the dots and 

 
1

2
2m m

d
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 (5.3-20) 

for the circles. Now, from Eq. (5.3-17), 
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so, 
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 (5.3-22) 

for p = m or n. Armed with these approximate branch point locations, we are in 
a position to estimate ( , , ) /g y y   , the time derivative of the phase of the 
detuned oscillator. This will exhibit the temporal discontinuities associated with 
the arrival of influence from neighboring oscillators and highlight the causal 
behavior. First, from Eq. (5.3-14), 

 ( , , )
2 2 ( 2) 2 2 ( 2)

sd sd

sd sd

e e
sg s y y A B

j s e j s e
 

   
  (5.3-23) 

Now, envisioning the inverse transform as a sum of branch cut integrals, we 
recognize that the result will be approximately, 
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(5.3-24) 

Here we have used the s’s given by Eq. (5.3-19) through Eq. (5.3-22) and, 
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  (5.3-25) 

The expression on the right side of Eq. (5.3-24) is a Fourier series except for 
the time dependence of the coefficients. Recall that this series was obtained 
using the large s approximation so only the high-order terms are accurate. The 
high-order terms of this series govern the discontinuities in the time 

dependence. Now, looking at Eq. (5.3-24) for d , 
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(5.3-26) 

and we see that if A = B, the high-order portions of the two series will cancel 

term by term so that there will be no discontinuity at d . However, at 

2d   we have, 
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(5.3-27) 

and the high-order terms no longer cancel but add. Thus, there will be a 

discontinuity at 2d  . This is to be expected because it allows for one round-
trip interval to the nearest neighbors from the time when the oscillator is 
detuned. We conclude that the discontinuities will occur at the proper times for 
causality to be satisfied only if A = B. From this condition and the fact that  
A + B = 1, we determine that both A and B are equal to ½, and from 
Eq. (5.3-14) the causal Green’s function is, 
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As shown in Ref. [48], a better approximation to the exact discrete model 
solution may be obtained from the form, 
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with optimal selection of the constant, C. From Ref. [48], the optimal value of 
C is, 

 
2 2

C


  (5.3-30) 

The temporal behavior of the phase of each oscillator in the array is most easily 
seen by plotting the time derivative of the phase because this makes more 
obvious the times at which the influences from the neighboring oscillators 
arrive. Thus, in Figs. 5-6 through 5-10, we compare the result of the 
approximate continuum formula Eq. (5.3-29) in solid lines with that of the 
discrete model Eq. (5.2-22) in dashed lines considered to be the exact result. 
The coupling delay in this example is two inverse locking ranges (ILRs). The 
fine scale wiggles shown in the inset of Fig. 5-6 arise from the truncation of the 
series of branch cut integrals to a finite number of terms. 
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Notice that the more distant the oscillator from the detuned one, the later the 
response by exactly two inverse locking ranges (one delay time) per oscillator. 
Moreover, the influence of the nearest neighbors of the detuned oscillator does 
not impact that oscillator until four inverse locking ranges (two delay times) 
have elapsed. Similar delays of two delay times are visible in all of the curves 
corresponding to round-trip delays between the oscillators. All of these 
behaviors are consistent with a causal solution. 
 
We return now to the previous analysis of the location of the branch points to 
highlight two properties that may not have been obvious in the earlier 
discussion. First, as the delay time is decreased, there is a critical value at 
which the distribution of the branch points changes character. If the delay time 
is equal to 0.139232271 inverse locking ranges the smallest circle type branch 
points merge at  = –9.18224297. For delays less than that, say for a delay of 
0.12 inverse locking ranges, the branch point locations are as shown in  
Fig. 5-11.  
 
Second, as the delay approaches zero, all of the branch points move to infinity 
except two, one at the origin and one at –4. Thus, in this zero-delay limit we 
have from Eq. (5.2-22), taken to be the exact solution, that, 

 ( , , )
( 4)

x y se
g s x y

s s s

 




  (5.3-31) 

which, perhaps surprisingly, does not agree with Eq. (3.1-6). It does agree in 
the limit of small s so one can expect that the time functions will agree for late 
times, but there will be a difference at early times. When x = y; that is, for the 
detuned oscillator, the inverse Laplace transforms of Eqs. (3.1-6) and (5.3-31) 
can be computed analytically, and we thus obtain from Eq. (5.3-31), 

    2
0 1( , , ) 2 2g y y e I I        (5.3-32) 

where In is the Bessel function of imaginary argument and from Eq. (3.1-6), 

 ( , , )g y y
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  (5.3-33) 
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 (5.4-3) 

We may now follow the procedure of Section 3.1 to express the finite-array 
Green’s function as a sum of the eigenfunctions of the differential operator in 
this equation. In order to do this we will need the boundary conditions at the 
ends of the array. Recall that the reflection coefficient at the array ends was 
given by Eq. (5.2-20) which is a fairly complicated function of s. However, 
following Pogorzelski [49], we may simplify matters by assuming the addition 
of half-length coupling lines at the ends of the array. If this is done, the 
reflection coefficient becomes unity because the array boundary then becomes 
an image plane. (See Pogorzelski [47].) A reflection coefficient of unity 
corresponds to the familiar Neumann condition of zero phase slope. Using this 
boundary condition, the even and odd normalized eigenfunctions are seen to be, 
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 (5.4-4) 

Choosing the detuning time dependence to be a unit step at time zero and 
following he approach of Section 3.1, the Laplace transform of the phase 
distribution may be written in terms of the eigenfunctions as, 
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(5.4-5) 

We will obtain the inverse Laplace transform via residue calculus. The poles 
are determined by, 
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Taking the hyperbolic secant of both sides and then the reciprocal we obtain the 
equivalent condition, 

 
2

cos
2 12 sd

s

Ne



         


 (5.4-7) 

This equation can be solved in terms of the Lambert W function defined by, 

 ( )( ) W zz W z e  (5.4-8) 

In terms of this function, the solution of Eq. (5.4-7) is, 
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 (5.4-9) 

These pole locations are plotted in Fig. 5-13. 
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Recall that z is the argument of the W function so from Eq. (5.4-9), 
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Substituting Eq. (5.4-14) into Eq. (5.4-13) and setting m = 0, 
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The pole at 0  together with the denominator s from the step detuning 
function produce the double pole at the origin leading to the linear time 
dependence or shift in ensemble frequency due to the detuning. For the 
antisymmetric detuning used in beam-steering, the even  poles do not 
contribute, so the dominant pole is the one for 1 lying on the real axis at, 
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 (5.4-16) 

so the time constant of the array is, 
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 
 (5.4-17) 

or just (2d+1) times the time constant without coupling delay. (Compare with 
Eq. (2.2-40).) 
 
Returning now to Eq. (5.4-5), we form the solution for beam-steering by 
combining two solutions of the form Eq. (5.4-5), one for detuning of the 
oscillator at –N and one for detuning of the oscillator at N, each end of the 
array. 
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(5.4-18) 

To obtain the residues, we define q(s) to be the denominator, 
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 (5.4-19) 

and expand in the Taylor series, 
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We thus obtain the aperture phase a function of time in the form, 
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(5.4-21) 

Recall that at each oscillator, x is an integer and that the phase only has physical 
meaning at these integral values of x. As a result, the sum on n need only 
extend from 0 to N – 1 because for integral x, these terms are equal to those for 
n = N + 1 through 2N with the order reversed. Higher order terms in n only 
affect the phase values between the oscillators and thus are not relevant. 
 
Typically, the time at which the time function becomes non-zero is determined 
by when the Bromwich contour used in the inverse Laplace transform integral 
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can be closed in the left half plane, thus enclosing the poles. Prior to that time, 
the contour may only be closed in the right half plane, and since it encloses no 
poles there, the solution is zero. This is the usual way in which causality enters 
such analysis. In this case, however, Eq. (5.4-18) reveals that the contour may 

be closed in the left half plane beginning at d  . Causality dictates that the 

solution remain zero until 0  . Thus, it turns out that the residue sum remains 
zero even though the contour is closed in the left half plane and only becomes 

non-zero after 0  . This is illustrated in Eq. (5.4-21), in which the contour 

was closed in the left half plane beginning at / 4d   leading to the 

,2 1 /4m ns de   term. Figure 5-14 shows the resulting solution for each oscillator of 
a 21-element array with coupling delay of two inverse locking ranges. Causality 
is obviously satisfied regardless of this unusual closing of the contour. Figure 
5-15 shows the same solution extending to later times showing that in steady 
state the phase increments between oscillators become equal, implying a linear 
phase progression as needed for beam-steering. 
 
The data in Figs. 5-14 and 5-15 are re-plotted in Figs. 5-16 and 5-17, 
respectively. Here one may view the aperture phase distribution at all values of 
time simultaneously.  
 
Finally Fig. 5-18 shows a particular range of time specifically for comparison 
with Fig. 5-19, which is the same case but with no coupling delay. Pay 
particular attention to the time scales in these plots. 
 
The point made by comparing Fig. 5-18 with Fig. 5-19 is that the coupling 
delay of two inverse locking ranges has slowed the response of the array by  
2d + 1 or a factor of five, just as predicted by Eq. (5.4-17). 
 
We now compute the far-zone radiated field when the oscillators in this  
21-element array with coupling delay are used to excite the elements of a 
phased array with half-wavelength element spacing. The result is shown in  
Fig. 5-20 where we see beam behavior very similar to that of arrays without 
delay but slower by (2d + 1). 
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This one-radian inter-oscillator phase difference stresses the linear 
approximation a bit in that the error in linearizing the sine function is about 19 
percent. However, the dynamic behavior is still qualitatively approximated.  
 
In the above analysis a large number of residues are required for early times 
and very few are required for late times. However, returning to the discrete 
model, an alternative formulation is available that provides for more efficient 
computation for early times. Returning to Eq. (5.2-19) and specializing to the 
present case of a 21-element array, we have that, 
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(5.4-24) 

where as before, 0 1a s  , 2a s  , and sdb e  . We now expand this 

expression in powers of –b, and as before, the inverse Laplace transform of 
each term in the expansion can be computed analytically. The number of terms 
required is determined by the time interval over which the response is desired 

because each term has a delay factor psde  where p is the power of –b in the 
term in the expansion, and d is the coupling delay. So, for sufficiently large p, 
the term will be zero for the interval in question. Thus, in contrast with the 
eigenfunction expansion, for early times very few terms are required. 
 
This approach was applied to the 21-element array with coupling delay treated 
earlier, and the results are plotted in Fig. 5-21 for comparison with Fig. 5-14. 
Interestingly, this power series approach is a bit more flexible in terms of 
boundary conditions. Recall that without the added half-length coupling lines at 
each end of the array, the previous method was complicated. Here, however, 
the use of Eq. (5.2-20) in Eq. (5.2-19) to model an array without the added lines 
poses no difficulty. The expansion in powers of b proceeds as before and the 
result is plotted in Fig. 5-22. Notice the difference in the early time ripples due 
to this alternative boundary condition when compared with Fig. 5-21. 
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5.5 Conclusion 

The primary motivation for this chapter was the issue of causality in coupled 
oscillator arrays. Because the continuum model leads to a diffusion equation, 
the response to an excitation always begins immediately regardless of the 
physical separation of the two. Here, by appropriately introducing a delay factor 
in the Laplace transforms, we render the solutions causal in that there appears a 
finite “propagation delay” between the excitation and the response. The result is 
a more realistic representation of the array response not to mention some rather 
interesting inverse Laplace transforms encountered along the way. 
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Part II: Experimental Work and 
Applications 

 

Chapter 6  
Experimental Validation of the Theory 

Much of the very early work in coupled oscillators for phased-array applications 
involved both theory and experiment. Probably the earliest was the work of Karl 
Stephan in which he studied a linear array of coupled oscillators for beam-
steering of a linear array of radiating elements [1]. In his concept, the phasing 
was controlled by injection locking the end oscillators to signals whose relative 
phase was controlled with a phase shifter. While still earlier work was 
published, Stephan points out that it did not involve mutual injection locking, 
the defining feature of the concepts treated in this book. 

6.1 Linear-Array Experiments 

Stephan’s pioneering experiment in 1986 involved three very high frequency 
(VHF) transistor Colpitts oscillators coupled together by a network of lumped 
elements. The end oscillators were also injected with external signals derived 
from a master oscillator signal that was split into two signals, one of which was 
phase shifted relative to the other by a variable length transmission line (coaxial 
line stretcher). Stephan measured the oscillator phases with varying amounts of 
phase shift of the injection signals and verified that the behavior conformed 
qualitatively to the theory. However, he noted several issues that have persisted 
throughout the ensuing development of this technology. He noted that 
manufacturing variation among the oscillators resulting in variation in their free-
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running frequencies causes nonuniformity in the array behavior and indicated an 
appreciation of the fact that in his VHF oscillators this can be compensated for 
with tuning, but that in a monolithic microwave integrated circuit (MMIC) such 
adjustment would be more difficult. He did some statistical studies of this issue, 
and such studies were more recently extended by Wang and Pearson [50]. Their 
approach to mitigating this problem was to design the oscillator to minimize the 
phase slope of the open-loop gain. The impact of free-running frequency 
variation on beam pointing was studied by Shen and Pearson [51]. In his early 
work Stephan also discussed high-frequency application in spatial power 
combining and beam-steering, pointing out that there is potential for graceful 
degradation in the event of oscillator failure. Interestingly, he used a gradual 
phase shift of the injection signals (as discussed in Section 3.4 above) rather 
than a step-phase shift in time. The next year, Stephan and Young published 
theoretical and experimental results concerning two mutually injection-locked 
oscillators where the coupling was provided by the free-space mutual coupling 
between the radiating elements excited by them. [3] The coupling was 
represented by a two-by-two admittance matrix, and the stability of the two 
modes, even and odd, for the system was treated. The radiation patterns as a 
function of coupling phase; that is, element separation, showed behavior 
consistent with the analysis. 
 
Three years later, Robert York, then a student working under Professor Richard 
Compton at Cornell University, published the results of a study of power 
combining in mutually injection locked Gunn diode oscillators arranged in a 
four-by-four planar array with Cartesian coupling [4]. Beam steering, however, 
was not considered; probably at least partly motivated by the publication by 
James Mink, the emphasis was on power combining [8]. Shortly thereafter, 
York and Compton published a description of mode locking in arrays of coupled 
oscillators [5]. They also described excitation of a linear array of radiating 
elements with a set of mode-locked oscillators [6]. The experiment described 
involved three Gunn-diode oscillators at 11 GHz. Although beam-steering is 
discussed, the concept is not the usual phased-array approach to scanning. 
Rather, mode locking is used to obtain a train of pulses that continuously scan at 
a rate determined by the spacing of the spectral lines of the periodic pulse train. 
(See Section 6.5) 
 
Later in 1992, Hall and Haskins described a two-oscillator element designed for 
implementation of Stephan’s external locking scheme for beam-steering [52]. A 
four-element array of 2.28-GHz elements was constructed, and beam-steering to 
40 deg from normal was demonstrated. 
 
A turning point was reached in 1993 with the publications by York and his 
student Peter Liao, in a special issue of the IEEE Transactions on Microwave 
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Theory and Techniques edited by Mink and Rutledge on Quasi-Optical 
Techniques [53] [28]. The reported analysis and experiment marked the first 
application of mutually injection-locked oscillator arrays to beam-steering via 
detuning of the end oscillators and no external injection. Liao and York 
constructed a four-element linear array of 10-GHz field effect transistor (FET) 
oscillators driving radiating elements that also served as resonators for the 
oscillators. Inter-oscillator coupling was due to mutual coupling among these 
radiating elements and fell in the weak-coupling regime. Beam steering to 
15 deg from normal was achieved, and the theoretical and experimental results 
agreed quite well. 
 
In the same special issue discussed above, Nogi, et al. described analysis and 
experimental work with strongly coupled Gunn-diode oscillators at 12.45 GHz 
[17]. They showed analytically that the array could oscillate in a number of 
modes, only one of which had constant amplitude across the array as might be 
desirable in excitation of a phased-array antenna, and they suggested that a 
resistor at the center of each coupling line would favor this desired mode and 
suppress the others. 
 
By 1994 the use of coupled oscillators to excite phased array antenna elements 
and steer the radiated beam had become a vital and growing area of research. 
Liao and York reported a six-element microstrip patch array at 4 GHz that could 
steer to 40 deg from normal [54]. This array did not depend on mutual coupling 
between the radiating elements for coupling. Rather, the coupling was achieved 
with transmission lines connected between neighboring patches. This was the 
first attempt at decoupling the oscillator array design from the radiating aperture 
design. Later the same year a similar five-element array was reported that 
steered from –30 to +40 deg from normal. The associated theoretical treatment 
was based on a general admittance matrix description of the coupling network 
[33]. In 1997, a similar coupling scheme was used by Ispir, et al. in 
demonstrating the first planar array steered via detuning of the edge oscillators 
[55]. The array was three elements by three elements and coupled in a Cartesian 
topology. Thus, all but one element are edge elements. The beam was scanned 
10 deg in the E plane and 15 deg in the H plane. Experiments with and without 
half-length coupling lines at the ends of a linear array were conducted, and it 
was found that the scan range was larger with the added lines. Kagawa, et al. 
demonstrated beam-steering in arrays with two and three circularly polarized 
elements [56], and Ispir, et al. experimented with unidirectional coupling in a 
three element array [55]. They showed that extended inter-oscillator phase range 
could be had by switching between two different values of coupling phase while 
steering via detuning the free running frequencies [57]. A very nice 
compendium of the work prior to 1997 is provided by Lynch, et al. in the book 
by York and Popovic on power combining [58]. 
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Initially, tuning of the oscillators was accomplished by using a network analyzer 
to measure the phase difference between adjacent oscillators, one pair at a time, 
and adjusting the free running frequencies to achieve the desired phase 
distribution. This process was impractically time consuming so a multichannel 
phase comparator system was devised that measured the phase differences 
between all adjacent oscillators simultaneously. This system consisted of a set of 
quadrature hybrid couplers and mixers arranged as shown in Fig. 6-2. The 
oscillator output signals from neighboring oscillators were mixed, and the lower 
hybrid frequency was at zero frequency. This DC output voltage was taken to be 
a measure of the relative phase of the oscillator signals. The hybrid couplers 
introduced a 90-deg phase shift in one of the signals so that zero output voltage 
from the mixer corresponded to zero relative phase. The output voltages from 
the mixers were then integrated from the center outward using a virtural 
instrument implemented in LabView™ to produce a graphical representation of 
the aperture phase distribution as shown in Fig. 6-3. The mixer outputs are 
shown in the bar graph, and the phase distribution is shown in the line graph 
below. 
 
This seven-element array was evaluated on an antenna measurement range, and 
the patterns compared with predictions for both unscanned and scanned beams. 
The results are shown in Fig. 6-4.  
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6-2. Phase measurement system. (Reprinted from [61]  
with permission, ©2000 IEEE.) 
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In Section 3.1 we obtained the transient behavior of the oscillator phases under 
step detuning of one oscillator. The seven-element array described above was 
also used to experimentally confirm that result [63]. One oscillator was 
repeatedly detuned by applying a tuning signal from a pulse generator, and the 
repeated transient behavior was recorded digitally using a multi-channel 
oscilloscope. The results, both experimental and theoretical, for detuning one 
end oscillator are shown in Fig. 6-5. Figure 6-6 shows a similar comparison 
when one interior oscillator is step detuned. 
 
Recently, preliminary results on coupled oscillator arrays implemented using 
substrate integrated waveguide technology (SIW) have been reported. Substrate 
integrated waveguide (SIW) technology allows for compact, low cost, light 
weight, and high performance implementation of microwave active and passive 
circuits, including active antennas and coupled oscillator arrays. SIW structures 
were initially proposed in the mid-1990s [64]. SIWs are waveguide-like 
structures fabricated by using two periodic rows of metallic vias or slots 
connecting the top and bottom ground planes of a dielectric substrate. An SIW 
cavity backed coupled oscillator antenna array, shown in Fig. 6-7 was proposed 
by Giuppi et al. [65]. 
 
SIW strucutres share advantages of both microstrip and waveguide technology 
[66]. Similarly to planar structures, SIWs are compact, light weight, and cost 
effective due to the fact that they can be easily fabricated on single substrates 
using conventional fabrication techniques such as the ones used for their planar 
counterparts. Similarly to waveguide structures they exhibit increased shielding, 
low loss, high quality factor, and high power-handling capability. Finally, they 
allow for high integration by implementing multilayer architectures. SIW 
technology allows for compact, low cost implementation of coupled-oscillator 
arrays, suitable for large array configurations.  
 
Giuppi et al. demonstrated a single substrate implementation of a cavity-backed 
coupled-oscillator antenna array [65]. A two-element slot-array prototype that 
was implemented is shown in Fig. 6-7. Cavity-backed antennas have received 
interest due to attractive properties such as isolation, reduction of backward 
radiation, and surface-wave suppression [67].  
 
 
 



Experimental 

 

 

Validation of the Theory

 

 

18

F
ig

. 6
-5

. 
E

-p
la

n
e 

tr
an

si
en

t 
re

sp
o

n
se

 o
f 

th
e 

se
ve

n
-o

sc
ill

at
o

r 
ar

ra
y 

w
it

h
 o

n
e 

en
d

 o
sc

ill
at

o
r 

st
ep

 d
et

u
n

ed
 f

o
r 

 
(a

) 
ex

p
er

im
en

ta
l r

es
u

lt
s 

an
d

 (
b

) 
th

eo
re

ti
ca

l 
re

su
lt

s.
 (

R
ep

ri
n

te
d

 f
ro

m
 [

63
] 

w
it

h
 p

er
m

is
si

o
n

, ©
20

02
 I

E
E

E
.)

 

81 



182 

 

 
 
  

Chapter

F
ig

. 6
-6

. 
H

-p
la

n
e 

tr
an

si
en

t 
re

sp
o

n
se

 o
f 

th
e 

se
ve

n
 o

sc
ill

at
o

r 
ar

ra
y 

w
it

h
 o

n
e 

in
te

ri
o

r 
o

sc
ill

at
o

r 
st

ep
 d

et
u

n
ed

 f
o

r 
 

(a
) 

ex
p

er
im

en
ta

l r
es

u
lt

s 
an

d
 (

b
) 

th
eo

re
ti

ca
l r

es
u

lt
s.

 (
R

ep
ri

n
te

d
 f

ro
m

 [
63

] 
w

it
h

 p
er

m
is

si
o

n
, ©

20
02

 I
E

E
E

.)
  

r 6 



Experimental 

 

In the work 
slot-antenna 
oscillator ele
strength is sh
placed aroun
leads to a sm
size, compare
is less sensiti
 

Fig. 6-7. Sing
array in SIW 
passive ante
2010; used w

Validation of 

of Ref. [65], 
oscillators 

ements. The e
hown in Fig. 
nd the middle
moother variat

ed to a single
ive to fabricat

gle-substrate 
technology, a
nna array. Re
ith permission

the Theory

SIW technol
and addition

effect of the c
6-8. It was fo

e of the cavity
tion of the co
e aperture at t
tion tolerance

two-element 
a) top (active 
eprinted with 
n.  

 

logy was use
nally control
coupling aper
ound that a do
y wall, such 
upling factor 
he center of t

es. 

cavity backe
circuit) side,
permission f

ed to fabricat
l the coupli
rture size A 
ouble apertur
as the one u
as a function

the cavity wa

d coupled os
 b) bottom (a
from [65]; co

18

te cavity-back
ing among 
on the coupl

re symmetrica
used in Fig. 6
n of the apertu
all, and theref

scillator anten
antenna) side
opyright EurA

83 

ked 
the 
ing 
ally 
6-7, 
ture 
fore 

  

nna 
, c) 

AAP 



184 

 

Fig. 6-8.
Fig. 6-7
permiss

 
Finally, it is 
antenna by v
removing one
cavity provid
ground cond
percent was d

6.2 Plan

A planar thr
[61]. Recall t
transmission 
2000 array 
demonstrate 
similar to tha
array diagnos
and the com
computed ph
10. The preci
 
The phase 
distributions 
 

. Coupling fac
7. Reprinted 
sion.  

possible to c
varying the re
e of the vias f
ding a capacit
ductor. Using 
demonstrated

ar Array E

ree-by-three o
that Ispir also
line couplin
by Pogorzel
phase contro

at developed f
stic system w

mputer-based 
hase values in
ision potentio

distributions 
are shown in

ctor versus th
from [65]; 

ontrol the osc
esonance freq
from the cavit
tance between
this topology

d by Giuppi et

Experimen

oscillator arra
o reported a t
g between th
lski had no 
l by perimete
for the seven-

was “woven” t
virtual instru

n a planar repr
ometers contro

over the a
Fig. 6-11. 

he aperture siz
copyright E

cillation frequ
quency of the
ty wall and p
n the top cavi
y a frequency
t al. in [68] (F

nts 

ay was repor
three-by-three
he radiating e

radiating ap
er detuning v
-element line
through the pl
ument was re
resentation. T
ol the tuning 

array with 

ze between th
EurAAP 2010;

uency of the 
e cavity. This
lacing a varac
ity conductor
y tuning of a

Fig. 6-9). 

rted by Pogo
e array in 199
elements [55]
perture Its p
ia a phase di
ar array. Basi
lanar array on
eprogrammed
This array is s
bias of each o

various osci

Chapter

 

he cavities of 
; used with 

active oscilla
s is achieved 
ctor diode in 
r and the bott
approximately

orzelski in 20
97 using coax
]. However, 
purpose was 
agnostic syst
ically, the lin
ne row at a tim
d to display 
shown in Fig.
oscillator. 

illator detun

r 6 

f

ator 
by 
the 

tom 
y 2 

000 
xial 
the 
to 

tem 
near 
me, 
the 
. 6-

ing 



Experimental 

 

Fi
w
pe

Fig

Validation of 

ig. 6-9. SIW c
ith frequenc
ermission from

. 6-10. Nine-el
[62

the Theory

cavity-backed
cy tuning 
m [68], IET.)  

lement planar
2] with permis

 

 active-oscilla
capability. 

 

r oscillator arr
ssion, ©2006 IE

ator slot ante
(Reprinted 

ay. (Reprinted
EEE.) 

18

 

enna 
with 

 

d from 

85 



186 

 

Fig. 6-11. Scr
(Note: The t

 
As discussed
is 90 deg, at
beam-steerin
range may b
phase excurs
added to the
used to driv
inferred by tr
diagnostic sy
patterns were
this diagnost
mixers. The 
stretchers equ
The resulting
pattern that 
achievable w
indicating tha
lobe on the r
curve and ind
In 2005, Pog
element plan

reen captures 
onal scale red

from

d earlier, the m
t which valu
g angle from 
e extended b

sion [40]. To
 above nine-
e a nine-elem
ripling the ou
ystem shown
e measured o
tic system us
measurement
ualize the pha
g measureme
corresponds 

without freque
at the main lo
right is a grat
dicates why a
gorzelski repo
nar array using

of phase dist
dundantly dup

m [61] with per

maximum pha
ue the oscillat

normal. How
by frequency
o demonstrate
-element array
ment micristr
utputs of the 
n in Fig. 6-1
on an antenna
es attenuator
t set-up is sho
ases of the tra
ents are show

to steering 
ency multiplic
obe points 90
ting lobe. Th

all of the patte
orted construc
g using the sa

ributions for b
plicates the ph
rmission, ©200

ase difference
tors lose lock

wever, as desc
multiplicatio

e this techniq
y, and the re
rip patch arra
mixers in the

12, and the 
a range. Note
rs to equalize
own in Fig. 6
ansmission lin
wn in Fig. 6-

90 degrees 
cation. Note t
0 deg to the l
e element pa

erns have a nu
ction and dem
ame S-band M

beam-steering
hase vertical s
00, IEEE.)  

e between adja
k. This limit
cribed by Yor

on, which also
que, frequenc
esulting 8.4-G
ay. The aper
e slightly mo
resulting far

e that, unlike 
e the input am
6-13 wherein 
nes to the rad
-14 where the
from norma

that this patte
eft while the 
ttern is show

ull 90 deg from
monstration o
MMIC oscilla

Chapter

g in a planar a
scale). (Reprin

acent oscillat
ts the attaina
rk and Itoh, t
o multiplies 
cy triplers w
GHz output w
rture phase w
ore sophistica
r-zone radiat
its predecess

mplitudes at 
the coaxial l

diating elemen
e “X’s” labe

al which is n
ern is symmet

similar look
wn as the dash

m normal. 
of a five-by-f
ators used in 

r 6 

 

array.
nted 

tors 
able 
this 
the 

were 
was 
was 
ated 
tion 
sor, 
the 

line 
nts. 
el a 
not 
tric 

king 
hed 

five 
the 



Experimental Validation of the Theory 187 

 
 

earlier seven-element linear array and microstrip patch radiating elements [70]. 
This MMIC contained a buffer amplifier at its output, thus isolating the 
oscillators and patches and completely separating the coupled oscillator array 
design from the radiating aperture design. In this array, the oscillators were 
located on one side of a Duroid™ board, and the patches located on the other 
with a coaxial pin connecting each oscillator output to the corresponding patch. 
The phase-measurement system was mounted on a phenolic board for physical 
support and connected to the oscillators via stripline couplers obviating the need 
for direct physical connection and rendering the measurement system 
removable. The assembled array and phase measurement system is shown in 
Fig. 6-15. The Duroid™ circuit board is located between the aluminum plate 
and the phenolic board. 
 
 
 

 

Fig. 6-12. Phase measurement system for the frequency-tripled array. (Reprinted 
from [69] with permission, ©2004 IEEE.) 
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in a linear configuration. In the absence of a receiving aperture, the received 
signals were simulated using a 16-way power divider. These 1.95-GHz output 
signals from the power divider were, of course, in-phase. They were mixed with 
the 1.265-GHz outputs of the linear array oscillators producing intermediate 
frequency signals at 685 MHz. These intermediate frequency signals were then 
combined using another 16-way power divider in reverse. The testbed set-up is 
shown in Fig. 6-26 together with a closeup of one of the oscillator circuits. By 
using only every other oscillator in the array, the maximum phase difference 
between adjacent local oscillator signals was extended to 180 deg. Thus, only 
eight signals are combined. The combined output at 685 MHz is plotted versus 
beam-steering angle in Fig. 6-27. The solid line is the theoretically predicted 
result. The phase distributions across the array corresponding to points A and B 
are shown in Fig. 6-28.  
 
This apparatus was also used to demonstrate a very interesting scheme patented 
by Kott for the reduction of sidelobes [75]. Kott proposed the placement of an 
additional element at each end of an array positioned and excited so as to 
provide an interferometer pattern with null spacing matching the null spacing of 
the sidelobes of the array. Then by properly combining the interferometer signal 
with the array signal, entire regions of sidelobes could be canceled. It turns out 
that the receive-array testbed described above provides just the proper phasing 
of the end elements to achieve this cancelation [76] The concept is shown in Fig. 
6-29. The attenuators at each end oscillator permit proper weighting of the 
interferometer signal relative to the receive array signal to achieve cancelation. 
Fig. 6-30 shows the output of the intermediate frequency combiner versus beam-
steering angle for the center elements (solid), the interferometer pattern of the 
end elements (short dashes), and the coherent combination of the two (long 
dashes) showing that the left sidelobe has been removed while the right one has 
been enhanced. The beamforming capabilities of coupled oscillator arrays are 
studied in more detail in Chapter 9. 
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Fig. 6-27. Combined intermediate frequency signal versus 
receive beam-steering angle for the 15-oscillator L-band array. 
(Reprinted from [62] with permission, ©2006 IEEE.) 

 
 

   
                             Point A                                                      Point B 

Fig. 6-28. Phase distributions corresponding to the two indicated points A 
and B in Fig. 6-27. (Reprinted from [62] with permission, ©2006 IEEE.) 
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unlocked spectrum is approximately equal to the difference between the 
injection frequency and the free-running frequency. That is, 

 2 2
inj lock inj      (6.5-1) 

Thus, because the injection signals come from the nearest neighbors, this means 
that the line spacing of the unlocked spectra is approximately equal to the 
difference in the free-running frequencies of the neighboring oscillators. In 
effect then, the oscillators each lock to a line of the unlocked spectrum of their 
neighbors, and the line spacing of the array becomes uniform. The stability of 
such mode-locked states has been studied in some detail by Lynch and York 
[89]. Note that as the differences in the tuning of the neighboring oscillators 
approach the locking range, the approximation Eq. (6.5-1) fails, the line spacing 
approaches zero, and the array becomes mutually injection locked, producing a 
monochromatic output. Maintenance of the mode-locked condition requires that 
mutual injection locking be avoided. As described in Section 1.4, the locking 
range can be controlled by adjusting the coupling phase, and in fact, if the 
coupling phase is 90 deg, the locking range becomes zero, and mutual injection 
locking is precluded. Thus, from a mode-locking perspective, a 90-deg coupling 
phase is to be preferred as noted by Lynch and York [89] [90]. 
 
One may view the finite line spectrum of the combined output as an infinite line 
spectrum filtered by a bandpass filter passing only the lines corresponding to the 
range of oscillator tunings. From Fourier theory, the corresponding time 
function will be an infinite sequence of equally spaced pulses whose shape is the 
inverse Fourier transform of the filter bandpass characteristic. For example, if 
the filter is a square pulse in frequency, the temporal pulses will be sinc 
functions. York and Compton demonstrated this with an array of three 
oscillators [5].  
 
A few months later, York and Compton published additional results showing 
that, when a mode-locked array of oscillators is used to feed a linear array of 
radiating elements, the resulting beam scans as a function of time [6]. This is a 
consequence of the fact that the radiating elements are fed with slightly differing 
frequencies. The frequency differences may be viewed as relative phases 
changing linearly with time. Thus, the inter-element phasing of the array of 
elements changes linearly with time, resulting in a beam that scans with time. 
The repetition rate of the scan is just the period of the pulse output of the array, 
and at any given angle in the far-zone pattern, the received signal will repeat 
temporally with this same period as the beam repeatedly scans past that angle. 
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More recently, the unlocked state of such arrays has been studied as a generator 
of a chaotic output signal. The array is controlled by modulation of the coupling 
parameters with the objective of embedding information in the transitioning of 
the signal between the various unstable periodic orbits [91]. 
 
As indicated by York and Itoh [40], all of the phenomena observed for coupled 
voltage controlled oscillators (VCOs) may also be produced by coupled phase-
locked loops (PLLs); one merely has more design flexibility when using PLLs. 
Section 7.12 contains an introduction to the analysis of coupled phase-locked 
loops. These principles were demonstrated in a two-element array by Martinez 
and Compton [92]. This also holds true for mode-locked arrays [93]. 

6.6 Conclusion 

In this chapter we have outlined the experimental work leading to the current 
level of understanding of the design and fabrication of coupled-oscillator arrays 
and associated radiating apertures and their performance characteristics. Of 
course the work has continued as we write, and much of the most recent work 
severely taxes the capabilities of the linear approximation in explaining the 
results. Thus, the current trend favors full nonlinear design and analysis. While 
more complex, such an approach more accurately describes the expected 
behavior and permits exploitation of the nonlinear effects. These are aspects 
discussed in Part III of this book.  
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Part III: Nonlinear Behavior 

 

Chapter 7  
Perturbation Models for Stability, Phase 

Noise, and Modulation 

The complex dynamics of coupled-oscillator arrays lead to the existence of a 
multitude of steady-state solutions. In addition to finding or selecting a desired 
steady-state solution, one further needs to guarantee its stability. In this section, 
perturbation methods are described that allow the designer to examine both the 
existence as well as the local stability of the various steady-state solutions of 
coupled oscillator arrays. An introduction to stability analysis of nonlinear 
dynamical systems is presented [94], followed by its application to coupled 
oscillator systems [95] [96].  
 
The perturbation nature of noise, leads to phase-noise analysis methods that are 
closely related to the formulation used in the stability analysis. Analytical 
models are presented that demonstrate the attractive properties of coupled inter-
injection locked oscillator systems, among them improved phase-noise 
performance compared to single elements [97].  
 
A straightforward application of coupled-oscillator arrays has been in power-
combining arrays where, by controlling the phase shift within an array of 
synchronized oscillator elements, one can direct the radiated beam towards a 
desired direction taking advantage of free-space power combining and 
eliminating the use of lossy power-combining networks. The simple topologies 
associated with such arrays have led to their consideration in communication 
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system applications where one introduces modulation into the oscillator signals 
[98,99]. Thus, methods to introduce modulation in such arrays are presented. 
These architectures are distinguished from mixer-oscillator arrays where the 
modulation is not applied in the oscillator signal. Finally, an introduction to the 
analysis of coupled phase-locked loops is provided.  

7.1 Preliminaries of Dynamical Systems 

We have demonstrated in Part I of this book that coupled-oscillator arrays are 
able to synchronize in frequency while maintaining a fixed distribution of the 
relative phases between their elements, and that, despite the complex nature of 
their dynamics, there are simple methods to control the phase relationships 
among the array elements, which require a small number of control parameters. 
It was also demonstrated that as the number of elements increases, there exist 
many different synchronized solutions, with different ensemble frequency 
values and different phase distributions. In order to be able to study the 
behavior of the various solutions as selected parameters of the array are varied, 
we must first provide a theoretical framework from nonlinear dynamical system 
theory. This will allow us to classify the types of the solutions and the 
phenomena that lead to creation or elimination of solutions as well as to 
changes in the solution stability. 
 
In this section, principles of stability analysis of nonlinear dynamical systems 
are presented. The theory can be found in standard literature on dynamical 
systems [100] [101] and nonlinear differential equations [94]. 
 
Following Parker and Chua [101] an autonomous continuous time dynamical 
system is described by the system of differential equations 

 ሶ࢞ ൌ  ሺ࢞ሻ (7.1-1)ࢌ

where the N-dimensional vector ࢞ ∈ Թே contains the state variables of the 
system, and ࢌሺ࢞ሻ: Թே → Թே is the vector field describing the dynamics of the 
system. The order of system Eq. (7.1-1) is ܰ. An initial condition ࢞ሺ࢚࢕ሻ ൌ  is ࢕࢞
assumed, where typically ݐ௢ ൌ 0 is set, since the vector field does not depend 
explicitly on time.  
 
In contrast, a non-autonomous continuous time dynamical system is described 
by a system of equations of the form 

 ሶ࢞ ൌ ,ሺ࢞ࢌ ࢚ሻ (7.1-2) 

where the vector field depends explicitly on time. A non-autonomous system 
with period T can be expressed in the format of Eq. (7.1-1) by extending the 
state vector by one more dimension ߠ defined by ߠሶ ൌ   with ,ܶ/ߨ2
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௢ሻݐሺߠ ൌ  ௢/ܶ. In the following a dynamical system defined by Eq. (7.1-1)ݐߨ2
will be considered. A solution of Eq. (7.1-1) for a given initial condition is 
called a trajectory or orbit. 
 
A free-running oscillator and a coupled-oscillator array are autonomous 
dynamical systems. They become non-autonomous when an external injection 
source is present. 
 
A steady state is the asymptotic behavior of a dynamical system governed by 
(7.1-1) when ݐ → ∞, when the transient behavior has decayed to zero. A steady 
state is also called a limit set. The mathematical definition of a limit set 
includes the asymptotic behavior of a dynamical system both as time progresses 
forward (ݐ → ൅∞) and backward (ݐ → െ∞), distinguishing between ߱-limit 
sets and ߙ-limit sets, respectively. 
 
Steady states can be classified into four different types, equilibrium points, 
periodic solutions, quasi-periodic solutions, and chaotic solutions. 
 
Equilibrium points ݔ௢ correspond to the solution of 

ሻ࢕ሺ࢞ࢌ  ൌ ૙ (7.1-3) 

An equilibrium point is the DC solution of an oscillator circuit. 
 
A periodic solution ݔ௢ሺݐሻ, is a solution of Eq. (7.1-1) that has a minimum 
period ܶ, such as 

ݐሺ࢕࢞  ൅ ܶሻ ൌ  ሻ (7.1-4)ݐሺ࢕࢞

for every t. A periodic solution of an autonomous system is also called a limit 
cycle. 
 
A quasi-periodic solution is a solution that is equal to a countable sum of 
periodic solutions with non-commensurate periods, in other words: 

ሺ࢚ሻ࢕࢞  ൌ෍࢏ࢎሺ࢚ሻ
ࡹ

ୀ૚࢏

 (7.1-5) 

where ࢏ࢎሺݐሻ are periodic solutions with minimum period ௜ܶ. The various 
frequencies ௜݂ ൌ 1/ ௜ܶ form a linearly independent set of dimension p with 
1 ൏ ݌ ൑  .ܯ
 
Finally, any bounded steady-state behavior that cannot be classified in one of 
the previous types is a chaotic steady state. 
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7.1.1 Introduction to Stability Analysis of Nonlinear Dynamical 
Systems 

There exist different types of stability. For the precise mathematical definitions 
and types of stability, the reader is referred to the literature [94] [101]. For the 
purposes of this work, a rather qualitative definition is provided. A steady state 
 such ࢕࢞ is (Lyapunov) stable if and only if there exists a neighborhood ܸ of ࢕࢞
that every trajectory with initial condition ࢞ ∈ ܸ remains within ܸ at all 
times	ݐ ൐ 0. Furthermore, a steady state is asymptotically stable if and only if 
there exists a neighborhood ܸ of ࢞࢕ such that every trajectory with initial 
condition ࢞ ∈ ܸ reaches arbitrarily close to ࢞࢕ given enough time ݐ ൐ 0. In 
other words, the ߱-limit set of any initial condition within	ܸ is ࢞࢕. Conversely, 
a steady state ࢞࢕ is unstable if there exists a neighborhood ܸof ࢞࢕ such that ࢞࢕ 
is the ߙ-limit set of all initial conditions in ܸ. Finally, a steady state ࢞࢕ is called 
non-stable if for every neighborhood ܸ, there exists at least one point whose  
߱-limit set is ࢞࢕ and one point whose ߙ-limit set is ࢞࢕. 

7.1.2 Equilibrium Point 

The stability of an equilibrium point ࢞࢕ is examined by considering the linear 
perturbation of the vector field ࢌሺ࢞ሻ at ࢞࢕. The eigenvalues of the Jacobian 
 .ሻ of the vector field determine the stability of the solution࢕ሺ࢞ࡶ

ࢾ  ሶ࢞ ൌ
ࢌࢊ
࢕࢞ࢊ

࢞ࢾ ൌ  (6-7.1) ࢞ࢾሻ࢕ሺ࢞ࡶ

with ࢞ࢾሺ૙ሻ ൌ  The solution of	௢.ݔ ૙ representing an initial perturbation from࢞ࢾ	
the linear differential equation Eq. (7.1-6) generally takes the form 

ሺ࢚ሻ࢞ࢾ  ൌ෍ܿ௜݁ఒ೔௧࢏ࢇ

ே

௜ୀଵ

 (7.1-7) 

where ߣ௜ and ࢏ࢇ are the eigenvalues and eigenvectors of ࡶሺ࢞࢕ሻ, respectively. 
The constants ܿ௜are determined by the initial condition ࢞ࢾ૙. 
 
For a given ܰ-dimensional vector field ࢌሺ࢞ሻ the ܰ ൈ ܰ Jacobian matrix ࡶ has 
ܰ eigenvalues. An equilibrium point whose eigenvalues do not have a real part 
equal to zero is called hyperbolic. If all eigenvalues have negative real parts, the 
point ࢞࢕ is asymptotically stable. Correspondingly, if there exists one 
eigenvalue with a positive real part, ࢞࢕ is unstable. Finally, if there exists one 
eigenvalue with a real part equal to zero, the equilibrium point is non-
hyperbolic, a condition that is equivalent to the determinant of ࡶ being equal to 
zero, and the eigenvalues of ࡶ are not sufficient to determine its stability.  
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The solution of Eq. (7.1-6) is derived using Floquet theory [94]  

ሻݐሺ࢞ࢾ  ൌ෍ܿ௜ ݉௜

௧
ሻݐሺ࢏࢖்

ே

௜ୀଵ

ൌ෍ܿ௜݁ఒ೔௧࢏࢖ሺݐሻ

ே

௜ୀଵ

 (7.1-10) 

where ݉௜ are the Floquet multipliers and ࢏࢖ሺݐሻ are periodic vector functions. 
The Floquet exponents ߣ௜ are related to the multipliers by  

 ݉௜ ൌ ݁ఒ೔் (7.1-11) 

It is seen from Eq. (7.1-11) that there is not a unique mapping between 
multipliers and exponents, as adding to any exponent a complex factor ݆݇ ߨ2 ܶ⁄  
with ݇ an arbitrary integer results in the same multiplier. 
 
The stability of ࢞࢕ሺݐሻ is determined by the Floquet multipliers ݉௜. They can be 
calculated by direct integration of Eq. (7.1-9) for one period ܶ with initial 
condition ࢞ࢾሺ0ሻ ൌ  is the identity diagonal square matrix of ࡺࡵ where ࡺࡵ
dimension ܰ. The result of the integration is the monodromy matrix ܥ whose 
eigenvalues are the desired Floquet mutlipliers ݉௜ [94].  
 
A periodic solution ࢞࢕ሺݐሻ	of an autonomous system has at least one Floquet 
multiplier with magnitude equal to 1, or equivalently a Floquet exponent equal 
to zero. Furthermore, a periodic solution ࢞࢕ሺݐሻ is stable if the remaining 
multipliers have a magnitude less than one (|݉௜|<1). Correspondingly, if one 
multiplier with magnitude larger than 1 exists, the solution is unstable. 

7.1.4 Lyapunov Exponents 

The Lyapunov exponents are defined as follows 

௜ߤ  ൌ lim
௧→ஶ

1
ݐ
lnห݁ఒ೔௧ห (7.1-12) 

and can be considered a generalization of both the characteristic eigenvalues of 
the equilibrium point and the Floquet multipliers of the periodic steady state 
[101]. In fact, the Lyapunov exponents can be used to determine the stability of 
quasi-periodic and chaotic steady-state solutions. 
 
One can easily see from Eq. (7.1-7) that the Lyapunov exponents of the 
equilibrium point correspond to the real part of the characteristic eigenvalues.  

௜,௘௤ߤ  ൌ ܴ݁ሼߣ௜ሽ (7.1-13) 

Correspondingly the Lyapunov exponents of the periodic steady state are equal 
to the natural logarithm of the magnitude of the Floquet multipliers divided by 
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the period of the solution which is equal to the real part of the Floquet 
exponents. 

௜,௣௦௦ߤ  ൌ
ln|݉௜|

ܶ
ൌ ܴ݁ሼߣ௜ሽ (7.1-14) 

7.2 Bifurcations of Nonlinear Dynamical Systems 

A dynamical system described by Eq. (7.1-1), in practice depends on a set of 
parameters ࣈ of dimension ݇ (ࣈ ∈ Թ௞) which enter the definition of the vector 
field 

 ሶ࢞ ൌ ,ሺ࢞ࢌ  ሻ (7.2-1)ࣈ

A parameter corresponds to some circuit control voltage or bias voltage/current 
or any other physical parameter such as the dimension of a transmission line. 
As the parameter vector varies, the solutions of Eq. (7.2-1) change. The change 
of stability of a specific steady-state solution, the creation of new steady-state 
solutions or elimination of existing ones, as one or more parameters of a 
nonlinear system vary is called a bifurcation [100,102]. The corresponding 
parameter values for which a bifurcation occurs are called bifurcation values. A 
bifurcation diagram is a plot of a selected state variable(s) corresponding to a 
limit set versus the system parameter(s). An example of a bifurcation diagram 
is the plot of the DC voltage at a selected circuit node or the oscillation 
amplitude versus the external bias voltage of the oscillator. Bifurcations are 
classified into local and global. Local bifurcations are detected by studying the 
vector field f in a neighborhood of a limit set. In contrast, local information is 
not sufficient to detect global bifurcations. Typically in this book we study 
systems where one parameter is varied (݇ ൌ 1).  

7.2.1 Bifurcations of Equilibrium Points 

Let us consider such a continuous time system with one parameter that has a 
hyperbolic equilibrium point. As the parameter varies, there are two ways that a 
hyperbolic point can become non-hyperbolic. In the first one, a simple real 
eigenvalue becomes zero (ߣଵ ൌ 0). In this case the system is going through a 
bifurcation known as fold bifurcation. Fold bifurcation is also known as 
turning-point or saddle-node bifurcation. In a fold bifurcation the equilibrium 
point curve presents an infinite slope at the parameter value ߦ ൌ  ௢ where oneߦ
real eigenvalue becomes zero. This is seen in the bifurcation diagram of a one-
dimensional system shown in Fig. 7-3.  



Perturbation M

 

 
The infinite 
folding, a tur
ߦ ൐ ௢ no soߦ
solution bran
other unstabl
the case of a
in the genera
saddle collide
 
In the second
axis (ߣ௢ ൌ േ
bifurcation, a
see that a H
(݊ ൒ 2).  
 
An example 
Fig. 7-4. In 
born as the p
the stable 
bifurcation (
equilibrium p
 
 
 
 
 
 

Models 

slope at ߦ௢ 
rning point of
olutions exist,
nch contains 
le (saddle) so
a one-dimensi
al case it is 
e, hence the n

d case, a pair 
േ݆߱௢ with ߱
and a limit cy
opf bifurcatio

of a Hopf b
a supercritica

parameter goe
equilibrium 
Fig. 7-4 b), 
point become

Fig. 7-3. Fol

correspondin
f the solution 
, whereas for
stable nodes

lutions, and t
ional system,
a saddle. At 

name saddle-n

of simple co
߱௢ ൐ 0). In th
ycle is born o
on requires t

bifurcation in
al Hopf bifurc
es through th
solution be

an unstable l
s stable. 

 

ld bifurcation.

ng to a real 
curve. For la

r ߦ ൏  ௢ twoߦ
s indicated by
this is indicate
the unstable 
the critical v

node bifurcati

omplex eigenv
his case, the

or is extinguis
that the syste

n a two-dimen
cation (Fig. 7
e bifurcation 

ecomes unsta
limit cycle is

 
. 

zero eigenva
arger values o

solutions exi
y a solid lin
ed by a dotte
solution is a 

value ߦ ൌ ௢ߦ
ion. 

values fall on
 system und

shed. It is stra
em be at leas

nsional syste
7-4 a), a stabl

value ߦ௢. At
able. In sub
s created wh

22

alue leads to
f the paramet
ist. In fact, on

ne, whereas th
ed line [102]. 
a node, where
, the node an

n the imagina
dergoes a Ho
aightforward 
st second ord

em is shown 
le limit cycle 
t the same tim
bcritical Ho

hile an unstab

21 

 a 
ter 
ne 

the 
In 

eas 
nd 

ary 
opf 

to 
der 

in 
is 

me 
opf 
ble 



222 

 

7.2.2 Bifu

Correspondin
Floquet mult
of an auton
therefore, it 
equal to one. 
 
Given a perio
of bifurcation
possibilities t
shown in Fig
 
In the fold bi
this case the 
be inferred 
perturbation 
Floquet mult
 

 

with ݊ intege
system. A fo
steady-state s
for the equili

F
s

rcations of 

ngly, a hyperb
tipliers with m
nomous syste
is hyperbolic
 

odic steady st
ns for one-par
that a multip

g. 7-5.  

ifurcation (Fi
frequency of
from Fig. 7-
of the dyna

iplier equal to

er and therefo
old bifurcatio
solution, muc
brium point. 

Fig. 7-4. Hopf 
supercritical, 

Periodic O

bolic limit cy
magnitude eq
em has one 
c if the remai

tate with freq
rameter syste
lier crosses t

g. 7-5 a), a re
f the limit cyc
-5 a) and Eq
amical system
o 1 leads to a 

ሻݐሺ࢞ࢾ ൌ ܿ

ore it does no
on leads to a
ch as the fold

bifurcation, a)
b) subcritical.

rbits 

cle is a limit 
qual to one [1

Floquet mu
ining multipl

quency ߱ ൌ 2
ems [102], cor
he unit cycle

eal multiplier
cle remains th
q. (7.1-10), 
m around th
perturbation 

ܿ݁௝ఠ௧࢖ሺݐሻ 

ot perturb the 
a change in t

bifurcation o

 
) 
. 

cycle that doe
02]. A period

ultiplier equa
iers do not h

ߨ2 ܶ⁄ , there ex
rresponding t

e as the param

r takes the va
he same, som
which descri
e periodic s
that evolves a

oscillation fr
the stability o
of an equilibr

Chapter

es not have an
dic steady sta
al to one, an
have magnitu

xist three typ
to three distin
meter is varie

alue ݉	 ൌ 	1. 
mething that c

ibes the line
steady state. 
as 

(7.2-2) 

requency of t
of the period
rium point do

r 7 

ny 
ate 
nd 

ude 

pes 
nct 
ed, 

In 
an 

ear 
A 

the 
dic 
oes 



Perturbation M

 

F

 
A flip bifurca
contrast to th
limit cycle w
fact, a flip b
contribution 

 

where one ca
original one. 
 
Finally, in a 
multipliers ap
which is not
leading to th
variational eq

 

where ߭ is no

Models 

Fig. 7-5. Bifurc
c

ation occurs w
he fold bifurca
whose oscillat
bifurcation is
to the linear v

an observe th

Neimark-Sac
ppear on the 
t harmonicall
e onset of a q
quation of thi

ot an integer. 

cations of peri
c) Neimark-Sa

when the mul
ation a flip bi
tion frequenc
s also known
variational eq

ሻݐሺ࢞ࢾ ൌ ܿ

he appearance

cker or torus
unit cycle (F
y related to 
quasi-periodic
s Floquet mu

ሻݐሺ࢞ࢾ ൌ ܿ

 

odic orbits, a)
cker bifurcatio

ltiplier becom
ifurcation lea
y is half of th

n as a period
quation of the 

ܿ݁௝
ఠ
ଶ௧࢖ሺݐሻ 

e of a term w

bifurcation, a
Fig. 7-5 c). A
the orininal o
c solution. Th

ultiplier is exp

݁௝జఠ௧࢖ሺݐሻ 

) fold, b) flip, a
on. 

mes ݉	 ൌ െ1
ads to the exis
he original o
d-doubling bi
݉	 ൌ െ1 mu

with a frequen

a pair of com
As a result a n
one, appears 
he contributio

pressed as 

22

and  

(Fig. 7-5 b). 
stence of a ne
ne. Due to th
ifurcation. T

ultiplier is 

(7.2-3) 

ncy half of t

mplex conjuga
new frequenc
in the system

on to the line

(7.2-4) 

23 

 

In 
ew 
his 
he 

the 

ate 
cy, 
m, 
ear 



224 Chapter 7 

 

7.3 The Averaging Method and Multiple Time Scales 

The averaging method is typically used to analyze the periodic steady-state 
solutions of weakly nonlinear systems  

 ሶ࢞ ൌ ,ሺ࢞ࢌߝ  ሻ (7.3-1)ߝ

and perturbations of the linear oscillator systems [103] [100], with  
ߝ ≪ 1. It was originally developed by Krylov and Bogoliubov [104]. The 
method is particularly suitable to analyze the perturbed linear oscillator 
problem described by 

ሷݔ  ൅ ωଶݔ ൌ  ሻ (7.3-2)ݔሺ݂ߝ

where ߱, ,ݔ ݂ ∈ Թ. The van der Pol differential equation belongs to this class of 
systems with ݂ሺݔሻ ൌ ሺ1 െ ሶݔଶሻݔ . In the case of weakly coupled oscillators, an 
equation of the form Eq. (7.3-2) is used to describe each oscillator, and	݂ሺݔሻ 
contains the nonlinear term of the free-running (uncoupled) oscillator as well as 
contributions from external coupled signals from other oscillators, which can be 
linear or nonlinear. The averaging theorem [100] Uc585947 states that there 
exists a change of coordinates ࢞ ൌ ࢟ ൅ ,ሺ࢟࢝ߝ  ሻ which transforms Eq. (7.3-1)ߝ
to the averaged system  

ሶܡ  ൌ  തሺ࢟ሻ (7.3-3)ࢌߝ

where  

ሻܡതሺࢌ  ൌ
1
ߨ2

න ݖሻ,0ሻ݀ݖሺ࢟ሺࢌ
ଶగ

଴
 (7.3-4) 

The system given by Eq. (7.3-3) is an autonomous system, whereas Eq. (7.3-1) 
can be non-autonomous. The essential property of the averaged system that is 
extensively applied in the study of coupled oscillator systems is that a 
hyperbolic periodic steady state of Eq. (7.3-3) corresponds to a hyperbolic 
equilibrium point of Eq. (7.3-1) and that both steady states have the same 
stability [100]. This essentially means that the eigenvalues of the linearized 
system of an equilibrium point of Eq. (7.3-3) determine its stability. This is 
quite useful as obtaining the Floquet multipliers of a microwave oscillator may 
not be a trivial task. Furthermore, for the cases that are considered in this book, 
the bifurcations of the averaged system are the same as those of the original 
system [100].  
 
In order to transform the perturbed linear oscillator problem in the standard 
form Eq. (7.3-1), the following transformation (known as the van der Pol 
transformation [100] [103]) is commonly applied to Eq. (7.3-2) before 
averaging,  
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ݔ  ൌ ܣ ݐሺ߱ݏ݋ܿ ൅ ߶ሻ (7.3-5) 

ሶݔ  ൌ െ߱ܣ ݐሺ߱݊݅ݏ ൅ ߶ሻ  

In this case Eq. (7.3-2) becomes 

ሶܣ  ൎ െ
ߝ
߱
ݐሺ߱݊݅ݏ ൅ ߶ሻ݂ ሺܣ, ߶, ሻߝ ൌ ,ܣଵሺ݃ߝ ߶,  ሻ (7.3-6)ߝ

 ߶ሶ ൎ െ
ߝ
߱ܣ

ݐሺ߱ݏ݋ܿ ൅ ߶ሻ݂ሺܣ, ߶, ሻߝ ൌ ,ܣଶሺ݃ߝ ߶,   ሻߝ

Applying Eq. (7.3-4), the averaged solution is obtained 

ሶܣ̅  ൌ ,ܣଵሺ̅̅݃ߝ ߶തሻ (7.3-7) 

 ߶തሶ ൌ ,ܣଶሺ̅̅݃ߝ ߶തሻ  

It should be noted that the transformation given by Eq. (7.3-5) and subsequent 
application of the perturbation method limits the analysis of the system given 
by Eq. (7.3-2) locally near the oscillation frequency ߱ in the frequency domain. 
The system can be studied near a different harmonic by modifying 
appropriately the transformation, that is, setting ݊߱ in place of ߱ where ݊ is the 
desired harmonic order. In practice, considering the oscillator behavior near the 
fundamental frequency is sufficient for the study of high Q oscillators because 
higher harmonics are small and therefore can be ignored in the analysis. 
Specifically, the averaged Van del Pol differential equation for which  
݂ሺݔሻ ൌ ሺ1 െ ሶݔଶሻݔ  becomes [103] 

ሶܣ̅  ൌ
ߝ
2
ܣ̅ ቆ1 െ

ଶܣ̅

4
ቇ (7.3-8) 

 ߶തሶ ൌ 0  

The above system leads to a nontrivial steady-state oscillation with amplitude 

ܣ̅ ൌ 2 obtained by requiring that ̅ܣሶ ൌ 0.  

7.4 Averaging Theory in Coupled Oscillator Systems 

Kurokawa considered the oscillator equivalent of a series resistance, 
inductance, capacitance (RLC) resonator connected in series with a negative 
resistance and applied the averaging theory to study the properties of noisy 
oscillators and injection locked oscillators [105].  
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The theory of Kurokawa applied to the study of coupled oscillator arrays was 
introduced to the antennas and microwaves communities by Stephan [1] with 
an aim towards antenna-array applications such as power-combining arrays and 
phased arrays. The work of Stephan focused on taking advantage of the 
dynamical properties of coupled oscillator array topologies in order to generate 
constant phase shift distributions among the array elements in a continuously 
variable manner. A parallel RLC resonator in parallel with a negative resistance 
was used to model each oscillator, leading to a dual form of the one used by 
Kurokawa. 
 
It should be noted that there is significant theoretical work in the literature 
regarding coupled oscillator systems, also called distributed and ladder 
oscillators, considering the various operating modes and stability of one- and 
two-dimensional arrays. Notable references are [106] [107] [108] [109]. The 
latter work by Endo and Mori [109] presented an elegant way to obtain a 
formulation equivalent to a perturbed van der Pol equation in vector form for an 
array of coupled oscillators modeled as a parallel RLC resonator with a 
negative resistance, and it will be given in the next section. An efficient 
analysis of coupled oscillator arrays for quasi-optical power combining and the 
stability of the various existing operating modes was proposed by York and 
Compton [110] utilizing only the phase dynamics of the array, or in other words 
the second equation of Eq. (7.3-7). 
 
We may distinguish among power-combining applications where the stability 
of the various operating modes of coupled oscillator systems is with an aim to 
secure excitation of only the in-phase mode, and applications where an arbitrary 
phase distribution among the oscillator elements is required (such as 
beamforming and phased arrays). The latter may be viewed as a generalization 
of the former. 
 
Following their initial work, York produced a general formulation for coupled-
oscillator arrays based on the fundamental harmonic approximation and the 
averaging method that is essentially used to date in most approximate analysis 
methods for such systems [111], [95]. Furthermore, York introduced an elegant 
way to achieve constant progressive phase shifts among the array oscillator 
elements in a continuous fashion by only modifying the oscillation frequency of 
the end elements of the array. In 2004, Heath presented an elegant and unifying 
formulation of the application of the method of averaging (specifically the 
Lindstedt method was used to derive the slow time differential equations [94]) 
in coupled-oscillator arrays along with a detailed stability analysis of various 
different coupling network topologies [112]. The latter formulation is given 
here 
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ሶ௠ܣ ൌ ௢௠ଶܣሺߤ െ ௠ଶܣ ሻܣ௠

൅෍ܭ௠௜ܣ௜ cosሺ߶௜ െ ߶௠ ൅Φ௜௠ሻ
ே

௜ୀଵ

 (7.4-1) 

 

௠߶ሶ௠ܣ ൌ Δ߱௠ܣ௠

൅෍ܭ௠௜ܣ௜ ሺ߶௜݊݅ݏ െ ߶௠ ൅ Φ௜௠ሻ
ே

௜ୀଵ

  

where an array of ܰ oscillators is assumed. The variable ܣ௠ represents the 
slowly varying averaged amplitude of oscillator ݉, as given in Eq. (7.3-7) with 
the bar suppressed for simplicity. Correspondingly, the phase of oscillator ݉ is 
given by ߠ௠ ൌ ߱௢ݐ ൅ ߶௠ where ߶௠ is the averaged time varying component 
of the oscillator phase corresponding to Eq. (7.3-7) (with the bar suppressed). 
When uncoupled to the rest of the array elements, each oscillator ݉ has a 
periodic steady state with amplitude ܣ௢௠ and frequency ߱௠ ൌ ߱௢ ൅ Δ߱௠. 
Furthermore, each individual oscillator satisfies a van der Pol differential 
equation of nonlinearity constant ߝ, which appears in Eq. (7.4-1) through 
ߤ ൌ ߝ ߱௠ ሺ2ܳሻ⁄  where ܳ is the external quality factor of the resonator of each 
oscillator element calculated using a reference load admittance ܩ௅. Coupling 
among the oscillator elements is included in the form of a square complex 
matrix ܶ ൌ ሾݐ௠௜ሿ of dimension ܰ, with ݐ௠௜ ൌ ௠ܶ௜݁௝஍೘೔. Note that ܶ is a 
transfer function (unitless). If for example an admittance matrix is used to 
express the coupling among oscillator elements, then ܶ is the admittance matrix 
normalized to the reference load admittance ܩ௅. In Eq. (7.4-1) the coupling 
coefficients also appear in normalized form setting  

ߢ  ൌ ሾߢ௠௜ሿ 	ൌ ௠௜݁௝஍೘೔൧ܭൣ ൌ ሾݐ௠௜߱௠/2ܳሿ (7.4-2) 

Finally, Eq. (7.4-1) can be written in a complex valued compact format letting 
௠ߙ ൌ  ௠݁௝థ೘ܣ

 ሶܽ௠ ൌ ݆Δ߱௠ܽ௠ ൅ ௢௠ଶܣሺߤ െ |ܽ௠|ଶሻܽ௠ ൅෍ߢ௠௜ܽ௜

ே

௜ୀଵ

 (7.4-3) 

Under weak coupling conditions, the phase dynamics alone are sufficient to 
analyze the behavior of the coupled oscillator system. We may then consider 
only the second equation of Eq. (7.4-1) and assume that the oscillator 
amplitudes are approximately equal to their uncoupled values ܣ௠ ൌ  ௢. Theܣ
system of equations pertaining to the phase dynamics provide significant 
insight and a very computationally efficient method to analyze arrays with a 
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large number of elements. In fact, the analysis results of Part I of this book have 
focused on the phase dynamics of coupled oscillator arrays. The system of 
equations limited to the phase dynamics was introduced as the “generalized 
phase model” by Heath in [112]: 

 ߶ሶ௠ ൌ Δ߱௠ ൅෍ܭ௠௜ ሺ߶௜݊݅ݏ െ ߶௠ ൅ Φ௠௜ሻ
ே

௜ୀଵ

 (7.4-4) 

When no coupling phase Φ௠௜ is considered, the model is the well known 
Kuramoto model [113]. In the special case where a bi-directional symmetrical 
coupling matrix with ߢ௜௠	= ߢ௠௜ is considered, the generalized phase model 
coincides with the phase model introduced by York in [111].  
 
A fixed point of Eq. (7.4-1) corresponds to a periodic steady-state solution, 
defined for ܣሶ௠ ൌ 0 and ߶ሶ௠ ൌ ܿ with ܿ an arbitrary constant. Letting ܿ take 
nonzero values still corresponds to synchronized solutions of the array but for a 
different frequency than ߱௢. 

 
௢௠ଶܣሺߤ െ ௠ଶܣ ሻܣ௠ ൅෍ܭ௠௜ܣ௜ cosሺ߶௜ െ ߶௠ ൅ Φ௜௠ሻ

ே

௜ୀଵ
ൌ 0 

(7.4-5) 

 
ሺΔ߱௠ െ ܿሻܣ௠ ൅෍ܭ௠௜ܣ௜ ሺ߶௜݊݅ݏ െ ߶௠ ൅Φ௜௠ሻ

ே

௜ୀଵ
ൌ 0 

 

Every set ሺܣ௠, ߶௠ሻ that satisfies the above conditions corresponds to an 
oscillating mode of the array. In principle there exist up to 2ேିଵ modes [111]. It 
should be emphasized that, due to the autonomous nature of the coupled 
oscillator system, it is possible to translate all oscillator phases ߶௠ by the same 
arbitrarily large value and still obtain the same steady-state solution. This is 
evidenced by the fact that only phase differences appear in Eq. (7.4-5). In other 
words, the steady state is defined by the oscillator phase differences and not 
their absolute phase. 
 
The stability of the oscillating modes is examined by considering the linear 
perturbation ሺܣ௠ ൅ ,௠ܣߜ ߶௠ ൅  ௠ሻ of Eq. (7.4-1), which leads to a system߶ߜ
of linear differential equations 
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ሶ௠ܣߜ ൌ ௢௠ଶܣሺߤ െ ௠ଶܣ3 ሻܣߜ௠

൅෍ܭ௠௜ ሺ߶௜ݏ݋ܿ െ ߶௠ ൅ Φ௠௜ሻ ௜ܣߜ

ே

௜ୀଵ

െ෍ܭ௠௜ܣ௜ ሺ߶௜݊݅ݏ െ ߶௠ ൅ Φ௠௜ሻ ሺߜ߶௜

ே

௜ୀଵ
െ  ௠ሻ߶ߜ

(7.4-6) 

 

ሶ௠߶ߜ௠ܣ ൌ െ߶ሶ௠ܣߜ௠ ൅෍ܭ௠௜ ሺ߶௜݊݅ݏ െ ߶௠ ൅ Φ௠௜ሻ ௜ܣߜ

ே

௜ୀଵ

൅෍ܭ௠௜ܣ௜ ሺ߶௜ݏ݋ܿ െ ߶௠ ൅Φ௠௜ሻ ሺߜ߶௜

ே

௜ୀଵ
െ  ௠ሻ߶ߜ

 

In the case of the generalized phase model one has 

ሶ௠߶ߜ  ൌ෍ܭ௠௜ ሺ߶௜ݏ݋ܿ െ ߶௠ ൅Φ௠௜ሻ ሺߜ߶௜ െ ௠ሻ߶ߜ
ே

௜ୀଵ

 (7.4-7) 

Because the steady state is defined by phase differences and not absolute phase 
values, the perturbation phase values ߜ߶௠ of the steady state may not be small. 
Their differences, however, are assumed to be small, and this allows one to take 
the linear approximation of the cosine and sine terms in Eq. (7.4-1) and obtain 
Eq. (7.4-6).  

7.5 Obtaining the Parameters of the van der Pol 
Oscillator Model 

A useful analytical method is presented, that allows one to obtain the van der 
Pol differential equation from a parallel resonator with a nonlinear voltage 
dependent current source. The procedure follows the development presented by 
Endo and Mori in [108], and it represents a time-domain formulation of van der 
Pol’s model described in Section 1.2. This model has very low complexity, and 
it can be easily incorporated into analysis of large arrays or proof of concept for 
various topologies of coupled oscillators. In addition, it can be easily 
introduced into circuit simulators.  
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ᇱᇱݒ  െ ߣ ൬1 െ
3݃ଷ

݃ଵ െ ݃௅
ଶ൰ݒ ′ݒ ൅ ݒ ൅

ߣ
݃ଵ െ ݃௅

݅′௜௡௝ ൌ 0 (7.5-7) 

The parameter λ is equal to the inverse of the loaded quality factor, Q, of the 
oscillator circuit of Fig. 7-6.  
 
Finally, scaling the voltage as 

ݔ  ൌ ඥݒߚ ൌ ඨ
3݃ଷ

݃ଵ െ ݃௅
 (8-7.5) ݒ

the differential equation takes the desired form: 

ᇱᇱݔ  െ ሺ1ߣ െ ′ݔଶሻݔ ൅ ݔ ൅ ඨߣ
3݃ଷ

ሺ݃ଵ െ ݃௅ሻଷ
݅′௜௡௝ ൌ 0 (7.5-9) 

When no injection signal is present, ݅௜௡௝ ൌ 0, and this equation becomes the 
well known van der Pol equation. 

ᇱᇱݔ  െ ሺ1ߣ െ ′ݔଶሻݔ ൅ ݔ ൌ 0 (7.5-10) 

The approximate solution to the van der Pol oscillation is [94] 

ݔ  ൌ 2 cos ߬ ⇒ ݒ ൌ
2

ඥߚ
sin߱௢(11-7.5) ݐ 

which is identical to the solution provided by the averaging method in 
Section 7.3. 
 
The approximate parallel model for the oscillator can be extracted using a 
nonlinear simulator and calculating the admittance at a selected circuit node 
[114]. Several authors have proposed experimental techniques to evaluate the 
model parameters [114,115]. Measurement of the oscillator amplitude can be 
used to obtain the scaling parameter ߚ. Injection locking the oscillator to an 
external signal and measuring the locking bandwidth can be used to estimate 
the Q and subsequently the second parameter ߣ of the van der Pol model [114]. 
Alternatively, a low-frequency sinusoidal modulating signal can be introduced 
in the bias circuitry of the oscillator, resulting in a phase modulated oscillator 
output. The parameter ߣ can then be obtained by measuring the relative 
amplitude of the modulation sidebands [115].  
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 ௠ܻ ௠ܸ݁௝థ೘ ൅෍ ௖ܻ௠௜ ௜ܸ݁௝థ೔
ே

௜ୀଵ

ൌ 0 (7.6-2) 

where the coupling is represented by the admittance matrix ௖ܻሺ߱ሻ ൌ ሾ ௖ܻ௠௜ሺ߱ሻሿ 
which typically is frequency dependent. The coupling results in a steady state 
that can be expressed as a perturbation of the individual oscillator free-running 
steady state as follows:  

 ௠ܸ ൌ ௢ܸ ൅ Δ ௠ܸሺݐሻ (7.6-3) 

 ߶௠ ൌ ߶௢௠ ൅ Δ߶௠ሺݐሻ  

௠ߤ  ൌ ௢௠ߤ ൅ Δߤ௠  

 ߱ ൌ ߱௢ ൅ ߶ሶ௠ሺݐሻ െ
݆ ሶܸ௠
௠ܸ

  

 ௖ܻ௠௜ሺ߱ሻ ൌ ௖ܻ௠௜ሺ߱௢ሻ ൅
߲ ௖ܻ௠௜

߲߱௢
ሺ߱ െ ߱௢ሻ  

 
௠ܻሺܸ, ߱, ሻߤ ൌ

߲ ௠ܻ

߲ ௢ܸ
ሺ ௠ܸ െ ௢ܸሻ ൅

߲ ௠ܻ

߲߱௢
ሺ߱ െ ߱௢ሻ

൅
߲ ௠ܻ

௢ߤ߲
ሺߤ௠ െ  ௢ሻߤ

 

The perturbation assumption has been used in the first place by York, Liao, and 
Lynch [33], and it is described in Section 1.3 dealing with the injection-locked 
oscillator. However, in their analysis they proceed to assume a specific 
nonlinear dependence of the adminttance on the amplitude ௠ܸ whereas here no 
such assumption is made. Furthermore, it should be noted that the frequency 
expansion has been done using the well known Kurokawa transformation [105] 
introduced in Section 1.3. The commonly used coupling networks have a 
broadband frequency response relative to the oscillator locking bandwidth, 
which allows us to consider a constant coupling term ௖ܻ௠௜ሺ߱ሻ ൌ ௖ܻ௠௜ሺ߱௢ሻ. 
Narrowband coupling networks were studied by Lynch and York [117]. After 
some straightforward manipulation, one obtains 
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߲ ௠ܻ

߲߱௢
ൣെ݆ ሶܸ௠ ൅ ௠ܸ߶ሶ୫൧ ൅

߲ ௠ܻ

௢ߤ߲
Δߤ௠ ௠ܸ

൅
߲ ௠ܻ

߲ ௢ܸ
ሺ ௠ܸ െ ௢ܸሻ ௠ܸ

൅෍ ௖ܻ௠௜ሺ߱௢ሻ ௜ܸ݁௝
ሺథ೔ିథ೘ሻ

ே

௜ୀଵ

ൌ 0 

(7.6-4) 

This system of differential equations represents the basis for an alternative 
model formulation for a system of coupled oscillators. This formulation has 
been essentially introduced in Ref. [116] and refined in Ref. [118] as well as 
subsequent works as a basis to study several properties of coupled oscillator 
arrays.  
 
In order to appreciate the similarities and differences with the original model of 
Section 7.4, the amplitude and phase equations are decoupled by first dividing 
with ߲ ௠ܻ ߲߱௢⁄  and then considering real and imaginary parts. Let for 
simplicity 

௏ܥ  ൌ ݆
߲ܻ
߲߱௢

ିଵ ߲ܻ
߲ ௢ܸ

ൌ ௏ܥ
ோ ൅ ௏ܥ݆

ூ  (7.6-5) 

ఓܥ  ൌ ݆
߲ܻ
߲߱௢

ିଵ ߲ܻ
௢ߤ߲

ൌ ఓோܥ ൅ ఓூܥ݆   

 
௖ܥ ൌ ሾܥ௖௠௜ሿ ൌ ቈ݆

߲ܻ
߲߱௢

ିଵ

௠ܻ௜ሺ߱௢ሻ቉ ൌ ௖௠௜|݁௝అ೘೔൧ܥ|ൣ

ൌ ௖௠௜ܥൣ
ோ ൅ ௖௠௜ܥ݆

ூ ൧ 
 

Using the above, Eq. (7.6-4) becomes 

  

ሶܸ௠ ൅ ௏ܥ
ோሺ ௠ܸ െ ௢ܸሻ ௠ܸ ൅ ௠ߤఓோΔܥ ௠ܸ

൅෍|ܥ௖௠௜| ௜ܸ cosሺ߶௢௜ െ ߶௢௠ ൅ ௠௜ሻߖ
ே

௜ୀଵ
ൌ 0 

(7.6-6) 
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௠ܸ߶ሶ௠ ൅ ௏ܥ
ூ ሺ ௠ܸ െ ௢ܸሻ ௠ܸ ൅ ௠ߤఓூΔܥ ௠ܸ

൅෍|ܥ௖௠௜| ௜ܸ sinሺ߶௢௜ െ ߶௢௠ ൅ ௠௜ሻߖ
ே

௜ୀଵ
ൌ 0 

 

Furthermore, letting ݒ௠ ൌ ௠ܸ݁௝థ೘ it is possible to express Eq. (7.6-6) in a 
compact complex form  

ሶ௠ݒ  ൅ |௠ݒ|௏ሺܥ െ ௢ܸሻݒ௠ ൅ ௠ݒ௠ߤఓΔܥ ൅෍ܥ௖௠௜ݒ௜

ே

௜ୀଵ

ൌ 0 (7.6-7) 

The corresponding generalized phase model associated with this formulation is 
obtained considering only the phase dynamics which results in 

 ߶ሶ௠ ൅ ௠ߤఓூΔܥ ൅෍|ܥ௖௠௜| sinሺ߶௢௜ െ ߶௢௠ ൅ ௠௜ሻߖ
ே

௜ୀଵ

ൌ 0 (7.6-8) 

The periodic steady-state solution is obtained by setting ሶܸ௠ ൌ 0 and ߶ሶ௠ ൌ ∆߱ 
leading to 

 

௏ܥ
ோሺ ௠ܸ െ ௢ܸሻ ௠ܸ ൅ ௠ߤఓோΔܥ ௠ܸ

൅෍|ܥ௖௠௜| ௜ܸ cosሺ߶௢௜ െ ߶௢௠ ൅ ௠௜ሻߖ
ே

௜ୀଵ
ൌ 0 

(7.6-9) 

 

௠ܸ∆߱ ൅ ௏ܥ
ூ ሺ ௠ܸ െ ௢ܸሻ ௠ܸ ൅ ௠ߤఓூΔܥ ௠ܸ

൅෍|ܥ௖௠௜| ௜ܸ sinሺ߶௢௜ െ ߶௢௠ ൅ ௠௜ሻߖ
ே

௜ୀଵ
ൌ 0 

 

or in complex notation 

 

௏ሺܥ ௠ܸ െ ௢ܸሻ ௠ܸ ൅ ݆ ௠ܸ∆߱ ൅ ௠ߤఓΔܥ ௠ܸ

൅෍ܥ௖௠௜ ௜ܸ݁௝ሺథ೚೔ିథ೚೘ሻ
ே

௜ୀଵ

ൌ 0 (7.6-10) 
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As was the case with the model represented by Eq. (7.4-1) the steady state of 
the array is defined by phase differences and not absolute phases. In order to 
study the stability of the steady-state solution, we form the linear perturbation 
of Eq. (7.6-4) using ሺ ௠ܸ ൅ ߜ ௠ܸ, ߶௠ ൅  ௠ሻ, where small-amplitude߶ߜ
perturbations ߜ ௠ܸ and small-phase perturbation differences ሺߜ߶௠ െ  ௜ሻ are߶ߜ
considered leading to 

 

ߜ ሶܸ௠ ൅ ௏ܥൣ
ோሺ2 ௠ܸ െ ௢ܸሻ ൅ ௠ߤఓோሺܥ െ ߜ௢ሻ൧ߤ ௠ܸ

൅෍|ܥ௖௠௜| cosሺ߶௢௜ െ ߶௢௠ ൅ ௠௜ሻߖ ߜ ௜ܸ

ே

௜ୀଵ

െ෍|ܥ௖௠௜| ௜ܸ sinሺ߶௢௜ െ ߶௢௠ ൅ ௠௜ሻߖ ሺߜ߶௜

ே

௜ୀଵ
െ ௠ሻ߶ߜ ൌ 0 

 

(7.6-11) 

 

௠ܸߜ߶ሶ௠ ൅ ൣ∆߱ ൅ ௏ܥ
ோሺ2 ௠ܸ െ ௢ܸሻ ൅ ௠ߤఓூሺܥ െ ߜ௢ሻ൧ߤ ௠ܸ

൅෍|ܥ௖௠௜| sinሺ߶௢௜ െ ߶௢௠ ൅ ௠௜ሻߖ ߜ ௜ܸ

ே

௜ୀଵ

൅෍|ܥ௖௠௜| ௜ܸ cosሺ߶௢௜ െ ߶௢௠ ൅ ௠௜ሻߖ ሺߜ߶௜

ே

௜ୀଵ
െ ௠ሻ߶ߜ ൌ 0 

 

Correspondingly, the generalized phase model stability is then determined by 

ሶ௠߶ߜ  ൅෍|ܥ௖௠௜| cosሺ߶௢௜ െ ߶௢௠ ൅ ௠௜ሻߖ ሺߜ߶௜ െ ௠ሻ߶ߜ
ே

௜ୀଵ

ൌ 0 (7.6-12) 

The eigenvalues of the linear variational equation determine the stability of the 
steady-state solutions. In practice, it is more computationally efficient to 
formulate and process the array equations as matrix equations, and this is the 
topic of the next section.  

7.7 Matrix Equations for the Steady State and Stability 
Analysis 

It is easier from a computational point of view to express the various systems of 
equations of the previous sections in matrix form. In order to do so, the 
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following notation and properties are used. Bold letterface indicates a column 
vector or a matrix. The dimension of the vector or square matrix is ܰ unless 
noted otherwise, 0 and ૚ indicate a vector of zeros and a vector of ones, 
respectively. The notation ሾܽ௠ሿ and ሾܽ௠௜ሿ define a vector and a matrix ࢻ, 
respectively. The function dgሺ	ሻ converts a vector to a square diagonal matrix 
of size ܰ. It is straightforward to show that for any two vectors ࢇ and	࢈, 
dgሺࢇሻ࢈	 ൌ 	dgሺ࢈ሻࢇ. The superscript ሺ	ሻு indicates the conjugate transpose of a 
matrix or vector, whereas superscripts ሺ	ሻோ and ሺ	ሻூ	indicate real and imaginary 
part. One can then rewrite Eq. (7.4-1) in matrix form  

ሶ࡭  ൅ ݆dgሺ࡭ሻ ሶࣘ ൌ dgሺ࢖૚ሺ࡭ሻ ൅ ݆ઢ࣓ሻ࡭ ൅઴ࣄࡴ઴(1-7.7) ࡭ 

where ઴ ൌ dgൣ݁௝థ೘൧. The system given by Eq. (7.7-1) can be integrated 
numerically after separating real and imaginary parts, 

 ൤
ࡵ ૙
૙ dgሺ࡭ሻ൨ ൤

ሶ࡭
ሶࣘ ൨ ൌ ൥

dg൫࢖૚ሺ࡭ሻ൯࡭ ൅ ൫઴ࣄࡴ઴൯
ோ
࡭

dgሺઢ࣓ሻ࡭ ൅ ൫઴ࣄࡴ઴൯
ூ
࡭

൩ (7.7-2) 

where the vector function ࢖૚ሺ࡭ሻ is defined as ࢖૚ሺ࡭ሻ ൌ ሾߤሺܣ௢௠ଶ െ ௠ଶܣ ሻሿ. The 
generalized phase model (7.4-4) is then given by 

 ሶࣘ ൌ ઢ࣓ ൅ ൫઴ࣄࡴ઴൯
ூ
૚ (7.7-3) 

The steady state of Eq. (7.7-2) is computed by setting ࡭ሶ ൌ 0 and ሶࣘ ൌ ܿ૚ 
which, when substituted in (7.7-2), result in the trivial solution ࡭ ൌ ૙ or 

 ൥
dg൫࢖૚ሺ࡭ሻ൯ ൅ ൫઴ࣄࡴ઴൯

ோ

dgሺઢ࣓ െ ܿ૚ሻ ൅ ൫઴ࣄࡴ઴൯
ூ൩ ൌ ቂ૙

૙
ቃ (7.7-4) 

The linear variational equation of Eq. (7.7-1) is also written as a matrix linear 
differential equation as follows 

ሶ࡭ࢾ  ൅ ݆dgሺ࡭ሻࢾ ሶࣘ ൌ ࡭઼࡭ࡰ ൅ ࣘࡰ ઼ࣘ (7.7-5) 

with 

࡭ࡰ  ൌ dg൫ࢍ૚ሺ࡭ሻ ൅ ݆ሺઢ࣓ െ ܿ૚ሻ൯ ൅ ઴ࣄࡴ઴ (7.7-6) 

ࣘࡰ  ൌ ݆ሾ઴ࣄࡴ઴ dgሺ࡭ሻ െ dgሺ઴ࣄࡴ઴   ሻሿ࡭

where ࢍ૚ሺ࡭ሻ ൌ ሾߤሺܣ௢௠ଶ െ ௠ଶܣ3 ሻሿ. The complex system of Eq. (7.7-5) is 
separated into real and imaginary parts as  

 ൤
ࡵ ૙
૙ dgሺ࡭ሻ൨ ൤

ሶ࡭ࢾ
ࢾ ሶࣘ ൨ ൌ ቈ

࡭ࡰ
ࡾ ࣘࡰ

ࡾ

࡭ࡰ
ࡵ ࣘࡰ

ࡵ ቉ ൤
࡭ࢾ
 ൨ (7.7-7)ࣘࢾ
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or  

 ൤࡭ࢾ
ሶ

ࢾ ሶࣘ ൨ ൌ ࡰ ൤
࡭ࢾ
൨ࣘࢾ ൌ ቈ

࡭ࡰ
ࡾ ࣘࡰ

ࡾ

dgሺ࡭ሻିଵ࡭ࡰ
ࡵ dgሺ࡭ሻିଵࣘࡰ

ࡵ ቉ ൤
࡭ࢾ
 ൨ (7.7-8)ࣘࢾ

where dgሺ࡭ሻିଵ is a diagonal matrix with the inverse of the steady-state 
oscillator amplitudes in its diagonal. The inversion operation is guaranteed to 
exist under the assumption that the steady-state solution corresponds to nonzero 
amplitudes for all oscillators.  
 
Correspondingly, the linear variational equation of the generalized phase model 
is  

ࢾ  ሶࣘ ൌ ࣘࢾࡳࡰ ൌ ሾ઴ࣄࡴ ઴ െ  (9-7.7) ࣘࢾ઴૚ሻሿோࣄࡴሺ઴܏܌

The matrix differential equation pertaining to the coupled-oscillator dynamics 
according to the alternative model Eq. (7.6-4) becomes 

ሶࢂ  ൅ ݆dgሺࢂሻ ሶࣘ ൅ ሻࢂሺࢂ࢖ࢂ࡯ ൅ ࣆ∆ሻࢂdgሺࣆ࡯ ൅઴ࢉ࡯ࡴ઴ࢂ ൌ ૙ (7.7-10) 

where ࢂ࢖ሺࢂሻ ൌ ሺdgሺࢂሻ െ ௢ܸࡵሻࢂ. After separating into real and imaginary parts 
one obtains 

 

൤
ࡵ ૙
૙ dgሺࢂሻ൨ ൤

ሶࢂ
ሶࣘ ൨

ൌ ൥
ࢂ࡯
ሻࢂሺࢂ࢖ࡾ ൅ ࣆ∆ሻࢂdgሺࡾࣆ࡯ ൅ ൫઴ࢉ࡯ࡴ઴൯

ோ
	ࢂ

ࢂ࡯
ࡵ ሻࢂሺࢂ࢖ ൅ ࡵࣆ࡯ dgሺࢂሻ∆ࣆ ൅ ൫઴ࢉ࡯ࡴ઴൯

ூ
ࢂ
൩ 

(7.7-11) 

The steady-state solution is then given by the nonlinear system of algebraic 
equations 

 
൥

ࢂ࡯
ሻࢂሺࢂ࢖ࡾ ൅ ࣆ∆ሻࢂdgሺࡾࣆ࡯ ൅ ൫઴ࢉ࡯ࡴ઴൯

ோ
ࢂ

dgሺࢂሻ∆߱૚ ൅ ࢂ࡯
ࡵ ሻࢂሺࢂ࢖ ൅ ࡵࣆ࡯ dgሺࢂሻ∆ࣆ ൅ ൫઴ࢉ࡯ࡴ઴൯

ூ
ࢂ
൩

ൌ ቂ૙
૙
ቃ 

(7.7-12) 

Due to the perturbation assumption, one may consider a linear approximation of 
the steady state as follows 
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ۏ
ێ
ێ
ࢂ࡯ۍ

ࡵࡾ ൅
1

௢ܸ
൫઴ࢉ࡯ࡴ઴൯

ோ
ࡵࡾࣆ࡯

ࢂ࡯
ࡵ ࡵ ൅

1

௢ܸ
൫઴ࢉ࡯ࡴ઴൯

ூ
ࡵࣆ࡯ ےࡵ

ۑ
ۑ
ې
൤
ࢂ∆
൨ࣆ∆ ൅ ൥

൫઴ࢉ࡯ࡴ઴൯
ோ
૚

∆߱૚ ൅ ൫઴ࢉ࡯ࡴ઴൯
ூ
૚
൩

ൌ ቂ૙
૙
ቃ 

(7.7-13) 

For a given frequency offset ∆߱ and phase distribution along the array elements 
contained in Φ, one may solve the above linear system of 2ܰ equations for the 
ܰ steady-state oscillator amplitudes and ܰ control perturbations. Alternatively, 
one may fix the control parameter of one arbitrarily selected oscillator and 
solve the steady-state system for the ܰ steady-state oscillator amplitudes, ܰ െ 1 
remaining control perturbations and frequency offset ∆߱. 
 
The stability of the steady-state solution is obtained taking the linear variational 
equation of Eq. (7.7-10) leading to the following linearized system of 
differential equations 

ሶࢂࢾ  ൅ ݆dgሺࢂሻࢾ ሶࣘ ൌ ࢂࢾࢂࡰ ൅ ࣘࡰ  (14-7.7) ࣘࢾ

where  

ࢂࡰ  ൌ െ݆∆߱૚ െ dg൫ࢂࢍࢂ࡯ሺࢂሻ ൅ ൯ࣆ∆ࡾࣆ࡯ െ ઴ࢉ࡯ࡴ઴ (7.7-15) 

ࣘࡰ  ൌ െ݆ሾ઴ࢉ࡯ࡴ઴dgሺࢂሻ െ dgሺ઴ࢉ࡯ࡴ઴ࢂሻሿ  

where ࢂࢍሺࢂሻ ൌ ࢂ2 െ ௢ܸࡵ. One then separates real from imaginary parts to 
obtain the desired system of linear differential equations 

 ൤
ࡵ ૙
૙ dgሺࢂሻ൨ ൤

ሶࢂࢾ
ࢾ ሶࣘ ൨ ൌ ቈ

ࢂࡰ
ࡾ ࣘࡰ

ࡾ

ࢂࡰ
ࡵ ࣘࡰ

ࡵ ቉ ൤
ࢂࢾ
 ൨ (7.7-16)ࣘࢾ

or  

 ൤ࢂࢾ
ሶ

ࢾ ሶࣘ ൨ ൌ ࡷ ൤
ࢂࢾ
൨ࣘࢾ ൌ ቈ

ࢂࡰ
ࡾ ࣘࡰ

ࡾ

dgሺࢂሻିଵࢂࡰ
ࡵ dgሺࢂሻିଵࣘࡰ

ࡵ ቉ ൤
ࢂࢾ
 ൨ (7.7-17)ࣘࢾ

The 2ܰ eigenvalues of the square matrix ࡷ determine the stability of the 
solution. It should be noted that due to the autonomous nature of the coupled-
oscillator array one eigenvalue of ࡷ is always zero. The solution is stable if all 
remaining eigenvalues of ࡷ have negative real parts.  
 
One can easily verify that ࡷ is unchanged to phase shifts that are common to all 
oscillators. This is due to the fact that matrix ࣘࡰ ൌ ࣘࡰ

ࡾ 	൅ ࣘࡰ	݆
ࡵ  contains only 
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phase differences between the various elements. It is then possible to reduce the 
system by one, thus eliminating the zero eigenvalue. Selecting an arbitrary 
element (for example, element ݆) as a reference, the ܰ phase equations of 
Eq. (7.7-17) can be reduced by one by subtracting row ሺܰ ൅ ݆ሻ, the equation 
which corresponds to the phase of oscillator ݆, from every other equation. The 
equation that corresponds to the phase of oscillator ݆ can then be eliminated. 
Furthermore, the elements of column ሺܰ ൅ ݆ሻ from row ሺܰ ൅ 1ሻ to ሺ2ܰሻ are 
multiplied by zero. In addition, in the amplitude equations, due to the fact that 
థܦ
ோ contains only phase differences, it is possible to subtract ߜ߶௝ from all 

phases forming ࣘࡰ
ࣘࢾࡾ ← ࣘࡰ

ࣘࢾሺࡾ െ ௝૚ሻ. As a result column ሺܰ߶ߜ ൅ ݆ሻ can 
also be eliminated because it is being multiplied by zero. The remaining square 
matrix ࡷ෩  of dimension ܰ െ 1 has the same eigenvalues with ࡷ minus the zero 
eigenvalue. Matrix ࡷ෩  corresponds to the system of 2ܰ െ 1 linear differential 
equations 

 ቈ
ሶࢂࢾ

෩ࣘሶࢾ
቉ ൌ ෩ࡷ ൤

ࢂࢾ
 ෩ࣘ൨ (7.7-18)ࢾ

where the vector ࢾ෩ࣘ  of dimension ܰ െ 1 contains phase difference terms 
relative to oscillator ݆. The spectral abscissa of a square matrix is the maximum 
real part of its eigenvalues [119]. Therefore a steady-state solution is stable if 
the spectral abscissa of ࡷ෩  is negative.  

7.8 A Comparison between the Two Perturbation 
Models for Coupled Oscillator Systems 

The similarity of the two models is made obvious by comparing the two 
expressions corresponding to the generalized phase model Eq. (7.4-4) and 
Eq. (7.6-8). The first model is defined for a parallel RLC tank with a nonlinear 
voltage-dependent current source that exhibits a third-order nonlinearity similar 
to the one described in Section 7.5 and shown in Fig. 7-6. In this case, the 
admittance looking at the output node of the circuit is given by  

 ܻሺܸ,߱ሻ ൌ ሺ ேܻሺܸሻ ൅ ௅ሻܩ ൅
1
߱ܮ݆

൅  (1-7.8) ߱ܥ݆

where ேܻሺܸሻ contains the nonlinear admittance of the current source at the 
fundamental frequency component. The total admittance contains a real 
nonlinear admittance term that is amplitude dependent, plus the load 
admittance, and an imaginary term which is frequency dependent. As a result, a 
real derivative versus the amplitude and an imaginary admittance derivative 
versus the frequency are obtained: 
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߲ܻ
߲ܸ

ൌ
߲ ேܻ

߲ܸ
 (7.8-2) 

 
߲ܻ
߲߱

ൌ   ܥ2݆

Furthermore, if we consider that for a parallel resonant circuit the external 
quality factor is given by 

 ܳ ൌ
߱௢ܥ
௅ܩ

 (7.8-3) 

it is straightforward to verify that the Eqs. (7.4-4) and (7.6-8) are identical. 
 
In general, active devices in microwave frequencies exhibit nonlinear 
susceptance as well as admittance, in addition to a nonlinear admittance that is 
frequency dependent. In other words a more general expression for the 
admittance at an oscillator circuit node is 

 ܻሺܸ,߱ሻ ൌ ,ேሺܸܩ ߱ሻ ൅ ,ேሺܸܤ݆ ߱ሻ (7.8-4) 

As a result, it is possible to view the alternative model (7.6-4) using complex 
admittance derivatives as a generalized version of (7.4-1).  

7.9 Externally Injection-Locked COAs 

The coupled-oscillator array is an autonomous system that behaves like a single 
distributed oscillator. However, there are several applications that require the 
array to be injection-locked to an external signal. The reason can be to control 
the phase distribution among the array elements [1], to reduce the array phase 
noise [97], to fix the array frequency [120], or to introduce modulation to the 
array [121] [122]. 
 
An external injection signal introduces an additive forcing term in the time-
domain expression of the perturbed oscillator equation. In Section 7.5, it was 
demonstrated that the topology of a parallel RLC tank with a nonlinear voltage-
dependent current source and an external-injection current term leads to the 
forced van der Pol equation.  
 
The coupled-oscillator system of differential equations is derived by applying 
Kirchhoff’s current or voltage law at a selected circuit node or loop of each 
oscillator circuit in the array. Specifically, in the parallel-tank topology, the 
corresponding equations are obtained by applying Kirchhoff’s current law at 
the output nodes of each oscillator. In addition, these nodes correspond to the 
nodes where the coupling network is connected to each oscillator. However, 



242 

 

this does no
connected to 
 
The external
where the co
derive analy
relates the ap
or loop wher
consider that
signal. It sho
injection sign
coupled-oscil
radiation cou
 
Following th
parallel reso
external injec
with the oscil

Fi
to
in

t always hav
a different os

-injection sig
oupled oscilla
ytically, or us
pplied injectio
re the system
t the nonlinea
ould be noted
nal applied, 
llator array u

upling, as show

he formulation
nance model
ction signal i
llator tank, on

ig. 7-8. Extern
opologies, a) 
njection. 

ve to be the 
scillator node

gnal typically
ator system is
sing a circui
on signal to a

m equation is
ar-oscillator a
d that in the g
and that the 

using differen
wn in Fig.7-8

n of Chang e
l for the osc
in the form o
ne has 

ally injection-
globally injec

case, and th
e. 

y may not be 
s derived. In 
it simulator, 
an induced cu
s applied. Alt
admittance is
general case 
injection sig

nt topologies,
8 [123]. 

et al. [123] w
cillator eleme
f an addition

-locked couple
cted array, b

he coupling n

applied at th
this case it 
a transfer fu

urrent or volta
ternatively, it
s a function o
there maybe

gnal may be 
, such as dire

where the aut
ents, and the
nal current sou

ed-oscillator a
b) middle elem

Chapter

network mayb

he circuit no
is necessary 

function, whi
age at the no
t is possible 
of the injectio
more than o
coupled to th

ect injection 

thors assume
ey consider th
urce in parall

 

array 
ment 

r 7 

ybe 

de 
to 
ch 
de 
to 
on 
ne 

the 
or 

e a 
the 
lel 



Perturbation Models 243 

 
 

 
ሶ௠ܣ ൌ ௢௠ଶܣሺߤ െ ௠ଶܣ ሻܣ௠ ൅෍ܭ௠௜ܣ௜ cosሺ߶௜ െ ߶௠ ൅ Φ௠௜ሻ

ே

௜ୀଵ
൅ ௣ܣ௠௣ܭ cos൫߶௣ െ ߶௠ ൅ Φ௠௣൯ 

(7.9-1) 

 
௠߶ሶ௠ܣ ൌ Δ߱௠ܣ௠ ൅෍ܭ௠௜ܣ௜ sinሺ߶௜ െ ߶௠ ൅ Φ௠௜ሻ

ே

௜ୀଵ
൅ ௠௣ܣ௠௣ܭ sin൫߶௠௣ െ ߶௠ ൅Φ௠௣൯ 

 

where it is assumed that oscillator ݉ is being injected by an external source 
௠௣ߢ The transfer function .݌݉ ൌ ௠௣߱௠/2ܳݐ ൌ ௠௣݁ܭ

௝஍೘೛ consists of a 
complex normalized term ݐ௠௣ multiplied with a scaling factor ߱௠/2ܳ as is 
done for the coupling terms from the other oscillator elements in the array. For 
the case of an injection-current term in parallel with the oscillator tank  
௠௣ݐ ൌ 1. Furthermore, when a single oscillator is considered, Eq. (7.9-1) 
reduces to Adler’s equation. 
 
Alternatively, it is possible to assume that the nonlinear oscillator admittance 

௠ܻ൫ݒ௠,߱, ,ߤ ܽ௠௣൯ at the node under consideration additionally depends on the 

injection signal ܽ௠௣ ൌ ௠௣݁ܣ
௝థ೘೛ ൌ ܽ௠௣ோ ൅ ݆ܽ௠௣ூ  present at an arbitrary node 

of the oscillator circuit. Assuming a low amplitude-injection signal relative to 
the oscillator amplitude ߩ௠௣ ൌ ௠௣ܣ ⁄௠ܣ ≪ 1, a Taylor expansion of the 
oscillator admittance around the free running steady state gives, to first order, 
[124] 

 ௠ܻ൫ݒ௠,߱, ,ߤ ܽ௠௣൯ ൌ ௠ܻሺ ௠ܸ, ߱, ሻߤ ൅ ௠ܻ௣൫߶௠, ܽ௠௣൯ (7.9-2) 

with  

 

௠ܻ௣൫߶௠, ܽ௠௣൯ ൌ
߲ ௠ܻ௣

߲ܽ௠௣ோ
௠௣ܣ cos൫߶௠௣ െ ߶௠൯

൅
߲ ௠ܻ௣

߲ܽ௠௣ூ
௠௣ܣ sin൫߶௠௣ െ ߶௠൯ 

(7.9-3) 

The first term ௠ܻሺ ௠ܸ, ߱,  ሻ is the one considered in Eq. (7.6-3), where noߤ
external injection signal is present. The second term ௠ܻ௣൫߶௠, ܽ௠௣൯ is a linear 
perturbation term due to the external injection signal, which depends on the 
relative phase between the oscillator and the injection signal. The admittance 
expression is then introduced in the model presented in Section 7.6 and 
repeated here for convenience 
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 ௠ܻ ௠ܸ݁௝థ೘ ൅෍ ௖ܻ௠௜ ௜ܸ݁௝థ೔
ே

௜ୀଵ

ൌ 0 (7.9-4) 

in order to derive the desired system of equations. As the injection power 
increases, additional terms in the Taylor expansion can be included in order to 
improve the accuracy of the approximation [124]. 

7.10 Phase Noise 

Perturbation theory is applied in noise analysis of oscillators as typically noise 
is modeled as a stochastic forcing term in the oscillator differential equation. 
The stochastic nature of noise and the nonlinear nature of the oscillator circuits 
make noise analysis a challenging problem. Applying the averaging theory, 
Kurokawa [105] presented an elegant analysis of phase noise of free-running 
and externally injection locked oscillators. A fundamental assumption in his 
formulation is that noise, described by a time-domain stochastic process ݊௠ሺݐሻ 
can be expanded in a Fourier series around the arbitrarily chosen fundamental 
frequency ߱௢as 

 ݊௠ሺݐሻ ൌ ෍ ܰ௠௡ሺݐሻ݁௝ఠ೚௧

ାஶ

௡ୀିஶ

 (7.10-1) 

with ܰ௠௡ሺݐሻ ൌ ሻݐ௠௡ሺܩ ൅  ሻ a complex noise process. In the following itݐ௠௡ሺܤ݆
is assumed that ݊௠ሺݐሻ is a zero-mean white Gaussian process, which results in 
 ሻ being uncorrelated white zero-mean Gaussian processes asݐ௠௡ሺܤ ሻ andݐ௠௡ሺܩ
well [105]. 
 
Extending the work of Kurokawa, Chang et al. [97] studied phase noise in 
mutually injection-locked coupled-oscillator arrays. Application of the noise 
expansion and averaging allows us to include the effect of noise in the 
oscillator formulation Eq. (7.4-1) in terms of ܰ௠ଵሺݐሻ ൌ ሻݐ௠ଵሺܩ ൅  ሻ. Inݐ௠ଵሺܤ݆
the following, the subscript 1 is dropped for simplicity.  

 
ሶ௠ܣ ൌ ௢௠ଶܣሺߤ െ ௠ଶܣ ሻܣ௠ ൅෍ܭ௠௜ܣ௜ cosሺ߶௜ െ ߶௠ ൅ Φ௠௜ሻ

ே

௜ୀଵ

െ
߱௢
௅ܩ2ܳ

 ሻݐ௠ሺܩ
(7.10-2) 
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௠߶ሶ௠ܣ ൌ Δ߱௠ܣ௠

൅෍ܭ௠௜ܣ௜ ሺ߶௜݊݅ݏ െ ߶௠ ൅ Φ௠௜ሻ
ே

௜ୀଵ

െ
߱௢
௅ܩ2ܳ

 ሻݐ௠ሺܤ

 

The solution of Eq. (7.10-2) is found in the form of a perturbation  
ሺ ௠ܸ ൅ ߜ ௠ܸ, ߶௠ ൅ ௠ሻ where ሺ߶ߜ ௠ܸ, ߶௠ሻ is the solution to the noise-free system 
of Eq. (7.4-1), leading to a forced variational system, which is the same as was 
considered in the study of the stability of the steady state with the addition of a 
noise-forcing term. As before, small amplitude-noise perturbations ߜ ௠ܸ and 
small phase-noise- perturbation differences ሺߜ߶௠ െ  ௜ሻ result in the forced߶ߜ
linear system of differential equations 

 

ሶ௠ܣߜ ൌ ௢௠ଶܣሺߤ െ ௠ଶܣ3 ሻܣߜ௠

൅෍ܭ௠௜ ሺ߶௜ݏ݋ܿ െ ߶௠ ൅ Φ௠௜ሻ ௜ܣߜ

ே

௜ୀଵ

െ෍ܭ௠௜ܣ௜ ሺ߶௜݊݅ݏ െ ߶௠ ൅ Φ௠௜ሻ ሺߜ߶௜

ே

௜ୀଵ

െ ௠ሻ߶ߜ െ
߱௢
௅ܩ2ܳ

 ሻݐ௠ሺܩ

(7.10-3) 

 

ሶ௠߶ߜ௠ܣ ൌ ሺΔ߱௠ െ ܿሻܣߜ௠

൅෍ܭ௠௜ ሺ߶௜݊݅ݏ െ ߶௠ ൅ Φ௠௜ሻ ௜ܣߜ

ே

௜ୀଵ

൅෍ܭ௠௜ܣ௜ ሺ߶௜ݏ݋ܿ െ ߶௠ ൅Φ௠௜ሻ ሺߜ߶௜

ே

௜ୀଵ

െ ௠ሻ߶ߜ െ
߱௢
௅ܩ2ܳ

 ሻݐ௠ሺܤ

 

Correspondingly, the alternative model in the presence of noise is modified by 
including an additive complex noise term ܰ௠ሺݐሻ ൌ ሻݐ௠ሺܩ ൅  ሻ inݐ௠ሺܤ݆
Eq. (7.6-4), which leads to forcing terms ܩ௠ሺݐሻ and ܤ௠ሺݐሻ in the left hand side 
of the first and second equations of Eq. (7.6-11), respectively. For compactness, 
the formulation is not repeated here. 
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Following Chang [97], we proceed to solve Eq. (7.10-3) by first applying a 
Fourier transform 

 

݆Ωܣߜሙ௠ ൌ ௢௠ଶܣሺߤ െ ௠ଶܣ3 ሻܣߜሙ௠

൅෍ܭ௠௜ ሺ߶௜ݏ݋ܿ െ ߶௠ ൅Φ௜௠ሻ ሙ௜ܣߜ

ே

௜ୀଵ

െ෍ܭ௠௜ܣ௜ ሺ߶௜݊݅ݏ െ ߶௠ ൅ Φ௠௜ሻ ൫ߜ߶ෘ௜

ே

௜ୀଵ

െ ෘ௠൯߶ߜ െ
߱௢
௅ܩ2ܳ

 ෘ௠ܩ

(7.10-4) 

 

݆Ωܣ௠ߜ߶ෘ௠ ൌ ሺΔ߱௠ െ ܿሻܣߜሙ௠

൅෍ܭ௠௜ ሺ߶௜݊݅ݏ െ ߶௠ ൅Φ௠௜ሻ ሙ௜ܣߜ

ே

௜ୀଵ

൅෍ܭ௠௜ܣ௜ ሺ߶௜ݏ݋ܿ െ ߶௠ ൅ Φ௠௜ሻ ൫ߜ߶ෘ௜

ே

௜ୀଵ

െ ෘ௠൯߶ߜ െ
߱௢
௅ܩ2ܳ

 ෘ௠ܤ

 

The frequency ߗ indicates offset from the fundamental ߱௢, and the hat 
indicates a Fourier transformed variable. The linear system of Eq. (7.10-4) is 
processed easier in matrix form. Using the formulation of Section 7.7, it is 
possible to write Eq. (7.10-4) in the form 

 ሼ݆Ωࡵ െ ሽࡰ ൤࡭ࢾ
ෙ

ෙࣘࢾ
൨ ൌ ࡺ ൤࡭ࢾ

ෙ
ෙࣘࢾ

൨ ൌ ቈ
࢔ෙࡳ
࢔ෙ࡮
቉ (7.10-5) 

or 

 ൤࡭ࢾ
ෙ

ෙࣘࢾ
൨ ൌ ࡼ ቈ

࢔ෙࡳ
࢔ෙ࡮
቉ (7.10-6) 

with ࡼ ൌ ଵିࡺ ൌ ሾ݆Ωࡵ െ  ሿିଵ where the noise terms have been normalized asࡰ
࢔ෙࡳ ൌ െ

ఠ೚

ଶொீಽ
࢔ෙ࡮ ෘ௠൧ andܩൣ ൌ െ

ఠ೚

ଶொீಽ
 ෘ௠൧ for compactness. It should beܤൣ

clarified that the identity matrix in Eq. (7.10-5) is of dimension 2ܰ. 
Correspondingly, the formulation pertaining to the generalized phase model is  

 ሼ݆Ωࡵ െ ෙࣘࢾሽࡳࡰ ൌ ෙࣘࢾࡳࡺ ൌ  (7-7.10) ࢔ෙ࡮
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or 

ෙࣘࢾ  ൌ  (8-7.10) ࢔ෙ࡮ࡳࡼ

with ࡳࡼ ൌ ࡳࡺ
ି૚ ൌ ሾ݆Ωࡵ െ  .ሿିଵࡳࡰ

 
The noise correlation matrix ࡿ(Ω) of the oscillator array is given by 

ሺΩሻࡿ  ൌ 〈൤࡭ࢾ
ෙ

ෙࣘࢾ
൨ ሾ࡭ࢾෙࡴ 〈ሿࡴෙࣘࢾ ൌ ൤

࡭࡭ࡿ ࣘ࡭ࡿ
࡭ࣘࡿ ࣘࣘࡿ

൨ (7.10-9) 

where the superscript ()H denotes the conjugate transpose operation. The 
various noise contributions AM-AM AM-PM, PM-AM, and PM-PM are easily 
identified.1 The operator 〈 〉 denotes ensemble average, and following [97], for 
white Gaussian processes one has  

〈ࡴ࢔ෙࡳ࢔ෙࡳ〉  ൌ 〈ࡴ࢔ෙ࡮࢔ෙ࡮〉 ൌ ൬
߱௢ߪ
௅ܩ2ܳ

൰
ଶ
 (10-7.10) ࡵ

〈ࡴ࢔ෙ࡮࢔ෙࡳ〉  ൌ 〈ࡴ࢔ෙࡳ࢔ෙ࡮〉 ൌ ૙  

with ߪଶ as the noise variance. Identical oscillators have been assumed and 
identical noise sources have been applied at each oscillator for simplicity. The 
spectral density of the oscillator array is given by the diagonal of ࡿ(Ω). 
 
The noise correlation matrix is then given by 

ሺΩሻࡿ  ൌ ൬
߱௢ߪ
௅ܩ2ܳ

൰
ଶ
   (11-7.10)    ࡴࡼࡼ

The generalized phase model expression can be used to obtain an approximate, 
more simplified, expression for the correlation matrix ࡳࡿሺΩሻ, without 
considering amplitude noise: 

ሺΩሻࡳࡿ  ൌ ൬
߱௢ߪ
௅ܩ2ܳ

൰
ଶ
ࡳࡼࡳࡼ

   (12-7.10) ࡴ

Note that ࡳࡿሺΩሻ is a square matrix of dimension ܰ containing all correlation 
terms among the noise quantities of the individual oscillators. The phase noise 
spectra ࣘࡳࡿሺΩሻ of the individual oscillators in the array are given by the 
diagonal elements of ࡳࡿሺΩሻ, or 

ሺΩሻࣘࡳࡿ  ൌ ൬
߱௢ߪ
௅ܩ2ܳ

൰
ଶ
dg൛ࡳࡼࡳࡼ

   ൟ૚ (7.10-13)ࡴ

                                                 
1 AM is amplitude modulation, and PM is phase modulation. 
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The phase noise spectrum ଵܵథሺΩሻ of a single oscillator element uncoupled to 
the rest of the array corresponds to ࡳࡰ ൌ ૙, and is given by 

 ଵܵథሺΩሻ ൌ ൬
߱௢ߪ
௅ܩ2ܳ

൰
ଶ 1
Ωଶ

 (7.10-14)   

This expression is in agreement with the one given by Kurokawa in Ref. [105] 
and demonstrates the dependence of Ωିଶof the phase-noise spectrum for the 
case of white Gaussian noise sources. 
 
The expression for the phase noise spectrum vector ࣘࡳࡿሺΩሻ of each oscillator 
element in the array finally can be written 

ሺΩሻࣘࡳࡿ  ൌ ଵܵሺΩሻΩଶdg൛ࡳࡼࡳࡼ
   ൟ૚ (7.10-15)ࡴ

In addition to the phase noise of the individual coupled oscillator elements 
 ௠, in quasi optical power combining applications, one is also interested in߶ߜ
the phase noise of the combined output of the oscillators	ߜ߶். Assuming small 
perturbations, one may write the combined far-field amplitude ܸሺݐሻ as [97] 

 

ܸሺݐሻ ൌ ෍ ௠ܣ cosሺ߱௢ݐ ൅ ߶௠ሻ
ே

௠ୀଵ

ൎ ܣܰ ෍ cosሺ߱௢ݐ ൅ ߶்ሻ
ே

௠ୀଵ

 

(7.10-16)   

with 

்߶ߜ  ൌ
1
ܰ
෍ ௠߶ߜ

ே

௠ୀଵ

ൌ
1
ܰ
૚(17-7.10) ࣘࢾࢀ 

 

  

The phase noise spectrum ܵீ்ሺΩሻ of the combined output is given by 

 ܵீ்ሺΩሻ ൌ ்ු߮ߜ்ු߮ߜ〉
ு〉 ൌ

1
ܰଶ 〈૚

   ૚〉 (7.10-18)ࡴ෕࣐ࢾ෕࣐ࢾࢀ

which, with the help of Eq. (7.10-15) becomes 

 ܵீ்ሺΩሻ ൌ
ଵܵሺΩሻΩଶ

ܰଶ ૚ࡳࡼࡳࡼࢀ
   ૚ (7.10-19)ࡴ

Evaluation of the individual oscillator phase noise and the combined output 
phase noise is generally possible only by numerically evaluating Eqs. (7.10-15) 
and (7.10-19) respectively. Nonetheless, Chang et. al. [97] were able to 
analytically study several cases commonly found in the literature. 
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One of the results obtained by Chang, et al. [97] corresponds to the case where 
ࡳࡰ ൌ ሾ઴ࣄࡴ઴ െ dgሺ઴۶ࣄ઴૚ሻሿோ, repeated here for convenience, is a 
symmetric matrix ሺࡳࡰ

ࢀ ൌ  depends both on the ࡳࡰ ,ሻ. As one can seeࡳࡰ
coupling network through ࣄ, and on the steady-state phase distribution of the 
various oscillator array elements, through ઴. It can be easily verified that 
૚ࡳࡰ ൌ ૙, which reflects the fact that the steady state is unchanged to within a 
common constant phase term added to all oscillator elements, or in other words, 
the fact that the steady state is defined by the phase differences of the various 
elements. Using the above two properties, Chang et al. [97] have shown by 
analytically evaluating ࡳࡼࡳࡼ

ࡳࡼࡳࡼࢀthat ૚ ࡴ
૚ࡴ ൌ Ωିଶܰ, which results in  

 ܵீ்ሺΩሻ ൌ
ଵܵሺΩሻ

ܰ
 (7.10-20)   

This is an important result indicating that the phase noise of the combined array 
output is reduced by a factor ܰ compared to the individual free-running 
oscillator phase noise (as indicated in Section 6.4). It remains to identify under 
which conditions ࡳࡰ is symmetric. One characteristic example is when an in-
phase steady-state solution is assumed (઴ ൌ  ሻ and a reciprocal couplingࡵ
network matrix with zero coupling phase ࢀࣄ ൌ ࣄ ൌ   .ࡾࣄ
 
In the case of a reciprocal coupling network of near-neighbor bilateral coupling 
with zero coupling phase, ࡳࡰ is symmetric for any constant phase distribution 
among the oscillator elements. It was also shown that in this case the individual 
oscillator phase noise is also reduced by a factor ܰ when the oscillators are in-
phase. The oscillator phase noise for steady states with phase distributions with 
non-zero progressive phase Δ߶௣ degrades with increasing Δ߶௣ up to the point 
where the array loses stability and the phase noise becomes equal to the free-
running oscillator phase-noise value. 
 
Finally, it was shown by Chang et al. [97] that there is no phase noise 
improvement in the case of unilaterally coupled oscillators, both for the 
individual elements and the combined-array output (as indicated in Section 
6.4). 
 
The phase noise of externally injection-locked oscillators has been investigated 
by Kurokawa in [105], where it was shown that the injected oscillator phase-
noise spectrum follows the phase-noise profile of the injection-locking signal 
for small frequency offsets near the carrier, and it converges to the free-running 
oscillator phase-noise spectrum for large frequency offsets. The formulation of 
Kurokawa [105] was extended to externally injection locked coupled oscillator 
arrays by Chang, et al. [123]. It is straightforward to obtain the formulation 
pertaining to the externally injection-locked coupled-oscillator arrays by 
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properly including in Eq. (7.10-2) terms due to injection sources as shown in 
(7.9-1). Chang et al. [123] investigated several topologies including a globally 
injected linear array, and arrays where a different single elements within the 
array are injected. In summary, the results showed that for small offsets the 
array phase-noise profile follows the injection-locking source phase-noise 
profile. However, for large offsets from the carrier the globally illuminated case 
showed a different behavior than the single-element illumination topology. In 
the former, the phase noise improves with increasing number of array elements, 
whereas in the latter the phase noise degrades with increasing number of 
elements. Furthermore, the array phase-noise performance of the single-element 
injection case improves as one injects an element closer to the array center. 

7.11 Modulation 

Several authors have considered the use of coupled-oscillator arrays in 
communication system applications. It is possible to distinguish among 
architectures where the coupled-oscillator array signal is modulated or 
architectures employing a coupled-oscillator array as the local oscillator in a 
multi-antenna up-converting or down-converting transceiver. The first topology 
has been studied by Kykkotis et. al. in [99]. Due to the limiting properties of 
oscillators, modulation formats that lead to large variations in the signal 
envelope are not recommended as the oscillator dynamics will tend to smooth 
these variations and introduce distortion. However, constant envelope 
modulation formats (such as constant phase modulation (CPM) and Gaussian 
minimum shift keying (GMSK)) represent excellent candidates to be employed 
in such systems. In Ref. [99], the modulation is applied in the coupled-
oscillator array through an external injection signal. Additionally, it is possible 
to introduce modulation through the frequency-tuning bias voltage of the 
individual oscillators, as was proposed by Pogorzelski in Ref. [63].  
 
A formulation based on Eq. (7.9-3) where the effect of the external-injection 
signal is included in the oscillator admittance was used by Collado and 
Georgiadis [124] to analyze the performance of such systems as the modulation 
bandwidth increases. The effect of the modulation on the maximum stable 
progressive constant phase shift among the oscillator elements was 
investigated, and it was shown that the presence of modulation leads to a 
reduction of the maximum achievable scanning range. In Fig. 7-9, the effect of 
sinusoidal phase modulation in the maximum scanning range of a two-element 
coupled oscillator array is shown. The maximum stable phase difference 
between the first harmonics of the two oscillators is obtained using the 
aforementioned model (denoted by RoM in Fig. 7-9), in good agreement with 
measurements as well as simulation results obtained using a commercial 
envelope transient circuit simulator. (The principles of nonlinear-circuit 
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7.12 Coupled Phase-Locked Loops 

A phase-locked loop (PLL) is typically used in frequency-generation 
applications, as well as in phase recovery and phase/frequency modu-
lation/demodulation applications where one oscillator is required to track the 
phase of a signal present at its input. Therefore, it presents an excellent 
candidate for generating phase distributions among oscillator elements, which 
are required in electronic beam-steering applications. Martinez and Compton 
[126] first proposed the use of a coupled phase-locked loop for phased arrays. 
Subsequently, Buckwalter et. al. [127] extended their work to study the 
synchronization properties of such loops, and Chang presented a phase noise 
analysis [128].  
 
The topology of a coupled PLL system is shown in Fig. 7-10, where a linear 
array of oscillators is considered. An error signal ݁ is formed by a mixing 
operation where the outputs of adjacent oscillators are multiplied together. The 
mixers are used as phase detectors; however, other more sophisticated 
topologies can also be used where the oscillator outputs are first passed through 
a frequency divider and are subsequently fed to a digital phase detector, as is 
typically done in PLL architectures. Finally, the loop is closed by feeding the 
error signal to each oscillator-control input after it has passed through a loop 
filter. The relative phases between the oscillator elements are controlled by 
introducing additional external signals in the error signal path such as x1 and 
  .ே, shown in Fig. 7-10ݔ
 
In the following, an introduction to the equations describing the dynamics of a 
two-element coupled PLL system is presented, following the formulation by 
Buckwalter et al. [127], and based on the topology indicated in Fig. 7-10. 
Identical oscillators are assumed where, for simplicity, a linear voltage-to-
frequency model relation is considered 

 ߶ሶ ௜ ൌ ߱௜ ൅    ௜ (7.12-1)ݕ௩ܭ

The index ݅	 ൌ 	1,2 runs through the set of two oscillators. Furthermore, a first-
order loop filter is assumed with gain ܽ, one zero ߬௭, and one pole ߬௣, having a 
transfer function given by  

ሺ߱ሻܪ  ൌ ߙ
1 ൅ ݆߱߬௭
1 ൅ ݆߱߬௣

 (7.12-2)   

Identical loop filters are considered for both oscillators.  
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 ߬௣Δ߶ሷ ൅ ሾ1 െ ߬௭ܩ sin Δ߶ሿΔ߶ሶ ൅ ܩ cos Δ߶ െ Δ߱ ൌ 0 (7.12-8)   

where Δω ൌ ߱ଶ െ ߱ଵ and ܩ ൌ  ௣. The equilibrium points of the coupledܭ௩ܭߙ
PLL correspond to Δ߶ሷ ൌ 	Δ߶ሶ ൌ 0 and are derived by solving  

ܩ  cos Δ߶ െ Δ߱ ൌ 0 (7.12-9)   

It is easy to verify that two solutions exist within the phase interval ሾ0,  ሻ, andߨ2
perturbation analysis of Eq. (7.12-8) can be used to show that only the one of 
the two that falls in the interval ሾ0,  ሻ is stable [127]. This fact implies that theߨ
phase difference of the two oscillators for the topology under consideration can 
be tuned in the range ሾ0,  ሻ, by varying the relative frequencies of the twoߨ
oscillators Δ߱.  
 
The hold-in range Ω୦ of the coupled PLL is the range of the frequency 
difference among the oscillator elements for which the system remains in a 
stable equilibrium. The pull-in range on the other hand, is the range of the 
frequency difference for which the system will eventually evolve to a stable 
equilibrium. The hold-in range presents an upper bound to the pull-in range. 
Based on the above analysis and the stability analysis of the equilibrium points, 
it was determined by Buckwalter, et al. [127] that the hold-in range is equal to 

 Ω୦ ൌ 2G (7.12-10)   

Furthermore, they calculated an approximate value for the pull-in range as 
given by Eq. 7.12-11 [127]  

 
Ω୮ ൎ 2ඩ

ට1 ൅ 4τ୮ଶGଶ െ 1

2τ୮ଶ
 

(7.12-11)   

Finally, Buckwalter, et al. [127] studied the effect of circuit delay on the hold-
in and pull-in range of the system. Such delays are present in the system due to 
the filter characteristics of the circuit, and they result in complex dynamic 
behavior and instabilities. We remark that such filter characteristics may be 
fruitfully interpreted as time delays if the delay is small. Unlike Chapter 5 of 
this book, the analysis of Buckwalter, et al. does include the nonlinear behavior. 
Recall that in Chapter 5 we introduced coupling delay in oscillator arrays via an 
exponential of the Laplace transform variable. There the analysis was done in 
the linear approximation, and thus the solutions did not exhibit any of the 
complex dynamical behavior arising from nonlinearity. The delay introduced 
was a true time delay due to propagation through the coupling lines and was not 
constrained to be small. However, the late time behavior in that situation 
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corresponds to solution at time equal to many delay times, a condition which 
may be satisfied either by large t or small delay or both. 
 
The model described in this section can be made progressively more complex, 
by taking into account the high-frequency mixing product at the output of the 
phase detector in the formulation, or by using a higher order loop filter and 
digital phase detectors.  

7.13 Conclusion 

In this chapter we revisited the analysis of coupled-oscillator arrays and 
presented two approximate models that describe the amplitude and phase 
dynamics at the fundamental frequency of oscillation of the coupled oscillator 
arrays. We presented a compact matrix formulation of the models, which can be 
used to efficiently analyze the transient behavior of the arrays, determine the 
various steady-state solutions, and examine their stability. In addition we 
provided a formulation that enables one to consider external injection-locking 
signals to the array, which can be used to introduce modulation into the array. 
These models were used to provide an overview of the phase-noise analysis of 
coupled-oscillator arrays. Such approximate models can be used to simulate 
large coupled-oscillator arrays in a computationally efficient manner. Finally, it 
was pointed out that PLLs can be substituted for VCOs in coupled systems, 
resulting in behavior quite similar to that of the arrays discussed previously. In 
the next chapter we describe nonlinear simulation methods that can be used to 
accurately simulate and design oscillator circuits and coupled-oscillator arrays.  
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Chapter 8  
Numerical Methods for Simulating 

Coupled Oscillator Arrays 

Coupled-oscillator arrays present a challenge to the designer due to difficulties 
both in the accurate simulation of oscillator elements and in the requirement for 
computationally efficient simulation techniques for large arrays. In addition, 
coupled-oscillator array design is made more difficult by the presence of 
multiple operating modes and stability considerations. As a result, a number of 
approximations need to be used to reduce the simulation time. Such are 
describing function models for non-linear elements [15] [118] [129] [130], 
along with perturbation models, infinite array approximations and continuum 
models shown in Chapter 3 [38] [39] and in Chapter 4 [42] [43] [44], 
respectively. 
 
The progress in recent years in nonlinear simulation techniques has led to more 
accurate analysis and optimization methods for nonlinear circuits such as 
oscillators and mixers, as well as arrays [120,131]. Furthermore, these 
nonlinear simulation tools can be combined with electromagnetic simulation in 
order to analyze radiating structures and nonlinear antennas and arrays.  
 
In this chapter, an introduction to numerical methods for simulating nonlinear 
circuits is presented [132,131], focused on the simulation of autonomous 
circuits such as oscillators, followed by an introduction to convex optimization 
principles [133]. Nonlinear simulation techniques are demonstrated in order to 
trace the steady-state solutions of coupled-oscillator arrays and investigate their 
stability [116].  
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8.1 Introduction to Numerical Methods 

The recent advances in numerical methods for simulating nonlinear microwave 
circuits permit one to model oscillator and coupled-oscillator array circuits 
efficiently and accurately. In this section a brief introduction to the principles of 
commonly used methods will be presented, with an aim towards obtaining the 
periodic steady state of oscillator circuits. The reader is prompted to the 
literature for an advanced and detailed description of the various methods, such 
as for example Refs. [132,131,101,134]. Among the various existing numerical 
methods, transient simulation, harmonic balance, and envelope-transient 
simulation are described next.  

8.1.1 Transient Simulation 

A general nonlinear circuit is considered where a vector ݔ of size ܰ contains 
the state variables of the circuit, namely node voltages and currents. The circuit 
is described by a non-autonomous system of differential equations obtained by 
applying Kirchhoff’s current law at the circuit nodes as well as the voltage law 
at the circuit branches, as introduced in Eq. (7.1-2) and repeated here for 
convenience 

 ሶ࢞ ൌ ,ሺ࢞ࢌ ࢛,  ሻ (8.1-1)ݐ

with an initial condition ࢞ሺ࢚࢕ሻ ൌ ௢ݐ where typically ,࢕࢞ ൌ 0. A vector ࢛ of size 
ܲ including external, known, forcing terms has been included for generality. 
 
The system is classified as an initial value problem [132], and the computation 
of its solution over a given time interval is known as transient simulation. There 
exist various discrete time numerical integration methods that are used to 
perform a transient simulation [101]. Assuming an integration time step ݍ, the 
values of the state variable vector ݔ௞ at time ݐ௞ ൌ  are generally computed as ݍ݇
follows [101] 

 ࢞࢑ା૚ ൌ ෍ ܽ௡࢞࢔࢑ି

௠ିଵ

௡ୀ଴

൅ ݍ ෍ ܾ௡ࢌሺ࢞࢔࢑ି, ,࢔࢑ି࢛ ௞ି௡ሻݐ
௠ିଵ

௡ୀିଵ

 (8.1-2) 

The number of evaluations of the state variables and vector field that are 
required for the evaluation of the next state ݇ ൅ 1 are called the steps of the 
algorithm, and these steps define the order of the algorithm. An algorithm is 
called explicit if the future state depends only on past values of the state 
variables and the vector field, which corresponds to ܾିଵ ൌ 0. If ܾିଵ ് 0, the 
algorithm is called implicit.  
 
A commonly used single-step, explicit integration algorithm is the forward 
Euler algorithm, which is defined as 
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 ࢞࢑ା૚ െ ࢞࢑ ൌ ݍ ݂ሺ࢞࢑, ࢛࢑,  ௞ሻ (8.1-3)ݐ

In contrast, the backward Euler algorithm is a single-step implicit algorithm 

 ࢞࢑ା૚ െ ࢞࢑ ൌ ݍ ,ሺ࢞࢑ା૚ࢌ ࢛࢑ା૚,  ௞ାଵሻ (8.1-4)ݐ

where the evaluation of the state vector at time ݇ ൅ 1 requires the computation 
of the vector field at the same time step. The resulting nonlinear system of 
algebraic equations maybe solved using some numerical root-finding algorithm. 
Typically the Newton-Raphson algorithm is used to compute the solution at 
each time step [132]. Assuming a nonlinear system ࢎሺ࢞ሻ of algebraic equations 
with unknown the steady state ࢞ ൌ ࢞࢑ା૚ at time step ݐ௞ ൌ ሺ݇ ൅ 1ሻݍ,  

ሺ࢞ሻࢎ  ൌ 	࢞ െ ࢞࢑ െ ݍ ,ሺ࢞ࢌ ࢛࢑ା૚, ௞ାଵሻݐ ൌ ૙ (8.1-5) 

the Newton-Raphson algorithm is an iterative algorithm that requires an initial 
guess ࢞૙ as a starting point, and proceeds to find the roots of ࢎሺ࢞ሻ by 
calculating successive approximations of the unknown steady-state vector as 

 ࢞ሺ࢐ା૚ሻ ൌ ࢞ሺ࢐ሻ െ ൫࢞ሺ࢐ሻ൯൧ࢎ࢐ൣ
ି૚
൫࢞ሺ࢐ሻ൯ࢎ ൌ ૙ (8.1-6) 

where j is the iteration index, and ࢎ࢐൫࢞ሺ࢐ሻ൯ is the Jacobian of the nonlinear 
function ࢎ൫࢞ሺ࢐ሻ൯ [132]. The steady-state vector at the previous time step j is a 
good candidate for an initial guess ࢞૙ ൌ ࢞࢑. It can be shown that if the initial 
guess is close enough to a solution given by Eq. (8.1-5), if the nonlinear 
function ࢎ is continuously differentiable, and the Jacobian ࢎ࢐ is not singular, 
the sequence given by Eq. (8.1-6) converges to a root of ࢎ.  
 
Many different numerical integration algorithms (8.1-2) exist depending on the 
choice of the various ܽ௡ and ܾ௡ coefficients. Selection of the appropriate 
integration algorithm depends on computational complexity, accuracy, and 
numerical stability considerations [101]. Moreover, modern integration routines 
adaptively adjust the integration step and order of the integration algorithm. 
 
In order to obtain the periodic steady state of an oscillator, one needs to 
integrate Eq. (8.1-1) for a sufficient time interval in order to allow all transient 
responses to decay. As a result, transient simulation is not an efficient method 
to analyze the behavior of oscillator and coupled oscillator systems. Conversely 
however, transient simulation provides a way to examine the stability of the 
solutions, as time-domain integration converges only to stable steady-state 
solutions.  
 
There exist time-domain algorithms such as the shooting methods that 
minimize the evaluation of the initial transient state in order to efficiently 
obtain the desired periodic steady state. In this case, one solves the system of 
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differential equations given by Eq. (8.1-1) subject to a periodic boundary 
condition ࢞ሺݐሻ ൌ ࢞ሺݐ ൅ ܶሻ, where ܶ is the period of the steady state. The reader 
is prompted to the literature for a description of these methods [101,132]. 

8.1.2 Harmonic Balance Simulation 

Frequency domain methods are particularly suited for the analysis of systems 
where a periodic solution exists. In this case it is possible to represent the 
steady-state solution by a trigonometric polynomial of degree ܯ. The selected 
value of ܯ is a trade-off between accuracy and computational efficiency. 
Specifically, assuming a state vector ࢞ሺݐሻ of size ܰ, and a vector of external 
forcing signals ࢛ሺݐሻ of size ܲ, we can write 

 ࢞ሺݐሻ ൌ ෍ ࢑݁௝௞ఠ௧ࢄ
ெ

௞ୀିெ

 (8.1-7) 

 ࢛ሺݐሻ ൌ ෍ ࢑݁௝௞ఠ௧ࢁ
ெ

௞ୀିெ

 (8.1-8) 

where ߱ is the angular fundamental frequency of the periodic steady state. The 
frequency domain state vector and external forcing signal vector are defined by 
the ܰ by 2ܯ ൅ 1 matrix ࢄ	 ൌ ሾ࢑ࢄሿ, and by the ܲ by 2ܯ ൅ 1 matrix ࢁ ൌ ሾ࢑ࢁሿ, 
respectively. Similarly, the vector field ࢌሺ࢞, ࢛,  ሻ is a periodic function and canݐ
also be expanded in a Fourier series as 

,ሺ࢞ࢌ  ࢛, ሻݐ ൌ ෍ ሻࢁ,ࢄ࢑ሺࡲ ݁௝௞ఠ௧
ெ

௞ୀିெ

 (8.1-9) 

where ࡲ	 ൌ ሾ࢑ࡲሺࢁ,ࢄሻሿ is the frequency domain vector field ܰ by 2ܯ ൅ 1 
matrix, and depends both on ࢄ and ࢁ.  
 
In a typical piecewise harmonic balance algorithm implementation [134], the 
circuit is divided into a linear sub-circuit and a nonlinear sub-circuit, and 
Kirchhoff’s laws are applied in the nodes that connect the two sub-circuits. The 
response of the nonlinear sub-circuit is computed in the time domain and a fast 
Fourier transform algorithm is used to convert the related data to the frequency 
domain. As a result, in order to compute the frequency domain vector field 
matrix ࡲ, one first applies the inverse Fourier transform to the state ࢄ and 
external signal ࢁ vectors in order to obtain their time-domain expressions ࢞ and 
࢛, then computes the time-domain vector field ࢌሺ࢞, ࢛,  ሻ, and finally applies theݐ
Fourier transform to ࢌሺ࢞, ࢛,  .ࡲ ሻ in order to obtainݐ
 



Numerical Methods for Simulating COAs 261 

 
 

By introducing Eqs. (8.1-7), (8.1-8) and (8.1-9) into the original time-domain 
system of differential equations given by Eq. (8.1-1), and balancing the 
coefficients of the exponential terms 	݁௝௞ఠ௧, a system of algebraic equations is 
obtained 

ሻࢁ,ࢄሺࡴ  ൌ ષࢄ െ ሻࢁ,ࢄሺࡲ ൌ ૙ (8.1-10) 

The matrix ࢹ contains the angular frequency terms generated by the time 
derivative operation on the Fourier series expansion in Eq. (8.1-7). The above 
system of algebraic equations is efficiently solved using root finding algorithms 
such as for example the Newton-Raphson algorithm [134,132] described in the 
previous section.  
 
It should be noted, that when the steady state is expanded using only a first-
order trigonometric polynomial (ܯ	 ൌ 	1), the corresponding formulation is 
known as the describing function [131], and it can be used to obtain insightful 
analytical expressions. The coupled-oscillator models of the previous chapter 
are describing function formulations. 
 
Harmonic balance is able to handle quasi-periodic solutions by properly 
extending the polynomial basis and the time to a frequency-domain transform 
algorithm [132]. 

8.1.3 Conversion Matrix  

In microwave mixer circuits, a quasi-periodic steady-state solution exists with 
two or more fundamental frequency components. In the simplest scenario, two 
fundamental frequencies need to be considered corresponding to the local 
oscillator signal and the RF input signal to the mixer. Correspondingly, a two-
fundamental-frequency harmonic balance algorithm needs to be used in order to 
evaluate the steady state.  
 
However, in typical mixer operation, the local oscillator signal has significantly 
larger power than the RF input to the mixer. As a result, it is possible to 
evaluate the periodic steady state in the absence of the RF input signal, defined 
by the local oscillator signal and using a harmonic balance algorithm with a 
single fundamental-frequency component. The effect of the RF input signal is 
then considered as a linear perturbation of the previously defined steady state 
leading to a computationally efficient algorithm known as the conversion 
matrix method.  
 
Assuming a linear perturbation of the steady-state solution  
࢞ሺݐሻ ൌ ሻݐሺ࢕࢞ ൅  ሻ, the initial system ofݐሻ, and an external RF signal ࢛ሺݐሺ࢞ࢾ
differential equations becomes 
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 ሶ࢞ ሺ࢚ሻ࢕ ൌ ,࢕ሺ࢞ࢌ ૙,  ሻ (8.1-11)ݐ

ࢾ  ሶ࢞ ሺݐሻ ൌ ,࢕ሺ࢞ࢌ࢞ࢊ ૙, ሻݐሺ࢞ࢾሻݐ ൅ ,࢕ሺ࢞ࢌ࢛ࢊ ૙,   ሻݐሻ࢛ሺݐ

where ࢞࢕ሺݐሻ is the solution that corresponds to the large local-oscillator signal 
in the absence of the RF input, and ࢌ࢞ࢊ and ࢌ࢛ࢊ are the time-varying Jacobians 
of the vector field ࢌ versus the state vector ࢞ሺݐሻ and versus the input RF signal 
vector ࢛ሺݐሻ, respectively, evaluated at ࢞࢕ሺݐሻ and ݑሺݐሻ ൌ 0. Both equations of 
the above system are solved in the frequency domain by applying the harmonic 
balance algorithm as Eq. (8.1-10). The frequency domain coefficients of the 
Jacobian matrices involved in the second equation are obtained at no additional 
computational cost during the Newton-Raphson harmonic balance computation 
of the large signal steady state corresponding to the first equation of 
Eq. (8.1-11) [131] [134]. 

8.1.4 Envelope Transient Simulation 

The envelope transient simulation is a combination of the transient and 
harmonic balance simulation methods proposed D. Sharrit [135] and E. Ngoya 
and R. Larcheveque [136]. In effect, one represents the state variables, external 
forcing terms, and vector field by Fourier-series expansions of time-varying 
phasors 

 ࢞ሺݐሻ ൌ ෍ ሻ݁௝௞ఠ௧ݐ࢑ሺࢄ
ெ

௞ୀିெ

 (8.1-12) 

 ࢛ሺݐሻ ൌ ෍ ሻ݁௝௞ఠ௧ݐ࢑ሺࢁ
ெ

௞ୀିெ

 (8.1-13) 

,ሺ࢞ࢌ  ࢛, ሻݐ ൌ ෍ ,ሻݐሺࢄ࢑ሺࡲ ሻሻݐሺࢁ ݁௝௞ఠ௧
ெ

௞ୀିெ

 (8.1-14) 

Consequently, a transformed system of differential equations is obtained that 
has the form 

ሶࢄ  ൌ െષࢄ ൅ ,ࢄሺࡲ ሻࢁ ൌ െࡴሺࢁ,ࢄሻ (8.1-15) 

The above system is solved using time-domain integration. The advantage of 
envelope transient simulation over the traditional transient simulation is that the 
time-varying phasors ࢄሺݐሻ are slowly varying, allowing one to use a much 
larger time step in the simulation. Being a time-domain simulation, envelope 
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transient simulation may also be used to verify the stability of a steady-state 
solution as it converges only to stable solutions.  

8.1.5 Continuation Methods 

Once a steady-state solution is obtained, continuation methods can be used to 
obtain the families of steady-state solutions that occur as one or more 
parameters of the circuit under consideration are varied. Continuation 
techniques provide an initial condition that is close to the required steady-state 
solution, so that the application of the Newton-Raphson or any other root 
finding algorithm that is being used converges quickly and efficiently.  
 
Assuming a parameter ݌ ൌ ࢞ ଴ for which the steady-state solution݌ ൌ ࢞૙ has 
been evaluated, it is then possible to obtain the steady-state solution ࢞ࢋ 
corresponding to the parameter value ݌ ൌ  ௘ by considering a sequence of݌
values ݌଴ ൏ ଵ݌ ൏ ଶ݌ … ൏  ௘ and progressively evaluating the steady state݌
corresponding to each parameter value by using the solution at each step as the 
initial condition for the evaluation of the next step [132]. 
 
In order to reduce the steps of the continuation method, the already obtained 
steady-state values are extrapolated. Assuming that the steady-state solution at 
step ݇ has been obtained by solving the harmonic balance system Eq. (8.1-10), 

,࢑ࢄ࢑ሺࡴ  ௞ሻ݌ ൌ 0 (8.1-16) 

the solution corresponding to ݌௞ାଵ is approximated by linear extrapolation as 

࢑ା૚ࢄ࢑ሺࡴࢄࡶ  െ ࢑ሻࢄ ൅
࢑ࡴࣔ

݌߲
ሺ݌௞ାଵ െ ௞ሻ݌ ൌ 0 (8.1-17) 

where ࢑ࡴࢄࡶ is the Jacobian matrix of the harmonic balance system. The above 
matrix equation can be solved in order to obtain an initial condition for the state 
vector ܺ௞ାଵ 

࢑ା૚ࢄ  ൌ ࢑ࢄ െ ሾ࢑ࡴࢄࡶሿି૚
࢑ࡴࣔ

݌߲
ሺ݌௞ାଵ െ  ௞ሻ (8.1-18)݌

Continuation methods based on Eq. (8.1-18) may fail due to singularities in the 
Jacobian matrix ࢑ࡴࡶ ൌ ሾ࢑ࡴࢄࡶ ࢑ࡴࣔ ⁄݌߲ ሿ, which result from the existence of 
multiple solutions versus the parameter under consideration. In this case, 
tracing of the steady-state solutions can be accomplished by parameter 
switching [137]. Parameter switching corresponds to tracing the steady-state 
solutions versus another, different circuit parameter or steady-state variable, for 
which the corresponding Jacobian matrix is not singular. 
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Enforcing the above condition in addition to the harmonic balance system 
enables the algorithm to avoid converging to solutions corresponding to zero 
harmonic components ௞ܸand ܫ௞, such as the non-oscillating DC solution. In 
fact, in order to avoid the DC solution, it is necessary to impose the admittance 
condition only at the fundamental harmonic component [138] 

 ଵܻ ൌ 0 (8.2-3) 

which leads to two additional real equations in the harmonic balance system 

 Reሼ ଵܻሽ ൌ 0 (8.2-4) 

 Imሼ ଵܻሽ ൌ 0  

As a result, two additional variables can be introduced to the extended 
harmonic balance system, the unknown frequency ߱, and oscillation amplitude 
ଵܸ at the load. The additional advantage of this formulation is that the designer 

may impose in a circuit optimization problem the desired oscillation frequency 
and amplitude at the load. A dual formulation may also be obtained by 
considering a series one-port equivalent circuit and enforcing the oscillation 
condition by setting the total impedance equal to zero.  
 
The condition given by Eq. (8.2-3) was implemented by R. Quere, et al. in 
commercial simulators [139], allowing for a practical design and optimization 
methodology for autonomous circuits. According to Ref. [139], one needs to 
introduce into the simulator an ideal probe circuit such as the one shown in 
Fig. 8-2. The probe is connected in parallel to a selected circuit node and 
consists of an ideal sinusoidal source of a given amplitude ௦ܸ, phase ߶௦, and 
frequency ௦݂, connected in series with a current meter ܫ௦ and an ideal filter. The 
filter is such that it presents infinite impedance for frequencies other than the 
ideal source frequency ௦݂, thus restricting the effect of the probe to ௦݂.  
 
In free-running oscillator simulation, the phase of the probe is set to an arbitrary 
but fixed value, for example zero. An optimization loop is run in order to find 
the nonzero amplitude and frequency of the probe that correspond to zero 
admittance ௦ܻ ൌ ௦ܫ ௦ܸ⁄ . Each iteration of the loop is a harmonic-balance 
analysis. The result ሺ ௦ܸ, ௦݂ሻ of the optimization defines the oscillating steady 
state. Alternatively, in the case of an externally injection-locked oscillator, the 
frequency ௦݂	is known and corresponds to the frequency of the external source. 
In this case, the pair ሺ ௦ܸ, ߶௦ሻ represents the unknowns of the optimization loop, 
as the oscillation phase is not arbitrary any more; rather, it depends on the 
injection source. 
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Harmonic-balance simulation is used to trace the various solutions of the 
coupled oscillator array, by connecting one oscillator probe at the output node 
of each oscillator element. That way, it is guaranteed that the simulator will 
properly converge to the periodic steady state of each oscillator in the array. 
The five probes extend the harmonic balance system of algebraic equations by 
ten real equations; thereby allowing the designer to optimize ten additional 
unknowns. The synchronized solutions (which correspond to a constant phase 
shift among adjacent oscillator elements) are obtained by sweeping the phase 
shift while optimizing the five oscillator-output voltages, the common 
oscillation frequency and four control voltages, all except the one 
corresponding to the middle oscillator.  
 
The simulation results are shown in Figs. 8-10 through 8-12, where the output 
power, the frequency, and the control voltages, respectively, are plotted versus 
the oscillator phase shift. The coupling-network resistor is set to R = 270 Ω, 
and the control voltage of the middle oscillator is fixed at ௖ܸଷ 	ൌ 	10 V. The 
phase shift has been swept from 0 to 180 deg with the oscillator phases 
increasing from oscillator 1 to the left and towards oscillator 5 to the right of 
Fig. 8-9. Due to the symmetry of the array, the solution curves for the 
remaining phase-shift values (0 to –180 deg) can be obtained by considering the 
mirror image of the array elements with respect to the central element 3, in 
other words replacing element 5 with element 1, and element 4 with element 2. 
 
Figure 8-12 shows the variation of the oscillator-control voltages versus the 
phase shift. One can see that the edge element-control voltages present a 
significantly larger variation compared to the inner elements. In fact, the control 
voltages of elements 2 and 4 remain practically constant for phase shifts up to 
90 deg. This represents a numerical verification using a harmonic balance 
simulation of the proposition of Liao and York [142] where by only tuning the 
free-running frequency of the peripheral elements of a coupled-oscillator array, 
it is possible to generate constant phase-shift distributions among the array 
elements, thus both minimizing the required number of controls and eliminating 
the need for phase shifters. 
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8.5 Numerical Analysis of an Externally Injection-locked 
Five-Element Linear Coupled-Oscillator Array 

Injection locking the array to an external source signal is desirable in several 
applications in order to reduce the array phase noise as shown by Chang et al. 
[123], or introduce modulation to the oscillator signal as considered by 
Kykkotis et al. [99] and Auckland et al. [122].  
 
The dynamics of the system and the stability of the various solutions depend 
strongly on the element that is being injected, whether it is located in the center 
of the array or near the edges [144,123,120]. Additionally, the number of 
elements that are being externally injected strongly influences the number and 
behavior of the existing solutions. Commonly used topologies are the one 
proposed by Stephan [1], in which the two end elements of a linear array are 
injection-locked to an external source, and the topology where the external 
signal is illuminating all the elements of the coupled oscillator array leading to 
a globally injection locked array [123], such as the case of a reflectarray or 
transmit-array antenna.  
 
In the case of an externally injection-locked array, the oscillation frequency is 
determined by the frequency of the external source. In contrast, the phase 
difference between the injection source and the element that is being injected 
must be included in the unknowns of the harmonic-balance system of 
equations. Similarly with the free-running array case, a probe must be 
connected to each oscillator element in order to guarantee the convergence of 
the harmonic balance simulator to the oscillating solution.  
 
The five-element array of Section 8.5 is considered with a coupling resistor of 
ܴ	 ൌ 	330 Ω. The middle element (3) is injection locked to an external signal 
source through its gate termination. The steady-state solutions corresponding to 
a constant phase shift among the array elements are traced versus the phase 
shift among adjacent elements. The additional unknowns in the harmonic 
balance optimization that can be obtained due to the use of the ideal probes are, 
the five oscillator amplitudes, the four control voltages corresponding to all the 
elements (except the one being injected), and the phase difference between the 
injected element and the external source signal. The phase of the injected 
element is fixed at 0 deg, and the phase of the injection signal ߶௜௡௝ is allowed 
to vary. The control voltage of the injected element is fixed at 10 V. Finally, the 
frequency of the external signal is 9.892 GHz.  
 
In Fig. 8-19 the phase ߶௜௡௝is plotted versus the phase shift between the 
oscillator elements for different injection-signal powers. As was the case in 
Section 8.4, due to the symmetry of the array, solution curves also exist for the 
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It is possible to extend the phase-scanning range by considering the fact that the 
phase variation of the oscillator Nth harmonic is ܰ times the phase variation of 
its fundamental frequency component, where ܰ	is the harmonic order. The task 
of the designer then becomes that of being able to generate sufficient power in 
the desired harmonic component. Essentially there are two ways of 
implementing such architectures, either by placing a frequency ܰ-tupler circuit 
at the output of each oscillator, or by properly designing the oscillator elements 
to have maximum power at the harmonic under consideration. 
 
In Ref. [145], Alexanian et.al. proposed a linear array of five coupled 
oscillators, where each oscillator element is followed by a frequency doubler, as 
shown in Fig. 8-21. The fundamental frequency of the oscillators is 4 GHz, and 
their output power is 9 dBm. The prototype array in Ref. [145] used a compact 
field-effect transistor (FET) based frequency doubler circuit with 1 dB 
conversion gain. The theoretical phase-tuning range that can be achieved with 
this topology is 360 deg.  
 
Based on the same principle, a frequency tripled two-dimensional coupled-
oscillator array operating in X-band was reported by Pogorzelski in Ref. [69]. 
An inter-oscillator phase difference ranging up to 60 deg was tripled to 180 
deg. Thus, this array had a demonstrated H-plane scanning range of ±90 deg. 
The fabricated prototype additionally contained a diagnostic system used to 
evaluate the phase differences between the various oscillator elements. The 
array is described in more detail in Section 6.2. 
 
Alternatively, Sanagi et.al. [146] proposed a four-element coupled-oscillator 
array, where the oscillator elements were specifically designed in order to have 
a high second-harmonic content, thus also obtaining a 360-deg phase-scanning 
range. The proposed circuit is shown in (Fig. 8-22).  
 
The oscillators are coupled using directional couplers. Termination circuits 
based on the coupler networks are also attached to the edge elements in order to 
implement a symmetrical coupling network where all oscillators see 
approximately the same load. Sanagi et al. [146] extended the coupled 
oscillator model based on the cubic nonlinearity, which was introduced by York 
[111], in order to study their proposed circuit architecture. Specifically they 
considered a nonzero square term in the cubic polynomial describing the 
current-to-voltage characteristic of the nonlinear device used for the oscillators, 
and additionally, Sanagi et al. [146] introduced in the formulation an additional 
equation pertaining to the second harmonic. The block diagram of the 
considered circuit topology is shown in Fig. 8-23, which was used to 
investigate the effects in the array performance due to coupling both at the 
fundamental frequency and at the second harmonic. It was shown that as the 



284 

 

second harm
fundamental 
 

Fig. 8-2
extende
IEEE.) 

 

Fig
har
fro
Joh

monic couplin
frequency, th

21. Coupled-
d scanning ra

g. 8-22. Coup
rmonic freque
m [146]. (This
hn Wiley & So

ng becomes s
he achievable 

oscillator arr
ange. (Reprint

pled-oscillator
ency compone
s material is r
ons, Inc.) 

stronger relat
phase tuning

ray using fr
ted with perm

r array radia
ent. (Reprinte
reproduced w

tive to the c
g range is redu

requency do
ission from [1

ating the sec
d with permis

with permissio

Chapter

coupling at t
uced. 

oublers for 
145], ©1995 

cond 
ssion 
on of 

r 8 

the 

 



Numerical Me

 

Fig. 
seco
perm
of Jo

 
In Ref. [147
shown in Fig
output wave
Sanagi et al. 
the coupled 
include the fo
 
Furthermore,
solutions cor
the second-h
ideal probes 
computationa
array radiatin
of ideal prob
doubled. 

8.7 Num

Self-oscillatin
implementati
used to provi
 

ethods for Sim

8-23. Model 
nd harmon

mission from [1
ohn Wiley & So

7], Georgiadi
g. 8-24, also
. The array o
[146]. In this
oscillator arr

ormulation fo

, harmonic-b
rresponding to
armonic com
at each osci

al load assoc
ng the second
es, and theref

merical Ana

ng mixers (SO
ions of micro
ide a local-osc

mulating COAs

of the coup
ic-frequency 
146]. This mat
ons, Inc.)  

s proposed a
o optimized i
operates base
s work howev
ray given in

or the second-

alance analy
o constant ph

mponent. In or
llator output 

ciated with th
d harmonic is
fore optimizat

alysis of a

OMs) are par
owave circuit
cillator signal

s

 

pled oscillato
component

terial is reprod

a three-eleme
in order to ra
ed on the sam
ver, the altern
n Section 7.6
-harmonic fre

ysis was used
hase shifts be
rder to do so,
node, one at

he optimizatio
increased due
tion goals, req

a Self-Osc

rticularly attra
s due to the 
l as well as fo

r array radia
t. (Reprinte
duced with pe

ent coupled-o
adiate the se
me principle 
ative perturba
 was extend
quency comp

d to trace th
etween the arr

it is necessar
t each harmo
on of the cou
e to the fact t
quired for the

cillating M

active for low
fact that the 

or frequency t

28

 

ating the 
ed with 
ermission 

oscillator arr
econd-harmon

as the one b
ation model f

ded in order 
ponent.  

he steady-sta
ray elements 

ary to place tw
onic [147]. Th
upled-oscillat
that the numb
e simulation a

Mixer 

w cost, compa
same circuit 

translation.  

85 

ray 
nic 
by 
for 
to 

ate 
at 

wo 
he 
tor 
ber 
are 

act 
is 



286 

 

Fig. 8-24. Thr
the second h
[147], ©2007 I
 
The perform
conversion g
harmonic-bal
convergence 
equations are
the probe is e
 
The radio-fre
by introducin
balance freq
system of eq
IF signals as 
conversion m
self-oscillatin
efficiently tr
initialized to 
 

ree-element c
harmonic freq
IEEE.) 

mance param
gain and int
lance simulat

of the sim
e set up in or
equal to zero 

equency (RF)
ng a second 

quency basis,
quations. Alte

a linear pertu
matrix metho
ng mixer. F
reated using
the oscillatin

coupled oscill
quency comp

meters of se
ter-modulatio
tion provided 

mulator to th
rder to make 
at the oscillat

) and interme
fundamental 
, thus using 

ernatively, on
urbation of th
d to efficien
inally, the R

g an envelop
ng steady state

ator array pro
ponent. (Repr

elf-oscillating
on distortion
that an ideal 

he oscillating
sure that the

ting frequency

ediate-frequen
frequency c
a two-fund

ne may consid
e oscillating s
tly compute 
RF and IF 
pe-transient 
e.  

ototype, desig
rinted with pe

 mixer circ
) can be ev
probe is used

g steady stat
 admittance a
y of the circu

ncy (IF) sign
omponent in 

damental harm
der the effect
steady state, a
the conversi
frequency s
simulation t

Chapter

gned to radia
ermission fro

cuits (such 
valuated usin
d to enforce t

ate. The prob
associated wi

uit.  

nals are treat
the harmoni

monic balan
t of the RF an
and employ th
ion gain of t
signals can b
that has be

r 8 

 

ate 
om 

as 
ng 
the 
be 
ith 

ted 
ic-

nce 
nd 
the 
the 
be 
en 



Numerical Methods for Simulating COAs 287 

 
 

In Ref. [148], Herran et al. optimized the gain associated with a selected mixing 
product of a self-oscillating mixer by using two ideal probes properly 
introduced in the circuit and optimizing the reflection coefficients of an ideal 
multi-harmonic load connected to the circuit input. The circuit schematic that 
was used is shown in Fig. 8-25. 
 
The first probe, called an auxiliary generator in Fig. 8-25, is used to enforce the 
oscillation condition at the desired frequency. The admittance looking into this 
probe is set to zero in order not to perturb the circuit steady state, and the 
complex admittance or reflection coefficient of the multi-harmonic load at the 
fundamental frequency that satisfies this condition is found through harmonic 
balance optimization.  
 
The second ideal generator probe is connected in series with the gate terminal 
of the FET device, and its frequency corresponds to a desired ܰth harmonic that 
is selected for the mixing process. Mixing products involving the second and 
third harmonics were considered. The reflection coefficient of the multi-
harmonic load at the desired harmonic is set to –1, corresponding to a short 
circuit. The optimization procedure consists of finding the complex amplitude 
of the ideal generator which results in a desired mixing gain value. The 
corresponding admittance looking into the generator must have a positive real 
part in order for it to correspond to a passive load. In this way, the multi-
harmonic load is optimized for a desired mixing gain value and its reflection 
coefficient at the fundamental frequency and selected harmonic frequency are 
determined. The final design is obtained by implementing the obtained 
reflection coefficient values using passive printed or lumped circuit 
components [148].  
 
A varactor diode may be appropriately placed in the self-oscillating mixer 
circuit in order to provide a frequency-tuning capability. An externally 
injection-locked self-oscillating mixer operates both as a mixer and a phase-
shifter element, where the phase shift between the input and output of the mixer 
is varied by changing the free-running frequency of the self-oscillating mixer. 
 
Being a synchronized oscillator, the externally injection locked self-oscillating 
mixer can be used to provide a continuous phase-shift range of N × 180 deg 
where the external injection signal is assumed to have a frequency near the 
fundamental frequency of oscillation of the self-oscillating mixer, and the ܰth 
oscillator harmonic is used in the mixing operation. Here, the fact that the 
tuning range of the phase of the oscillator ܰth harmonic is ܰ times the tuning 
range of the phase of its fundamental frequency component being used [145]. 
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external injection signal. Furthermore, the effect of modulation in the array 
scanning range was investigated in Section 7.11. Such topologies are limited to 
relatively narrowband applications due to the fact that the modulation strongly 
affects the steady state of the synchronized oscillator signals. Furthermore, 
specific modulation formats leading to small envelope variations are suitable 
for such applications due to the fact that the amplitude-limiting properties of the 
oscillators tend to introduce distortion to the envelope of the modulating 
signals. Continuous phase modulation (CPM) [149], which is a constant 
envelope modulation, is a prominent candidate for such systems. A well known 
example of CPM is Gaussian minimum-shift keying (GMSK) used in the 
Global System for Mobile Communications (GSM), second-generation mobile 
(cellular) communication systems. 
 
However, when modulation is introduced through the RF input signal of the 
self-oscillating mixer, it does not strongly affect the synchronization state of the 
mixer due to the fact that the input signal has a low power level and represents 
only a perturbation of the steady state. As a result, self-oscillating mixers can 
be used as frequency translation and phase-shifter circuits for input RF signals 
of arbitrary modulation. Furthermore, proper design of the mixer can allow one 
to obtain broadband gain and therefore the self-oscillating mixer is not limited 
to RF input signals with narrowband modulation.  
 
The use of an injection-locked self-oscillating mixer as a downconverter and 
phase shifter element was studied by ver Hoeye [80]. The proposed circuit 
topology is the same as in Fig. 8-25 with the addition of a varactor diode 
connected in parallel with the series feedback shorted stub present at the source 
terminal of the active device in order to provide a frequency tuning capability. 
The SOM design was performed using the methodology described previously in 
this section. An oscillation at 3.25 GHz was obtained, and an RF signal of 
11.25 GHz was mixed with the third harmonic of the SOM, resulting in an IF 
output of 1.5 GHz. Phase tuning of as much as 3 × 180 deg = 540 deg was 
achieved by utilizing the third harmonic mixing product. The obtained 
conversion gain was 4.5 dB over a bandwidth of approximately 100 MHz. It is 
shown in Fig. 8-26 that the conversion gain depends both on the injection 
power level Ps and on the varactor control voltage Vcont or, in other words, the 
selected phase difference between the input and output SOM terminals. The 
results have been obtained using a two-fundamental-harmonic balance 
simulation, and one can observe the closed synchronization curves of the 
injection locked self-oscillating mixer, which are similar to the ones obtained 
for the synchronized oscillator in Fig. 8-7. The synchronization curves open as 
the injection power increases, and there exist two solutions for a given control 
voltage within the synchronization band limited by the curve edges of infinite 
slope. Only one of the two solutions is stable and therefore measured 
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Chapter 9  
Beamforming in Coupled-Oscillator 

Arrays 

In this chapter, convex optimization and other global optimization techniques 
are used to demonstrate the beamforming capabilities of coupled-oscillator 
arrays and to optimize the stability of the coupled-oscillator array steady-state 
solution. An introduction to convex optimization is presented followed by 
several optimization problems showing the beamforming capabilities of such 
arrays, such as pattern-nulling, difference-beam generation, and multiple-beam 
generation [96,118,150,151,152]. A global optimization algorithm is also 
presented that permits one to optimize the stability of the steady-state solution, 
and therefore leads to more robust solutions and maximizes the obtained stable 
beam-scanning limits [153]. Finally, the operation of a coupled-oscillator array 
as an adaptive beamforming system is demonstrated [154]. 

9.1 Preliminary Concepts of Convex Optimization 

Convex optimization is a class of optimization problems that has enjoyed an 
increased scientific interest in the recent years due to the development of very 
efficient algorithms essentially rendering their solution as easy as the solution 
of linear programs [133]. As a result convex optimization problems have found 
wide application in fields such as control and signal processing, and among 
these, in the problem of antenna array beam-steering and beamforming. Due to 
this fact, in this chapter we first present a brief introduction to convex 
optimization and the mathematical framework required to express the 
beamforming problem as a convex optimization problem and additionally 
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where ܽ and ܾ are non-negative real numbers such that ܽ ൅ ܾ ൌ 1. One can 
easily verify from Eq. (9.1-6) that a linear function is convex. Another 
commonly used convex constraint is a linear matrix inequality [156] 

ሺ࢞ሻࡲ   ൌ ࢕ࡲ ൅ ∑ ࢏ࡲ௜ݔ
ே
௜ୀଵ ൐ 0 (9.1-7) 

where ࢞ ൌ ሾݔ௡ሿ is a vector of dimension ܰ and ࢏ࡲ ൌ ࢏ࡲ
 are real symmetric ࢀ

matrices of dimension ܯ. A real square matrix ࡲሺ࢞ሻ is positive definite 
ሺ࢞ሻࡲ ൐ 0, if for any nonzero vector ࢛, ࢛ࡲࢀሺ࢞ሻ࢛ ൐ 0. Many convex constraints 
such as linear inequalities, convex quadratic inequalities, and Lyapunov matrix 
inequalities can be cast in the form of a linear matrix inequality. According to 
Lyapunov theory, the system of differential equations  

  ሶ࢞ ൌ  (8-9.1) ࢞࡭

is stable if and only if exists a positive definite matrix ࡼ ൐ ૙ such that 

ࡼࢀ࡭   ൅ ࡭ࡼ ൏ 0 (9.1-9) 

The above inequality is known as a Lyapunov matrix inequality. The inequality 
of Eq. (9.1-9) with the matrix ࡼ as unknown can be cast in the form of a linear 
matrix inequality [156]. 
 
The minimization of the maximum eigenvalue of a matrix ࡭ subject to a linear 
matrix inequality constraint ࡮ሺ࢞ሻ ൐ 0 is a convex problem defined as [156] 

 
minimize λ 

subject to ࡺࡵߣ െ ሺ࢞ሻ࡭ ൐ ૙ ሻܠሺ࡮, ൐ ૙ 
(9.1-10) 

with ࡭ and ࡮ symmetric matrices that depend affinely on ࢞. If one defines an 
extended unknown vector ࢟ ൌ ሾ࢞ ࢉ ሿ் andߣ ൌ ሾ૙ࡺ 1ሿ் the eigenvalue 
minimization problem can be written as minimization of a linear function 
subject to a linear matrix inequality  

 
minimize ࢟ࢀࢉ 

subject to ࡲሺ࢟ሻ ൐ ૙ 
(9.1-11) 

where ࡮ሺܠሻ ൐ ૙ together with ࡺࡵࣅ െ ሺ࢞ሻ࡭ ൐ ૙ have been formulated as a 
single linear matrix inequality ࡲሺ࢟ሻ ൐ ૙.  
 
Linear programming and least-squares optimization are two well known 
examples of convex optimization problems. In linear programming, both the 
objective and the constraints are linear functions 

 
minimize ࢞ࢀࢉ 

subject to ࢏ࢇ
࢞ࢀ ൑ ࢏࢈ ݅ ൌ 1, . . . ,  ܯ

(9.1-12) 
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In least squares optimization the objective function is a sum of squares which is 
a convex function and there are no constraints 

 minimize ‖࢞࡭ െ ଶ‖࢈
ଶ ൌ ∑ ൫࢏ࢇ

࢞ࢀ െ ܾ௜൯
ଶெ

௜ୀଵ  (9.1-13) 

Where  ࡭ ൌ ሾܽ௠௡ሿ is an M by N matrix, ai is a vector of dimension N 
containing the elements of column i of matrix A, and b is a vector of dimension 
M.  
 
Finally, the minimization of the maximum generalized eigenvalue of a pair of 
symmetric matrices ࡭ and ࡮ that depend affinely on ࢞, subject to an additional 
linear matrix inequality constraint ࡯ሺ࢞ሻ ൐ 0 is a quasi-convex optimization 
problem [156] expressed as 

 
minimize λ 

subject to ࡮ߣሺ࢞ሻ െ ሺ࢞ሻ࡭ ൐ ૙ ሺ࢞ሻ࡮, ൐ ૙ , ሺ࢞ሻ࡯ ൐ ૙ 
(9.1-14) 

A real function ݂ is quasi-convex if and only if its domain is a convex set, and 
for any two vectors ࢞ and ࢟ in its domain, and a real number ߠ, such that 
0 ൑ ߠ ൑ 1, the following inequality holds [133] 

  ݂ሺ࢞ߠ ൅ ሺ1 െ ሻ࢟ሻߠ ൑ maxሼ݂ሺ࢞ሻ, ݂ሺ࢟ሻሽ (9.1-15) 

Convex functions are also quasi-convex but not vice-versa. The standard 
formulation of a quasi-convex optimization problem has a quasi-convex 
objective and convex constraints. The generalized eigenvalue minimization 
problem given by Eq. (9.1-14) can be written in the standard format [156,133]. 
Similarly to convex optimization problems, quasi-convex optimization 
problems can also be solved efficiently.  

9.2 Beamfoming in COAs 

The ability to generate constant phase distributions among the coupled-
oscillator array elements by tuning the frequency of only the edge array 
elements has been one of the most attractive properties of coupled-oscillator 
arrays as they can be used in beam-scanning applications eliminating the need 
for phase shifters or a complicated local-oscillator feed network. If, however, 
one is allowed to tune the frequency of more or all the array elements, then 
additional features maybe introduced in the radiated pattern such as placement 
of nulls at desired far-field angular directions. 
 
Once a constant progressive phase shift is established among the array 
elements, the main beam direction is steered towards a desired direction. In 
Ref. [157], Steyskal showed that additional nulls maybe formed in the radiation 
pattern at desired angular directions by introducing small perturbations to the 
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phases of the array elements. This method was used by Heath [96] in 
conjunction with the generalized phase model to demonstrate beamforming 
capabilities using coupled-oscillator arrays. Finally, Georgiadis et al. [118] 
extended Heath’s work by including both amplitude and phase perturbations. In 
the following, a description of this beamforming methodology is provided.  
 
The array factor of a uniform linear antenna-array of ܰ elements is given by  

ሻߠሺܨ   ൌ ∑ ௡ܸ݁௝
ሺ௡௞ௗ ୱ୧୬ ఏାథ೙ሻே

௡ୀଵ  (9.2-1) 

where the element distance is ݀, and the angular direction ߠ is measured from 
broadside. The main beam is steered at ߠ௢when the excitation amplitudes are 
equal ௡ܸ ൌ ௢ܸ and the element phases are set as ߶௢௡ ൌ െ݊݇݀ sin  ௢. The arrayߠ
factor is then written in compact form 

ሻߠሺܨ   ൌ ௢ܸ࢛ࡴ૚(2-9.2) ࡺ 

where ࢛ሺߠሻ ൌ ൣ݁ି௝ሺ௡௞ௗ ୱ୧୬ఏାథ೚೙ሻ൧. If one introduces a perturbation in the 
excitation amplitudes and phases ࢞ ൌ ሾઢࢀࢂ ઢࣘࢀሿࢀ the array factor is 
approximated to first order as 

ሻߠሺܨ   ൌ ௢ܸ࢛ࡴ૚ࡺ ൅ ࡺࡵுሾݑ ݆ ௢ܸࡺࡵሿ࢞ (9.2-3) 

A constraint in the array factor at angle ߠଵ is introduced by imposing |ܨሺߠଵሻ| ൑
ଵ݂ where ଵ݂ is a desired maximum level at ߠଵ. Given ܯ ൏ ܰ level constraints, 

one may form a complex vector 								ࢁ ൌ ࡯ ൅ ࡿ࢐ ൌ ሾܨሺߠଵሻ	ܨሺߠଶሻ…ܨሺߠெሻሿ் 
containing all the constraints and a second one containing ࢌ ൌ ሾ ଵ݂	 ଶ݂ … ெ݂ሿ் 
and combine them in a matrix inequality 
 

  ൤
െ ௢ܸ࡯૚ࡺ െ ࢌ
െ ௢ܸࡿ૚ࡺ

൨ ൑ ൤
࡯ െ ௢ܸࡿ
࡯ ௢ܸ࡯

൨ ࢞ ൑ ൤
െ ௢ܸ࡯૚ࡺ ൅ ࢌ
െ ௢ܸࡿ૚ࡺ

൨ (9.2-4) 

which can be written in compact form  

࢒ࢌ  ൑ ࢞ࡲ ൑  (5-9.2) ࢎࢌ

The beamforming problem can be formulated as a convex optimization problem 
as follows 

 

min
࢞
 ݐ

subject to ‖࢞‖ ൑  	ݐ

	 ࢒ࢌ ൑ ࢞ࡲ ൑  ࢎࢌ

(9.2-6) 

where the linear objective is subject to a second-order cone constraint and a 
linear inequality. Minimizing the norm of ࢞ ensures that the perturbation 
approximation of the array factor is valid. 
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The problem given by Eq. (9.2-6) was analytically solved by Georgiadis et al. 
in Ref. [118] for the case where the inequality constraints are null constraints 
ሺ࢒ࢌ ൌ ࢎࢌ ൌ ૙ሻ. In fact, the analytical solution to this problem when considering 
phase perturbations only was given by [157]. In this case [157,118],  

௠௜௡ݐ  ൌ ሺ࡯૚ࡺሻࢀሺࢀࡿࡿሻିࢀሺ࡯૚ࡺሻ (9.2-7) 

and  

࢔࢏࢓ࣘ∆  ൌ  ሻ (9.2-8)ࡺ૚࡯ሻି૚ሺࢀࡿࡿሺࢀࡿ

It is interesting to study Eq. (9.2-7), for the simple case of main-beam direction 
at ߠ௢with one nulling constraint at angle ߠଵ. One then evaluates ݐ௠௜௡as  

௠௜௡ݐ  ൌ
ሾ∑ cosሺ݊݇݀ߙሻே

ଵ ሿଶ

∑ sinଶሺ݊݇݀ߙሻே
ଵ

 (9.2-9) 

where ܽ ൌ sin ଵߠ െ sin  and	௢ߠ ௢. This shows that there exist combinations ofߠ
 ௠௜௡ goes to infinity, for whichݐ ଵsuch that the required perturbation magnitudeߠ
the optimization problem does not have a solution. These solutions correspond 
to ݉݇݀ܽ	 ൌ ܽ are integers. One such solution is for ݍ where ݉ and ߨݍ	 ൌ 0, 
which corresponds to ߠଵ ൌ  ௢; or in other words, when the desired null is in theߠ
direction of the main lobe. A second solution is when  

 sin ଵߠ െ sin ௢ߠ ൌ
ߨ
݇݀

 (9.2-10) 

which corresponds to a desired null direction ߠଵ that depends on the main beam 
angle ߠ௢. The existence of such points was also verified numerically for the 
case of a coupled-oscillator array in [118,150]. 
 
In order to apply the pattern constraints to the coupled oscillator array, one 
needs to limit the perturbation vectors ࢞ satisfying Eq. (9.2-6) to the set that 
corresponds to a coupled-oscillator array steady-state solution. Reference [118] 
introduced the coupled-oscillator array steady-state solution in Eq. (9.2-6) as an 
additional linear constraint maintaining the convexity of the optimization 
problem. The steady-state solution (7.7-12) is first reformulated to reflect the 
nature of perturbation ࢞, which contains both amplitude ௡ܸ ൌ ௢ܸ ൅ ∆ ௡ܸ and 
phase perturbations ߶௡ ൌ ߶௢௡ ൅ ∆߶௡ ൌ െ݊݇݀ sin ௢ߠ ൅ ∆߶௡. Due to the 
autonomous nature of the coupled oscillator array, the steady-state solution is 
defined by the relative phases of the oscillator elements. In other words, the 
phase of one oscillator maybe set to an arbitrary value, or alternatively the 
phases of all oscillators can be changed by an equal amount without affecting 
the steady state. This is verified by the steady-state expression Eq. (7.6-10) 
where only phase differences are present. Consequently, a perturbation of the 
steady state is set by considering the terms ∆߶௡ such that even though 



298 Chapter 9 

 

individually they may take large values, their relative differences are kept 
small. This argument was also used in the early works of Kurokawa [105] when 
modeling the externally injection-locked oscillator. It is, therefore, possible to 
approximate the phase exponents appearing in Eq. (7.6-10) as  
 

            ݁௝ሺథ೙ିథ೘ሻ ൎ ݁௝ሺథ೚೙ିథ೚೘ሻሾ1 ൅ ݆ሺ∆߶௡ െ ∆߶௠ሻሿ  

 
and obtain the perturbed steady state as 

 
ࡺࡵࢂ࡯ൣ ൅ ઴ࢉ࡯ࡴ઴ ൧࢞ࡺࡵࣘ࡯ ൅ ࣆઢࣆ࡯ ൅ ݆∆߱૚ࡺ ൅઴ࢉ࡯ࡴ઴૚ࡺ

ൌ 0 (9.2-11) 

with 

ࣘ࡯  ൌ ࢐ሾ઴ࢉ࡯ࡴ઴ െ dgሺ઴ࢉ࡯ࡴ઴૚ࡺ ሻሿ (9.2-12) 

The final system of equations is obtained by separating real and imaginary parts  

 

቎
ࢂ࡯
ࡺࡵࡾ ൅ ൫઴ࢉ࡯ࡴ઴૚ࡺ൯

ࡾ
ࣘ࡯
ࡺࡵࡾ ࡺࡵࡾࣆ࡯

ࢂ࡯
ࡵ ࡺࡵ ൅ ൫઴ࢉ࡯ࡴ઴૚ࡺ൯

ࡵ
ࣘ࡯
ࡵ ࡺࡵ ࡵࣆ࡯ ࡺࡵ

቏ ቂ
࢞
ઢࣆቃ

ൌ െ ൥
൫઴ࢉ࡯ࡴ઴૚ࡺ൯

ࡾ

∆߱૚ࡺ ൅ ൫઴ࢉ࡯ࡴ઴૚ࡺ൯
 ൩ࡵ

(9.2-13) 

which is written in compact form 

 ሾࡳ ሿࣆ∆ࡳ ቂ
࢞
ઢࣆቃ ൌ  (14-9.2) ࢍ

Using the above linear constraint for the steady state, it is possible to formulate 
the beamforming optimization problem for coupled oscillator arrays [118] as 
follows 

 

min
࢞,ઢࣆ

 ݐ

subject to ‖࢞‖ ൅ ‖ઢࣆ‖ ൑  ݐ

࢒ࢌ						 ൑ ࢞ࡲ ൑  ࢎࢌ

						 ሾࡳ ሿࣆ∆ࡳ ቂ
࢞
ઢࣆቃ ൌ  ࢍ

(9.2-15) 

where the norm of the vector ઢࣆ is also minimized in order to enforce the 
perturbation condition pertaining to the derivation of the steady-state constraint. 
The above formulation was extended to planar arrays in Ref. [150]. 
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Once the steady state is obtained, its stability is examined by considering the 
linear variational system corresponding to the system of differential equations 
describing the coupled oscillator dynamics and evaluating the eigenvalues of 
matrix ࡷ or ࡷ෩  in Eq. (7.7-17).  
 
We may further explore the arbitrary phase reference of the coupled oscillator 
array in order to minimize the number of optimization variables in Eq. (9.2-15). 
 is a square matrix of dimension 2ܰ. It has one zero eigenvalue due to the fact ࡳ
that the array steady state is unaffected by applying an arbitrary but constant 
phase term to all elements. It is therefore possible, without loss of generality, to 
set the phase perturbation of an arbitrarily selected element ݆ to zero ∆߶௝ ൌ 0 
and eliminate the column of ࡳ that corresponds to ∆߶௝. Then, a new steady-

state vector ࢟ ൌ ൣઢ܂ࢂ ઢ෩ࣘ܂ Δߤ௝൧
்

 of dimension 2ܰ is constructed, where 
ઢ෩ࣘ  contains all phase perturbations except ∆߶௝. Using ࢟, Eq. (9.2-14) is 
rearranged in the form  

෩ࡳൣ  ෥൧ࣆ∆ࡳ ቂ
࢟
෥ቃࣆ∆ ൌ ࢍ ⇒ ෩࢟ࡳ ൌ  ෥ሻ (9.2-16)ࣆ∆෥ሺࢍ

where Δߤ௝ is the control perturbation corresponding to the selected element ݆. ࡳ෩ 
is a full rank square matrix of dimension 2ܰ obtained from ࡳ by substituting its 
column corresponding to ∆߶௝ with the column of ࣆ∆ࡳ corresponding to Δߤ௝. 
Similarly ࣆ∆ࡳ෥, has dimension 2ܰ by ܰ െ 1 and is obtained from ܩ∆ఓ by 
eliminating the column that corresponds to Δߤ௝. The matrix ࢍሺ∆ࣆ෥ሻ is linearly 
dependent on ∆ࣆ෥. The steady state ࢟ is therefore expressed as a function of the 
ܰ െ 1 independent control variables ∆ࣆ෥. Following Georgiadis et al. [153], the 
equality constraint of Eq. (9.2-16) is used to eliminate the 2ܰ optimization 
variables included in ࢟, and formulate Eq. (9.2-15) in terms of only the 
independent ܰ െ 1 control variables ∆ࣆ෥  

 

min
෥ࣆ∆

 ݐ

subject to ฮࡳ෩ି૚ࢍ෥ሺ∆ࣆ෥ሻฮ ൅ ‖෥ࣆ∆‖ ൑  ݐ

					 ࢒෥ࣆ∆ࢌ ൑ ෥ࣆ∆෥ࣆ∆ࡲ ൑  ࢎ෥ࣆ∆ࢌ

(9.2-17) 

where the equality constraint is now eliminated and the inequality constraints 
on the array factor have been appropriately reformulated in terms of the 
independent control variables. As an example, let us consider the five-element 
coupled oscillator array of Section 8.4, assuming that each oscillator output is 
connected to an antenna, and the antenna elements are placed a half free-space 
wavelength apart ሺ݇݀	 ൌ  ሻ. The free-running oscillator steady stateߨ	
corresponds to an amplitude of ௢ܸ ൌ 0.442 V (the output power is 2.9 dBm), 
and frequency ௢݂ ൌ 9.892 GHz obtained for a control voltage of ߤ௢ ൌ 10 V. 
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The coupling network consists of a transmission line section of 360 deg 
electrical length at ௢݂ and two series resistors ܴ ൌ 	150 Ω  (Fig. 8-9). The 
optimization problem given by Eq. (9.2-17) was solved for the case of main 
beam direction at ߠ௢ ൌ 0 deg (broadside) and an additional null constraint at 
ଵߠ ൌ െ60 deg. The outcome of the optimization procedure is shown in 
Table 9-1. The phase perturbation of the middle array element 3 was arbitrarily 
set to zero. The steady-state vector ݕ consisted of the five oscillator amplitude 
perturbations; the four phase perturbations of oscillators 1,2,4, and 5; and the 
control voltage of the middle oscillator 3. Correspondingly, the optimization 
variables were the control voltages of elements 1, 2, 4, and 5. 
 
The resulting array factor is shown in Fig. 9-3. In addition to the result of the 
optimization problem given by Eq. (9.2-17), the array factor corresponding to 
the solution of problem given by Eq. (9.2-6) (which does not contain the array 
steady-state constraint) was also included for comparison, as well as the array 
factor corresponding to uniform excitation without a null constraint. It can be 
verified that the null is successfully imposed in the array factor at the expense 
of higher side-lobe levels and a small shift in the main lobe direction. For this 
particular case, the solutions of Eqs. (9.2-17) and (9.2-6) overlap, which 
indicates that there exists a steady-state solution for the coupled-oscillator array 
that satisfies the pattern constraints given by Eq. (9.2-6). 
 
The optimization problem given by Eq. (9.2-17) was then solved for different 
values of the coupling resistor ܴ, and the solution stability was examined by 
calculating the eigenvalues of the linear variational system of differential 
equations corresponding to the array steady state. The critical eigenvalue 
having the largest real part (spectral abscissa) is shown in Fig. 9-4 for different 
values of ܴ. It is seen that, as coupling becomes weaker, the solution eventually 
becomes unstable. The change of stability occurs for a coupling resistor value 
of 178 Ω . 
 

Table 9-1. Pattern nulling optimization of Eq. (9.2-17) applied in a five-element 
linear coupled-oscillator array. The main beam direction is ࢕ࣂ ൌ ૙ deg (broadside). 

A null in the array factor is imposed at ࣂ૚ ൌ െ૟૙ deg. 

Element 
Amplitude 

 (Volt) ࢂ∆

Phase 

∆ࣘ (º) 

Control 

ઢࣆ (Volt) 

1 0.0026 –16.257 –0.093 

2 –0.0031 5.292 0.119 

3 –0.0001 0 0.004 

4 0.0033 –6.178 –0.127 

5 –0.0027 16.331 0.097 
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9.3 Stability Optimization of the Coupled-Oscillator 
Steady-State Solution 

The stability of the coupled oscillator steady-state solution is verified by 
examining the linear variational equations corresponding to the system of 
nonlinear differential equations describing its dynamics. In Section 7.7, a 
procedure was described to remove the zero eigenvalue that appears due to the 
free-running nature of the oscillator array. The resulting square matrix ࡷ෩  of 
dimension 2ܰ െ 1 was derived in Section 7.7, where ܰ is the size of the array. 
The linear variational equation for ࢾ෥࢞ ൌ ሾ઼ࢀࢂ ઼෩ࣘࢀሿࢀ is repeated here for 
convenience, where ࢾ෩ࣘ  contains ܰ െ 1 phase differences with respect to an 
arbitrarily selected oscillator ݆ as a reference 

෥࢞ሶࢾ ൌ  ෥࢞  (9.3-1)ࢾ෩ࡷ

By definition, a steady-state solution is stable if the spectral abscissa of ࡷ෩  is 
negative. The decay rate of ࡷ෩  is the negative of the spectral abscissa [156], and 
a steady state is stable if ࡷ෩  has a positive decay rate. Maximizing the decay rate 
corresponds to a more robust steady-state solution, less likely to lose its 
stability due to the presence of noise or other perturbations. The matrix ࡷ෩ሺ∆ࣆ෥) 
depends on the steady state defined by the perturbation vector  
࢞ ൌ ሾઢࢀࢂ ઢࣘࢀሿࢀ of the array, which, following Eq. (9.2-16), is determined 
by the (perturbation) vector of ܰ െ 1 control voltages ∆ࣆ෥.  ࡷ෩  does not depend 
linearly on ∆ࣆ෥ due to the matrix inversion involved in its derivation and due to 
the fact that the phase terms appear in exponential terms. This can be easily 
verified following the formulation that leads to the definition of ࡷ෩  in 
Section 7.7. However, due to the fundamental assumption that ࢞ and ∆ࣆ෥ are 
small, we may consider the first order expansion ࡷ෩ࡸሺ∆ࣆ෥) of ࡷ෩ሺ∆ࣆ෥). The 
derivation of ࡷ෩ࡸሺ∆ࣆ෥) is straightforward. 
 
A lower bound on the decay rate can be obtained using Lyapunov theory as the 
maximum ݍ that solves [156] 

ሶܸ௄ሺ࢞ࢾሻ ൏ െ2ݍ ௄ܸሺ࢞ࢾሻ (9.3-2) 

for any ݔߜ, where ௄ܸሺ࢞ሻ is a scalar quadratic potential function defined by a 
0real symmetrix matrix ܲ with dimension 2ܰ െ 1 such that 

௄ܸሺ࢞ࢾሻ ൌ  (3-9.3) ࢞ࢾࡼࢀ࢞ࢾ

Using Eqs. (9.3-1) and (9.3-3) in Eq. (9.3-2), one obtains a matrix inequality 

ࡸ෩ࡷࡼ ൅ ࡸ෩ࡷ
ࡼࢀ ൅ ࡼݍ2 ൏ 0 (9.3-4) 

For a given steady state ∆ߤ෤, finding the symmetric positive definite matrix ࡼ 
that maximizes the decay rate ݍ is a generalized eigenvalue optimization 



Numerical Methods for Simulating COAs 303 

 
 

problem. Conversely, given a specific matrix ࡼ finding the steady state ∆ࣆ෥ that 
maximizes ݍ is an eigenvalue optimization problem. As noted in Section 9.1, 
both such problems can be efficiently solved using convex optimization 
algorithms. However, finding the steady state ∆ࣆ෥ and matrix ࡼ that maximize ݍ 
is not a convex optimization problem due to the multiplicative terms that appear 
between the elements of ∆ࣆ෥ and ࡼ. 
 
It is possible to introduce the decay-rate optimization constraint in the coupled-
oscillator array beamforming optimization algorithm following the approach by 
Georgiadis and Slavakis [153], which is given below. The optimization 
problem including the stability constraint is written as follows 

 

,ݐሺܮ ሻݍ ൌ min∆ࣆ෥,ࡼሺݐ െ ሻݍ    

subject to (i)  ฮࡳ෩ି૚ࢍ෥ሺ∆ࣆ෥ሻฮ ൅ ‖෥ࣆ∆‖ ൑  ݐ

(ii) 	ࣆ∆ࡲ෥∆ࣆ෥ ൑  		ࢎ෥ࣆ∆ࢌ

               (iii) ࡷࡼ෩ࡸሺ∆ࣆ෥ሻ ൅ ࡸ෩ࡷ
ࡼ෥ሻࣆ∆ሺࢀ ൅ ࡼݍ2 ൏ ૙ 

 (iv) ࡼ ൐ 0          

(9.3-5) 

This is not a convex optimization problem, and its resolution is not 
straightforward. In Ref. [153], an algorithm was proposed to obtain a solution 
to the above problem by alternative minimization of two sub-problems, an 
eigenvalue and a generalized eigenvalue problem. The algorithm proceeds as 
follows 
 
Step 1: Let ݁ ൐ 0 be the algorithm termination tolerance and ݇ ൌ 0 be the 

iteration number. Find ∆ࣆ෥࢑ ൌ  the vector of control variables that ,࢕෥ࣆ∆
minimizes the perturbation vector norm ݐ ൌ  .௢, subject to (i) and (ii)ݐ
This is the original convex optimization problem of Eqs. (9.2-17) and 
(9.2-15) that does not include a stability constraint. Obtain the decay 
rate ݍ௢ corresponding to ࡷ෩ࡸሺ∆ࣆ෥࢕ሻ by evaluating its eigenvalues. 

 
Step 2: Repeat {   

P1:  Find the real symmetric square matrix ࢑ࡼା૚ that minimizes 
,ሺ0ܮ ሻݍ ൌ െݍ, subject to (iii) and (iv) for a given ∆ࣆ෥࢑. This is a 
generalized eigenvalue optimization problem. The optimization 
objective provides a value of the decay rate ݍଵ,௞ାଵ. 

P2:  Find the control vector ∆ࣆ෥࢑ା૚ that minimizes ܮሺݐ, ሻݍ ൌ ݐ െ  ݍ
using as input the matrix ࢑ࡼା૚ obtained from the previous step. 
This is an eigenvalue optimization problem. Additional outputs 
of this step are the norm of the perturbation vector ݐ௞ାଵ and the 
decay rate ݍଶ,௞ାଵ. 
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Table 9-2. Pattern nulling and stability optimization in Eq. (9.3-5) 
applied in a five-element linear coupled-oscillator array. The 
main beam direction is ࢕ࣂ ൌ ૙ deg (broadside). A null in the 
array factor is imposed at ࣂ૚ ൌ െ૟૙ deg. 
 

Element 
Amplitude 

 (Volt) ࢂ∆

Phase 

∆ࣘ (deg) 

Control 

ઢࣆ (V) 

1 0.0025 –17.870 –0.089 

2 –0.0027 2.868 0.105 

3 –0.0002 0 0.007 

4 0.0030 –4.354 –0.114 

5 –0.0026 17.033 0.092 

9.4 Multi-Beam Pattern Generation Using Coupled-
Oscillator Arrays 

The synthesis of antenna radiation patterns was formulated as a convex 
optimization problem by Lebret and Boyd [158]. Considering a uniform linear 
array for simplicity, its array factor is given by  

ሻߠሺܨ   ൌ 	∑ ௡݁௝௡௞ௗݒ ୱ୧୬ ఏ
ே
௡ୀଵ ൌ  ሻு࢜ (9.4-1)ߠሺࡿ

where the vector ࢜ ൌ ሾݒ௡ሿ ൌ ൣ ௡ܸ݁௝థ೙൧ contains the complex excitations of each 
element, the element distance is ݀, and ߠ is measured from broadside. This 
formulation is slightly different from the one used in the previous section in 
order to emphasize the fact that the array factor is a linear function of the 
complex element excitations. 
 
The pattern-synthesis convex optimization problem is written as [151,158] 

 

min
࢜
 ݐ

subject to |ܨሺߠ௜ሻ| ൏ ,		ݐ ∀	݅	 ∈ 1, …   ܯ,

|௞ሻߠሺܨ|           ൏ ܷ௞		, ∀	݇	 ∈ 1,… , ܲ 

         หܨ൫ߠ௤൯ห ൌ 1 , ∀ ݍ ∈ 1,… ,   ܮ

(9.4-2) 

The above formulation contains ܮ equality constraints corresponding to ܮ array 
factor maxima at angular directions ߠ௤. Moreover, there exist ܲ maximum level 
ܷ௞	constraints and ܯ array factor minimization constraints. As a result, it is 
possible to efficiently obtain the complex excitations required to synthesize 
arbitrary patterns, such as ones having multiple beams and other beam-shaping 
requirements. Furthermore, the number of the optimization variables maybe 
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minimized by using the equality constraints to solve for and eliminate  
  .dependent variables [158]-ܮ
 
Due to the fact that an arbitrary pattern synthesis problem cannot be considered 
as a perturbation of some initial reference pattern, such as for example the one 
corresponding to uniform in-phase excitation, the linear constraint for the 
coupled oscillator steady state given by Eq. (9.2-14) or (9.2-16) cannot not be 
used, as the desired steady state may require a large perturbation vector ࢞ or ࢟, 
especially in terms of the oscillator phase differences. As a result, the general 
pattern synthesis problem applied to coupled-oscillator arrays may be 
approached in three steps. First one obtains the required complex excitations by 
solving the convex optimization problem Eq. (9.4-2). Second, once the desired 
amplitude and phase values are found, one uses the steady-state equations 
corresponding to the coupled-oscillator models in Eq. (7.7-4) or (7.7-12) 
(which do not assume a linear perturbation for the phase terms) in order to find 
the coupled-oscillator steady state that closely matches the required amplitude 
and phase distribution. For example, when using Eq. (7.7-12), one may 
substitute the phase values obtained by solving Eq. (9.4-2) in the previous step 
and solve Eq. (7.7-12) for the amplitude and control variables. Alternatively, a 
nonlinear simulator (such as harmonic-balance optimization) can be used, 
where the phase values are imposed and fixed, and the amplitude values 
obtained from convex optimization are used only to initialize the oscillator 
amplitudes in the simulation and are allowed to be optimized together with the 
control parameters in order to obtain the steady state. Third, once a coupled-
oscillator steady state has been selected, the stability of the solution must be 
verified, for example by calculating the eigenvalues corresponding to the linear 
variational system of the array dynamics around the steady state. In fact, as will 
be seen in the following examples, in this step the designer synthesizes the 
coupling network in order to guarantee the stability of the steady-state solution. 
 
Difference pattern generation using coupled-oscillator arrays was demonstrated 
by Heath in Ref. [31]. Heath considered a linear coupled oscillator array, and 
using the generalized phase model to describe its dynamics, extended the 
application of the beam-steering model initially introduced by York [111] to 
difference pattern generation and steering. He showed that a stable difference 
pattern maybe generated by a simple modification in the coupling network, that 
is, by introducing a 180-deg phase shift in the coupling between the central 
elements of the array, while maintaining a 0-deg phase shift between all 
remaining elements. In order to steer the difference beam pattern, the following 
phase distribution should be applied to the array elements [31].  

 ߶௞ ൌ ߶௢ ൅ ሺ݇ െ 1ሻΔ߶ ൅ ݄௞ (9.4-3) 
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can be obtained, whereas if the coupling phase is 180 deg, the stable solutions 
can have a phase difference in the range of [+90 deg, +270 deg]. As the 
required phase difference among elements 2 and 3, and 5 and 6, is more than 
90 deg (see Fig. 9-7), a coupling network with phase of 180 deg was selected in 
order to ensure the existence of a stable solution. 
 
The array factor corresponding to the excitations resulting from the solution of 
the optimization problem given by Eq. (9.4-2) is shown in Fig. 9-8, where it is 
marked as the ideal pattern. The coupled-oscillator array amplitudes found after 
the application of the above solution in a harmonic-balance simulator, as 
described in the previous paragraphs, were used to compute the coupled-
oscillator array radiation pattern. The resulting pattern shows an excellent 
agreement with the ideal pattern. Finally, the array factor corresponding to 
uniform amplitude excitation and application of only the phase excitation 
values from Eq. (9.4-2) is superimposed in Fig. 9-8, showing that by imposing 
the phase condition only it is possible to successfully obtain the two desired 
main lobes, but it is not sufficient to maintain the sidelobe levels at a 
sufficiently low value.  
 
Furthermore, it was verified that the two beam patterns can be scanned while 
maintaining their angular distance of 40 deg by detuning only the free-running 
frequencies of the end elements. The result of the harmonic-balance simulation 
is shown in Fig. 9-9. This last example may be viewed as a generalization of 
the difference pattern synthesis work of Heath [31], in the sense that once a 
desired phase and amplitude distribution among the array elements is obtained, 
thus synthesizing a desired array factor, a progressive constant-phase shift 
distribution may be superimposed by detuning only the end array elements, 
thereby permitting one to scan the synthesized pattern accordingly.  

9.5 Control of the Amplitude Dynamics 

Oscillator amplitude control provides an additional degree of freedom in order 
to synthesize more complex radiation patterns with improved performance 
capabilities, such as reduced sidelobes. The possibility of controlling the 
oscillator free-running amplitudes in order to synthesize a desired pattern was 
investigated by Heath [159]. Furthermore, in the works of Georgiadis et al. 
[118,150,153] the oscillator amplitude dynamics are included in the 
beamforming problem formulation. Recently, control of the amplitude 
dynamics of the coupled oscillator array, was also addressed by Jiang et al. 
[160], where the generation of triangular amplitude distributions in linear 
coupled oscillator arrays was demonstrated.  
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and phases by adjusting the free-running oscillator frequencies and the coupling 
network. Similarly to the previous paragraph, a complex notation for the array 
dynamics pertaining to either of the two models of Sections 7.4 and 7.6 may be 
utilized.  
 
The formulation of Section 7.4, also shown in Eq. (9.5-1), was followed in 
Ref. [154]. The periodic steady-state solution is obtained by setting ܣሶ௠ ൌ 0 
and ߶ሶ௠ ൌ ܿ with ܿ an arbitrary constant, resulting in  

௠ܽ௠ߩ  ൅෍ߢ௠௜ܽ௜

ே

௜ୀଵ

ൌ ܾ௠ (9.6-1) 

where ݉ ൌ 1,2…ܰ 

 
௠ߩ ൌ ௢௠ଶܣߤ ൅ ݆Δ߱௠ 

ܾ௠ ൌ ሺߤ|ܽ௠|ଶ ൅ ݆ܿሻܽ௠ 
(9.6-2) 

Finally, in matrix form one has 

 ሺ࣋ ൅ ࢇሻࣄ ൌ  ሻ (9.6-3)ࢇሺ࢈

where ࣋ is a diagonal matrix with ߩ௠ in its main diagonal and ࢈ is a vector 
with ܾ௠ in its main diagonal. Matrix ࣋ contains the oscillator parameters, the 
free-running amplitudes, and the free-running frequency offsets from ߱௢. The 
frequency offsets can be adjusted, whereas the free-running amplitudes are 
fixed and assumed equal for all oscillators. Amplitude control may also be 
achieved using, for example, a variable attenuator or variable-gain amplifier at 
each oscillator output. The matrix ߢ contains the coupling-network gain and 
phase, and it may also be tunable. In Ref. [154], nearest neighbor coupling is 
assumed, which results in a bi-diagonal matrix ࣄ.  
 
There are many possible combinations of ࣋ and ࣄ that can lead to a desired 
complex amplitude vector ࢇ. Ikuma et al. [154] considered a reconfigurable 
coupling network ࣄ and identical oscillators without frequency tuning, leading 
to a fixed ࣋ matrix. As a result, the coupling matrix ࣄ is used to generate the 
desired amplitude distributions	ܽ.  
 
The proposed adaptive receiver of Ikuma et al. [154] is shown in Fig. 9-10. 
Assuming a receiving uniform linear-antenna array of ܰ elements, the received 
signal vector from all antennas is ࢘ሺݐሻ. 
 
The received signal is split into two signal paths. The signal in the first path is 
mixed with a reference oscillator ݖ௥ሺݐሻ, and after passing through a low-pass 
filter to remove unwanted mixing products, it provides the reference vector 
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including the direction of arrival of the main beam [154]. Finally, the parameter 
 controls the convergence speed of the beamformer. The proposed ߤ
beamformer operation was verified by computer simulation. 

9.7 Conclusion 

In this chapter we introduced several optimization problems, demonstrating the 
beamforming capabilities of coupled oscillator arrays. The beamforming 
problem has been formulated as a convex optimization problem, which includes 
the array steady state as a linear constraint. The results of Chapter 7 have been 
used to provide an expression for the steady state of the coupled-oscillator 
array. Additionally, the capability of generating and scanning multiple beams 
has been verified. Furthermore, a non-convex optimization algorithm, which 
optimizes the stability of the steady state solution, has been introduced, and an 
adaptive beamformer based on coupled oscillator arrays has been demonstrated. 
The combination of optimization and signal-processing techniques (together 
with the rich dynamical properties of coupled-oscillator arrays) reveal the 
potential and numerous applications of such arrays, which have yet to be 
explored.  
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Chapter 10  
Overall Conclusions and Possible Future 

Directions 

Active integrated antennas have found numerous applications as phased arrays, 
retro-directive arrays, and spatial power combiners. Coupled-oscillator antenna 
arrays represent a very exciting subset of active integrated antennas both from 
an application point of view, as well as from a research and analysis point of 
view, due to some very attractive properties, such as their ability to produce 
arbitrary phase shift distributions, as well as their capabilities of frequency 
conversion and frequency generation. In addition, they inherit the practical 
advantages of active integrated antennas, which are compact low-profile circuit 
implementations that are compatible with low-cost fabrication technologies 
(such as microstrip and coplanar waveguide), using single and multilayer 
printed circuit boards. 
 
As we have seen, however, the design of coupled-oscillator antenna arrays, is 
far from trivial due to their highly nonlinear nature, which results in a 
dynamical behavior that is difficult to simulate and predict accurately and, in 
effect, increases the difficulty of designing coupled-oscillator arrays 
demonstrating a robust performance. Nonetheless, the progress of nonlinear 
circuit simulation and optimization techniques and the increase in 
computational power of low cost personal computers has made possible the 
accurate analysis of coupled-oscillator arrays with as many as a few tens of 
elements via combining sophisticated nonlinear models for the active devices 
and electromagnetic analysis for the antenna, transmission lines, and 
interconnects, using the various methods described in Chapter 8. Efficient 
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analysis of large coupled-oscillator arrays requires the use of approximate 
perturbation models, infinite-array approximations, and the continuum model 
that enable understanding of the exhibited behavior at a level permitting design 
of functional systems. The intuitive understanding of the array behavior and the 
gain in computational efficiency resulting from application of such methods 
makes them indispensable tools, complementary to the fully nonlinear 
simulators. The description and use of such methods has been the focus of 
Chapter 1 through Chapter 7.  
 
Interest in low-cost, high-performance radio-frequency systems with 
reconfigurable properties in terms of transmitted beam direction or polarization 
makes coupled oscillator arrays a strong candidate for many applications 
including radar, phased arrays, and imaging in the microwave and millimeter 
wave frequencies. There are still numerous challenges to be addressed and 
many areas where improvements in coupled-oscillator array technology are 
desirable. Among these we specifically note the application of new 
implementation technologies in the design of coupled oscillator arrays, such as 
substrate integrated waveguide (SIW) technology and the creation of conformal 
coupled-oscillator arrays using flexible substrate materials such as paper and 
liquid crystal polymers (LCP). Preliminary results concerning coupled-
oscillator arrays using SIW technology were discussed in Chapter 6, 
demonstrating the possibility of low-cost single substrate array implementation. 
On the other hand, fully integrated coupled-oscillator arrays in the millimeter-
wave frequencies have also appeared in the literature [161] paving the way for 
the introduction of coupled-oscillator arrays in millimeter-wave phased-array 
sensing and communication applications.  
 
We further note, that successful demonstrations of only small arrays have been 
reported in the literature to date, and large arrays employing hundreds of 
elements remain to be seen. In such large arrays, perimeter oscillator control of 
the radiated beam will be particularly beneficial. Furthermore, the 
demonstration of coupled-oscillator arrays using signal processing and 
optimization techniques in beamforming, and more importantly adaptive 
beamforming, is an area that should be further exploited. Finally, a number of 
challenging analysis problems remain to be addressed, such as quantifying the 
effect of phase noise on the locking range of the array and more detailed study 
of mode locking for pulsed operation of coupled oscillators in the microwave 
frequencies. 
 
Despite the progress in the theory and design of coupled-oscillator arrays 
during the past two decades, active antenna arrays based on coupled oscillators 
have not yet found widespread practical application, although there have been 
notable achievements in array implementations such as the ones shown in 
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Chapter 6. It is hoped that the material presented in this book demonstrates the 
potential of coupled-oscillator arrays and motivates deigners to apply them in 
microwave and millimeter-wave array antennas.  
 
We have endeavored to provide the reader with the understanding and the tools 
for such application through description of the research to date and mention of 
a few areas for further study and technological development. The references to 
the archival literature will, of course, provide more detail than could be 
included here without rendering the presentation far too cumbersome for the 
casual reader. However, the literature sometimes presupposes significant 
familiarity with the approaches currently in vogue. Thus, in parts the present 
treatment is an overview of the research work while in other parts it provides a 
tutorial facilitating access to the literature. We hope to have struck a balance 
between these two styles of presentation resulting in a book of somewhat wider 
utility in this field than would be the case for either style alone. 
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Acronyms and Abbreviations 

 

AACS   attitude and articulation control subsystem  

ABET, Inc. Accreditation Board for Engineering and Technology  

ACORDE Advanced Communications Research and Development, S.A.  
 (Santander, Spain) 

AG  auxiliary generator 

AM  amplitude modulation 

 

BMDO  U. S. Ballistic Missile Defense Organization 

 

CMOS  complementary metal oxide semiconductor 

COA  coupled-oscillator array  

CPG  central pattern generator 

CPM  constant-phase modulation 

CTTC  Centre Tecnologic de Telecomunicacions  
de Catalunya (Barcelona, Spain) 

 

dBc  decibels relative to the carrier 

dBm  decibels referenced to milliwatts 



336 Acronyms and Abbreviations 

 

dc, DC  direct current 

DC bias bias voltage associated with a direct-current system 

d.e.  differential equation 

deg  degree 

 

E-plane plane containing the electric field intensity vector 

Eq.  Equation 

EuCAP European Conference on Antennas and Propagation  

 

FET  field effect transistor 

FFT  fast Fourier transform 

 

GCD Global Communications Devices (North Andover,  
Massachusetts) 

GHz  gigahertz 

GMSK  Gaussian minimum-shift keying 

GSM  Global System for Mobile Communications 

GTRI   Georgia Tech Research Institute  

 

H-plane plane containing the magnetic field intensity vector  

HSOM  harmonic self-oscillating mixer 

 

IEE  Institution of Electrical Engineers 

IEEE  Institute of Electrical and Electronics Engineers 

IET  Institution of Engineering and Technology 

IRE  Institute of Radio Engineers 

IF  intermediate frequency 

ILR   inverse locking range 
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JPL  Jet Propulsion Laboratory 

 

L-band  frequency range between 390 and 1550 MHz 

LCP  liquid-crystal polymers 

LMDS   local multipoint distribution service 

LMS  least mean square 

 

MESFET  metal semiconductor field-effect transistor 

MHz  megahertz 

MMIC  monolithic microwave integrated circuit 

mr  milliradian 

Ms–1  mega inverse seconds 

 

NARRA  Novel Architectures for Reconfigurable Reflectarrays and  
  Phased Array Antennas 

NASA  National Aeronautics and Space Administration 

nH  nanohenry 

ns  nanosecond 

 

pF  picofarad 

pHEMT  pseudomorphic high electron mobility transistor  

PLL  phase-locked loop 

PM  phase modulation 

 

R.A.C.  Radio Antenna Communications (Milan, Italy) 

Ref.  reference 

RF  radio frequency 

RFCSET  RF/Microwave Communication Subsystems for Emerging  
 Wireless Technologies 

RFID  radio-frequency identification 
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RLC  resistance, inductance, capacitance  

RoM  reduced order model  

 

S-band  RF frequencies 1550–5200 MHz  

SIW   substrate integrated waveguide 

SOM  self-oscillating mixer 

SWAP (Marie Curie Industry-Academia Pathways and Partnerships  
project) Symbiotic Wireless Autonomous Powered system  

 

USNC/URSI U.S. National Committee (USNC) of the Union Radio  
Scientifique Internationale  

UWB  ultra-wideband 

 

V  volt 

VCO  voltage- controlled oscillator 

VHF  very high frequency 

VNA  vector network analyzer 

VSA  vector signal analyzer 

 

 

 

 


