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Appendix G 
Simple Approximations: Spacecraft 

Surface Charging Equations 

Whereas Appendix D addresses internal charging analyses, this section will 
focus on surface charging. 

The simple approximations discussed in this section are of a worst-case nature. 
If this analysis indicates differential potentials between non-circuit surface 
materials of less than 400 V, there should be no spacecraft discharge problems. 
If predicted potentials on materials exceed 400 V, the Nascap-2k code 
(Appendix C.3.3) is to be used. 

Although the physics behind the spacecraft charging process is quite complex, 
the formulation at geosynchronous orbit can be expressed in very simple terms 
if a Maxwell-Boltzmann distribution is assumed. The fundamental physical 
process for all spacecraft charging is that of current balance; at equilibrium, all 
currents sum to zero. The potential at which equilibrium is achieved is the 
potential difference between the spacecraft and the space plasma ground. In 
terms of the current [1], the basic equation expressing this current balance for a 
given surface in an equilibrium situation is: 

 IE (V) – [II(V) + ISE(V) + ISI(V) + IBSE(V) + IPH(V) + IB(V)] = IT  

  (G – 1) 

where: 

V = spacecraft potential 
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IE = incident electron current on spacecraft surface 

II  = incident ion current on spacecraft surface 

ISE = secondary electron current due to IE 

ISI = secondary electron current due to II 

IBSE = backscattered electrons due to IE 

IPH = photoelectron current 

IB = active current sources such as charged particle beams  
or ion thrusters 

IT = total current to spacecraft (at equilibrium, IT = 0). 

For a spherical body and a Maxwell-Boltzmann distribution, the first-order 
current densities (the current divided by the area over which the current is 
collected) can be calculated [1] using the following equations (appropriate for 
small conducting sphere at GEO): 

Electrons 

 JE = JE0 exp(qV/kTE)       V < 0 repelled (G-2) 

 JE = JE0 [1 + (qV/kTE)]     V > 0 attracted (G-3) 

Ions 

 JI = JI0 exp(–qV/kTI)       V > 0 repelled (G-4) 

 JI = JI0 [1 – (qV/kTI)]       V < 0 attracted (G-5) 

where: 

 JE0 = (qNE/2)(2kTE/πmE)1/2 (G-6) 

 JI0 = (qNI/2)(2kTI/πmI)
1/2 (G-7) 

where: 

NE = density of electrons 

NI = density of ions 
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mE = mass of electrons 

mI = mass of ions  

q = magnitude of the electronic charge. 

TE = temperature of electrons 

TI = temperature of ions 

Given these expressions and parameterizing the secondary and backscatter 
emissions, equation G-1 can be reduced to an analytic expression in terms of 
the potential at a point. This model, called an analytic probe model, can be 
stated as follows: 

 AE JEO [1 – SE(V,TE,NE) – BSE(V,TE,NE)]exp(qV/kTE) 

– AI JI0 [1 + SI(V,TI,NI)][1 – (qV/kTI)] 

 – APH JPHO f(Xm) = IT = 0      V < 0 (G-8) 

where: 

AE = electron collection area 

JEO = ambient electron current density 

AI = ion collection area 

JI0 = ambient ion current density 

APH = photoelectron emission area 

JPHO = saturation photoelectron flux 

BSE,SE,SI = parameterization functions for secondary emission related to 
backscatter, electrons, and ions 

f(Xm) = attenuated solar flux as a function of altitude Xm of center of Sun 
above the surface of Earth as seen by spacecraft (percent).  

This equation is appropriate for a small (<10 m), uniformly conducting 
spacecraft at geosynchronous orbit in the absence of magnetic field effects. To 
solve the equation, V is varied until IT = 0. Typical values for aluminum of SI, 
SE, and BSE are 3, 0.4, and 0.2, respectively. For geosynchronous orbit, JE/JI is 
about 30 during a geomagnetic storm. 
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As discussed earlier in Eq. (2.3-6), when the spacecraft is in eclipse (and 
ignoring secondary and backscattered terms), a simple proportionality between 
the satellite potential and the currents and temperature can be derived from  
Eq. (G-8): 

 𝑉 ~  –𝑇𝐸
𝑞

 × ln (𝐽𝐸  / 𝐽𝐼) (G-9)  

where:  

TE is in eV. 

That is, to rough order in eclipse, the spacecraft potential is directly 
proportional to the plasma temperature expressed in electron volts and the 
natural log of the ratio of the electron and ion currents. Note, however, that 
secondary currents play a crucial role in actual calculations, and TE must be 
greater than some critical value [2–5], usually of the order of 1000 eV, before 
charging will occur because secondary electron production can exceed the 
ambient current for low enough TE. Also, ln(JE/JI) often varies much more 
rapidly and by larger factors than TE so that charging has been found often to be 
more related to changes in ln(JE/JI) than TE [6]. 
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