
 

Chapter 8  

Numerical Methods for Simulating 

Coupled Oscillator Arrays 

Coupled-oscillator arrays present a challenge to the designer due to difficulties 

both in the accurate simulation of oscillator elements and in the requirement for 

computationally efficient simulation techniques for large arrays. In addition, 

coupled-oscillator array design is made more difficult by the presence of 

multiple operating modes and stability considerations. As a result, a number of 

approximations need to be used to reduce the simulation time. Such are 

describing function models for non-linear elements [15] [118] [129] [130], 

along with perturbation models, infinite array approximations and continuum 

models shown in Chapter 3 [38] [39] and in Chapter 4[42] [43] [44], 

respectively. 

 

The progress in recent years in nonlinear simulation techniques has led to more 

accurate analysis and optimization methods for nonlinear circuits such as 

oscillators and mixers, as well as arrays [120,131]. Furthermore, these 

nonlinear simulation tools can be combined with electromagnetic simulation in 

order to analyze radiating structures and nonlinear antennas and arrays.  

 

In this chapter, an introduction to numerical methods for simulating nonlinear 

circuits is presented [132,131], focused on the simulation of autonomous 

circuits such as oscillators, followed by an introduction to convex optimization 

principles [133]. Nonlinear simulation techniques are demonstrated in order to 

trace the steady-state solutions of coupled-oscillator arrays and investigate their 

stability [116].  

rcarlson
Typewritten Text
257

rcarlson
Typewritten Text



258 Chapter 8 

8.1 Introduction to Numerical Methods 

The recent advances in numerical methods for simulating nonlinear microwave 

circuits permit one to model oscillator and coupled-oscillator array circuits 

efficiently and accurately. In this section a brief introduction to the principles of 

commonly used methods will be presented, with an aim towards obtaining the 

periodic steady state of oscillator circuits. The reader is prompted to the 

literature for an advanced and detailed description of the various methods, such 

as for example Refs. [132,131,101,134]. Among the various existing numerical 

methods, transient simulation, harmonic balance, and envelope-transient 

simulation are described next.  

8.1.1 Transient Simulation 

A general nonlinear circuit is considered where a vector   of size   contains 

the state variables of the circuit, namely node voltages and currents. The circuit 

is described by a non-autonomous system of differential equations obtained by 

applying Kirchhoff‟s current law at the circuit nodes as well as the voltage law 

at the circuit branches, as introduced in Eq. (7.1-2) and repeated here for 

convenience 

  ̇           (8.1-1) 

with an initial condition         , where typically     . A vector   of size 

  including external, known, forcing terms has been included for generality. 

 

The system is classified as an initial value problem [132], and the computation 

of its solution over a given time interval is known as transient simulation. There 

exist various discrete time numerical integration methods that are used to 

perform a transient simulation [101]. Assuming an integration time step  , the 

values of the state variable vector    at time       are generally computed as 

follows [101] 

      ∑       

   

   

  ∑                    

   

    

 (8.1-2) 

The number of evaluations of the state variables and vector field that are 

required for the evaluation of the next state     are called the steps of the 

algorithm, and these steps define the order of the algorithm. An algorithm is 

called explicit if the future state depends only on past values of the state 

variables and the vector field, which corresponds to      . If        the 

algorithm is called implicit.  

 

A commonly used single-step, explicit integration algorithm is the forward 

Euler algorithm, which is defined as 
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                       (8.1-3) 

In contrast, the backward Euler algorithm is a single-step implicit algorithm 

                             (8.1-4) 

where the evaluation of the state vector at time     requires the computation 

of the vector field at the same time step. The resulting nonlinear system of 

algebraic equations maybe solved using some numerical root-finding algorithm. 

Typically the Newton-Raphson algorithm is used to compute the solution at 

each time step [132]. Assuming a nonlinear system      of algebraic equations 

with unknown the steady state        at time step          ,  

                               (8.1-5) 

the Newton-Raphson algorithm is an iterative algorithm that requires an initial 

guess    as a starting point, and proceeds to find the roots of      by 

calculating successive approximations of the unknown steady-state vector as 

             [  (    )]
  

 (    )    (8.1-6) 

where j is the iteration index, and   (    ) is the Jacobian of the nonlinear 

function  (    ) [132]. The steady-state vector at the previous time step j is a 

good candidate for an initial guess      . It can be shown that if the initial 

guess is close enough to a solution given by Eq. (8.1-5), if the nonlinear 

function   is continuously differentiable, and the Jacobian    is not singular, 

the sequence given by Eq. (8.1-6) converges to a root of  .  

 

Many different numerical integration algorithms (8.1-2) exist depending on the 

choice of the various    and    coefficients. Selection of the appropriate 

integration algorithm depends on computational complexity, accuracy, and 

numerical stability considerations [101]. Moreover, modern integration routines 

adaptively adjust the integration step and order of the integration algorithm. 

 

In order to obtain the periodic steady state of an oscillator, one needs to 

integrate Eq. (8.1-1) for a sufficient time interval in order to allow all transient 

responses to decay. As a result, transient simulation is not an efficient method 

to analyze the behavior of oscillator and coupled oscillator systems. Conversely 

however, transient simulation provides a way to examine the stability of the 

solutions, as time-domain integration converges only to stable steady-state 

solutions.  

 

There exist time-domain algorithms such as the shooting methods that 

minimize the evaluation of the initial transient state in order to efficiently 

obtain the desired periodic steady state. In this case, one solves the system of 
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differential equations given by Eq. (8.1-1) subject to a periodic boundary 

condition            , where   is the period of the steady state. The reader 

is prompted to the literature for a description of these methods [101,132]. 

8.1.2 Harmonic Balance Simulation 

Frequency domain methods are particularly suited for the analysis of systems 

where a periodic solution exists. In this case it is possible to represent the 

steady-state solution by a trigonometric polynomial of degree  . The selected 

value of   is a trade-off between accuracy and computational efficiency. 

Specifically, assuming a state vector      of size  , and a vector of external 

forcing signals      of size  , we can write 

      ∑    
    

 

    

 (8.1-7) 

      ∑    
    

 

    

 (8.1-8) 

where   is the angular fundamental frequency of the periodic steady state. The 

frequency domain state vector and external forcing signal vector are defined by 

the   by      matrix    [  ], and by the   by      matrix   [  ], 
respectively. Similarly, the vector field          is a periodic function and can 

also be expanded in a Fourier series as 

          ∑              

 

    

 (8.1-9) 

where    [       ] is the frequency domain vector field   by      

matrix, and depends both on   and  .  

 

In a typical piecewise harmonic balance algorithm implementation [134], the 

circuit is divided into a linear sub-circuit and a nonlinear sub-circuit, and 

Kirchhoff‟s laws are applied in the nodes that connect the two sub-circuits. The 

response of the nonlinear sub-circuit is computed in the time domain and a fast 

Fourier transform algorithm is used to convert the related data to the frequency 

domain. As a result, in order to compute the frequency domain vector field 

matrix  , one first applies the inverse Fourier transform to the state   and 

external signal   vectors in order to obtain their time-domain expressions   and 

 , then computes the time-domain vector field         , and finally applies the 

Fourier transform to          in order to obtain  . 
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By introducing Eqs. (8.1-7), (8.1-8) and (8.1-9) into the original time-domain 

system of differential equations given by Eq. (8.1-1), and balancing the 

coefficients of the exponential terms       , a system of algebraic equations is 

obtained 

                    (8.1-10) 

The matrix   contains the angular frequency terms generated by the time 

derivative operation on the Fourier series expansion in Eq. (8.1-7). The above 

system of algebraic equations is efficiently solved using root finding algorithms 

such as for example the Newton-Raphson algorithm [134,132] described in the 

previous section.  

 

It should be noted, that when the steady state is expanded using only a first-

order trigonometric polynomial (     ), the corresponding formulation is 

known as the describing function [131], and it can be used to obtain insightful 

analytical expressions. The coupled-oscillator models of the previous chapter 

are describing function formulations. 

 

Harmonic balance is able to handle quasi-periodic solutions by properly 

extending the polynomial basis and the time to a frequency-domain transform 

algorithm [132]. 

8.1.3 Conversion Matrix  

In microwave mixer circuits, a quasi-periodic steady-state solution exists with 

two or more fundamental frequency components. In the simplest scenario, two 

fundamental frequencies need to be considered corresponding to the local 

oscillator signal and the RF input signal to the mixer. Correspondingly, a two-

fundamental-frequency harmonic balance algorithm needs to be used in order to 

evaluate the steady state.  

 

However, in typical mixer operation, the local oscillator signal has significantly 

larger power than the RF input to the mixer. As a result, it is possible to 

evaluate the periodic steady state in the absence of the RF input signal, defined 

by the local oscillator signal and using a harmonic balance algorithm with a 

single fundamental-frequency component. The effect of the RF input signal is 

then considered as a linear perturbation of the previously defined steady state 

leading to a computationally efficient algorithm known as the conversion 

matrix method.  

 

Assuming a linear perturbation of the steady-state solution  

                , and an external RF signal     , the initial system of 

differential equations becomes 
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  ̇               (8.1-11) 

   ̇                                      

where       is the solution that corresponds to the large local-oscillator signal 

in the absence of the RF input, and     and     are the time-varying Jacobians 

of the vector field   versus the state vector      and versus the input RF signal 

vector     , respectively, evaluated at       and       . Both equations of 

the above system are solved in the frequency domain by applying the harmonic 

balance algorithm as Eq. (8.1-10). The frequency domain coefficients of the 

Jacobian matrices involved in the second equation are obtained at no additional 

computational cost during the Newton-Raphson harmonic balance computation 

of the large signal steady state corresponding to the first equation of 

Eq. (8.1-11) [131] [134]. 

8.1.4 Envelope Transient Simulation 

The envelope transient simulation is a combination of the transient and 

harmonic balance simulation methods proposed D. Sharrit [135] and E. Ngoya 

and R. Larcheveque [136]. In effect, one represents the state variables, external 

forcing terms, and vector field by Fourier-series expansions of time-varying 

phasors 

      ∑       
    

 

    

 (8.1-12) 

      ∑       
    

 

    

 (8.1-13) 

          ∑                    

 

    

 (8.1-14) 

Consequently, a transformed system of differential equations is obtained that 

has the form 

  ̇                     (8.1-15) 

The above system is solved using time-domain integration. The advantage of 

envelope transient simulation over the traditional transient simulation is that the 

time-varying phasors      are slowly varying, allowing one to use a much 

larger time step in the simulation. Being a time-domain simulation, envelope 
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transient simulation may also be used to verify the stability of a steady-state 

solution as it converges only to stable solutions.  

8.1.5 Continuation Methods 

Once a steady-state solution is obtained, continuation methods can be used to 

obtain the families of steady-state solutions that occur as one or more 

parameters of the circuit under consideration are varied. Continuation 

techniques provide an initial condition that is close to the required steady-state 

solution, so that the application of the Newton-Raphson or any other root 

finding algorithm that is being used converges quickly and efficiently.  

 

Assuming a parameter      for which the steady-state solution      has 

been evaluated, it is then possible to obtain the steady-state solution    

corresponding to the parameter value      by considering a sequence of 

values              and progressively evaluating the steady state 

corresponding to each parameter value by using the solution at each step as the 

initial condition for the evaluation of the next step [132]. 

 

In order to reduce the steps of the continuation method, the already obtained 

steady-state values are extrapolated. Assuming that the steady-state solution at 

step   has been obtained by solving the harmonic balance system Eq. (8.1-10), 

             (8.1-16) 

the solution corresponding to      is approximated by linear extrapolation as 

               
   

  
            (8.1-17) 

where      is the Jacobian matrix of the harmonic balance system. The above 

matrix equation can be solved in order to obtain an initial condition for the state 

vector      

         [    ]
  

   

  
          (8.1-18) 

Continuation methods based on Eq. (8.1-18) may fail due to singularities in the 

Jacobian matrix     [         ⁄ ]  which result from the existence of 

multiple solutions versus the parameter under consideration. In this case, 

tracing of the steady-state solutions can be accomplished by parameter 

switching [137]. Parameter switching corresponds to tracing the steady-state 

solutions versus another, different circuit parameter or steady-state variable, for 

which the corresponding Jacobian matrix is not singular. 
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8.2 Obtaining Periodic Steady-State Solutions of 
Autonomous Circuits in Harmonic-Balance 
Simulators 

Autonomous circuits, such as free-running oscillators, present an additional 

difficulty in harmonic-balance simulators due to the fact that the frequency 

basis of the trigonometric polynomial expansion is unknown. The autonomous 

nature of the oscillators is expressed in the time domain by the lack of a time 

reference, which translates in the frequency domain to an arbitrary phase of one 

of the harmonic components of its state variables. This fact is explored by 

Rizzoli et. al. in [134], where it is proposed that the harmonic-balance system 

of algebraic equations can be extended by one more equation defined by 

arbitrarily setting the phase of one of the harmonics of a circuit state variable to 

a specific value. As an example, the phase of the fundamental-harmonic 

component may be set to zero leading to 

   {  }    (8.2-1) 

Augmenting the harmonic-balance system by one equation allows one to 

additionally augment the number of unknowns by the fundamental frequency 

 . Nonetheless, the Newton-Raphson algorithm may still converge to a DC 

(non-oscillating) solution due to the difficulty in selecting a suitable initial 

condition that is sufficiently close to the desired oscillating steady state.  

 

Ch.-R Chang proposed an alternative method[138] in which an oscillator circuit 

is represented by a one-port equivalent circuit by looking into the terminals of 

the oscillator load, as shown in Fig. 8-1. The steady-state oscillation condition 

in the frequency domain is expressed by the total resistance or admittance at the 

load being equal to zero, known as the Kurokawa condition [129]. This 

condition, expressed at each harmonic  , is written as 

    
  
  

                  (8.2-2) 

   

 

Fig. 8-1. Oscillator 1-port equivalent circuit.  
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Enforcing the above condition in addition to the harmonic balance system 

enables the algorithm to avoid converging to solutions corresponding to zero 

harmonic components   and   , such as the non-oscillating DC solution. In 

fact, in order to avoid the DC solution, it is necessary to impose the admittance 

condition only at the fundamental harmonic component [138] 

      (8.2-3) 

which leads to two additional real equations in the harmonic balance system 

   {  }    (8.2-4) 

   {  }     

As a result, two additional variables can be introduced to the extended 

harmonic balance system, the unknown frequency  , and oscillation amplitude 

   at the load. The additional advantage of this formulation is that the designer 

may impose in a circuit optimization problem the desired oscillation frequency 

and amplitude at the load. A dual formulation may also be obtained by 

considering a series one-port equivalent circuit and enforcing the oscillation 

condition by setting the total impedance equal to zero.  

 

The condition given by Eq. (8.2-3) was implemented by R. Quere, et al. in 

commercial simulators [139], allowing for a practical design and optimization 

methodology for autonomous circuits. According to Ref. [139], one needs to 

introduce into the simulator an ideal probe circuit such as the one shown in 

Fig. 8-2. The probe is connected in parallel to a selected circuit node and 

consists of an ideal sinusoidal source of a given amplitude   , phase     and 

frequency   , connected in series with a current meter    and an ideal filter. The 

filter is such that it presents infinite impedance for frequencies other than the 

ideal source frequency   , thus restricting the effect of the probe to   .  

 

In free-running oscillator simulation, the phase of the probe is set to an arbitrary 

but fixed value, for example zero. An optimization loop is run in order to find 

the nonzero amplitude and frequency of the probe that correspond to zero 

admittance        ⁄ . Each iteration of the loop is a harmonic-balance 

analysis. The result         of the optimization defines the oscillating steady 

state. Alternatively, in the case of an externally injection-locked oscillator, the 

frequency    is known and corresponds to the frequency of the external source. 

In this case, the pair         represents the unknowns of the optimization loop, 

as the oscillation phase is not arbitrary any more; rather, it depends on the 

injection source. 

 



266 Chapter 8 

 

Fig. 8-2. Ideal probe circuit used for oscillator simulation  
in harmonic balance. 

 
The ideal probe can also be used to initialize an envelope transient simulation 

to the oscillating steady state [140]. The optimization loop is first run in order 

to obtain the oscillating steady state        , and subsequently an envelope-

transient analysis is executed with the probe connected to the circuit only for an 

initial small time interval. The probe is then disconnected from the circuit (for 

example with the help of a time-dependent switching resistor), and the circuit is 

left to evolve for the remaining time interval according to its dynamics. This 

way, the envelope-transient analysis can be used to verify the stability of the 

steady-state solution. Once the probe is disconnected from the circuit, if the 

solution is unstable, the circuit will evolve to a different steady state. 

8.3 Numerical Analysis of a Voltage-Controlled 
Oscillator 

The simulation tools described in the previous section are now used to design a 

voltage-controlled oscillator that may serve as the array element in the coupled-

oscillator array numerical analysis examples of the following sections. The 

oscillator circuit is based on the pseudomorphic high electron mobility 

transistor (pHEMT) device shown in Fig. 8-3.  

 
A series resonator is connected at the gate terminal of the device, and a 

feedback capacitor is introduced at the source terminal. The feedback 

capacitance guarantees the presence of a negative resistance at the gate 

terminal. At the output, a matching network composed of two inductors is 

formed at the drain terminal. A frequency-tuning varactor is connected at the 

source terminal. The pHEMT device is self-biased, using a resistor placed at the 

source terminal of the device. Additionally, a 50-ohm (Ω) termination is used at 

the gate terminal in order to accommodate a port for an external injection 
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signal, and also bias the gate terminal at 0 V DC, ensuring a negative gate-

source (   ) voltage. The values of the various circuit components and bias are 

shown in Table 8-1. 

 

 

Fig. 8-3. Oscillator circuit schematic. 

 

 
Table 8-1. Oscillator circuit component values 

Parameter Value 

Ldd (nH) 0.5 

Ld  (nH) 0.2 

Cd (pF) 1.0 

Lg (nH) 3.3 

Cg (pF) 0.5 

Cs (pF) 1.5 

Rc (k Ω  5.0 

Ri (Ω) 50.0 

RL (Ω) 50.0 

Rs (Ω) 25.0 

Vdd (V) 1.5 

Vc (V) 0-15 

pHEMT NE3210S01 

D1 MA46H070-1056 

 nH = nanohenry, pF = picofarad 
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Harmonic balance optimization using an ideal probe to ensure convergence to 

the oscillating steady state was used for the design. The probe was connected to 

the output node   ; however, other nodes may also be used such as any of the 

pHEMT terminals. The use of the output node is convenient because one can 

directly optimize the oscillator output power. 

 

The VCO frequency and output power are shown in Fig. 8-4 and Fig. 8-5, 

respectively. The oscillator is consuming about 22.5 mW from a 1.5-V supply 

for all values of the control voltage. Its DC-to-RF conversion efficiency is 

approximately 9.5 percent at        V and reduces to 6.3 percent as    reaches 

15 V.  

 

The ideal probe is then used to simulate oscillator synchronization properties 

when an external injection source is applied at the gate terminal. In the first 

case, an external source with fixed power is connected to the circuit and its 

frequency is varied in order to obtain the synchronization curves. The control 

voltage is fixed to 10 V. The result is shown in Fig. 8-6 for two values of 

available power of the injection source. The synchronization bandwidth is equal 

to the frequency interval contained between the two edges of the closed curves 

defined by the infinite slope of the power versus frequency curves. The free-

running steady state is represented by a point in the plot corresponding to a 

frequency of 9.892 GHz and power of 2.9 decibels referenced to milliwatts 

(dBm). As the injection power increases, the synchronization curves become 

larger, and they eventually open [141].  

 

 

Fig. 8-4. VCO frequency versus the control voltage. 
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Fig. 8-5. VCO output power versus the control voltage. 

 

 

Fig. 8-6. VCO synchronization curves versus the injection 
signal frequency for a fixed control voltage       V. The 
free-running frequency and power are indicated by a point ‘x’ 
in the plot. 

 

Alternatively, one may fix the injection signal frequency and obtain the 

synchronization curves versus the control voltage   , which corresponds to 

varying the free-running frequency of the oscillator. The corresponding curves 
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obtained for an injection-signal frequency of 9.892 GHz (equal to the free-

running oscillator frequency at       V) are shown in Fig. 8-7. It should be 

noted that the curves of Fig. 8-6 and Fig. 8-7 are generated by sweeping the 

phase difference between the injection signal and the oscillator output by 

360 deg.  

 

The points of infinite slope are the turning points of the curve, and due to the 

fact that the synchronization curves are closed, for any frequency or control 

voltage between them, there exist two solutions for the oscillator power. 

 

In Fig. 8-7, the free-running frequency and power are indicated by a point „×‟ in 

the plot. For every    value between the turning points, two steady-state 

solutions exist (for example points A1 and A2 correspond to          V). 

 

It was shown in Section 7.2 that turning points correspond to a change of the 

stability of the steady-state solution, and as a result, only one of the two 

solution branches joined by the two turning points is stable. Each solution 

branch corresponds to a phase shift variation of 180 deg between the injection 

signal and the oscillator output. Therefore, in the case of an injection signal 

with frequency close to the fundamental frequency of the oscillator, one can 

obtain approximately up to 180 deg of (stable) phase shift range between the 

injection signal and the oscillator signal.  
 

 

Fig. 8-7. VCO synchronization curves versus the control 

voltage for a fixed injection-signal frequency            

GHz, equal to the oscillator free-running frequency at 
      V.  
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It is possible to determine which one of the branches is stable by selecting one 

point on it and running an envelope transient analysis initialized to the steady-

state solution as was described in Section 8.2. For example, for an injection 

signal power of –35 dBm, the points A1 and A2 of output power 2.35 dBm and 

3.4 dBm, respectively, correspond to          (Fig. 8-7). The stability of A2 

was examined by envelope transient simulation. A simulation time of 

100 nanoseconds (ns) and a time step of 5 ns were used, with a Gear time-

domain integration algorithm [101]. The result is shown in Fig. 8-8, where one 

can see that the system evolves to point A1, demonstrating that the upper branch 

of Fig. 8-7 is stable. In a similar way, one can also verify that the upper branch 

of Fig. 8-6 is the stable one.  

 

Finally, it should be noted that the oscillator admittance derivatives of the 

perturbation model of Section 7.6 that is used to model coupled oscillator 

arrays, can be easily computed from a harmonic-balance simulation of the 

single element with an ideal probe placed at the desired oscillator node. The 

oscillator circuit admittance derivatives are equal to the derivatives of the ideal 

probe admittance. Once the steady state corresponding to zero admittance 

looking into the probe has been determined, the probe admittance derivatives 

can be evaluated using finite differences [116]. As an example, the admittance 

derivatives for the oscillator of Fig. 8-3, corresponding to the steady state 

defined by control voltage         V, frequency           GHz, and 

amplitude 0.442 V (     2.9 dBm) are listed in Table 8-2.  

 

 

Fig. 8-8. Envelope-transient analysis of the steady 
state corresponding to A2 of Fig. 8-7. A2 is unstable 
and the system evolves to A1.  
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Table 8-2. Oscillator steady state and corresponding admittance partial 
derivatives calculated using finite differences. 

Parameter Value 

Po (dBm) 2.9 

fo  (GHz) 9.892 

Vc (V) 10.0 

  

  
 (S   ) 0.0547 + j 0.1957 

  

   
 (S   ) 0.002 – j 0.008 

  

  
 (S     ) -0.015 + j 0.109 

 

8.4 Numerical Analysis of a Five-Element Linear 
Coupled-Oscillator Array 

The VCO of the previous section is used here to create a five-element linear 

coupled-oscillator array. The array elements are coupled with resistor-loaded 

transmission-line sections of 50-Ω characteristic impedance and electrical 

length of 360 deg at a frequency of 9.89 GHz, which corresponds to a control 

voltage of 10 V in the free-running VCO element. The series resistors in the 

transmission line coupling sections control the coupling strength among the 

array elements, as was proposed by Liao and York in [142]. The schematic of 

the array is shown in Fig. 8-9. The coupling network is connected at the 

oscillator outputs and each oscillator can be externally injected through its gate 

terminals. 

 

 

 

 

 

Fig. 8-9. Five-element linear coupled oscillator array. 
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Harmonic-balance simulation is used to trace the various solutions of the 

coupled oscillator array, by connecting one oscillator probe at the output node 

of each oscillator element. That way, it is guaranteed that the simulator will 

properly converge to the periodic steady state of each oscillator in the array. 

The five probes extend the harmonic balance system of algebraic equations by 

ten real equations; thereby allowing the designer to optimize ten additional 

unknowns. The synchronized solutions (which correspond to a constant phase 

shift among adjacent oscillator elements) are obtained by sweeping the phase 

shift while optimizing the five oscillator-output voltages, the common 

oscillation frequency and four control voltages, all except the one 

corresponding to the middle oscillator.  

 

The simulation results are shown in Figs. 8-10 through 8-12, where the output 

power, the frequency, and the control voltages, respectively, are plotted versus 

the oscillator phase shift. The coupling-network resistor is set to R = 270 Ω, 

and the control voltage of the middle oscillator is fixed at          V. The 

phase shift has been swept from 0 to 180 deg with the oscillator phases 

increasing from oscillator 1 to the left and towards oscillator 5 to the right of 

Fig. 8-9. Due to the symmetry of the array, the solution curves for the 

remaining phase-shift values (0 to –180 deg) can be obtained by considering the 

mirror image of the array elements with respect to the central element 3, in 

other words replacing element 5 with element 1, and element 4 with element 2. 

 

Figure 8-12 shows the variation of the oscillator-control voltages versus the 

phase shift. One can see that the edge element-control voltages present a 

significantly larger variation compared to the inner elements. In fact, the control 

voltages of elements 2 and 4 remain practically constant for phase shifts up to 

90 deg. This represents a numerical verification using a harmonic balance 

simulation of the proposition of Liao and York [142] where by only tuning the 

free-running frequency of the peripheral elements of a coupled-oscillator array, 

it is possible to generate constant phase-shift distributions among the array 

elements, thus both minimizing the required number of controls and eliminating 

the need for phase shifters. 
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Fig. 8-10. Five-element linear coupled-oscillator array. 
Output power of each oscillator versus the phase shift 
among adjacent elements. The coupling resistor is  
R = 270 Ω. 

 

 

Fig. 8-11. Five-element linear coupled-oscillator array. Array 
frequency versus the phase shift among adjacent elements. 
The coupling resistor is R = 270 Ω. 
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Fig. 8-12. Five-element linear coupled-oscillator array. 
Control voltage of the oscillator elements versus the phase 
shift among adjacent elements. The middle oscillator 
element control voltage is fixed at          V, and the 
coupling resistor is R = 270 Ω.  

 

However, one can observe from Fig. 8-11 that as the phase shift varies, the 

array frequency also varies. One way to maintain a constant frequency for every 

desired phase shift is by allowing the control voltage of one more oscillating 

element to vary. In this example, one may allow the middle oscillator-element 

control voltage (     to vary, thus being able to eliminate potentially undesired 

frequency variations. In Figs. 8-13 and 8-14, the five oscillator amplitudes and 

control voltages are plotted versus the phase shift for a coupling resistor of 

        Ω, while the array frequency is fixed at 9.892 GHz. The inner-

oscillator control voltages take very similar values; however, they need to be 

varied in order to maintain the frequency of the array constant.  

 

The coupling strength among the oscillator elements is set by the coupling 

resistor R. In fact the selection of the optimum coupling strength is a trade-off 

among a number of parameters. As the coupling strength increases, the 

variation in the output power of the oscillators, the frequency, and the control 

voltages with the phase shift all increase. As the coupling strength decreases, 

the oscillators eventually desynchronize due to the presence of noise.  
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Fig. 8-13. Five element linear coupled oscillator array. 
Output power versus phase shift for a coupling resistor 

        Ω. The array frequency is fixed at           GHz, 
and the control voltages of all elements are allowed to vary. 

 

 

Fig. 8-14. Five element linear coupled oscillator array. 
Oscillator control voltages versus phase shift for a coupling 

resistor         Ω. The array frequency is fixed at f = 9.892 
GHz. 
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It is easily verified from Figs. 8-10 to Fig. 8-12, that for the value of the 

coupling resistor of         Ω, a harmonic balance solution for every 

possible phase shift value exists. As the coupling strength increases, it is not 

possible to obtain a solution for every phase shift. This is demonstrated in 

Fig. 8-15, where oscillator output power of the harmonic balance solutions 

corresponding to a coupling resistor of         Ω is plotted. It is easily seen 

that solutions exist only up to approximately 120 deg, and they are limited by 

the presence of a turning point [116]. As the desired phase shift progressively 

increases, the amplitude of oscillator 2 eventually drops to zero.  

 

The stability of the solutions was also verified using envelope transient 

analysis, using the method described in Section 8.2. The simulation results 

showed that the coupled oscillator array with   = 270 Ω loses stability for 

phase shift values larger than approximately 58 deg. Additionally, the 

perturbation model of Section 8.2 was used to evaluate the constant phase shift 

steady-state solutions and their stability. The real part of the largest eigenvalue 

of the linear variational equation of the steady-state solution is shown in  

Fig. 8-16, where one can see that the perturbation model predicts loss of 

stability for a phase shift approximately equal to 63 deg, a value that is in 

relatively good agreement with the result obtained from envelope transient 

simulation.  

 

Fig. 8-15. Five element linear coupled oscillator array. Output 

power versus phase shift for a coupling resistor   = 220 Ω . 
As the coupling strength increases solutions do not exist for 
every phase shift value. The middle oscillator element control 

voltage is fixed at          V. 
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Fig. 8-16. Stability analysis of the steady-state solution using 
the perturbation model of Section Error! Reference source not 
found. showing critical eigenvalue real part versus the phase 
shift between adjacent elements.  

 
In Fig. 8-16, positive values of the real part correspond to unstable solutions. 

The coupling resistor is R = 270 Ω, and the control voltage of the middle 

oscillator is fixed at          V. 

 

Further comparison between the harmonic balance solution and the perturbation 

model is made in Figs. 8-17 and 8-18, where the amplitude of oscillators 1 and 

3, and the array frequency are plotted  versus the phase shift between adjacent 

elements obtained using both methods. One can see that the agreement becomes 

worse for large phase offsets where the perturbation is larger. The perturbation 

model is limited to small perturbations around the free-running steady state, 

which in this case is near the 0-deg phase shift (in-phase) solution, and, 

additionally, to oscillators with small harmonic content [116,143]. Nonetheless, 

the advantage of the perturbation model lies in its computational efficiency 

which quickly becomes important as the number of array elements increases. 
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Fig. 8-17. Comparison of harmonic balance simulation and 
perturbation model of Section7.8. Output power of 
oscillators 1 and 3 versus the phase shift between adjacent 
elements. The coupling resistor is R = 270 Ω, and the 

control voltage of the middle oscillator is fixed at           
V.  

 

 

Fig. 8-18. Comparison of harmonic-balance simulation and 
perturbation model of Section 7.8. Array frequency versus the 
phase shift between  adjacent elements. The coupling 
resistor is R = 270 Ω, and the control voltage of the middle 

oscillator is fixed at          V. 
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8.5 Numerical Analysis of an Externally Injection-locked 
Five-Element Linear Coupled-Oscillator Array 

Injection locking the array to an external source signal is desirable in several 

applications in order to reduce the array phase noise as shown by Chang et al. 

[123], or introduce modulation to the oscillator signal as considered by 

Kykkotis et al. [99] and Auckland et al. [122].  

 

The dynamics of the system and the stability of the various solutions depend 

strongly on the element that is being injected, whether it is located in the center 

of the array or near the edges [144,123,120]. Additionally, the number of 

elements that are being externally injected strongly influences the number and 

behavior of the existing solutions. Commonly used topologies are the one 

proposed by Stephan [1], in which the two end elements of a linear array are 

injection-locked to an external source, and the topology where the external 

signal is illuminating all the elements of the coupled oscillator array leading to 

a globally injection locked array [123], such as the case of a reflectarray or 

transmit-array antenna.  

 

In the case of an externally injection-locked array, the oscillation frequency is 

determined by the frequency of the external source. In contrast, the phase 

difference between the injection source and the element that is being injected 

must be included in the unknowns of the harmonic-balance system of 

equations. Similarly with the free-running array case, a probe must be 

connected to each oscillator element in order to guarantee the convergence of 

the harmonic balance simulator to the oscillating solution.  

 

The five-element array of Section 8.5 is considered with a coupling resistor of 

        Ω. The middle element (3) is injection locked to an external signal 

source through its gate termination. The steady-state solutions corresponding to 

a constant phase shift among the array elements are traced versus the phase 

shift among adjacent elements. The additional unknowns in the harmonic 

balance optimization that can be obtained due to the use of the ideal probes are, 

the five oscillator amplitudes, the four control voltages corresponding to all the 

elements (except the one being injected), and the phase difference between the 

injected element and the external source signal. The phase of the injected 

element is fixed at 0 deg, and the phase of the injection signal      is allowed 

to vary. The control voltage of the injected element is fixed at 10 V. Finally, the 

frequency of the external signal is 9.892 GHz.  

 
In Fig. 8-19 the phase     is plotted versus the phase shift between the 

oscillator elements for different injection-signal powers. As was the case in 

Section 8.4, due to the symmetry of the array, solution curves also exist for the 
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phase shift interval between 0 deg and –180 deg, and they can be obtained by 

taking the mirror image of the array elements with respect to the central 

element 3. One can see that for a given injection-signal power and oscillator 

phase shift it is possible to have two solutions corresponding to two different 

values of     .  

 

The output power of the middle oscillator is plotted in Fig. 8-20 versus the 

inter-oscillator phase shift, for different injection signal-power levels. It can be 

seen that for lower injection-signal power levels (Pinj = –35 dBm) solutions for 

every inter-element phase shift in the range [0 deg, 180 deg) do not exist. 

Specifically a closed solution curve exists for phase shifts up to approximately 

100 deg where a turning point appears. As the injection power increases, the 

solution curve widens, and the turning point shifts to a larger phase-shift value. 

Finally for larger injection powers, the curve opens, forming two solution 

branches. As shown in Fig. 8-20 as many as three solutions may exist for a 

given phase shift value. 

 

 

 

Fig. 8-19. Externally injection-locked five-element linear 
coupled-oscillator array. Injection-signal phase versus 
the oscillator phase shift, for different injection-signal 
power levels. The injection signal frequency is 9.892 GHz, 
and the coupling resistor         Ω. The middle 

oscillator element-control voltage is fixed at          V.  
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Fig. 8-20. Externally injection locked five-element linear coupled-
oscillator array. Middle oscillator output power versus the phase 
shift, for different injection signal power levels. The injection 
signal frequency is 9.892 GHz, and the coupling resistor 

        Ω. The middle oscillator element control voltage is 

fixed at          V. 
 

Subsequently, the stability of the solutions must be examined, in order to 

determine which of the multiple solutions are stable and will appear in practice. 

The solution stability maybe determined using transient or envelope-transient 

simulation, or by examining the eigenvalues of the linear variational system of 

equations corresponding to one of the analytical model formulations of the 

previous sections. In Ref. [120], Collado and Georgiadis studied the injection-

locked solutions of a two-element array, and it was determined that there exists 

an optimum coupling strength that leads to a maximum stable constant phase-

shift range.  

8.6 Harmonic Radiation for Extended Scanning Range 

When an array of oscillators is coupled at the fundamental frequency, the 

maximum stable phase-shift range that can be introduced between adjacent 

array elements is 180 deg. In the case of a coupling network that has a coupling 

phase of 0 deg, this translates to being able to generate constant phase-shift 

distributions    in the –90 deg to 90 deg range. Considering a linear array 

where the radiating elements are placed at a half-wavelength distance, its main 

beam can be scanned according to                , where   is 

measured from broadside, for a maximum of      deg. 
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It is possible to extend the phase-scanning range by considering the fact that the 

phase variation of the oscillator Nth harmonic is   times the phase variation of 

its fundamental frequency component, where   is the harmonic order. The task 

of the designer then becomes that of being able to generate sufficient power in 

the desired harmonic component. Essentially there are two ways of 

implementing such architectures, either by placing a frequency  -tupler circuit 

at the output of each oscillator, or by properly designing the oscillator elements 

to have maximum power at the harmonic under consideration. 

 

In Ref. [145], Alexanian et.al. proposed a linear array of five coupled 

oscillators, where each oscillator element is followed by a frequency doubler, as 

shown in Fig. 8-21. The fundamental frequency of the oscillators is 4 GHz, and 

their output power is 9 dBm. The prototype array in Ref. [145] used a compact 

field-effect transistor (FET) based frequency doubler circuit with 1 dB 

conversion gain. The theoretical phase-tuning range that can be achieved with 

this topology is 360 deg.  

 

Based on the same principle, a frequency tripled two-dimensional coupled-

oscillator array operating in X-band was reported by Pogorzelski in Ref. [69]. 

An inter-oscillator phase difference ranging up to 60 deg was tripled to 180 

deg. Thus, this array had a demonstrated H-plane scanning range of ±90 deg. 

The fabricated prototype additionally contained a diagnostic system used to 

evaluate the phase differences between the various oscillator elements. The 

array is described in more detail in Section 6.2. 

 

Alternatively, Sanagi et.al. [146] proposed a four-element coupled-oscillator 

array, where the oscillator elements were specifically designed in order to have 

a high second-harmonic content, thus also obtaining a 360-deg phase-scanning 

range. The proposed circuit is shown in (Fig. 8-22).  

 

The oscillators are coupled using directional couplers. Termination circuits 

based on the coupler networks are also attached to the edge elements in order to 

implement a symmetrical coupling network where all oscillators see 

approximately the same load. Sanagi et al. [146] extended the coupled 

oscillator model based on the cubic nonlinearity, which was introduced by York 

[111], in order to study their proposed circuit architecture. Specifically they 

considered a nonzero square term in the cubic polynomial describing the 

current-to-voltage characteristic of the nonlinear device used for the oscillators, 

and additionally, Sanagi et al. [146] introduced in the formulation an additional 

equation pertaining to the second harmonic. The block diagram of the 

considered circuit topology is shown in Fig. 8-23, which was used to 

investigate the effects in the array performance due to coupling both at the 

fundamental frequency and at the second harmonic. It was shown that as the 
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second harmonic coupling becomes stronger relative to the coupling at the 

fundamental frequency, the achievable phase tuning range is reduced. 
 

 

Fig. 8-21. Coupled-oscillator array using frequency doublers for 
extended scanning range. (Reprinted with permission from [145], ©1995 
IEEE.) 

 

 

Fig. 8-22. Coupled-oscillator array radiating the second 
harmonic frequency component. (Reprinted with permission 
from [146]. (This material is reproduced with permission of 
John Wiley & Sons, Inc.) 
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Fig. 8-23. Model of the coupled oscillator array radiating the 
second harmonic-frequency component. (Reprinted with 
permission from [146]. This material is reproduced with permission 
of John Wiley & Sons, Inc.)  

 

In Ref. [147], Georgiadis proposed a three-element coupled-oscillator array 

shown in Fig. 8-24, also optimized in order to radiate the second-harmonic 

output wave. The array operates based on the same principle as the one by 

Sanagi et al. [146]. In this work however, the alternative perturbation model for 

the coupled oscillator array given in Section 7.6 was extended in order to 

include the formulation for the second-harmonic frequency component.  

 

Furthermore, harmonic-balance analysis was used to trace the steady-state 

solutions corresponding to constant phase shifts between the array elements at 

the second-harmonic component. In order to do so, it is necessary to place two 

ideal probes at each oscillator output node, one at each harmonic [147]. The 

computational load associated with the optimization of the coupled-oscillator 

array radiating the second harmonic is increased due to the fact that the number 

of ideal probes, and therefore optimization goals, required for the simulation are 

doubled. 

8.7 Numerical Analysis of a Self-Oscillating Mixer 

Self-oscillating mixers (SOMs) are particularly attractive for low cost, compact 

implementations of microwave circuits due to the fact that the same circuit is 

used to provide a local-oscillator signal as well as for frequency translation.  
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Fig. 8-24. Three-element coupled oscillator array prototype, designed to radiate 
the second harmonic frequency component. (Reprinted with permission from 
[147], ©2007 IEEE.) 

 

The performance parameters of self-oscillating mixer circuits (such as 

conversion gain and inter-modulation distortion) can be evaluated using 

harmonic-balance simulation provided that an ideal probe is used to enforce the 

convergence of the simulator to the oscillating steady state. The probe 

equations are set up in order to make sure that the admittance associated with 

the probe is equal to zero at the oscillating frequency of the circuit.  

 

The radio-frequency (RF) and intermediate-frequency (IF) signals are treated 

by introducing a second fundamental frequency component in the harmonic-

balance frequency basis, thus using a two-fundamental harmonic balance 

system of equations. Alternatively, one may consider the effect of the RF and 

IF signals as a linear perturbation of the oscillating steady state, and employ the 

conversion matrix method to efficiently compute the conversion gain of the 

self-oscillating mixer. Finally, the RF and IF frequency signals can be 

efficiently treated using an envelope-transient simulation that has been 

initialized to the oscillating steady state.  
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In Ref. [148], Herran et al. optimized the gain associated with a selected mixing 

product of a self-oscillating mixer by using two ideal probes properly 

introduced in the circuit and optimizing the reflection coefficients of an ideal 

multi-harmonic load connected to the circuit input. The circuit schematic that 

was used is shown in Fig. 8-25. 

 

The first probe, called an auxiliary generator in Fig. 8-25, is used to enforce the 

oscillation condition at the desired frequency. The admittance looking into this 

probe is set to zero in order not to perturb the circuit steady state, and the 

complex admittance or reflection coefficient of the multi-harmonic load at the 

fundamental frequency that satisfies this condition is found through harmonic 

balance optimization.  

 

The second ideal generator probe is connected in series with the gate terminal 

of the FET device, and its frequency corresponds to a desired  th harmonic that 

is selected for the mixing process. Mixing products involving the second and 

third harmonics were considered. The reflection coefficient of the multi-

harmonic load at the desired harmonic is set to –1, corresponding to a short 

circuit. The optimization procedure consists of finding the complex amplitude 

of the ideal generator which results in a desired mixing gain value. The 

corresponding admittance looking into the generator must have a positive real 

part in order for it to correspond to a passive load. In this way, the multi-

harmonic load is optimized for a desired mixing gain value and its reflection 

coefficient at the fundamental frequency and selected harmonic frequency are 

determined. The final design is obtained by implementing the obtained 

reflection coefficient values using passive printed or lumped circuit 

components [148].  

 

A varactor diode may be appropriately placed in the self-oscillating mixer 

circuit in order to provide a frequency-tuning capability. An externally 

injection-locked self-oscillating mixer operates both as a mixer and a phase-

shifter element, where the phase shift between the input and output of the mixer 

is varied by changing the free-running frequency of the self-oscillating mixer. 

 

Being a synchronized oscillator, the externally injection locked self-oscillating 

mixer can be used to provide a continuous phase-shift range of N × 180 deg 

where the external injection signal is assumed to have a frequency near the 

fundamental frequency of oscillation of the self-oscillating mixer, and the  th 

oscillator harmonic is used in the mixing operation. Here, the fact that the 

tuning range of the phase of the oscillator  th harmonic is   times the tuning 

range of the phase of its fundamental frequency component being used [145]. 
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Fig. 8-25. Nonlinear optimization of a self-oscillating mixer. (a) Circuit topology: The 
input signal of power     passes through a band-pass filter with center frequency 

   , before it is mixed by the active circuit and collected at the output through an 

intermediate frequency filter of center frequency    . The optimization procedure 

consists of designing a multi-harmonic load with impedance    at harmonic    . 
Optimization is performed using an ideal auxiliary generator probe AG with 
amplitude     and frequency     defined as in Fig. 8.2, as well as a substitution 

generator with amplitude   
  at the harmonic frequency      (b) Definition of the 

multi-harmonic load using ideal circuit components. The figure indicates the input 

reflection coefficients    corresponding to the load impedance     at frequency 
   .  (c) Implementation of the multi-harmonic load using microstrip components 
for the cases of a second (2 HSOM) and third (3 HSOM) harmonic self-oscillating 
mixer, respectively. (Reprinted with permission from [148], ©2006 IEEE.) 

 

It has been argued in Sections 7.9 and 8.5 dealing with the analysis of 

externally injection locked oscillator arrays that such architectures can be used 

to transmit information by introducing phase or frequency modulation in the 
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external injection signal. Furthermore, the effect of modulation in the array 

scanning range was investigated in Section 7.11. Such topologies are limited to 

relatively narrowband applications due to the fact that the modulation strongly 

affects the steady state of the synchronized oscillator signals. Furthermore, 

specific modulation formats leading to small envelope variations are suitable 

for such applications due to the fact that the amplitude-limiting properties of the 

oscillators tend to introduce distortion to the envelope of the modulating 

signals. Continuous phase modulation (CPM) [149], which is a constant 

envelope modulation, is a prominent candidate for such systems. A well known 

example of CPM is Gaussian minimum-shift keying (GMSK) used in the 

Global System for Mobile Communications (GSM), second-generation mobile 

(cellular) communication systems. 

 

However, when modulation is introduced through the RF input signal of the 

self-oscillating mixer, it does not strongly affect the synchronization state of the 

mixer due to the fact that the input signal has a low power level and represents 

only a perturbation of the steady state. As a result, self-oscillating mixers can 

be used as frequency translation and phase-shifter circuits for input RF signals 

of arbitrary modulation. Furthermore, proper design of the mixer can allow one 

to obtain broadband gain and therefore the self-oscillating mixer is not limited 

to RF input signals with narrowband modulation.  

 

The use of an injection-locked self-oscillating mixer as a downconverter and 

phase shifter element was studied by ver Hoeye [80]. The proposed circuit 

topology is the same as in Fig. 8-25 with the addition of a varactor diode 

connected in parallel with the series feedback shorted stub present at the source 

terminal of the active device in order to provide a frequency tuning capability. 

The SOM design was performed using the methodology described previously in 

this section. An oscillation at 3.25 GHz was obtained, and an RF signal of 

11.25 GHz was mixed with the third harmonic of the SOM, resulting in an IF 

output of 1.5 GHz. Phase tuning of as much as 3 × 180 deg = 540 deg was 

achieved by utilizing the third harmonic mixing product. The obtained 

conversion gain was 4.5 dB over a bandwidth of approximately 100 MHz. It is 

shown in Fig. 8-26 that the conversion gain depends both on the injection 

power level Ps and on the varactor control voltage Vcont or, in other words, the 

selected phase difference between the input and output SOM terminals. The 

results have been obtained using a two-fundamental-harmonic balance 

simulation, and one can observe the closed synchronization curves of the 

injection locked self-oscillating mixer, which are similar to the ones obtained 

for the synchronized oscillator in Fig. 8-7. The synchronization curves open as 

the injection power increases, and there exist two solutions for a given control 

voltage within the synchronization band limited by the curve edges of infinite 

slope. Only one of the two solutions is stable and therefore measured 
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experimentally, and in this case it corresponds to the branch with lower 

conversion gain. 

8.8 Conclusion 

In this chapter we provided an introduction to nonlinear analysis methods with 

a special focus on methods of analysis applied to nonlinear circuits such as 

oscillators, self-oscillating mixers and coupled oscillator arrays. Such tools can 

be combined with electromagnetic simulators in order to accurately model the 

various passive components of the circuits under consideration such as 

transmission lines, interconnects, resonators and antennas. Typically these 

methods can be used to analyze small arrays consisting of tens of elements or 

fewer due to their increased computational complexity. Additionally, they can 

be used to compute the various parameters that are required to formulate the 

approximate models of the previous chapter such as the nonlinear admittance 

derivatives, which, in turn, can be used for an efficient less time-consuming 

simulation and optimization of the arrays.  

 

 

 

Fig. 8-26. SOM conversion gain versus the varactor control voltage for different 
injection power levels Ps. (Reprinted with permission from [80], ©2006 IEEE.)  
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