Q must be small compared to M. Note that if

S
ﬁ’:mlog‘22>2,

the upper and lower bounds on the error probability can
be made arbitrarily small as k and Q are increased.

B. Another Look at the Optimum
Design of Tracking Loops

R. C. Tausworthe

In 1955, Jaffe and Rechtin (Ref. 5) published the first
sophisticated attempt at characterizing the optimum
design of phase-locked loops. In the course of their work,
they used an example which specified the transfer func-
tion of a loop best able to follow a frequency-step input
insofar as minimizing transient error and phase noise are
concerned. For simplicity, they assumed that the initial
phase error was zero; the resulting filter function was one
with one real zero and two complex poles, at a damping
factor { =0.707, regardless of the initial frequency
offset. The example was meant only to illustrate the
optimization method, but since that time most systems
have been designed using the parameters set by the
example.

By using the same technique developed in the Jaffe-
Rechtin paper, but assuming that the initial phase angle
is random, a different result appears. Damping in the
loop is always greater than ¢ = 0.707, and in all cases of
practical interest, the system is overdamped. (Both poles
lie on the negative real axis.)

Because the initial phase error is not generally known
a priori (thus random), this latter design is one which
seems to be of more practical use in most tracking
applications.

1. Optimum Loops for Random Doppler Tracking

There are two sources of error during the initial acqui-
sition of phase lock in a tracking receiver. First, there is
a transient error as the system passes from its initial state
to the steady-state tracking state. Second, there is phase
jitter due to the presence of noise at the loop input. The
technique developed by Jaffe and Rechtin was a Wiener
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optimization of the linearized loop, but with a constraint
on the total mean-square transient error. Following this
technique, the optimum loop transfer function was found
to be specified by the formula

XED(s)D(—s)
Hone ) = a7 L 1. o

[¥ (91
where
¥ (s) = A2.6D(s) D(—s) + N,/Az
D (s) = doppler-phase Laplace transform

A? = Lagrange multiplier {to be evaluated)
= loop input carrier power
N, = double-sided noise spectral density
& = expectation operator

[ 1* = left half-plane “square-root” factorization oper-
ator

[ ]~ = right half-plane “square-root” factorization op-
erator

[ 1 = L&, the physical-realizability operator

The reader is referred to Ref. 3 or 5 for further explana-
tion of the operators above and for the development
of Eq. (1).

The optimization of interest is concerned with finding
H,p: (s) when the input doppler d (¢) has the form

d(t) = 0, + o, @)

where 8, is a uniformly distributed phase angle, and
where w, is a random variable whose mean-square value
is 03. The Laplace transform of d (¢) is

90 wg
D(s) = Y + rE 3
and hence the expected value of D (s) D (—s) is

&1D(s)D(— s)]——-—(——-—-) + (03) (__>

The first order of business is the factorization of ¥ (s):
T2A2ZA2 Az AZQ?, +
A.s-2 N, )C TN,

UNG[ L AN 2AQ\%  AAQ,
= as| S\ sN, tNm ) STENE |

®)

REGIN
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It is convenient to define a quantity g*
. MAQ,
B =x%" (6)

The expression for [¥(s)]- is obtained by substituting
—s for s in [¥ (s)]*. Finally, evaluation of the [ ], term
yields the optimum transfer function

2015
s[2ﬁ2+ggg] + g2

. I ke .
&+[2,8-+ 39(,] s+ p

Hope (8) = ()

The corresponding loop bandwidth can be computed by
integration

1 4+jo0
B, =5 [ Hope () Hone(—5) s

6272>
B ,e(3+——-—395
- Bz_n_z 1%

2(2+ 393)

from which the Lagrange multiplier A? can be evaluated
in terms of By, O, N,, and A2

(8)

As we have indicated, these results are different than
those contained in the Jaffe-Rechtin example. The filter
they obtained, call it Hie (s), can be derived from the
above by omitting the =2/3 terms (i.e., by omitting those
terms due the non-zero variance of 8,):

_ 2MBs+ e
Hr(s) = s2+ 2% Bs + B° ©)
3B
2BL == W .

Note that H,z(s) always has a damping factor of
Z = 0.707, whereas the damping factor of Ho,: (s) depends
on several parameters. The optimum loop can thus be
specified only when Q,, A?/N, and B, are given.

As a further consideration, one cannot expect a very
good lock-in behavior when @, is so large that the incom-
ing carrier frequency falls outside the loop pass-band. It
seems very reasonable to optimize the lJoop when Qo lies
at the edge of the pass-band?

Qg = BL‘ (10)

*This also corresponds to the case when a slow frequency sweep is
being used, for then as 2, comes within the pass-band of the loop,
an optimum lock-up begins.
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Under this assumption, Eq. (8) can be solved for 8°/Q3
numerically; the result is

g = 16703 = 1.67B. (11)

By setting 8 = 1.292B, in Eq. (7) the Lagrange multiplier
is removed, and the resulting optimum loop transfer
function is

Hoo(s) = 3.54B,s + 1.67B:
wt\S) = @ 1T 354B,s + 1.67B}

(12)

Specifically, Hop (s) has a zero at —0.472B,, and poles at
—298B, and —0.56B.. Both of these poles lie on the
negative real axis, indicating that the optimum system is
overdamped.

The optimum loop filter is related to the over-all trans-
fer function by

204 14
3[2,82 + ’;Q%] + B
Fope (8) = — AKs

3.54B.s + 1.67B2
= S (13)
in which K is the equivalent open-loop gain. It is usual to
replace Fo (s) by a passive filter which degrades tran-
sient response only slightly if AK >>> Bi:

1+ (212/Bys
Fore () = T (0. 611AK/B7) s

(14)

2. Evaluation of Transient Error
The total transient error is given by the expression

g2 =

1 [+ w? 0%
5;7—:/—-]':0 ( - -382— * ;Z
With the form of the optimum filter given in Eq. (7), the

transient error is
77.2ﬁ2
i1l
°[ + 393]

8% 20271V ?
2,33[2+1’3—§%l

[1— Hop: (3)] {1— Hoyp: (“s)] ds.

(15)

(16)




Under the constraint B, = Q,, the value of g% is 1.67B3,
and the transient error is

17)

If H,, (s) had been used in Eq. (15) rather than H, (s),
the resulting transient error would have been

203
Q2 [1 + 3 Qé"]
e = — e (18)

2(2)% B3

Given that H, (s) and H,,; have equal bandwidths, from
Eq. (9) the value of 8,z is [4(2)*%/3] B,; the transient
error thus arising by using the nonoptimal filter is

Bp = o (19)

This figure indicates approximately a 1-db difference in
transient performance.

3. Conclusions

In many spacecraft applications, it is necessary to
design a phase-tracking system whose loop bandwidth is

smaller than the initial frequency uncertainty interval,

and to sweep the VCO slowly to acquire lock. This indi-
cates that the phase-locked loop should be designed
optimally to acquire and track once the carrier comes
within the loop pass-band. The initial phase offset of the
VCO is an unknown, completely random quantity, and
the loop should be designed taking this factor into ac-
count. We have specified by Egs. (12) and (13) what the
optimum loop parameters are under these circumstances.
The result is an overdamped system, as opposed to an
underdamped (¢ = 0.707) system predicted by the over-
simplified Jaffe—Rechtin example.

The resulting decrease in transient error using the
optimum loop as compared to misusing the Jaffe—Rechtin
example, is only about 1 db, which may nevertheless be
significant in the acquisition of threshold signals.

Whenever AK > > B}, the approximate optimum filter,
given in Eq. (14) introduces a small amount of steady-
state phase error, but this is generally small enough that
the resulting performance of the loop is usually not
degraded.
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C. Some Moments Associated
With Second-Order
Phase-Locked
Loops
H. Rumsey, Jr.

The differential equation governing the operation of a
second-order phase-locked loop has the form

() + [a+bceosg(t)] 4 (t) + csing (f) = D (¢), (1)

where a, b, ¢ are non-negative constants, ¢ is the “phase;
and D (#) is a certain Markovian noise process. (See SFS
37-30 Vol. 1V, pp. 262-268, for a geperal discussion
of this problem.) We shall derive, from the Fokker-Planck
equation associated with this equation, some equations
which are satisfied by the expectations E (¢"e*™¥) (n, m
integers). In particular, we shall show that the variances
of ¢ and sin ¢ are connected by the simple relation

a Var (¢) -+ be Var (sin ¢) =

D
5 @)

where D is the “mean second derivative” of the process
D (t), and depends only on D (2).

1. Recursions for the Moments

The steady-state Fokker-Planck equation associated
with Eq. (1) has the form
2
oy

Do
[(ay + by cos ¢ + csin¢) p] +§5§§ =0,

3)
where we have written y in place of ¢; p = p (¢, 1) is the

joint density function of the Markoff process (¢,y); D = a
positive constant determined only by D (z);

op
ya¢+

D 1 EIAD@T
At—0 At

It is evident from the nature of the problem that p (¢,y)
is a periodic function in ¢; hence the moments E (e'™?)
exist for all integers m. In the discussion that follows, we
shall assume that the moments E ({y|*) exist and are
finite for all positive integers n. If we multiply Eq. (3) by
y»e'™?, integrate by parts, and use this assumption and
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