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Presentation Notes
Since the dawn of the space age SCaN has been in the background connecting space explorers and the Earth.
The first vehicle tracked was Sputnik 1 in 1957.



" Human Exploration beyond Low Earth Orbit

Unified interfaces for all SCaN Networks

Increasing International Collaboration

Internationally Interoperable Standards

Space Internetworking

Sensor webs & increased automation
Seamless Human & Robotic Exploration

Increased data transmission

Increased resolution & productivity
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Human Exploration beyond Low Earth Orbit
Missions utilizing all three of SCaN’s capabilities
Need for increased data return
Earth orbit like returns from other planets
Bring the public along for the adventure
Increase the science productivity
Increasing International Collaboration
Interoperable Standards
Availability of Space Internetworking
Science Sensor webs 
Seamless Robot extension of Humans 
Further Automation



Unified Interfaces to Users &

Internationally Interoperability
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International Standards for Interoperability
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Figure 2-1: SCaN Network Standard Services
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Mission
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Capabilities
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Architecture and Agency Drivers
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Provide space communications and navigation services to existing and planned missions.

Shuttle/ISS |
Mars Landers
Great Observatories

Coordinated Earth
Observation
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Up to 300 Mps (EBRE/NEE)
Up to 6 Mbps at 1 AU (DSE)
Radiometric Services

Implement internationally interoperable communication protocols

Provide the highest data rates technically and financially feasible

Develop a unified space communications and navigation network infrastructure

Implement a networked communication and navigation infrastructure across space

Provide communiation and navigation infrastructure and
services for Lunar and Mars human missions
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Mars Exploration

5
’t W
}

Mars Sample Return

Up to 1.2 Gbps from the
moon (optical)

Optical Communications
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Lunar far side coverage
High capacity multi-node

Inter-networking
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SCaN Notional Unified Communication Architecture

2009 SCaN Architecture Baseline will
transition to an Integrated Network
Architecture which follows...
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Starting in 2009, Ph1 2015, Ph 2 2020, Ph 3 2025
RF or microwave in Blue, Optical in Red, NISN in Green
By 2025 it will achieve these final attributes
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5 * Delay Tolerant Networking
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Starting in 2009, Ph1 2015, Ph 2 2020, Ph 3 2025
RF or microwave in Blue, Optical in Red, NISN in Green
By 2025 it will achieve these final attributes
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RF or microwave in Blue, Optical in Red, NISN in Green
By 2025 it will achieve these final attributes


~ SCaN Notional Unified Communi;atioh‘fArchitecture

\ Saturn
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2025 Add:
» Second Lunar Relay Satellite (LRS)
» Deep Space Optical Array in Earth orbit

Antenna

A B
e SCaN Optical

SCaN pwave
NISN
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RF or microwave in Blue, Optical in Red, NISN in Green
By 2025 it will achieve these final attributes
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SCaN Services Provide:
* Integrated service-based architecture
» Space internetworking (DTN)

e International interoperability
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DSN’s Impact on Exploration and

Science

~ Communications and navigation support and Radio and Radar
science has enabled a continuing torrent of forefront discoveries

SCIENCE Sci@hec =

Oceans on Europa? Mercury Liguid Core Saturn’s Rings

Mars Ionosphere Moon Gravity Field Binary Asteroids Student Study of Juptier Saturn’s Rings
Radio Emission 12
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MSL “7 minutes of terror” DSN was receiving it’s signals


For more information, visit NASA:
WWW.Nasa.gov
or
Space Communications and Navigation (SCaN):
Www.nasa.gov/scan
www.facebook.com/NASASCaN
Twitter: @ NASASCaN




DSN Future:
A User Perspective

Dr. Les Deutsch

Deputy Director For

Interplanetary Network Directorate
Jet Propulsion Laboratory
California Institute of Technology

February 20, 2014

Copyright 2014 California Institute of Technology, Government sponsorship acknowledged.




Ultimate Long Distance

ey Jet Propulsion Laboratory
¥ California Institute of Technology

carrier

Power received by 70 m DSN antenna from Voyager is so
small that, if accumulated for 10 trillion years, it could

power a refrigerator light bulb for one second!!!
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Interplanetary Network Directorate

gz fnCcreasing Bandwidth Demand

Average Downlink Rate as a Function of Time
(Comparison of Alternative Mission Set Scenarios)

1,000,000

100,000

10,000

Regardless of mission set scenario, average data rates

will increase roughly two orders of magnitude over the
next 20 years.

1,000

Downlink Data Rate {kbps)

» Higher data rates translate into larger spectrum
bandwidth requirements.

« At the same time commercial and military demands for
bandwidth are increasing — with pressure mounting on
NASA’s S- and X-band spectrum allocations.

10
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Interplanetary Network Directorate

. | Customer Changers:
UMY California Institute of Technology H u m anS & S m al Isats

« The DSN enables astronauts to explore
beyond low-Earth orbit

— QOver the last two years, DSN has become a
key participant in HSF planning

« The DSN and AMMOS enable deep space
smallsats — including CubeSats

— Large DSN antennas, Optical
communications, Clever navigation and
trajectory design, Low-cost multimission
ground systems

— New IND R&TD investments are focused on
smallsats LID- 17

1-31-13




o ooy DSN 1N the INtegrated Network Era

Interplanetary Network Directorate

)+ California Institute of Technology

NASA has a goal of providing
missions with a user-friendly
interface for services throughout
the lifecycle

— New architecture is the result of
years of system studies

EIEEEE

DSN is working as part of a team
including NASA’s Space Network
and Near Earth Network to make
this happen —in fact, JPL is leading
this effort, called “SCaN Network [§. 1h T
Integration Project” (SNIP) e . - : ;= = |

LJD- 18
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Enabling Technology

Steve Townes
Chief Technologist
Interplanetary Network Directorate

20 Feb 2014



Jet Propulsion Laboratory
California Institute of Technology

Interplanetary Network Directorate

Improved Performance
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..oy | MProved Operational Efficiency

California Institute of Technology
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DSN Science

Joseph Lazio
Chief Scientist
Interplanetary Network Directorate

20 Feb 2014



Next 50 Years?

Complete catalog of Near Earth Objects
Gravitational wave astronomy
Planetary spacecraft fleets

Extrasolar planets

Extraterrestrial life




Radio Pulsars, DSN, and
Gravitational Waves

Gravity Wave Source
MBH Binary

Searching for gravitational waves
emitted by supermassive black holes
at centers of galaxies as they in-spiral

Credit: D. Backer

Technique first proposed by Hellings &
Downs (JPL) together ....



Deep Space SmallSat Constellations

Imagine fleets of
spacecraft at other
planets

Imagine dropping
many probes into a
planet’s atmosphere

May be possible with
“smallsats”

Requires whole new
way to operate the
DSN ...
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Non-DSN Science?

19 1977 Deep -Sea Life

Honorable mention:

When John Delaney was forming UW’s Neptune Project to
study life around thermal vents on the ocean floor, he
contacted JPL’s DSN engineers because their expertise in
communicating in hostile environments.

What about Europa?



Spacecraft Tracking and
Gravitational Waves

Spacecraft-Earth forms
gravitational wave
detector

e First suggested by
Estabrook & Wahlquist
(1975), both JPL

 DSN has long history ---
Pioneer, Viking, Cassini

e DSN-Cassini limits ~
1000 X better than
previously obtained



Gravitational Waves

Electromagnetic Spectrum Gravitational Wave Spectrum
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Gravitational Waves
Who Cares?

e One of final untested THE GRAVITATIONAL WAVE SPECTRUM
predictions of Einstein’s

Theory of General Relativity g

Initial work already yielded g, |

one Nobel Prize in Physics
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e ldentified by U.S. astronomy . . - - -
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background orbiting th an Earth
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“science frontier
discovery area” (U.s.
National Academy of Sciences

e Probes most extreme
environments in Universe




Gravitational Wave Detectors

All modern gravitational wave
detectors use same principle

e Gravitational wave modifies
distance (a.k.a. spacetime metric)

e Measure distances between
collection of objects (test
masses)

e Changes result from passing
gravitational waves




Mars Relay Network

Chad Edwards

Chief Telecommunications Engineer
Mars Exploration Directorate

Jet Propulsion Laboratory



.. Breakthrough communications bandwidth
increases on interplanetary links

_* Seamless end-to-end information flow
across the solar system =

 Layered architecture for evolvability and
interoperability -

* |P-like comm protocols tailored to operate
over long round trip light times =

« Efficient, miniature short-range
communications systems

« Integrated communications and -navigation -
services = =
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() Interplanetary Network Directorate

) Jet Propulsion Laboratory A LO n g _Te r m Vi eW :

. e California Institute of Technology H u m an M arS EX I O rati O n

Mars Areostationary
Relay Satellite (MARSAT)

Surface Elements:

* Fixed: Hab, Science packages,
ISRU plant

* Mobile: Robotic rover, Crew

rover, EVA crew

-..I

N s

Orbiting ““"
Elements ..
)

Network Link Frequencies (GHz)

~<@==p> 1(0/37 Ka (Earth Trunk High Rate)

<t 2.4-9 (TBD) 802.xx (MCT Network)
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=== 7/8 X (Proximity Low Rate)
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Hardwired (fiber)

/
- db
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Mars Comm
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10-100x bw increase
MARSAT for continuous coverage of exploration region
DTN
More complex network topologies & routine schemes
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