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Appendix H 
Derivation of Rule Limiting Open Circuit 

Board Area 

This appendix contains equations that describe the rationale for the internal 
charging design guideline in Section 3.2.3.2.6, Fill Circuit Board Material with 
Grounded/Referenced Metal, that limits open volumes on a standard circuit 
board to less than 0.3 cm2. The assumptions and resulting design guideline 
presented in this appendix have not been validated by test. 

This derivation has been approached as a volumetric equation, i.e., the threat is 
developed on the basis that, when a surface area is dielectric, the circuit board 
under that dielectric is also a dielectric through to the bottom with no ground 
planes or traces to interrupt the storage of undesired energy in that volume. If 
there were a ground plane at some depth, these calculations estimate a greater 
storage of energy than actually would be present. 

The new rule additionally allows for the presence of ground planes, which 
reduces the level of concern. The energy of a capacitor of area A and discharge 
voltage V is: 

 

 

E =
1
2

CV 2

 (H-1) 

where: 

E = joule 

C = farad 

V = volt 
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This capacitor is based on FR4 circuit board material with a relative dielectric 
constant of 4.7 and a 1 cm × 1 cm × ~2 mm (80 mil) thick patch with a 2000 V 
discharge voltage. The capacitor contains about 2 × 1010 electrons. This 
quantity of electrons per square cm is the amount believed to be critical for 
internal discharges. The resultant calculated stored energy is about 4 µJ. The 
design rule is based on protection of a victim with an assumed 1 µJ damage 
sensitivity so there should be a limit of approximately 0.3 cm2 for area of an 
empty circuit board region. Extending the equation: 

 C = εo × εr × A/t  (H-2) 

where: 

εo × εr = permittivity of the capacitance material 

t  = thickness of the capacitor 

If the potential of the discharge voltage is adjusted to be proportional to the 
thickness (V = k × t) and the results of the equations are combined:  

 E = 0.5 × (εo × εr × A/t) × (k × t)2 (H-3) 

or 

 E = 0.5 × (εo × εr × A) × (k2) × t (H-4) 

where: 

k = dielectric strength (V/m, for example) for the material in question. 

The number of electrons implicit in this equation is the same, but the available 
energy to damage components is proportional to the thickness. If a ground 
plane (or power plane) is 8 mil below the dielectric surface, the stored energy 
will be less than a ground plane at 20 mil depth, in proportion to the dielectric 
thickness, which reduces the level of concern. The ground (or power) plane 
provides a nearby conductive medium to leak off charge during the charging 
process. During the discharge process, it provides a nearby location for the 
discharge to strike and is a much more robust victim than an IC. 

A clarification of the rule is that it was based on an assumption that the material 
in question is approximately square. If it is a long thin area, it is more difficult 
to concentrate the ESD energy in one pulse. Therefore, the applicable aspect 
ratio is 3:1. That is, the rule will permit a long patch of dielectric if one 
dimension is less than 0.3 cm (3 mm). 
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This effect is shown in Fig. H-1 (same as Fig. 3-1), which also proposes a new 
rule for exposed dielectric areas on circuit boards. The design rule assumes a 
standard FR4 circuit board material of 80 mil (~2 mm) thickness.   

An experiment was performed to determine energy transfer from an area of 
circuit board metal to a victim wire [1]. The energy transferred from a charged 
metal area of 1 cm2 at breakdown to a nearby trace on the circuit board into a 
50 Ω load was ~0.5 µJ, roughly one-tenth the amount calculated above for 
energy stored in a dielectric volume of the same 1 cm2 surface area on the 
80 mil thick dielectric. This might indicate a 10 percent energy transfer 
efficiency. It provides a rough validation of the analytic results derived above. 

References 
[1] P. L. Leung, G. H. Plamp, and P. A. Robinson, Jr., “Galileo Internal 

Electrostatic Discharge Program,” Spacecraft Environmental Interactions 
Technology 1983, October 4-6, Colorado Springs, Colorado, NASA CP-
2359/AFGL-TR-85-0018, National Aeronautics and Space Admin-
istration, pp. 423-435, 1983.  xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
This paper, documented in the 1985 publication and presented at the 4th 
Spacecraft Charging Technology Conference, describes a very neat and 
clear test that measures the effect of line lengths and circuit board metal 
areas in the resultant ESD amplitude. It also measures the amplitude of 
ESD transients from electron beam charging on 50 Ω loads from various 
conductors. 

 

 
Fig. H-1. Permissible open area of 80 mil thick FR4 circuit board material versus depth to a 

ground plane or power plane (preferred) or other circuit traces. 
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