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E. Information Content of a
Single Pass of Doppler
Data from a Distant
Spacecraft
T. W. Hamilton and W. G. Melbourne

1. Introduction

On a typical pass of two-way tracking of a distant
spacecraft, the doppler frequency is continuously counted
from the time of initial “lock” until the end of the pass.
The cumulative count is read out at regular intervals,
typically 1 min. The data are sometimes “compressed” by
forming first differences from every Kth sample and divid-

ing by KT, where T, is the original readout or sampling

interval. Such “doppler frequencies” are interpreted as
the space probe radial velocity with respect to the track-
ing station.

On a planetary mission such as Mariner IV, over 200
passes containing more than 500 samples in each pass
can easily be accumulated. It is desirable that each pass
be “compressed” into a smaller set of numbers character-
izing the trajectory-determining information—here we will
not be concerned with the higher-frequency information
content relating to system noise, spacecraft oscillations,
and atmospheric effects. Besides radically reducing the
subsequent data-handling costs, such a compression can
allow a better physical understanding of the nature of
the navigational information in each pass. Such under-
standing is useful in allocating other system errors and
in efficiently predicting navigational accuracies over a
spectrum of mission situations.

{ It has been shown by J. O. Light (§PS 37-33, Vol. 1V,
pp- 8-16) that the “velocity parallax” due to the tracking
station’s rotation with the Earth is the most powerful
factor in the doppler information for redetermining the
orbit following a midcourse maneuver relatively near
the Earth. In this article, it is established that a full pass
of doppler data can meaningfully be interpreted as
measuring the probe’s mean geocentric radial velocity,
its right ascension, and the cosine of its declination. For
many mission situations, the latter two angles are ex-

tremely important in the navigational accuracies attain-
able. Thus the importance of tracking relatively near to
the horizon is established since the accuracy of the right
ascension and declination determinations is critically
dependent on the fraction of the full pass included in
the tracking. Subsequent articles will deal with this
subject in greater depth and will treat other data noise
models than the conservative one used here.

2. Calculation of the Observable

In Fig. 14, the observer (tracking station) is rotating
about the z-axis at a distance of 7, with an angular rate o.
The probe, P, has coordinates v and r relative to the
x-y-z inertial frame. Since we are dealing with a distant
probe, r,/r <<1 and z,/r << 1. The range from ob-
server to the probe, p, is obtained from

p? = (x — rscos )+ (y — rssin )2 + (z — zp)2 4}
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Fig. 14. Coordinates of probe, P, and ohserver, O

The range rate is composed of two parts, the motion of
P and the motion of O; hence

%t ds
P %t " eodt
or
pp = (x — 1,c05 ) (X + orssin @) + (y — rssin0) (§ — orscos d) + z(z — zo) (2)

is



By expanding in powers of ry/r and zo/7, We obtain the
following expression
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The observed ¢ is given by the geocentric range rate, 7,
plus a term of the form

rs 6+ (r Xxs)
775

(rew is about 400 m/sec for a 30 deg latitude station), plus
terms in the small parameters r,/r, zo/r. For a probe at
r = 0.03 AU, these small parameters are about 107 It is
our intent to show that the expression below, obtained
by letting r—> oo in Eq. (3), exhibits the important char-
acteristics necessary to an understanding of the informa-
tion content in a pass of doppler tracking data;

=7+ orycos 8 sin (4 — o), where § — 8o = o (t — to).

(4)

In calculations with real data, no such approximations
are made. The subsequent error analysis uses (4) because
it is a simple and remarkably accurate description of the
real situation.

3. Regression Analysis

The precision to which the right ascension, declination
and geocentric radial velocity of the probe can be ob-
tained from a single pass of data will now be described.

P

Fig. 15. Equatorial projection of coordinates in Fig. 14
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Our basic data equation in (4) has been expressed in
terms of the observable ; and the angle 6. It is con-
venient to express # in terms of the measurable quantity
universal time, #,, which determines the instantaneous
angular orientation of the Earth about its axis of rotation.
From Fig. 14 we note that ¢ is measured in the equatorial
plane. From the equatorial projection in Fig. 15 it follows
that 8 — 8, is given by

0—90=mtu+a®+/\.—a‘ (5)

where

¢ is the mean vernal equinox of 1950.0,

is the instantaneous right ascension of the mean
Sun,

» is the mean rotation rate of the Earth of date,
f. is the true universal time,

A is the longitude of the observer O measured in
an easterly direction from Greenwich,

« is the instantaneous right ascension of the space
probe, P.

The right-hand members of (5) have error components
of diverse size, and so it is important that we describe
our assumptions concerning each of these errors. The
quantity o is assumed to be known exactly. There are,
of course, stochastic fluctuations in « which lead to
changes in the rate of ¢, as measured by a “Newtonian”
clock; however, from observational data on this fluctuation
it may be shown that the accumulated effect of an error
in » over one pass has a negligible effect relative to other
error sources. The quantity ¢, is approximated by the
so-called UT.1 time which is the best estimate of true
universal time. We assume that UT.1 is measured exactly
but that it has an unknown stochastic error £ which is
probably less than 07002 and effectively constant over
one pass. We assume that ag is known exactly. The
longitude of the observer is assumed to have a small
unknown bias e In addition, the distance of O off the
spin axis 7,, is assumed to have a small unknown bias e,,.
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The problem is to find a, § and r at the instant P crosses
the meridian of O (4 = §,) and to find the precision in
the estimates of these quantities in the presence of data
noise, the timing error ¢, and the small unknown biases
in » and r,. We assume here that 1, « and 8§ are constant
over one pass, and that |r]/er <<1, r,/r<<1, and
Zo/r < < 1, so that the simplified data expression in (4)
is valid. Later reports will deal with the additional in-
formation gained from the small departures from these
. assumptions which occur in actual missions.

In order to put our data equation in a convenient form
for regression analysis, we define the quantity «* to be a
specified value of the right ascension of P (x,y,z) which
from a-priori information is known to be near the true
value, a. The small quantity ¢, given by ¢ = a — a* is
to be determined from measurements. Similarly, we
define A* to be the a-priori value of the longitude of
O and & is given by e =21 — A% We also define
&€ =t, — t*, where ¢, is the true universal time, and ¢

w’

is UT.1. Next, we define ¢ by the relation

U

wf = ol gt A — o (6)

We note that ¢ is an observable. The equation for 4 in
(5) now becomes

0~ 0o =o(t—to) (M)

where ¢, is given by
wlop = €a — &r — of (8)

Our a-priori choices for o, A and t, are such that of, is a
small quantity which is to be estimated from the obser-
vations.

Since oty is small, using (4) and (8), the data equation
becomes

p=a -+ bsinet + ¢ coswt + n () 9

b = 7,0 COS § COS wy = Tew COS &,

C == T4 COS 8 SIN wlp == wlol's © COS §

and n(#) is the data noise. We assume that a pass is
symmetric about ¢ = £, == 0 and that N observations are
made at equally spaced time intervals over the pass.
Further, we assume white gaussian noise of mean zero
and variance ¢3°. The maximum likelihood estimates of
a, b and ¢ are given by

i 1 ¥ 2si v,
b= o] [ @~ [ o) cospdy ()
i 4,(1 +~2——sin2|//> v
'
A 1 v, .
b= T | #@sinsdy (12)
¢(1——2—$sm2¢>
. 1 2 v . 2si v
b= g | /. p@eossds———2E—[" ppyas |y
4 P (1 +—2—§Zsin2:,b ¥ ¢(1+—zzsin2¢) ¥

where ¢ is the half-width of the pass, i€, —y¢=0=1.
Here, we have replaced the summations in our discrete
process by integrations since N is in practice large and
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since we are not interested in an actual evaluation of the
constants. We observe that due to our assumption of a
symmetric pass with #, = 0, b is uncorrelated with & and &




but that & and & are strongly correlated. In fact, the covari-
ance matrix A of these estimates is given by
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1 — 2siny

=g 0 1

P13 ¢(1 + 51; sin?qb) (1— p¥s) .
2 0_'2
B 0 S 0 - (14)
A= (1 —~i-sin2¢) N
2
2sin g 0 2

1
gb(l + ﬂsinlz«//) (1 — p3)

where p,; is the correlation between 4 and & and given by

—2%sin ¢
1+i in 2
P 29 sin 2y

Note that for 0.=y==z/2 ., lies in the range
—1=p,s== —0.9 which reflects the non-orthogonality
of the even-functions 1 and cos ¢ over intervals symmetric
about ¢ = 0.

Piz — 14 (15)

Fig. 16 shows the variation of the precision of these
estimates with the half-width of the pass y. Notice that
as ¢ is reduced from 90 deg, the precisions of & and &
are severely degraded whereas the precision of b de-
teriorates more gradually. These phenomena are easily
explained from an examination of (9). Notice that & and &
for small ¢ are difficult to separate. The dashed curve
gives the precision of & when a is assumed perfectly
known. This case may be obtained from (14) by setting
p1z = 0 and will be referred to in the sequel. Notice for
this special case that o2 remains relatively flat compared to
of and for small ¢, o3 is substantially degraded relative
to oz Again, (9) shows that an error in b is most easily
seen at of = ¢ = 90 deg whereas the effect of an error
in ¢ is maximized at of = 0.

The determination of r follows directly from a. For a,

we have from (10) that
wto = 8/b (18)

N
and it follows since ¢ and b are uncorrelated that the
variance of of, is given by

2 Ay, T N
O'f,,'t‘o =b20g + (0fp)* b 0y = b2 gp?

(7

1 . .
(l + % sin 2:,1;)(1 — p%s)
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w = 7.27 X 1075 rad/sec
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Fig. 16. Precision of parameter estimates &, b, ¢,
with half-width of pass

since wtg is near zero. The estimate for « now follows
from (8) provided e and ¢ are given.

Since £, e, and t, are uncorrelated, it follows from (8)
that the variance of 2 is given by

oy = 0"21,?0 + %0 + o3

(18)
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A
From the coefficient b, we obtain an estimate of cos$
A - -
provided r, is given. Further, the variance of 8 is given by

sin? § o3? = (re0)? of? + 12 cos*$ o3, (19)

Finally, the correlation in & and ¢ is easily removed by
choosing a linear combination of these quantities which
diagonalizes the covariance matrix A. The magnitudes of
the eigenvectors, &, g', &', are given by

f = fGcosT + 8sinT
A

!’

a
Fa
b

Ny

(20)

& =fcosT — dsinT
where T is found to be

—4 sin ¢
1——1— in2
lP( g Sm.zg

tan 21 =

0= -—r=— (1)
j oed

Note that 45° = —T =56° for 0=y =90°. The eigen-
values o2, 0%, and o2 are given by

2, .2 1 1%
op? = Eﬁ.i‘l 4= [(0&2 — 0'@2)2 + dop? o P%S]
2 2
0%’2 — o.lb\ﬂ B (22)
2 2 1 %
o = 6—6—-;5— -3 [(craz —of)* + 4oy’ or® p’i’s]

Fig. 17 shows the behavior of these eigenvalues as a
function of y. The effect of the correlation in 4 and & now
is cast completely into oz.. The precision of & goes as
essentially 1/N%.

4. Interpretation of the Results

In Sec. 3 above, we concluded that the estimate of
geocentric radial velocity of the probe and its precision
follow directly from the coefficient & and its variance o™
For the right ascension and declination, these determina-
tions are not as straightforward, for we have seen that the
precision of these determinations depends on our knowl-
edge of the station location and also timing in the case of
right ascension.
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Fig. 17. Behavior of eigenvalues as a function of ¢

Let us first address ourselves to the problem of station
location. We note in passing that (3) provides an explana-
tion for the observed fact in actual missions that the
component of the position of O parallel to the spin axis
is not well determined nor, conversely, does a small error
in this component seriously affect the results.

For the distance off the spin-axis r,, it follows from (10)
that r, will be strongly determined for probe declinations
near zero; in fact, for this case we have

or, =0 leh  (8§=0) (23)

Referring to Fig. 16, we see for a full pass (¢ = 90°)
and for ¢ = 1 mm/sec, that 7, is determined to 1 meter.
Furthermore, in an actual mission the probe P is being
accelerated by other bodies (e.g., the Sun) whose geo-
centric right ascensions and declinations are precisely
known; this effect enables one to obtain a good separation
of the instantaneous declination and the spin axis bias
when observations are taken over a sufficiently wide span
of the trajectory of P. In any case, a precision of 1 meter
for r,, for o5 = 1 mm/sec, emphatically demonstrates that
in order to realize this precision, one must be careful to
insure that all error sources of this magnitude are incorpo-
ated in the mathematical model used in the actual orbit
determination process. This includes such effects as an-
tenna motion, nutation and wandering of the pole of the
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Earth, tidal deformations of the Earth, and ionospheric
effects.

In the case of station longitude bias, the problem is
coupled with errors in universal time. An error of 03002
in time is equivalent to about 1 meter in a longitude
direction for the station. For two different stations on the
surface of the Earth, the relative longitude is not affected
by UT .1 errors provided they can synchronize the observa-
tions. As in the case of r, determinations, if one knows the
right ascension of P by “independent” means (e.g., from
observations of a Ranger spacecraft near lunar impact)
more precisely than «f, can be determined, we obtain a
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Fig. 18. Goldstone station location relative to
longitude difference of Woomera,
with time correction
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strong determination of the bias in A. For this case, it
follows from (8) that

(ea = 0) (24)

oy = Cut, -+ mzo_g

For, o = 1 mm/sec and og = 05002, 750 is about 2 meters.
Here, we have used (17) to evaluate ou$, from o using
the ¢ = 90 deg point on Fig. 16. If 7 of P also is predicted
independently the value of o2 should move toward the
dashed curve in Fig. 16. Hence, we would ultimately
expect A to be determined to a precision commensurate
with oz Fig. 18 shows actual Goldstone-Woomera relative
longitude determinations from Rangers 6-9. In these
flights, software accuracy limitations cause op to be de-
graded to about 10 mm/sec.

Finally, if we assume that the station locations have
become sufficiently well established so that the biases
ex and &,, are not the dominant error sources, it follows
that (18) and (19) and Fig. 16 may be used to obtain the
precision with which « and 8§ can be estimated from one
pass of doppler data. The timing error also is not domi-
nant provided op =1 mm/sec. Taking ¢ = 80 deg and
multiplying by (2)* to allow for the contingencies of tim-
ing and station location errors we have the result that

ge = 5 X 107 radians (25)
sin 8o = 2.5 X 10-"radians (26)

These accuracies are equivalent to about 071 arc which
is similar to the accuracy of angular data obtained from
astronomical observations. In addition, r is determined to

a7 = 0.1 mm/sec (27)

Hardware performance in the near future will have
accuracies of better than ¢ = 1 mm/sec, probably around
0.1 mm/sec. Although a more careful analysis of our
limiting error sources is required for such systems, it is
clear that it may be possible to significantly reduce the
numbers in (25), (26), and (27).
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