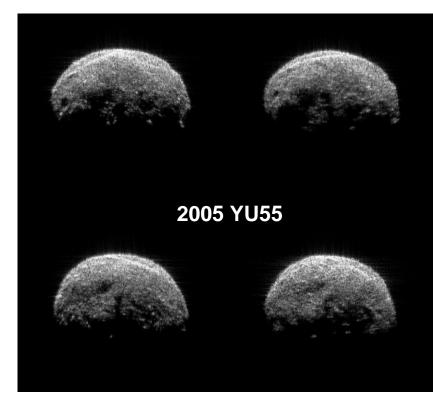

How DSN Technology Changed the World

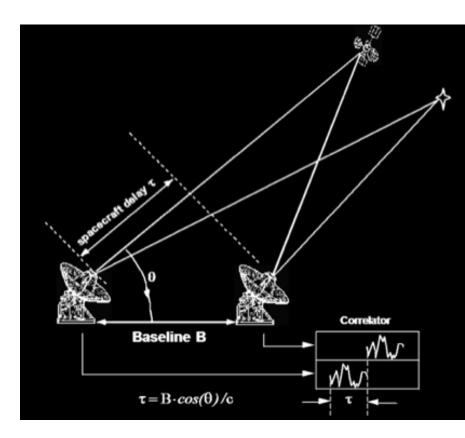
Laif Swanson JPL Communications Architectures & Research Section


- The DSN (and its predecessors) developed enormous capability
 - Active technology program
 - Excellent engineering
- Of course it has brought us planetary science
 - Pictures have become ubiquitous and almost unremarkable
 - But the technology developments have brought the world much more
- Technology developed by & for the DSN often based on others
 - Often radio astronomy
 - We usually know about this
 - When other entities use our technology, we may not know
 - These examples come from the people who have worked on them

Goldstone Solar System Radar

- Goldstone Solar System Radar is both a beneficiary and a benefactor
 - Has imaged many solar system objects
 - Advanced our knowledge of AU by two orders of magnitude
 - Determined good spacecraft landing sites on moon and Mars
 - Located SOHO when it lost lock on sun, saving mission
 - Served as a testing ground for new technology

Jet Propulsion Laboratory California Institute of Technology Ways Others use DSN Technology

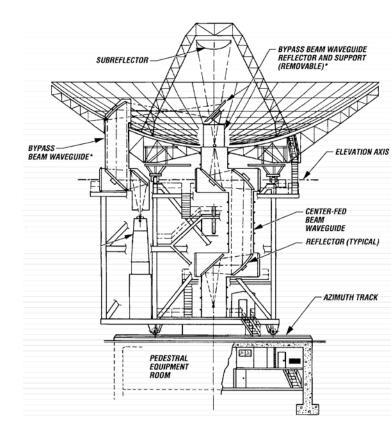

- Radio astronomy and ground stations for other agencies' space programs
 - This is the most obvious, since we have been first so often
- Spacecraft technology
- The outside world

Jet Propulsion Laborate Radio Astronomy & Ground Stations

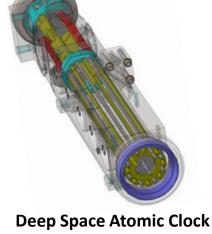
- VLBI
 - First developed for radio astronomy
 - DSN capability allowed collaboration
 - DSN developed delta DOR
 - Now used widely by other space agencies

- Compact cryogenically cooled choked waveguide for low-noise input coupling into cryogenically cooled amplifier used by
 - Radio astronomers
 - SETI
 - ESA
 - CSIRO
 - DFVLR
- Reflected-Wave Maser developed in early 70s used by
 - NRAO
 - VLA
 - CSIRO
 - Max Planck
 - Caltech
 - Princeton

X-Band "ULNA"


- Cryogenically cooled traveling masers and closed-cycle refrigerator systems
 - Developed in the early 1960s and late 1970s
 - Later used at Arecibo

More Ground Station Adoptions


- Beam waveguide antennas
 - Originally developed by the Japanese
 - We developed
 - Wideband
 - High-efficiency
 - Low noise
 - Electronic system below ground for ease of access and station electronic stability
 - Largely adopted by ESA and more recently Indian Space Research Organization

Interplanetary Network Directorate

- NASA aircraft
- SIR-A, SIR-C
- ESA used on ERS1, ERS2, EnviSat
- Ferrite circulator as part of system to phase lock existing high-power Ka-band oscillator
 - In lieu of high-power amplifier
 - Being considered for use by Cloudsat
- Mercury Ion Frequency Standard
 - Being supported by NASA for spacecraft applications

Jet Propulsion Labo Data Compression Used by Spacecraft

- The Rice Algorithm
 - "Lossless" compression
 - Developed by the Voyager Mission
 - Used by DSN Technology program as the beginning of data compression work
- Galileo S-band mission
 - Finally spacecraft teams took lossy data compression seriously
- "Icer" algorithm
 - Developed by DSN technology program to ease data volume
 - Used on spacecraft for compression of thousands of images
 - Mars Exploration Rover
 - Mars Science Laboratory
 - Solar Terrestrial Relations Observatory (STEREO)

DSN Technology Used Elsewhere

- Phased Locked Loop
 - Invented elsewhere in the 30s
 - A great deal of research at JPL in the 1950's
 - Customized for new applications
 - Theory developed
 - Now used in space communications and
 - Frequency synthesis
 - Carrier synchronization
 - PN code synchronization
 - Bit synchronization
 - There are several in your smart phone

Other Uses of DSN Technology

- Pseudo-Noise (PN) codes
 - First used for radio guidance systems for missiles
 - Later used for planetary radar and ranging
 - Now used in
 - GPS
 - CDMA
 - Military Communications
 - Cell phones
 - Radar ranging
- Two-way phase-coherent Doppler
 - Developed for early missile guidance
 - Then radar speed guns

Frequency Standards

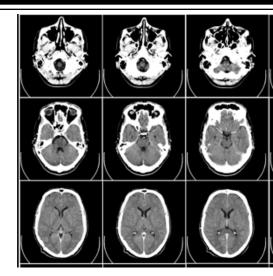
- Cryogenic oscillator
 - Developed for radio science
 - Used worldwide in national meteorological labs
- Opto-electronic oscillators
 - Based on JPL's Gallery Mode Oscillator
 - Adopted by DoD and flown in missiles
 - Commercialized and being pursued many places

Jet Propulsion Laboratory California Institute of Technology

- Developed for the DSN
- First fiber-optic system in space (SRTM)
- Basis for fiber-optic based cable TV
- Basis for distribution of optical frequency standards in Europe and Asia
- Being developed for same use in U.S.

- Early coding was largely a mathematical curiosity
- DSN was very early user of digital communications
- Distance and spacecraft amplifier power lead to very low signal-to-noise ratio (even after those low-noise amplifier people made the noise very small)
- Reed-Solomon code concatenated with convolutional code and Viterbi decoding
 - None of these things came from JPL
 - This particular code began with Voyager 2
 - Very popular for a lot of purposes
 - First generation DVB-S digital television broadcast standard
 - (7,1/2) convolutional code with Viterbi decoding ubiquitous in communications
 - Reed-Solomon codes ubiquitous in data storage

Turbo Codes and LDPC Codes



- These were invented elsewhere
- Specific codes developed in the DSN Technology program are now available commercially
- 3G and 4G cellular standards use these types of (though not exactly these) codes
- "Protograph LDPC codes" enable low-complexity encoders and decoders

- Computer tomography can be traced to VLBI
- DSN VLBI led to the crustal dynamics program
- Shazam has roots in stellar navigation
- Chemical degradation in the pedestal of DSS-14 led to solutions that were then used to refurbish highways
- And even now Superconducting nanowire single photon detector recently developed for the DSN is being explored in labs around the world in quantum optics and spectroscopy experiments

Interplanetary Network Directorate

Some other thoughts

With Thanks To

- Dimitri Antsos
- Dan Bathker
- Jim Border
- Bob Clauss
- Les Deutsch
- Bill Farr
- Rick Green
- Jon Hamkins
- Dan Hoppe
- Aaron Kiely
- Pete Kinman

- Lute Maleki
- Francesco Marsili
- Dick Mathison
- Doug Mudgway
- Mac Reid
- Michael Rodrigues
- Matthew Shaw
- Marty Slade
- Charles Stelzried
- Lincoln Wood
- Joe Yuen