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Chapter 5 
Applications: Measurement of 

Surface Soil Moisture 

Soil moisture is a key parameter in numerous environmental studies, including 
hydrology, meteorology, and agriculture. Soil moisture plays an important role 
in the interaction between the land surface and the atmosphere, as well as in the 
partitioning of precipitation into runoff and ground water storage. In spite of its 
importance, soil moisture has not found a widespread application in the 
modeling of hydrological and biogeochemical processes and related ecosystem 
dynamics, in part because soil moisture is a difficult parameter to measure on a 
large-area, cost-effective, and routine basis. 

It is well known that return signals from synthetic aperture radar (SAR) are 
affected by surface characteristics, such as the roughness, the correlation length, 
and the dielectric constant of the soil. Some earlier studies (Wang, et al., 1986 
[1]; Dobson and Ulaby, 1986 [2]) using single frequency and single 
polarization Shuttle Imaging Radar-B (SIR-B) imagery could only describe the 
dependence of backscattering coefficient σ0  on these surface parameters 
separately. Estimation of surface soil wetness was usually obtained by 
employing an empirical relationship to convert the measured σ0  into 
volumetric soil moisture mv  (Jackson, 1993 [3]). Several research groups have, 
for example, reported a linear relationship between the observed radar 
backscatter expressed in decibels (dB) and the volumetric soil moisture of the 
surface (Schneider and Oppelt, 1998 [4]; Quesney et al., 2000 [5]). It is 
commonly reported that the slope of this linear relationship is a function of the 
vegetation cover, with decreasing slopes as the amount of vegetation increases 
indicating decreasing sensitivity to soil moisture in the presence of increasing 
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amounts of vegetation. As an aside, it is often found that the offset in the linear 
relationship is correlated with the surface roughness. 

The inversion of soil moisture information from radar backscatter became more 
rigorous after the availability of polarimetric radar data. Basically, the 
additional measurements allow us to separate the effects of surface roughness 
and soil moisture on the observed radar backscatter. Several algorithms have 
been developed for measuring bare surface soil moisture quantitatively using 
dual-polarization L-band SAR image data (Dubois et al., 1995 [6]; Shi et al., 
1997 [7]) or three-polarization SAR measurements (Oh et al., 1992 [8]). 

The algorithm proposed by Oh et al. (1992) [8] was derived empirically from 
data measured with a truck-mounted scatterometer and the algorithm involves 
ratios of various polarization combinations. Dubois et al. (1995) [6] used the 
same data, plus data from truck-mounted scatterometers measured by the 
University of Berne (Wegmuller, 1993 [9]) over bare surfaces with a wide 
range of surface roughnesses to derive an empirical algorithm that uses 
horizontal-horizontal (HH) and vertical-vertical (VV) polarization 
combinations at L-band. Shi et al. (1997) [7] generated a synthetic data set 
using the Integral Equation Method (IEM) model (Fung et al.,1992 [10]) and 
then derived a set of coefficients to parameterize their synthetic data set. These 
parameters were then used to invert Airborne Synthetic Aperture Radar 
(AIRSAR) and SIR-C data. As in the case of Dubois et al., (1995) [6], the 
algorithm proposed by Shi et al. (1997) [7] uses a pair of measured radar cross-
sections to estimate the surface dielectric constant and a roughness parameter. 
Both these algorithms have been applied to data acquired from space during the 
SIR-C mission and have shown accuracies on the order of 4 percent when 
estimating volumetric soil moisture from SAR data. 

Since these early studies, many more results have been reported. We will 
discuss these results in more detail in this chapter. This chapter will also 
include a detailed of examination of the related algorithms. The chapter also 
includes a discussion of the algorithm proposed by Kim and van Zyl 
(2009) [11] that utilizes time series data to track changes in soil moisture. 
Finally, we shall look at the effects of vegetation on these algorithms and show 
that the time series algorithm shows some promise in providing the capability 
to measure soil moisture even in the presence of vegetation. 

5.1 Surface Electrical and Geometrical Properties 
Before describing the details of the individual models and their performance, 
we briefly review the properties, both electrical and geometrical, of rough 
surfaces. For the moment, we shall focus our attention on bare surfaces. The 
case of vegetated surfaces will be discussed later in the chapter. 
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5.1.1 Geometrical Properties 
We can describe the local surface height of any rough surface by a two-
dimensional function ξ (x, y) , where x and y  represent the horizontal 
coordinates of the surface. It is typically assumed that the statistical distribution 
of the surface height is Gaussian with zero mean. The so-called surface 
roughness, or root mean square (rms) height of the surface, h  is defined as 

 ( )2 2 ,h x yξ= , (5.1-1) 

where x  means the average of x  Simply knowing the rms height of the 
surface is not yet a complete description of the geometrical properties of the 
surface. One also has to know how the surface height at one point on the 
surface is related to the surface height at a different point. This is described by 
the surface-height correlation function. For an isotropically rough surface, the 
surface-height correlation function is a function only of the separation between 
the two points on the surface, r.  The surface-height correlation function is 
mathematically described by 

 ( )
( ) ( )

2
, ,x y x y

r
h

ξ ξ
ρ

′ ′
= . (5.1-2) 

The two most commonly used surface-height correlation functions are the 
Gaussian and exponential correlation functions. The Gaussian correlation 
function for an isotropically rough surface is 

 ( )
2 2r l

g r eρ −= . (5.1-3) 

The quantity l  is known as the surface correlation length. The exponential 
surface-height correlation function is given by 

 ( ) r l
e r eρ −= . (5.1-4) 

Instead of the correlation function, surfaces are often characterized in terms of 
their roughness spectral density, or roughness spectrum. This function is the 
Fourier transform of the surface autocorrelation function. For isotropically 
rough surfaces, the roughness spectrum is 

 ( ) ( ) ( )0
2,x y oW k k r r J kr drρ
π

∞
= ∫ . (5.1-5) 
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The roughness spectrum functions for the Gaussian and the exponential 
correlation functions are 

 ( ) ( )2 2 22
, exp

4
x y

g x y
k k llW k k

π

 − +
 =  
  

 (5.1-6) 

and 
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. (5.1-7) 

To understand the difference between surfaces with these different correlation 
functions, we show a comparison of the correlation functions in Fig. 5-1. We 
note that the Gaussian correlation function is larger for small separations than 
the exponential function, but rapidly decreases to become smaller than the 
exponential correlation function for larger values of r l . This means that one 
would expect a surface with an exponential correlation function to appear to 
have larger slopes at the micro scale than a surface with an equivalent 

 
Fig. 5-1. Comparison between the Gaussian and the exponential correlation functions. 
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correlation length and a Gaussian correlation function. Looking at the slopes of 
the two types of surfaces, we note that the total mean-square slope of a surface 
with a Gaussian correlation function is 

 
22 2

2
2

4
g

hs
x y l
ξ ξ ∂ ∂ = + =  ∂ ∂   

. (5.1-8) 

The surface with the exponential correlation function, on the other hand, has 
surface slopes and all higher surface derivatives that are infinite; that is, 

 2
es = ∞ . (5.1-9) 

To illustrate the differences between these two surface types more graphically, 
Figs. 5-2 and 5-3 represent two such synthetic surfaces with the same rms 
height and correlation length. The surface with Gaussian correlation function 
(shown in Fig. 5-2) appears to have less high frequency roughness than the 
surface with the exponential correlation function (shown in Fig. 5-3). 
Figures 5-3 and 5-4 show the effect of the surface correlation length on the 
appearance of the rough surface. Not surprisingly, the surface with the shorter 
correlation length appears to have more high-frequency roughness than the one 
with the longer correlation length. 

 
Fig. 5-2. Synthetic rough surface generated using a Gaussian surface height correlation 
function. Note the smooth appearance of the surface compared to that generated with the 
exponential surface height correlation function shown in Fig. 5-3. 
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Fig. 5-3. Synthetic rough surface generated with an exponential surface height correlation 
function. The surface has the same rms height and correlation length as the surface 
generated with a Gaussian correlation functions shown in Fig. 5-2. 

 
Fig. 5-4. Synthetic rough surface generated with an exponential surface height correlation 

function. The surface has half the correlation length of the surface shown in Fig. 5-3. 
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Several researchers have measured profiles of micro-topography in order to 
better describe the roughness characteristics of natural surfaces. The profiles of 
micro-topography are measured using various approaches. The simplest 
approach utilizes a large board with a grid painted on it. The board is then 
pushed into the surface to the lowest point on the surface, and a photograph is 
taken of the board covered with the surface profile. The profile is subsequently 
digitized from the photograph. The advantages offered by this approach are that 
it is easy to make the measurement and the equipment is relatively cheap and 
easily operated in the field. Disadvantages include the fact that only relatively 
short profiles can be measured (typically a meter or two at best) and that the 
soil has to be soft enough to permit insertion of the board. 

A second approach utilizes a horizontal bar with an array of vertical rods of 
equal length that are dropped to the surface. The heights of the top of the rods 
above a known level surface are then measured and recorded. While relatively 
easier to operate than the boards described above, especially over rocky or hard 
surfaces, the disadvantage of this method is the limited length of the profiles 
that can be measured with one instrument; consequently, a large amount of time 
is required to make measurements of reasonably large areas, especially in areas 
with difficult access. 

Laser profilers are also sometimes used to measure micro-topography. In this 
case, a laser is mounted on a frame that allows the laser to translate in a raster 
pattern. Measurements are typically taken every centimeter or so along a 
particular profile. These instruments obviously require power to operate, 
limiting their utility to easily accessible areas. An additional drawback is that 
the size of the frame usually limits the area that can be measured to a meter or 
so square. Another method is to operate lasers from low-flying aircraft; using 
this method, however, the measurement density is inadequate for micro-
topography studies. 

Stereo photography, either close-range or from specially equipped helicopters, 
seems to provide the best balance between accuracy and coverage. As part of 
this method, the photographs are digitized and then correlated against each 
other to reconstruct the micro-topography using the same kind of software 
developed to construct large-scale, digital-elevation models from stereo 
cameras flown on either aircraft or satellites. While more expensive to acquire, 
the full three-dimensional surface can be reconstructed over a relatively large 
area, providing excellent statistics. 

Using stereo photographs acquired from a helicopter, Farr (1992) [12] studied 
the roughness characteristics of several lava flows in the Mojave Desert in 
southern California. He found that the power spectra of these natural surfaces 
exhibit the general form 
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 ( ) mW k bk= , (5.1-10) 

with the value of the exponent m  between –2 and –3, consistent with known 
behavior of topography at larger scales. His measurements showed values 
closer to –2 and that the magnitude of m  first seems to increase with lava flow 
age, but then decreases for surfaces between 0.14 and 0.85 million years old. 
For surfaces older than 0.85 million years, the magnitude of m  seems to 
increase again. 

Shi et al. (1997) [7] reports a different approach to their analysis of surface 
roughness characteristics. Using 117 roughness profiles measured over various 
fields in the Washita watershed, they fitted the correlation function of the 
measured profiles with a general correlation function of the form 

 ( ) ( )( )exp nr r lρ = − . (5.1-11) 

Values of n =1  correspond to an exponential correlation function; n = 2  
corresponds to a Gaussian. Their results indicate that 76 percent of the surfaces 
could be fitted with values of n ≤1.4 , leading to the conclusion that the 
exponential correlation function is the more appropriate description of the 
surface correlation function. 

We note that for values of kl >>1,  the roughness spectrum of the exponential 
correlation function behaves like Eq. (5.1-10) with an exponent –3. The results 
from the Shi et al. (1997) [7] study seem to indicate that agriculture and pasture 
fields have roughness spectra that contain more energy at the longer spatial 
scales than the natural lava flow surfaces studied by Farr [12].  

5.1.2 Electrical Properties 
The electrical properties of a rough surface are described by the complex 
dielectric constant, or relative permittivity, of the soil, which is a strong 
function of the soil moisture. This is the result of the fact that the dielectric 
resonance of both pure and saline water lies in the microwave portion of the 
electromagnetic spectrum. Dry soil surfaces have dielectric constants on the 
order of 2 - 3; water has a dielectric constant of approximately 80 at microwave 
frequencies. Therefore, adding a relatively small amount of water to the soil 
drastically changes the value of the dielectric constant. 

A wet bare soil consists of a mixture of soil particles, air, and liquid water. 
Usually, the water contained in the soil is further divided into two parts: so-
called bound water and free water. Due to the influence of matric and osmotic 
forces, the water molecules contained within the first few molecular layers 



Applications: Measurement of Surface Soil Moisture 209 

surrounding the soil particles are tightly held by the soil particles; hence, the 
term bound water. The amount of bound water is directly proportional to the 
surface area of the soil particles, which, in turn, is a function of the soil texture 
and mineralogy. Because of the relatively strong forces acting on it, bound 
water exhibits an electromagnetic spectrum that is different from that of regular 
liquid water. Since the matric forces acting on a water molecule decrease 
rapidly with distance away from the soil particle, water molecules located more 
than a few molecular layers away from the soil particles are able to move 
throughout the soil with relative ease; for this reason, this water is known as 
free water. The complex dielectric constant of both bound and free water is a 
function of frequency, temperature, and salinity of the soil. 

In general, there is a nonlinear relationship between dielectric constant and 
volumetric soil moisture. Wang and Schmugge (1980) [13] present an empirical 
soil dielectric mixing model based on various measurements at 1.4 and 5 
gigahertz (GHz). If one is concerned only with the real part of the dielectric 
constant, one can write the expressions as follows: 

 

( )

276.3
3.25 2.2

3.25 76.3 1 78.5

T v
v v T

T

T T v v T

E mm for m M
M

M E m for m M
ε


+ + ≤

= 
 + − + >

, (5.1-12) 

where mv  is the volumetric soil moisture (units cm3 3cm ) 0 1≤ ≤mv  and MT  

is a transition moisture level (units cm3 3cm ), which is given by 

 M WT P= 0.49 + 0.165 . (5.1-13) 

WP  is the wilting point, (in units of cubic centimeter per cubic centimeter 

( )cm3 3cm ), which is a function of the soil texture, and is given by 

 0.06774 0.00064 0.00478PW S C= − + . (5.1-14) 

In Eq. (5.1-14), S  and C  represent the percentages of sand and clay, 
respectively, in the soil. Finally, ET  in Eq. (5.1-12) is an empirical fit 
coefficient, which is 

 0.481 0.57T PE W= − . (5.1-15) 

For a typical loam soil: 

 0.1; 0.22; 0.4P T TW M E= = = . (5.1-16) 
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Hallikainen et al. (1985) [14] report the results of extensive measurements of 
soil dielectric constants. Hallikainen et al. also found that the dielectric constant 
can be described as a quadratic function of volumetric soil moisture. Their 
results show the coefficients of the polynomial to be a function of the soil 
texture, and the polynomial is of the general form: 

 ( ) ( ) ( ) 2
0 1 2 0 1 2 0 1 2v va a S a C b b S b C m c c S c C mε = + + + + + + + + . (5.1-17) 

This form is applicable to both the real and imaginary parts of the dielectric 
constant. The coefficients are functions of frequency, with values reported from 
1.4 GHz to 18 GHz. At 1.4 GHz, the values for the real part of the dielectric 
constant are: 

 
0 1 2

0 1 2

0 1 2

2.862 0.012 0.001
3.803 0.462 0.341

119.006 0.500 0.633

a a a
b b b

c c c

= = − =
= = = −
= = − =

. (5.1-18) 

For the imaginary part of the dielectric constant, the values are 

 
0 1 2

0 1 2

0 1 2

0.356 0.003 0.008
5.507 0.044 0.002

17.753 0.313 0.206

a a a
b b b
c c c

= = − = −
= = = −
= = − =

. (5.1-19) 

For a typical loam soil, Eq. (5.1-17) becomes 

 22.2575 22.9925 101.8015v vm mε = + +  (5.1-20) 

for the real part of the dielectric constant. 

It should be pointed out that more recent work by Brisco et al. (1992) [15] 
concluded that soil texture has no effect on the results, and that a single cubic 
polynomial with constant coefficients could be used to link soil moisture and 
the measured surface dielectric constant, as follows: 

 2 30.0278 0.0280 0.000586 0.00000503vm ε ε ε= − + − + . (5.1-21) 

Other work (Dobson et al., 1985) [16] derived a semi-empirical relationship 
between the real part of the dielectric constant and the volumetric soil moisture 
of the form. 

 
1

1 b
s v fw v
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m m

αα β αρ
ε ε ε

ρ
 
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, (5.1-22) 
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where α = 0.65 , ρ 2.66 / 3
s = g cm , εs  is the dielectric constant of the solid 

soil (typical value ≈ 4.7 ), ρb  is the bulk density of the soil (on the order of 

1.1 g / cm3  for sandy loam soils), and β  is a parameter that is a function of the 
soil texture 

 1.2748 0.00519 0.00152S Cβ = − − . (5.1-23) 

As before, S  and C  are the percentage of sand and clay in the soil, 
respectively. The dielectric constant of free water is a function of temperature 
and frequency and is given by 

 
( )

0
21 2

w w
fw w

wf

ε ε
ε ε

π τ
∞

∞
−

= +
+

. (5.1-24) 

In Eq. (5.1-24), τw  is the relaxation time for water, εw0  is the static dielectric 
constant for water, εw∞ = 4.9  is the high frequency limit of the real part of the 
dielectric constant for water, and f  is the frequency. Both τw  and εw0  are 
functions of temperature (Ulaby et al., 1986 [17]). At 20°C, the values are 
2πτ 0.58 10−10

w = ×  seconds and εw0 = 80.1 . 

A comparison of the results of the models described above is shown in Fig. 5-5 
for the case of a sandy loam soil at 1.4 GHz. All models show the non-linear 
relationship between the soil dielectric constant and volumetric soil moisture, 
especially at low moisture values. 

5.1.3 Penetration Depth 
The question of how deep a particular radar senses the surface moisture often 
arises. The answer to this question is unfortunately not straightforward.  

Experimental results indicate that at C-band, the radar signal is well correlated 
with the moisture in the top 2 cm of the soil (Bruckler et al., 1988 [18]). At 
L-band, good correlation is typically observed with the moisture in the top 5 cm 
of the soil. 

From a theoretical point of view, the penetration depth depends on the complex 
dielectric constant ε  of the surface. This quantity can be written as 

 iε ε ε′ ′′= + , (5.1-25) 
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Fig. 5-5. Comparison of the results of several models linking surface dielectric constant 
to volumetric soil moisture. The case shown is for a sandy loam soil with 51.5 percent 
sand and 13.5 percent clay. Results are applicable to 1.4 GHz. Note the close 
comparison between the Hallikainen and Brisco curves.  

where the imaginary part corresponds to the ability of the medium to absorb the 
wave and transform its energy to another type of energy (heat, chemical, etc.). 
If we consider a wave propagating purely in the x-direction in a homogeneous 
medium, then the electric field varies as 

 0
i kxE E e ε= .  

If we can assume that , then  

 
2

i i εε ε ε ε
ε
′′

′ ′′ ′= + ≈ +
′

 (5.1-26) 

and 

 0  ax i kxE E e eα ε′−= , (5.1-27) 

where 
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2a

kε πεα
ε λ ε
′′ ′′

= =
′′

.  

The observed radar cross-section is proportional to power. The power of the 
wave as a function of x  can be written as: 

 2( ) (0) axP x P e α−= . (5.1-28) 

If αa  is also a function of x , such as when the moisture profile varies with 
depth in the soil, then the above equation will become: 

 
0

( ) (0) exp 2 ( )  
x

aP x P dα ξ ξ = − 
 ∫ . (5.1-29) 

The penetration depth Lp  is defined as the depth at which the power decreases 

to P e(0) −1 (i.e., 4.3-dB loss). Thus: 

 p
1

2 2a
L λ ε

α πε
′

= =
′′

. (5.1-30) 

This can also be expressed a
(tan )δ ε= ′′ / ε ′ : 

s a function of the medium loss tangent 

 p 2   tan 
L λ

π ε δ
=

′
. (5.1-31) 

At this depth, the incident power is 4.3 dB weaker than at the surface. In the 
case of radar observation, if the interface is covered by a layer of thickness Lp , 
the attenuation due to absorption alone will be 2× 4.3 = 8.6 dB  for a normally 
incident wave. The factor 2 represents the fact that absorption affects both the 
incident and the scattered waves. 

These expressions show that the penetration depth is a function of actual value 
of the dielectric constant. Based on the discussion in the previous section, this 
means that the penetration depth of the radar signals will then be a function of 
the soil moisture, with deeper penetration into dry soils and less penetration 
into wet soils. 

Note that the penetration depth does not necessarily tell us from how deep into 
the soil most of the radar signal was received. As was pointed out above, the 
signal returned from a depth equal to the penetration depth suffered 8.6 dB of 
attenuation. Walker et al. (1997) [19] argue that it is unlikely that scattering 
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from this depth would add significantly to that arising from the soil-air 
interface. They suggest a modified depth based on a comparison of signals that 
would be received from a buried layer to that from the surface. Their results 
suggest a somewhat smaller sensing depth than what is normally quoted, with a 
reduction on the order of a factor of 2, depending on which polarization is used. 
A similar approach was used by Le Morvan et al. (2008) [20], who used a 
three-layer model to explain Advanced Synthetic Aperture Radar (ASAR) 
observation of soil moisture in France. As an aside, their results show 
significant correlations between the observed C-band backscatter and soil 
moisture measurements in a layer 2 - 5 cm beneath the surface. As is pointed 
out by these studies, however, to calculate the actual sensing depth from a 
theoretical point of view for anything but the simplest scattering geometries is a 
daunting task. For our purposes, we shall assume that, on the basis of 
observations and these studies, radars sense soil moisture in the top few 
centimeters of the soil, keeping in mind that the sensing depth is, indeed, 
shallower for wetter surfaces than for dry surfaces. 

5.1.4 Soil Moisture Profile 
When the penetration depth of a soil surface is evaluated, it is assume that the 
dielectric constant of the surface is uniform. However, soil moisture varies with 
depth [21, 22] depending upon the temperature profile, the soil type, and the 
surface evaporation. The soil moisture profile changes significantly as a soil 
surface dries after a precipitation event. The effect of the soil moisture profile 
on radar measurements can be evaluated by calculating the backscattering cross 
section from a rough surface interface on top of a layered medium with varying 
permittivity profile. 

The reflection coefficient from a layered medium with a flat interface can be 
calculated for a given permittivity profile ( ( )zε ) as [23] 

 ( )2( ) /2 ( ) 1
2 ( )

n
n n

dR d z dzi z R R
dz z

ββ
β

= − + −   

 for horizontal polarization (5.1-32) 

 ( )2

( )
( ) ( )2 ( ) 1

2 ( )
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n n

zd
zdR zi z R R

dz dz z

β
ε εβ

β

 
 
 = − + −  

 for vertical polarization (5.1-33) 

where 
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 2( ) ( ) cosz zπβ ε θ
λ

=  (5.1-34) 

Equations (5.1-32) and (5.1-33) can be solved exactly using numerical 
techniques. When the permittivity profile changes slowly, the reflection 
coefficient of the layered medium is smaller. Therefore, it is expected that the 
reflection coefficient will be smaller as the surface dries since the impedance 
changes gradually from the surface to the subsurface in addition to the lower 
surface dielectric constant. It is important to point out that the reflection 
coefficient of a soil surface with a varying moisture profile may not be the same 
as that calculated assuming a homogenous surface characterized by the average 
value of soil moisture within top 5 cm. We believe that the moisture profile 
may play an important role, especially for a dry surface. Notice that nR  in 
Eq. (5.1-32) and Eq. (5.1.33) is the specular reflection coefficient. Although the 
specular reflection coefficient is useful for calculating the effective impedance 
at the reflection interface, we must study the effects of a rough interface to 
realistically model backscatter from such a surface. 

The backscattering cross section from a layered medium with a rough interface 
has been studied in [24, 25, 26]. An analytic method was derived to calculate 
the bistatic-scattering coefficient from a layered medium (less than three layers) 
with slightly rough interfaces [24]. In [24], the electromagnetic waves in each 
layer are expressed in terms of an infinite number of angular spectral 
components. A small perturbation approach is used to calculate the scattered 
wave, which is appropriate for the scattering calculation for a low-frequency 
radar system. In addition, Kuo and Moghaddam [25] used field-collected soil 
moisture data to understand the penetration capability of a low frequency radar. 
The simulation results in [25] demonstrated that both the backscattering 
coefficient and the co-polarization phase difference are sensitive to deep soil 
moisture. The inversion of the model parameters of a two-layer dielectric 
medium was investigated using the method of simulated annealing [26]. 
Although these approximate methods [24, 25] have provided the useful results, 
more accurate results can be obtained using a finite element method (FEM) [27, 
28].  

In the previous section we showed that the penetration depth is a function of the 
wavelength. The longer wavelength signals are expected to penetrate deeper 
into the surface and, depending on the moisture profile, may then sense either a 
drier or wetter surface. Figure 5-6 shows an example of the inferred dielectric 
constant of Lunar Dry Lake in Nevada using the algorithm proposed by Dubois 
et al. which we will discuss in detail a bit later. The oval shaped feature is the 
dry lake bed, which at the time of data acquisition was dry enough on the 
surface so that the author was able to drive a truck across the lake bed. The 
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Fig. 5-6. Dielectric constant map derived from an L-Band AIRSAR image of Lunar Lake playa 
in Nevada. The oval shaped feature is a dry lake bed, which at the time of data acquisition 
was dry at the surface. The higher dielectric constant on the right portion of the lake is due 
to subsurface moisture. [6] 

radar signals penetrated deep enough into the surface to sense subsurface 
moisture on the right hand side of the lake in the picture. The moisture was the 
remnants of runoff from light rains about a week earlier that entered the lake 
surface from the top right and covered only the right portion of the lake bed. 
The water had dried away before the data collection to the point that the surface 
was completely dry. 

Figure 5-7 shows another example, this time showing the difference between 
two frequencies. The image shows a feature known as Cottonball Basin in 
Death Valley, California. Cottonball Basin is at the northern end of the larger 
Death Valley salt pan, and receives most of its inflow from groundwater. The 
southern edge of Cottonball Basin are covered with mud flats resulting from 
seeping salty water. These areas stay wet the longest after an inflow event. 

Figure 5-7 shows two dielectric constant maps, the one inferred from L-band 
data on the left, and from P-band data on the right. There are many similarities 
between the two maps. First, both show relatively large dielectric constants in 
the mudflats, and lower dielectrics in the rest of Cottonball Basin. There are 
also some important differences, however. When looking closer at the mud flat 
areas, we note that the P-band dielectric constants show higher values over 
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Fig. 5-7. Dielectric constant maps inferred from L-band (left) and P-band (right) AIRSAR data 

of Cottonball Basin in Death Valley, California. See text for discussion. 

larger areas towards the edges of the mudflats. These are the shallower areas of 
the mud flats. As the mud flats dry out, the surface of the shallower areas dry 
first, while the sub-surface in these areas can stay wetter longer. The longer 
wavelength P-band signals more than likely penetrate deeper into these surfaces 
and sense more of the wetter subsurface than the L-band signals. We also note 
the same behavior to the northern part of the Basin, next to the word “Salt 
Creek” in the image. There is an area, located in the Salt Creek, that shows a 
higher dielectric constant at P-Band. Another area is also visible further north 
following the Salt Creek further up in the image. Both these areas more than 
likely represent subsurface moisture. Unfortunately, no actual ground 
measurements were made during the data collection, so these explanations 
cannot be verified. But given that the Dubois et al. algorithm consistently infers 
higher moistures at the longer wavelength in only some areas, and similar 
values in others, supports this conjecture. 

5.2 Scattering from Bare Rough Surfaces 
Many excellent texts describing the details of scattering from rough surfaces are 
available. Here, we will summarize some of the better known models only in 
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enough detail to set the stage for a better understanding of the inversion models 
that we will describe later. We will not, however, describe the detailed 
electromagnetic modeling aspects of these models.  

Consider first the case of a perfectly smooth surface of infinite extent that is 
uniformly illuminated by a plane wave. This surface will reflect the incident 
wave into the specular direction with scattering amplitudes equal to the well-
known Fresnel reflection coefficients. In this case, no scattered energy will be 
received in any other direction. If now the surface is made finite in extent, or 
the infinite surface is illuminated by a finite extent uniform plane wave, the 
situation changes. In this case, the far-field power will decrease proportional to 
the distance squared (the well-known R-squared law). The maximum amount of 
reflected power still appears in the specular direction, but a lobe structure, 
similar to an “antenna pattern,” appears around the specular direction. The 
exact shape of the lobe structure depends on the size and shape of the finite 
illuminated area, and the pattern is adequately predicted using physical optics 
calculations. This component of the scattered power is often referred to as the 
coherent component of the scattered field. For angles far away from the 
specular direction, there will be very little scattered power in the coherent 
component. 

The next step is to add some roughness to the finite surface such that the mean-
square height of the surface is still much less than the wavelength of the 
illuminating source. The first effect is that some of the incident energy will now 
be scattered in directions other than the specular direction. The net effect of this 
scattered energy is to fill the nulls in the “antenna pattern” of the surface 
described before. The component of the scattered power that is the result of the 
presence of surface roughness is referred to as the incoherent component of the 
scattered field. At angles significantly away from the specular direction, such as 
the backscatter direction at larger incidence angles, the incoherent part of the 
scattered field usually dominates. 

As the roughness of the surface increases, less power is contained in the 
coherent component and more power is contained in the incoherent component. 
In the limit where the rms height becomes larger than the wavelength, the 
coherent component is typically no longer distinguishable, and the incoherent 
power dominates in all directions. In this limit, the strength of the scattering in 
any given direction is related to the number of surface facets that are oriented 
such that they reflect specularly in that direction. This is the same phenomenon 
that causes the shimmering of the moon on a roughened water surface. 

Several different criteria exist to decide if a surface is “smooth” or “rough.” 
The most commonly used one is the so-called Rayleigh criterion that classifies 
a surface as rough if the rms height satisfies 



Applications: Measurement of Surface Soil Moisture 219 

 8cosh λ θ> . (5.2-1) 

In this criterion, θ  is the angle at which the radar wave is incident on the 
surface. A more accurate approximation of surface roughness was introduced 
by Peake and Oliver (1971) [29]. According to this approximation, a surface is 
considered smooth if 

 25cosh λ θ< . (5.2-2) 

A surface is considered rough if 

 4cosh λ θ> . (5.2-3) 

Any surface that falls in between these two values is considered to have 
intermediate roughness. 

Depending on the angle of incidence, two different approaches are used to 
model radar scattering from rough surfaces. For small angles of incidence, 
scattering is dominated by reflections from appropriately oriented facets on the 
surface. In this regime, physical optics principles are used to derive the 
scattering equations. As a rule of thumb, facet scattering dominates for angles 
of incidence less than 20 - 30 degrees (deg). For the larger angles of incidence, 
scattering from the small scale roughness dominates. The best known model for 
describing this type of scattering is the small perturbation model. This model, 
as its name suggests, treats the surface roughness as a small perturbation from a 
flat surface. More recently, Fung et al. (1992) [10] proposed a model, based on 
an integral equation method (IEM) solution to the scattering problem, that 
seems to describe the scattering adequately in both limits. Some refinements to 
this IEM model have been suggested by Wu et al. (2001) [30]. 

All models of rough surface scattering assume that the average surface is 
horizontal. In practice, the scattering is modulated by the local topography; this 
assumption, therefore, is not necessarily valid. The effect of the local 
topography can be described as a local tilt to the surface. This tilt is adequately 
described by the slope of the surface in two orthogonal directions. Note that, in 
this case, we mean large scale tilts, the scale of which is larger than or equal to 
the size of the radar pixels. The effect of such a local tilt on the scattering is 
two-fold. First, the wave impinges on the surface with a different local angle of 
incidence than it would have if the surface was not tilted. Second, the local tilt 
rotates the local coordinate system of the surface element with respect to that of 
the global system in which the radar makes its measurement. This rotation will 
modify the relative strengths of the scattering coefficients at the different 
polarizations. We will look at this effect in more detail in the next section. 
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Several algorithms have been proposed to invert measured radar signals to infer 
soil moisture. In general, the radar backscatter cross-section is a function of 
both the surface roughness and the surface dielectric constant (or moisture). 
Therefore, in order to measure either of these quantities, we must be able to 
separate their effects on the measured radar backscatter cross-section. Since we 
are trying to solve for more than one unknown, it follows that more than one 
measurement is needed. Most algorithms use multi-polarization measurements 
to accomplish the goal of separating the effects of surface roughness and 
dielectric constant. The sections that follow briefly discuss several of these 
models. 

5.2.1 First-Order Small Perturbation Model 
The use of the first-order small perturbation model to describe scattering from 
slightly rough surfaces dates back to Rice (1951) [31, 32]. Rice used a 
perturbation technique to show that, to first order, the scattering cross-sections 
of a slightly rough surface can be written as 

 ( )24 2 44 cos 2 sin ;xx xxk h W k xx hh or vvσ π θ α θ= = , (5.2-4) 

where k  =  2π λ/ , is the wavenumber, λ  is the wavelength, and θ  is the local 
incidence angle at which the radar waves impinge on the surface. The 
roughness characteristics of the soil are described by two parameters: h  is the 
surface root mean square (rms) height and W (ξ ξx , y )  is the two-dimensional 
normalized surface roughness spectrum, which is the Fourier transform of the 
two-dimensional normalized surface autocorrelation function previously 
discussed in subsection 5.1.1. We note that the surface rms height should be 
calculated after local slopes have been removed from the surface profile; the 
slope of the surface changes the radar cross-section because of the change in the 
local incidence angle. Local slopes that tilt towards or away from the radar do 
not change the surface roughness; instead, they affect the local incidence angle. 
This is a frequent source of error in the interpretation of the results from 
laboratory and field experiments. 

The surface electrical properties are contained in the variable αxx , which is 
given by 
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and 
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In these equations, ε  is the dielectric constant, or relative permittivity, of the 
soil. We note that the small perturbation model as described here is applicable 
only to smooth surfaces. The usual assumptions are that the roughness is small 
compared to the wavelength (i.e., kh < 0.3 ) and that the rms slope (s) satisfies 
s < 0.3.  

5.2.2 The Integral Equation Model 
Fung et al. (1992) [10] showed that the expressions for the tangential surface 
fields on a rough dielectric surface can be written as a pair of integral equations. 
The scattered fields, in turn, are written in terms of these tangential surface 
fields. Using this formulation, and standard approximations, Fung et al. [10] 
showed that the scattered field can be interpreted as a single scattering term and 
a multiple scattering term. When the surface is smooth enough, the single 
scattering term reduces to the well-known small perturbation model described 
above and the cross-polarized terms reduce numerically to the second-order 
small perturbation result. Their results also show that in the high-frequency 
limit, only the well-known Kirchoff term described by the physical optics 
model remains significant for surfaces with small rms slopes. When the surface 
rms slopes are large, however, the multiple scattering terms are important. 

Fung et al. (1992) [10] showed that the single scattering backscatter cross-
sections can be written as 
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with 
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The term nW  is the Fourier transform of the nth power of the surface 
correlation function, which can be calculated using 

 ( ) ( ) ( )0
2n n

oW k r r J kr drρ
π

∞
= ∫ , (5.2-9) 
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where J x0 ( )  is the Bessel function of the first kind and order zero. Also, 

 2 2
; ; 0

cos cos
h v

hh vv hv vh
R Rf f f f
θ θ

−
= = = = , (5.2-10) 

with Rh  and Rv  the well-known Fresnel reflection coefficients for horizontal 
and vertical polarization, respectively. Finally, 
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  (5.2-12) 

and 

 ( ) ( )sin ,0 sin ,0 0hv hvF k F kθ θ− + = , (5.2-13) 

where µ  is the relative permeability of the surface and ε  is the relative 
permittivity, or dielectric constant. Note again that the single scattering term 
does not predict any depolarization. The cross-polarized return is predicted by 
the multiple scattering term. The expressions are quite complicated and are 
given in Fung et al. (1992) [10]. 

Figure 5-8 shows the predicted backscatter cross-section as a function of 
incidence angle for different surface roughness values and different dielectric 
constants. The plot on the left shows that increasing the surface roughness 
generally causes an increase in the radar cross-sections for all polarization 
combinations. Notice how the difference between the HH and VV cross-
sections becomes smaller as the surface gets rougher. The plot on the right 
shows that increasing the dielectric constant (or soil moisture) also increases 
the radar cross-sections for all polarizations. In this case, however, increasing 
the dielectric constant also increases the difference between the HH and VV 
cross-sections. 

5.3 Example Bare Surface Soil Moisture Inversion 
Models 

In this section, we discuss some examples of previously reported soil moisture 
inversion models. All of these examples try to invert for soil moisture using  
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(a) 

(b) 

 
Fig. 5-8. The predicted radar cross-sections for a slightly rough surface, assuming an 
exponential correlation function. Chart (a) on the top shows the effect of changing 
surface roughness for constant dielectric constant; chart (b) on the bottom shows the 
effect of changing dielectric constant for constant roughness. 
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radar measurements made at one instant in time. As such, they can be 
considered to attempt to provide a “snap-shot” of soil moisture at the time the 
radar measurements were made. They commonly use only the radar 
measurements from that time instant and no other measurements from other 
times or other sensors. 

5.3.1 The First-Order Small Perturbation Model 
Returning to the expression for the small perturbation radar cross-section as 
given in Eq. (5.2-4), we note that the copolarized ratio 
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+ −
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− + + −
 (5.3-1) 

is only a function of the surface dielectric properties, and not of the surface 
roughness. Therefore, one should be able to use the measure ratio of radar 
cross-sections to infer the surface dielectric constant. Figure 5-9 shows how this 
ratio changes smoothly as the dielectric constant increases or as the incidence 
angle changes. 

 

Fig. 5-9. The ratio of σHH to σVV as predicted by the small perturbation model. This ratio 
monotonically decreases as the dielectric constant increases. It also decreases with 
increasing incidence angle.  
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If we assume the dielectric constant to be a real number, it is possible to rewrite 
this expression into a fourth-order polynomial in ε  as follows: 

 4 3 2
4 3 2 1 0 0a a a a aε ε ε ε+ + + + = , (5.3-2) 

where 
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 (5.3-3) 

and 

 vv

hh

R σ
σ

= . (5.3-4) 

To invert the radar measurements for surface dielectric constant, one then has to 
find the roots of this fourth-order polynomial. As an example, consider the case 
of a radar wave incident at 45 deg on a surface with ε =10. The polynomial in 
this case is 

 4 3 20.240270 3.01021 6.56937 5.06918 1.26975 0ε ε ε ε− + − + = ,  

with roots 

 0.528; 0.996; 1.004; 10.000ε = .  

Solving for the roots of a fourth-order polynomial is computationally quite 
intensive. Looking again at Fig. 5-9, we note that the co-polarized ratio 
decreases monotonically as the dielectric constant increases. This type of 
function is ideally suited to be inverted using a look-up table approach. This 
approach uses a table with one row for every 1 deg in incidence angle and 
dielectric constants as integers. Once the four table entries are identified that 
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bracket the measured value in incidence angle and the dielectric constant, 
bilinear interpolation is used between these values to find the final dielectric 
constant. This method provides an increase of approximately a factor 20 in 
computational speed over solving for the roots of the polynomial with a 
negligible decrease in accuracy. 

We can relax the requirement that the dielectric constant must be real by 
performing the look-up table calculation using the soil moisture and one of the 
models that relate soil moisture to the complex dielectric constant. This 
approach would require making some assumptions about the type of soil: 
specifically, the texture and salinity. These assumptions must be made in any 
case if one wants to translate the measured dielectric constant to soil moisture. 

As pointed out before, the small perturbation model is only applicable to 
surfaces that are smooth. While this model predicts the ratio (HH/VV) of the 
co-polarized radar cross-sections to be independent of the surface roughness, 
observations show this ratio to increase with increasing roughness. Extending 
the perturbation model to include second-order terms, one finds that this ratio 
is, indeed, affected by the surface roughness and that the effect of the roughness 
is to increase this ratio; that is, to make the VV cross-section closer to that at 
HH polarization. The net effect of this is that the measured value appears to 
shift to the left on the curves shown in Fig. 5-9, with the result that a first-order 
small perturbation inversion will tend to underestimate the surface dielectric 
constant in the presence of significant roughness. (We will illustrate this more 
clearly in the next section.) As a result of this, one could argue that the actual 
dielectric constant of a rough surface will be larger than or equal to the result of 
a first-order small perturbation inversion.  

5.3.2 Algorithm Proposed by Oh et al. (1992) 
Based on the scattering behavior in limiting cases and experimental data, Oh et 
al. (1992) [8] have developed an empirical model in terms of the rms surface 
height, the wave number, and the relative dielectric constant. The key to this 
approach is the co-polarization ratio p and cross-polarization ratio q, which are 
given explicitly in terms of the roughness and the soil dielectric constant. The 
parameters p and q from the Oh’s algorithm are derived using an empirical fit 
to the data collected by their truck-mounted scatterometer system over bare 
soils of different roughness and moisture conditions. The explicit expressions 
for p and q are: 

  (5.3-5) 
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and 
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As before, k  =  2π λ/ , is the wavenumber, λ  is the wavelength, and ε  is the 
complex dielectric permittivity. 

Figure 5-10 shows how the co- and cross-polarized ratios are predicted to vary 
with changing surface roughness and dielectric constant. For large surface 
roughness, the co-polarized ratio approaches 1, independent of the surface 
dielectric constant, consistent with experimental observations. For lower 
dielectric constants, the co-polarized ratio is more sensitive to variations in 
dielectric constant than in roughness; note, however, that this is not the case for 

 
Fig. 5-10. Variation of the co- and cross-polarized ratios as a function of dielectric 
constant and surface roughness, as predicted by the model proposed by Oh et al. 
(1992) [8]. The results shown are for a 45-deg incidence angle.  
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high dielectric constant surfaces. The cross-polarized ratio is always a strong 
function of surface roughness. For rougher surfaces, this ratio is also quite 
sensitive to changes in dielectric constant and, in the limit of very rough 
surfaces, becomes a function of dielectric constant only. We also note that as 
the surface roughness increases, all the values bunch together more, meaning 
that we will have less sensitivity to moisture (or roughness) in our 
measurements, and larger uncertainties in the inferred quantities will likely 
result in the presence of measurement errors. 

To invert the expressions for the soil dielectric constant, we note that we can 
rewrite Eq. (5.3-5) and Eq. (5.3-6) in terms of only the surface dielectric 
constant as 
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Two approaches can be followed to solve this nonlinear equation in the 
dielectric constant: the first is to use an iterative scheme; the second is to use a 
look-up table approach. We found that the most efficient way (in terms of 
computational speed) to solve this expression for the dielectric constant is to 
use a look-up table inversion. 

We can derive a similar expression to solve for the surface roughness from Eq. 
(5.3-5) and Eq. (5.3-6) as 
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As in the case of the dielectric constant, a look-up table approach is used to 
solve this expression for the rms height from the measured values of the co- and 
cross-polarized ratios. 

One potential practical problem of the algorithm proposed by Oh et al. (1992) 
[8] is the fact that the cross-polarized ratio is strongly affected by the presence 
of vegetation. Several studies have shown that the cross-polarized return is 
strongly correlated with vegetation biomass; and as a result, even a relatively 
small amount of vegetation increases the cross-polarized ratio significantly over 
that of a bare surface. The presence of natural vegetation also tends to increase 
the co-polarized ratio, but to a lesser extent. The result is to artificially move 
the measurement to the upper right in Fig. 5-8, which means that the dielectric 
constant of the surface will be underestimated and the surface roughness will be 
overestimated. 
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5.3.3 Algorithm Proposed by Dubois et al. 
Partly to avoid the difficulties that the Oh et al. (1992) [8] algorithm has when 
vegetation is present, Dubois et al. (1995) [6] developed an empirical model 
that only requires measurements of σhh  and σvv  at a frequency between 1.5 
and 11 GHz to retrieve both the surface rms height h and soil dielectric constant 
ε  from bare soils. They used two sets of ground-based scatterometer data 
collected by Oh et al. (1992) [8] and by the University of Berne’s Radiometer 
Scatterometer (RASAM) (Wegmuller, 1993 [9]) system to develop two 
equations that relate the measured co-polarized cross sections to surface 
roughness and dielectric constant. Those equations are: 
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Note that the wavelength used in these expressions must be in centimeters. 
These equations have been applied to a number of AIRSAR images of the Little 
Washita watershed and SIR-C measurements over a bare field by Dubois et al. 
(1995) [6], and the estimated vm  (using Hallikainen’s equations to relate 
dielectric constant and soil moisture) values were found to agree well with 
those measured by ground sampling, with a resulting rms error on the order of 
4–6 percent [6].  

We note that the expressions derived by Dubois et al. [6] predict that the co-
polarized ratio will exceed 1 in the limit of surfaces with large rms heights. 
Experimental results suggest that this ratio will asymptotically approach one, 
but will not exceed 1. This deficiency in the Dubois et al. model makes their 
results for rougher surfaces suspect. 

Figure 5-11 shows how the VV cross-section and the co-polarized ratio are 
predicted to vary with changing surface roughness and dielectric constant. In 
contrast to the model proposed by Oh et al. [8], the co-polarized ratio does not 
approach 1 for large surface roughness. As mentioned before, this represents 
one shortcoming in the Dubois et al. model, and this failure to approach 1 is a 
consequence of the linear approximation they applied to the measured data in 
the logarithmic domain. All the curves run parallel in both directions, 
suggesting that the sensitivity of the cross-sections to roughness is independent 
of the actual value of the dielectric constant and vice versa. This, again, is a 
consequence of the linear approximation assumed. 
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Fig. 5-11. Variation of the VV cross-section and the co-polarized ratio as a function of 
dielectric constant and surface roughness as predicted by the model proposed by 
Dubois et al. (1995) [6]. The results shown are for 45 deg incidence angle and  
L-band.  

The Dubois et al. [6] expressions can be rewritten by expressing the radar 
cross-sections in decibels as follows 

 ( ) 10log ( ) ;xx xx xx xxdB A B kh C xx hh or vvσ ε= + + = . (5.3-12) 

Using the expressions in Eq. (5.3-10) and Eq. (5.3-11), we find that 
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Equation (5.3-12) can be written in matrix form as follows 
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Inverting this expression, we find that the solution for the Dubois et al. 
algorithm [6] is 
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The explicit inversion for the dielectric constant is 
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According to Dubois et al. (1995) [6], their algorithms is applicable to surfaces 
0 0with kh < 3.0  and 30 ≤θ ≤ 70 . The range of experimental values available 

during algorithm development is what places the upper limit on the surface 
roughness. From Eq. (5.3-15), we find the inversion for the surface roughness 
to be 

 ( ) ( ) ( ) ( )
( ) ( )

10

10 10

log 0.083 0.137 1.807 0.446log cos

3.345log sin 0.375log
vv hhkh dB dBσ σ θ

θ λ

= − + + −

− −
. (5.3-17) 

In the presence of vegetation, the co-polarized ratio is affected more than the 
absolute radar cross section. This means that we can expect the presence of 
vegetation to move a measurement mostly to the right in Fig. 5-11. The result is 
that the dielectric constant will be underestimated and the roughness will be 
overestimated. An obvious advantage of the Dubois et al. model is the simple 
inversion equations that are easily and efficiently implemented [6]. 

5.3.4 Algorithm Proposed by Shi et al. (1997) [7] 
A concern about the empirical approaches described so far is that these models 
do not take into account the shape of the surface power spectrum that is related 
to the surface roughness correlation function and correlation length. This is not 
consistent with theoretical surface backscattering model predictions: i.e., the 
backscattering coefficients are sensitive not only to soil moisture vm  and 
surface root mean square (rms). height h, but also to the shape of the surface 
roughness power spectrum. In addition, any empirical model developed from a 
limited number of observations might give site-specific results because of the 
nonlinear response of backscattering to the soil moisture and surface roughness 
parameters. This drawback might be reduced by using data from many different 
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sites, but it is very difficult to acquire data experimentally that would cover all 
possible types of surfaces and include the entire range of expected roughness 
and moisture conditions. 

Progress in theoretical modeling, such as the Integral Equation Method (IEM) 
(Fung et al., 1992 [10]), offers an alternative approach for the retrieval of soil 
moisture from radar data. Although the IEM model is valid for a wider range of 
surface roughness conditions when compared to other earlier theoretical 
models, the complexity of this model makes its application directly to the radar 
data to infer soil moisture and roughness parameters rather difficult. Since the 
number of independent radar measurements is usually limited, Shi et al. (1997) 
[7] developed a model by parameterizing IEM model-based numerical 
simulations for a wide range of surface roughness and soil moisture conditions. 

Shi et al. (1997) [7] examined many different combinations of polarizations of 
AIRSAR and SIR-C measurements at L-band to evaluate their effectiveness in 
the estimation of mv  and h. Several pairs of the measurements were found to be 
nearly equally effective when the AIRSAR and SIR-C quad-polarized data 
acquired over the Little Washita watershed were used. Two of these 
combinations, σ σhh vv  and σhh +σvv , provided the best fit with three 
different correlation functions used in the simulation. The following two 
equations were used to estimate soil moisture and a surface roughness 
parameter SR  from SIR-C and AIRSAR data (Shi et al., 1997 [7]): 

 
2

10 10
| | 110log ( ) ( )10logvv

vv vv
vv R

a b
S

α
θ θ

σ

   
= +   

    
 (5.3-18) 

and 

 
2 2
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10log ( ) ( )10logvv hh vv hh
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vv hh vv hh
a bα α α α

θ θ
σ σ σ σ

   +
= +   

+     
. (5.3-19) 

In these expressions, the surface roughness parameter SR = ( )kh 2W , k is the 
wave number, and h is the surface rms height. W is the roughness spectrum of 
the surface, αhh  and αvv  are the polarization amplitudes for HH- and VV-
polarization as in the small perturbation model that depends only on the 
dielectric constant of the soil ε  and the incidence angle θ , as was previously 
demonstrated. The coefficients that are functions of the angle of incidence in 
Eq. (5.3-6) and Eq. (5.3-7) are 
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. (5.3-20) 

To understand the inversion of this model better, we note that it is possible to 
rewrite Eq. (5.3-19) in the following form: 
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−+ +
= . (5.3-21) 

Figure 5-12 shows the behavior of the left-hand side of Eq. (5.3-21) as a 
function of dielectric constant. 

Conceptually, the inversion algorithm for the Shi et al. algorithm [7] works as 
follows. The measured co-polarized returns are used to calculate the right side 
of Eq. (5.3-21). This value is then used in Fig. 5-12, at the appropriate 
incidence angle, to “read” the dielectric constant. We found a look-up table 
approach to be the most efficient way to invert Eq. (5.3-21) for the surface 
dielectric constant. 

 
Fig. 5-12. The relationship between dielectric constant and the left hand side of 
Eq. (5.3-9) is a monotonically increasing function. The sensitivity of the Shi et al. 
algorithm is better at larger incidence angles.  
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5.4 Comparison of the Performance of Bare Surface 
Inversion Models 

To investigate the ability of the individual algorithms to take the effect of 
surface roughness into account during the inversion, we follow this assessment 
by applying all the algorithms to the same AIRSAR L-band data set of a 
sparsely vegetated (less than 5% cover) alluvial fan in Death Valley, California, 
acquired during the summer of 1993. The moisture content of the soil is 
extremely low this time of the year, with the result that one expects similar low 
soil moisture throughout the scene. If we invert for the surface dielectric 
constant, we would expect those areas covered with more rocks to have a 
slightly higher dielectric constant and the valley floor where salt deposits 
causes the dielectric constant to be quite high (typically > 40) because of the 
increase in salinity. The L-band total power image for this data set is shown in 
Fig. 5-13.  

The large alluvial fan is the Trail Canyon fan on the west side of Death Valley. 
The older, smoother surfaces are shown as the darker features; the rougher, 

 
Fig. 5-13. L-band total power image of the Trail Canyon alluvial fan on the west side of 
Death Valley, California. The radar illumination is from the left. The bright areas on the 
left in the images are salty soils in the valley floor. The darker areas on the fan surface 
represent older, smoother fan surfaces. Active stream channels are rougher, appearing 
bright in the image. The image was acquired in summer when the surfaces are 
uniformly dry and low dielectric constants are expected.  
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younger surfaces are brighter, indicating more backscatter. The valley floor is 
covered with a rougher, salty soil and appears very bright in the image, as does 
the active stream channels that are covered with rocks and small boulders. 

Figure 5-14 shows the inversion result for the dielectric constant for the small-
perturbation algorithm described in the previous section. The first obvious 
observation is that this result does not appear uniform on the alluvial fan, as 
expected. Instead, the darker areas in the total power image, corresponding to 
the smoother surfaces, have higher dielectric constants than the brighter, 
rougher areas. As mentioned before, the ratio of the cross-sections at hh and vv 
is a function of the surface roughness. The first-order small-perturbation model 
fails to take this into account and underestimates the dielectric constant of the 
rougher surfaces. Note that we have applied the small-perturbation model to the 

 
Fig. 5-14. Inversion results using the small-perturbation model algorithm. The algorithm 
results, as expected, are affected significantly by the changes in surface roughness, and 
consistently estimates lower values of dielectric constant for the rougher surfaces. Note the 
scale difference with the other figures following.  
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entire image even if the surface is rougher than that for which the small-
perturbation model is supposed to be applicable. This was done only to 
illustrate the shortcomings of the small perturbation model in terms of not 
taking into account the effects of surface roughness on the HH/VV ratio.  

Figure 5-15 shows the inversion result for the algorithm proposed by Oh et al. 
(1992) [8]. The algorithm also estimates higher dielectric constants on the 
smoother surfaces, but the difference is somewhat less pronounced than in the 
case of the small perturbation model. The inferred dielectric constant values are 
higher than that of the small-perturbation model (note the different scales), 
indicating that the Oh et al. algorithm does a better job of taking the effects of 
surface roughness into account. However, it is clear from the results that this 
algorithm still fails to completely separate the effects of surface roughness and 
dielectric constant. 

 
Fig. 5-15. Inversion results using the algorithm proposed by Oh et al. [8]. The algorithm 
results are affected significantly by the changes in surface roughness, and consistently 
estimate lower values of dielectric constant for the rougher surfaces.  
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Figure 5-16 shows the inversion results for the Dubois et al. algorithm [6]. This 
algorithm clearly does a better job than the others at removing the effects of 
surface roughness. It also clearly shows that the saline valley floor has a higher 
dielectric constant than the dry alluvial fan surface. The values of the dielectric 
constants calculated on the alluvial fan are consistent with dry soils that are 
covered by desert pavement. Also note that, although quite noisy, the inversion 
does indicate that the dielectric constant of the active stream channels is slightly 
higher than that of the fan surface, consistent with having more rocks and 
boulders and less exposed soil present in the active stream channels.  

Figure 5-17 contains the inversion results for the algorithm proposed by Shi et 
al. (1997) [7]. Note that this algorithm, in contrast to the small-perturbation 
model, and the Oh et al. [8] algorithm, reports lower dielectric constants on the 
smoother surfaces than the rougher surfaces. It also fails to report high 

 
Fig. 5-16. Inversion results using the Dubois et al. algorithm. The algorithm does well at 
removing the effects of surface roughness. It also does better at indicating the higher 
dielectric constants of the saline valley floor on the left.  
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dielectric constants for the saline valley floor. To understand the behavior of 
this algorithm in the presence of roughness, let us consider the right-hand side 
of Eq. (5.3-21), repeated below: 

 
( ) ( )

( )

( ) ( )

2 2
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2
| | | |
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| || |

vh

vh vh

avv hh vv hh
b b

vv hh vv hh

θ
θ θ

α α σ σ

α α σ σ

−+ +
=


.  

Very rough surfaces exhibit co-polarized radar cross-sections that are equal, 
while slightly rough surfaces exhibit larger VV radar cross-sections than HH. It 
is, therefore, clear that for these two measurements to become equal, the HH 
cross-section must increase faster than the VV cross-section with increasing 
surface roughness in order for the former to "catch up" and become equal to the 
VV cross-section. This is what the empirical Dubois et al. algorithm [6] shows. 

 
Fig. 5-17. Inversion results for the Shi et al. algorithm [7]. The algorithm seems to over-
compensate for roughness, inferring lower values on the smoother surfaces than the 
rougher surfaces. 
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To help understand the results in Fig. 5-17, let us assume (as demonstrated by 
the Dubois et al. results) that 

 ( ) ( )~ ; ~ ;x y
hh vvkh kh x yσ σ ≥ .  

The right side of Eq. (5.3-21) then becomes 
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Neither x nor y are functions of the radar angle of incidence. It follows, 
therefore, that one could perhaps make the Shi et al. algorithm [7] insensitive to 
surface roughness at a particular incidence angle; however, this would not be 
the case at different incidence angles. In practice, however, ( )vhb θ  changes 
slowly with incidence angle, so the sensitivity to roughness does not vary much 
with incidence angle. If we take the values found by Dubois et al. [6] for x and 
y and use the value of ( )vhb θ  at 45 deg angle of incidence, we find 

 
( ) ( )

( ) ( )
( )

( ) ( )
1.4 1.1

0.2 0.1
0.48(1.1 1.4)2

~
vh

vv hh
b

vv hh

kh kh
kh kh

khθ
σ σ

σ σ

−
+

++
= + .  

One should, therefore, expect the Shi et al [7] results to be slightly affected by 
surface roughness. 

The next point to investigate is whether this argument results in an over-
estimation of the surface dielectric constant in the presence of increased 
roughness, as Fig. 5-17 indicates. Note that the discussion above shows that the 
right side of Eq. (5.3-21) increases with increasing surface roughness. The left 
side of Eq. (5.3-21) is a monotonically increasing function of the surface 
dielectric constant. Therefore, increasing the right side of Eq. (5.3-21) 
(artificially) in the presence of surface roughness would, indeed, cause the 
algorithm to estimate a higher dielectric constant than the actual value. 

5.5 Parameterizing Scattering Models 
Most scattering models are far too computationally intensive to use in practical 
inversion algorithms for large images. This is especially the case when the 
answers are needed on relatively short timescales, such as “near real-time” 
applications that require soil moisture values as inputs. One way to make this 
problem more tractable is to use “parameterized” versions of the scattering 
model with simpler functions that are easily inverted. 
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To illustrate this process, let us postulate that we can approximate the measured 
radar cross-section σ ij  using σ̂ ij  as follows:  

 ( ) ( )ˆ10log ; , ,ij ij ij v ijA B f m C g kh i j h vσ = + + = . (5.5-1) 

Here we use generic functions f  and g  to denote our hypothesis about the 
influence of soil moisture and surface roughness on the radar cross-section. The 
subscript ij  refers to the polarization combination used to measure (or in this 
case simulate) the radar cross-section. We should point out that the coefficients 
in this function are all functions of the angle of incidence. An example of such 
a postulate was employed by Dubois et al. (1995) [6], who used the dielectric 
constant itself as f and the logarithm for g . We typically want to minimize the 
error between the measured and the estimated radar cross-sections in a least-
squares sense. This error for n measurements is given by 

 ( ) ( ) ( )( )2 2

1 1

ˆ10log 10log 10log
N N

ijn ijn ijn ij ij vn ij n
n n

E A B f m C g khσ σ σ
= =

= − = − − −∑ ∑ . (5.5-2) 

The solution that minimizes this error is 
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, (5.5-3) 

where the angular brackets  denote averaging over all measurements. The 
question then becomes which functions f  and g  would provide the best 
results. 

As an example, we use simulated data from the integral equation method at an 
angle of incidence of 45 deg. We vary the soil moisture from 1 percent to 40 
percent and the values of h from 0.1 cm to 3 cm. At L-band, this would 
correspond to values of kh that vary from 0.026 to 0.78. We then use different 
combinations of functions to parameterize the values predicted by the integral 
equation model. 

In the first case, we use f m( )v = mv . Several other researchers have shown a 
linear relationship between the logarithm of the radar cross-section and soil 
moisture (Quesney et al., 2000 [5]). For the function g, we follow Dubois et al. 
(1995) [6] and use the logarithm of kh. Using the data described above, we find 
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( )
( )

ˆ10log 20.17 15.33 13.63log
ˆ10log 18.81 25.33 10.99log
hh v

vv v

m kh

m kh

σ

σ

= − + +

= − + +
. (5.5-4) 

Note that the HH cross-section increases faster with roughness than the VV, 
explaining why the difference between HH and VV is observed to be smaller 
for rougher surfaces than for smoother ones. Conversely, the VV cross-section 
increases faster with an increase in soil moisture, again explaining why the 
difference between HH and VV is observed to be larger for wetter surfaces than 
for drier ones. Also, note that the coefficients for the roughness are very similar 
to those determined by Dubois et al. (1995) [6], as is shown in Eq. (5.3-13), 
even though their coefficients were determined from measured data rather than 
model simulations. 

To determine how well these parameterizations approximate the model, we 
compare the accuracies of the parameterized inversions. We start with 
simulating 1000 model predictions in which both the surface roughness and the 
soil moisture are treated as random variables. We then take these 1000 pairs of 
HH and VV cross-sections and invert them for soil moisture and surface 
roughness using the expressions for the two parameterizations. We then 
compare the results of the inversions to the actual random values of soil 
moisture and surface roughness that went into the simulation. 

To invert the parameterizations, we note that (see Eq. (5.5-1)) we can write 
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We can write this in matrix form as follows 
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which has the solution 
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. (5.5-7) 

Figure 5-18 shows the results for the inversion. The rms error in estimating the 
surface roughness is 0.25 cm; the rms error in soil moisture is 5.1 percent. 
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(a) 

(b) 
 

 

Fig. 5-18. Inversion results for the parameterization shown in Eq. (5.5-4) for (a) surface 
roughness and (b) soil moisture. The rms error in surface roughness is 0.25 cm; the rms 
error in soil moisture is 5.1 percent. 
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Note that particularly the soil moisture is often underestimated. Many of the 
lower soil moisture cases are inferred to have negative soil moistures. This is a 
consequence of the linear approximation used for the soil moisture in this 
parameterization. In fact, the same behavior is observed for the dielectric 
constant of drier surfaces when using the Dubois et al. (1995) [6] algorithm, as 
was pointed out by Wang et al. (1995) [33]. 

As a second case, we use for the function f the logarithm of the soil moisture 
and for g the logarithm of kh. This choice for the function f is an effort to take 
into account the fact that the radar cross-section is, in fact, a non-linear function 
of the soil moisture. In this case, we find 
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hh v

vv v

m kh

m kh

σ

σ

= − + +

= − + +
. (5.5-8) 

The results for this case are shown in Fig. 5-19. The rms error in surface 
roughness is 0.26 cm; the rms error in soil moisture is 6.4 percent. While we 
have removed the negative inferred soil moisture values, there is in the inferred 
results a larger spread, especially for larger soil moisture values. 

These two examples illustrate the difficulty in parameterizing non-linear 
functions with simple approximations. But is there a way to use these simple 
functions (which are easy to invert) to achieve better accuracy? The answer lies 
in using smaller ranges of moisture and surface roughness when making the 
approximations. As an illustration, let us assume we want to use the first 
approximation where we use a linear approximation for the soil moisture and a 
logarithmic approximation for the surface roughness. We shall assume that we 
want to have an accuracy of 0.1 cm or better for the surface roughness and an 
accuracy of 1 percent or better for soil moisture over the ranges we assumed 
before. We can achieve these accuracies if we are willing to break the ranges up 
into smaller segments. An example is shown below. For 0.01 0.1vm≤ ≤ : 
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Fig. 5-19. Inversion results for the parameterization shown in Eq. (5.5-8) for 
(a) actual surface roughness and (b) actual soil moisture. The rms error in 
surface roughness is 0.26 cm; the rms error in soil moisture is 6.4 percent. 
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For the range 0.1 0.2vm≤ ≤ : 
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Finally, for the range 0.2 0.4vm≤ ≤ : 
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Note that these boundaries were not optimized; the actual segments were 
chosen to illustrate the point. The question now is how to invert the 
measurements using these nine subspaces. We simply use the original set of 
expressions in Eq. (5.5-4) as a starting point. Based on the results of the 
inversion, we then use the subspace wherein the initial inversion result fall. We 
then use the updated set of expressions to perform the inversion. We find that a 
small number of iterations are generally required to find the best results. In our 
test, fewer than 10 iterations are typically required for the result to stabilize. 
The iterations are performed using the results of the previous calculation to 
decide on which of the nine expressions to use for the next iteration. Once the 
results change less than a pre-defined amount, we stop the iterations. The 
results of this scheme are shown in Fig. 5-20. This clearly represents a 
significant improvement over the single set of expressions. 



   

  
  

  
 
 

 

(a)  

 
(b)  

 

Fig. 5-20. Inversion results for the parameterization that breaks the data 
space into nine smaller spaces showing (a) inferred surface roughness and 
(b) inferred soil moisture. The rms error in surface roughness is 0.26 mm, 
and the rms error in soil moisture is 0.67 percent. 
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The discussion in this section illustrates the difficulties with parameterizing 
complicated non-linear expressions with simpler ones. While the inversion 
might be much more efficiently performed numerically using simple 
expressions, it is not easy to find a parameterization that is valid over a large 
range of geophysical variable values. Once we start adding more expressions to 
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better approximate sub-ranges of the geophysical parameter, the advantages 
become less clear. With computer capabilities rapidly increasing, direct 
numerical inversion of the forward radar model is becoming more feasible. We 
shall explore this in more detail below. 

5.6 Inverting the IEM Model 
The discussion in the previous section illustrates the difficulty of 
parameterizing non-linear models, such as the IEM, over a large range of 
parameters, which, in our case, includes surface roughness, soil moisture, and 
the angle of incidence. The main advantage of parameterizing such a model is 
the ease and speed with which the parametrized expressions can be inverted. 
The price we pay is that the inversion is less accurate. 

As computer capabilities grow, however, it might become feasible to “invert” 
models like the IEM using some merit function to describe how different a 
simulated and observed result are and to then adjust the input parameters of the 
simulation to minimize this difference. The obvious advantage is that we no 
longer have to rely on functions that have a limited range of accuracy. The 
disadvantage is that the inversion might be much slower than a parameterized 
case. 

To illustrate, we will look at two different approaches. The first approach uses a 
simple cube of pre-calculated IEM simulations for each polarization 
combination that is stored on a computer for later use. The inversion then reads 
the cube of data and uses the values in the cube to estimate the geophysical 
parameters based on the observed radar cross-sections. The second approach 
uses the downhill simplex optimization approach to minimize the error between 
the simulated data and the observed radar cross-sections. These two approaches 
will be discussed separately below. 

For a merit function, we define the rms error between the measured and 
observed values as follows: 

 ( ) ( )2 2
hh obs hh sim vv obs vv simσ σ σ σΕ = − + − , (5.6-1) 

where the subscripts obs and sim refer to the observed and simulated values, 
respectively. The error function can be extended to include more polarization 
combinations by simply adding terms inside the square root. 

5.6.1 Using a Data Cube 
The inversion using a data cube utilizes a previously calculated cube of values 
for each of the HH and VV radar cross-sections. The three parameters making 
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up the cube are the surface roughness, the soil moisture, and the angle of 
incidence. For our illustration, we use a constant ratio of the surface roughness 
and the surface correlation length. Of course, one could use a four-dimensional 
data set where the correlation length is explicitly included as one of the 
parameters. We only have to calculate this data cube once; we can then store 
the data in a file for later use. For our purposes, we used a cube that is 
calculated at intervals of 0.5 deg in the angle of incidence, and 512 values in 
each of the surface roughness and the soil moisture. We allowed the soil 
moisture and surface roughness values to range over the same values as in the 
previous section. 

When inverting the data, we first calculate the error for the entire data space, 
using both the HH and VV data cubes. We then select the point where the error 
is the minimum in the data cube, and interpolate the neighborhood of that point 
to a finer grid. We then find the minimum error on this finer grid, and report the 
surface parameters for this point as the inferred ones. The results are shown in 
Fig. 5-21. The rms error for the surface roughness is 0.0009 cm; and the rms 
error for the soil moisture is 0.06 percent. 

Considering the results in Fig. 5-21, we notice that the soil moisture error is 
larger for the larger absolute values of the soil moisture. This can be seen by the 
larger spread of the values in the upper left side of the figure on the right in Fig. 
5-21. This is a consequence of the fact that the radar cross-sections saturate as 
the moisture values become larger. In that case, a small error in roughness 
estimation leads to a larger error in soil moisture. Everything considered, 
however, these results are excellent. 

The results in Fig. 5-21 were calculated for a fixed angle of incidence of 40 
deg. We repeated the experiment by randomly varying the angle of incidence as 
well as the roughness and soil moisture values. When inverting the simulated 
data, we assume we know the angle of incidence. We then interpolate linearly 
between the two closest planes in the HH and VV data cubes to generate two 
data sets for that angle of incidence. These data sets are then used to invert the 
simulated data. The results are shown in Fig. 5-22. 

Very similar results are found when using the downhill simplex method to 
invert the IEM model. Both these methods provide excellent results, but they 
come at the price of increase computational complexity. Even the cube method 
takes about an order of magnitude longer to invert than the simple 
parameterized models. 



Applications: Measurement of Surface Soil Moisture 249 

 

(a) 

 
(b) 

 
Fig. 5-21. Inversion results using a data space with 512 
values for each of the (a) surface roughness and (b) soil 
moisture. The rms error in surface roughness is 0.009 mm, 
and the rms error in soil moisture is 0.06 percent. The 
results are shown for 5000 simulations, with random 
roughness and moisture values at a fixed angle of 
incidence of 40 deg.  
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(a) 

(b) 

 

Fig. 5-22. Inversion results using a data space with 512 values for 
each of the (a) surface roughness and (b) soil moisture. The rms 
error in surface roughness is 0.03 mm, and the rms error in soil 
moisture is 0.16%. The results are shown for 5000 simulations with 
random roughness and moisture values and random incidence 
angles between 10 and 60 deg. 
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5.7 Scattering from Vegetated Terrain 
Estimating soil moisture from vegetated terrain is significantly more 
complicated than the bare surface case. Unfortunately, however, much of the 
earth’s surface is covered by some vegetation, so the bare surface approach has 
limited application. Here we shall discuss briefly how models for 
backscattering from vegetated terrains are constructed, and then show how 
these models can aid in estimating soil moisture in vegetated terrain. 

Here we shall illustrate the modeling approach using a single layer vegetation 
model. This type of model would be used to describe scattering from pasture 
land, grasslands, most agriculture crops and shrubs. To model forest canopies, 
one or two more layers of vegetation would be added as described by Durden et 
al. (1989) [34]. 

The vegetation layer will be modeled assuming that there are two interfaces to 
consider (see Fig. 5-23): 1) vegetation layer, and 2) the underlying ground 
surface. The vegetation layer is comprised of primary scatterers, and possibly 
secondary scatterers. For example, the primary scatterers may be stalks in the 
case of corn, while the secondary scatterers may be the leaves. In the case of 
pasture, we will typically use only primary scatterers. 

The vegetation layer has a thickness b . Each component of the vegetation 
(primary and secondary scatterers) is characterized by a dielectric constant 
(ε εp s, ) , radius (a ap s, ) , length (l lp s, ) , density (ρ ρp s, )  and a probability 

density function ( p pp (θ φc c, ,) s (θ φc c, )  ) describing the statistical distribution 
of the orientation of the cylinders used to represent the component. The ground 
surface is characterized by a dielectric constant εg , rms. height h , correlation 

length lg . The small-scale slopes ( sl ) describe the micro-roughness of the 

 
Fig. 5-23. The vegetation is assumed to consist of a layer of randomly oriented scatterers. 
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surface and are related to the rms. height and the correlation length of the 
ground surface, which is assumed to have an exponential correlation function. 

Central to this type of modeling is the bistatic scattering matrix of a dielectric 
cylinder. Other types of scatterers often found in vegetation modeling include 
dielectric disks which are used to model larger flat leaves. Appendix B lists the 
expressions for scattering from a dielectric cylinder with arbitrary orientation. 

There are several possible scattering paths to consider (see Fig. 5-24): 1) direct 
backscattering from the vegetation elements, 2) specular scattering at the 
ground surface, followed by bistatic scattering at the vegetation element, 3) 
bistatic scattering at the vegetation element, followed by specular scattering at 
the ground surface, and 4) backscattering from the underlying ground surface. 
For each path, the wave incident on a scatterer in the vegetation traveled 
through the vegetation between the scatterer and the radar before it reaches the 
scatterer, and suffered some attenuation as a result. Also, because the 
vegetation elements are assumed to be longer than the wavelength, the 
scattering centers in the different paths will in general be separated by several 
wavelengths. This implies that any phase relationships between the different 
scattering paths will be uniformly random, meaning that the resulting scattered 
powers will add incoherently. The exception is cases 2 and 3, which are exactly 
the same path, but in opposite directions. In that case, there will be a 
deterministic phase relationship between the two paths, which means the 
signals will add coherently. We shall now discuss each of these scattering terms 
separately. 

 

iθ

iθ

iθiθ

b

2

z

3

4 1

Fig. 5-24. Scattering paths to consider for a single layer vegetation model.  
See the text for details. 
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5.7.1 Scattering from the Vegetation Layer (Scattering Path 1) 
The next step is to calculate the scattering coefficients from a layer randomly 
oriented scatterers. We shall model this by assuming that the scatterers are 
oriented according to a statistical distribution function that is given by 
p (θ φc c, ) . By definition, 

 ( )
2

0 0
, sin 1c c c c cp d d

π π
θ φ θ θ φ =∫ ∫  (5.7-1) 

Our interest is in calculating the backscattering radar cross-section of this layer, 
as well as the transmission coefficient for this layer. The latter is important in 
calculating the reflection from the underlying ground surface after the signals 
have propagated through the vegetation layer. 

First, let us consider a scatterer that is at a height z above the ground surface 
inside the vegetation layer as shown in Figure 5-24. The wave incident on this 
scatterer has already propagated a distance 

 ( )
cos i

b zd z
θ
−

=  (5.7-2) 

through part of the layer before reaching the scatterer. The strength of the 
electric field incident on this scatterer is therefore 

 
( )

( )
( )

0

0

h

v

isc inc incb z
h h h

b zv v v

E E Ee
b z

E E Ee

τ

τ

− −

− −

       = =  −              
α  (5.7-3) 

Here the superscript isc refers to the wave incident on the scatterer, while inc 
refers to the wave incident on the vegetation layer. Also, 

 ( )
( )

cos

e
p

p
i

b z
b z

κ
τ

θ

−
− =  (5.7-4) 

The extinction coefficients are average extinction coefficients as defined in 
Appendix B and takes into account the average extinction between the scatterer 
and the top of the layer. This wave is now scattered by the scatterer. In the 
backscatter direction, the scattering matrix of the scatterer is (see Appendix B) 

 ( ) ( ), , , , , , , ,s s s s i i i ii
i i s i s i c c ic ic sc sc

s s s s i i i i
θ φ θ θ φ φ θ φ θ φ θ φ

′ ′ ′ ′⋅ ⋅ ⋅ ⋅   
= = =    ′ ′ ′ ′⋅ ⋅ ⋅ ⋅   

h h h v h h v h
S S

v h v v h v v v
 

  (5.7-5) 
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After being scattered, the wave again propagates through the vegetation layer to 
the top before returning to the radar while being attenuated as shown in 
Eq. (5.7-3). Adding all these terms together, we find the scattering matrix of the 
scatterer, as seen from outside the layer, as 

 , ,  , ,  c , , z  α b z S i , ,  ,  s , , c α b z (5.7-6)           Sveg           i i s s  c         i s  c      

The radar cross-section is derived from the elements of the covariance matrix, 
which for the backscatter case, are defined by 

 S S* * * 2S S  
 hh hh hh  hv S Shh vv  
 2S S* * 2S S*  2S S  (5.7-7) 

hv hh hv hv hv vv   
 S S* 2 S S* S S*
  hh 
 vv vv hv  vv vv veg 

 

,  z  

 expression on the right in Eq. (5.7-6), we find 

Σ     i , ,  s  i , s    c , c    ,veg i i 

We note that if we expand the
that we can write the covariance matrix as 

,              zΣ     , ,      , , , z Κ b  zΣ , ,  , ,  ,  Κ b  (5.7-8)veg i i s i s i c c veg i i s s c c 

where 

2 b z e h  0 0  K 0 0  
  b z       

hh (5.7-9)  h     v b z Κ    0 e 0  0 Khvz   0  
 2 v b z  

 0 0 Kvv 
 

 0 0 e 
  

The average backscatter covariance matrix is found by calculating the ensemble 
average for the scatterer over all possible orientations. Note that only the inner 
matrices on the right-hand side of Eq. (5.7-6) and Eq. (5.7-9) are functions of 
the orientation of the scatterer. The average covariance matrix is then 

2  
  
 , ,  z
  Σ  i , ,  s    s  , c , , z p c Σ   veg   i  i ,      veg i i  i c

0 0  

     ,  sin  c d d cc      c

(5.7-10) 

Similarly, the average optical depth is found from 

b    2   
s    2 b z   Im S  , ,  ,  , ,      , sin     d d d           pp      pp  i i  i i  c c   c c c c ccos  ki 0z 0 0  

(5.7-11) 
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where ( )s zρ  is the density of the scatterers in 3scatterers m at a height z above 
the ground. The final step is now to integrate the contribution from all the 
scatterers in the layer. This is gives 

 ( ) ( ) ( )
0

, , ,
b

veg i i veg i i sz z dzθ φ θ φ ρ= ∫Σ Σ  (5.7-12) 

From Eq. (5.7-8) we can show that the average covariance matrix has the form 
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  (5.7-13) 

If we assume the density of the scatterers to be uniform in elevation above the 
ground surface, then only the K terms are functions of z, and we find 
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  (5.7-14) 

Here we used the short-hand notations 

 ;e e
hm h vm vb bτ κ τ κ= =  (5.7-15) 

which represent the total vertical optical path depths of the layer for the two 
polarizations. The radar cross-section is defined as 

 ( )4 ,veg veg i iπ θ φ=σ Σ  (5.7-16) 
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At this point it is instructive to look at the behavior of the vegetation layer in 
two extreme cases. First, when the optical depth is large, the second terms in 
Eq. (5.7-14) vanish, and the total scattering (apart from the strength of the 
covariance matrix terms) approach a constant value. For example, in the case of 
HH scattering, this constant value can be written as 

 *cos
4

4
s i

hh hh hh
hm

b S Sρ θ
σ π

τ
=  (5.7-17) 

In the other extreme, the layer optical depth is small enough that we can replace 
the exponential by a Taylor series expansion. In that case, the radar cross-
section becomes 

 * *cos 4
4 4

4 cos
s i hm

hh hh hh s hh hh
hm i

b S S b S Sρ θ τ
σ π π ρ

τ θ
= × =  (5.7-18) 

To first order, the backscatter from the layer is directly proportional to the 
density of the scatterers and the thickness of the layer. 

All these expressions involving scattering from cylinders are functions of the 
dielectric constant of the cylinder. We used the expressions reported by Ulaby 
and El-Rayes (1987) [35] for the vegetation dielectric constant, which is given 
by 

 v r fw f b bv vε ε ε ε= + +  (5.7-19) 

In this expression, εr  is the non-dispersive residual part of the dielectric 
constant. They report that in terms of the soil volumetric water content Mv , 
this quantity is given by 

 21.7 3.2 6.5r v vM Mε = + +  (5.7-20) 

The dielectric constant of free water is 

 18754.9
1 18

sal
f j

j f f
σ

ε = + −
+

 (5.7-21) 

Where f is the frequency in Gigahertz, and salσ  is related to the salinity of the 
water S (measured in parts per thousand on a weight basis) by  

 20.16 0.0013sal S Sσ = −   (5.7-22) 

The dielectric constant of bound water is 
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+
 (5.7-23) 

The volume fraction of free water is 

 ( )0.82 0.166fw v vv M M= +  (5.7-24) 

And the volume fraction of vegetation-bound water is 
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 (5.7-25) 

We shall express our simulations in terms of the vegetation volumetric moisture 
vM  and use the expressions above to calculate the dielectric constant. 

5.7.2 Backscatter from the Underlying Ground Surface (Scattering 
Path 4) 

The electromagnetic wave incident upon the ground surface travels through the 
entire vegetation layer before reaching the ground surface. As it does so, it is 
attenuated according to 
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 (5.7-26) 

This wave is incident upon the ground element. To calculate the scattering from 
this element, we shall assume that the scattering from the ground surface can be 
described by the small perturbation model, in which the scattering matrix for an 
untilted ground surface is given by 
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where 

 ( ) ( )2 2cos , 2 sinhh g i hh g i iS k h W kθ α ε θ θ′ = , (5.7-28) 

 ( ) ( )2 2cos , 2 sinvv g i vv g i iS k h W kθ α ε θ θ′ = , (5.7-29) 

and 
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The roughness spectrum W  given in Eq. (5.7-32) is that of a surface with an 
exponential correlation function with a correlation length gl . 

After scattering from the ground surface the wave travels again through the 
vegetation layer before returning to the radar, suffering attenuation given by Eq. 
(5.7-26) in the process. The covariance matrix of the ground layer is then 
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This expression is true if we use the first order small perturbation model to 
represent the ground scattering. If higher order approximations are included, 
additional terms appear in this matrix, particularly in the cross-polarized 
element. 

5.7.3 Double Reflection Scattering (Scattering Paths 2 and 3) 
The next term to consider is the double reflection from a cylinder to the ground 
surface and back to the radar. This term involves calculating the product of the 
bistatic scattering matrix of the vegetation layer and the specular scattering 
matrix of the ground layer. Here we shall only consider the case of a flat ground 
surface. For a tilted surface, additional terms need to be considered; please see 
van Zyl (1993) [36] for details. 

Consider a scatterer at a height z b< inside the vegetation layer as shown in 
Figure 5-24. The incident wave is scattered as shown towards the ground 
surface where it is reflected in the specular direction after which it propagates 
through the entire vegetation layer back to the radar. The opposite path also 
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needs to be considered. In this case, the incident wave first travels through the 
entire vegetation layer to reach the ground surface where it is reflected in the 
specular direction. The reflected wave then propagates through part of the layer 
before it is scattered by the scatterer back in the direction of the radar. As the 
scattered wave propagates back to the radar, it again travels through part of the 
vegetation layer before reaching the radar. 

Let us first consider the path that interacts with the ground surface first. It is 
well known that the specular ray for a facet characterized by a surface normal 
n  and light incident along a unit vector k i  is given by 

 ( )2i i= − ⋅r k k n n  (5.7-34) 

Note that r  as given in Eq. (5.7-34) must be expressed in the forward scattering 
alignment coordinate system. The scattered wave propagation vector in the 
backscatter alignment coordinate system that we are using is the negative of r . 
At the ground surface, the incident and scattered propagation vectors are 
therefore 

 ( )1 1; 2igs i sgs i i= = − = ⋅ −k k k r n k n k  (5.7-35) 

The wave that is reflected in the specular direction from the ground is now 
incident upon the cylinder representing the vegetation, from which the scattered 
wave has to propagate back to the radar. This bistatic scattering at the cylinder 
is therefore characterized by incident and scattered wave propagation vectors 

 ( )1 12 ;icb i i scb i= = − ⋅ =k r k n k n k k  (5.7-36) 

where the subscript  is added to indicate that these refer to the cylinder. Note 
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Figure 5-25 shows the scattering paths for specular scattering at the ground 
followed by bistatic scattering at the cylinder and vice versa. 

c
that Fig. 5-24 shows specular reflection at the layer inside the vegetation. This 
shows the propagation paths, and does not mean there is specular reflection at 
the cylinder itself. Since the cylinder may have any orientation, in general we 
have bistatic scattering at the cylinder.  

Finally, for the case of bistatic scattering at the cylinder, followed by specular 
reflection at the ground, these are 
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For the ground surface, the bistatic scattering matrix describing the specular 
reflection can be written as 
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g i i s s

v g i

R
e

R
θ

ε θ
θ φ θ φ

ε θ
−

 
 =
 
 

R  (5.7-38) 

The two Fresnel reflections coefficients are 

 ( )
2
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,

cos sin

i g i
h g i

i g i

R
θ ε θ

ε θ
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 (5.7-39) 

and 

 ( )
2

2

cos sin
,

cos sin

g i g i
v g i

g i g i

R
ε θ ε θ

ε θ
ε θ ε θ

− −
= −

+ −
 (5.7-40) 

The scattering matrix for the case that involves scattering at the ground first, 
can be written as 

 
Fig. 5-25. Scattering paths for the double reflection cases. 
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 ( ) ( ) ( )2
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hhc hvc

gc gb b
vhc vvc

S S
b z z b

S S
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Sα α R α  (5.7-41) 

The number 2 in the subscript refers to the scattering path in Fig. 5-24. The 
matrix in the middle of the right-hand side of these expressions is needed to 
take into account that each of the other matrices is described in the backscatter 
alignment system. The term involving scattering at the cylinder first is 

 ( ) ( ) ( )3
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b b
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cg g b b
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S S
b z b z
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Sα R α α  (5.7-42) 

Each of the matrices describing the scattering at the cylinder in Eq. (5.7-41) and 
Eq. (5.7-42) is of the form (see Appendix B) 
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  (5.7-43) 

where  or y b b= ' .  

For all these cases, we now need to find the elements of the transformation 
matrices shown in Eq. (5.7-43). We do this by defining local and global 
coordinate systems as described before using the propagation vectors derived 
previously for the interaction mechanisms. We shall describe each case 
separately below. 

For the case where the wave first interacts with the ground surface, Eq. (5.7-34) 
describes the direction in which the specularly reflected energy will travel after 
interacting with the surface. The elements of the transformation matrices for 
this case are therefore (see Appendix B for the methodology of how to derive 
these expressions) 

 
( ) ( )( )

( ) ( )( )( )
2 2 22

2

1 1 2

i i i
igs igs

i i i

 ⋅ + ⋅ ⋅ − ⋅ ⋅ ′⋅ =
− ⋅ − ⋅ − ⋅ ⋅

c z k z k c k z c z
h h

k z k c k z c z
, (5.7-44) 
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, (5.7-45) 
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and 
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where c is defined in Eq. (B.1). 

For the case where the wave first scattered off the cylinder before reflecting in 
the specular direction from the ground, the propagation vectors are given by Eq. 
(5.7-37). The elements of the transformation matrices in this case are 

 3 3 2 2igs igs sgs sgs′ ′⋅ = ⋅h h h h , (5.7-48) 

 3 3 2 2igs igs sgs sgs′ ′⋅ = ⋅v h v h , (5.7-49) 

 3 3 2 2sgs sgs igs igs′ ′⋅ = ⋅h h h h , (5.7-50) 

and 

 3 3 2 2sgs sgs igs igs′ ′⋅ = ⋅v h v h . (5.7-51) 

The two signals propagating along the inverse paths add coherently. The total 
scattering matrix for this case is therefore 

 2 3gc cg= +S S S . (5.7-52) 

Performing the matrix multiplications shown in Eqs. 5.7-41 and 5.7-42, we find 
the elements of the scattering matrix to be 
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. (5.7-53) 

Here we used the short-hand notation 
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. (5.7-54) 

Reciprocity dictates that the primed and unprimed scattering matrices are the 
same. Therefore, 
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. (5.7-55) 

Note that for both hhS  and vvS  the terms describing the attenuation is simply 
twice the attenuation through the entire vegetation layer, and does not depend 
on where inside the layer the scatterer resides. For the cross-polarized term, the 
attenuation terms does depend on where inside the layer the scatterer is. This is 
a consequence of the fact that for the cross-polarized terms, the incident and 
scattered waves have orthogonal polarizations. For part of the path, therefore, 
the one polarization suffers attenuation, while for the rest of the path, the other 
polarization is attenuated. The terms that are dependent on z therefore is a 
function of the difference in attenuation between the two polarizations as 
shown in Eq. (5.7-55). We now have to form the covariance matrix 
corresponding to this scattering matrix. This is 
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  (5.7-56) 

The subscript db refers to the double reflection suffered by the signals. Next, 
we average this matrix over all scatterer orientations, which gives 

( ) ( ) ( )
2

0 0
, , , , , , , , , sindb i i db i i s i s i c c c c c c cz z p d d

π π
θ φ θ φ θ θ φ φ θ φ θ φ θ θ φ   = = =   ∫ ∫Σ Σ  

  (5.7-57) 

Finally, we have to add the contributions from all the layers within the 
vegetation volume: 
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The radar cross section for this term is then 

 [ ] ( )4 ,db db i iπ θ φ =  σ Σ  (5.7-59) 

From Eq. (5.7-55) – (5.7-58), we find that if the density of scatterers is constant 
throughout the vegetation layer, the results are: 
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  (5.7-60) 

Note that when the attenuation coefficients for the two polarizations are small, 
the expressions become 
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  (5.7-61) 

5.8 Simulation Results 
In this section we present some results of a single layer vegetation model. To 
keep things simple, we will assume that the vegetation is grass-like, so that we 
can represent the vegetation elements with thin dielectric cylinders. We shall 
first discuss some general results, and then concentrate on the effects of soil 
moisture on the overall observed radar cross-section. 

Putting the results of the previous Section together, we write the total 
covariance matrix of the vegetated layer as: 

 [ ] [ ]tot veg db g   = + +   σ σ σ σ  (5.8-1) 

To illustrate the model, we assume the parameters for the vegetation layer and 
soil surface as shown in Table 5-1. We shall now discuss various different 
simulations to illustrate the effect of different vegetation parameters on the total 
scattering. 

Table 5-1. Parameters used in simulating the backscatter from a vegetation layer. 

Parameter Value 
Cylinder radius 2 mm 
Cylinder length 50 cm 
Cylinder density 900 cylinders/cubic meter 
Vegetation layer height 50 cm 
Orientation pdf Cosine squared around vertical 
Surface rms height 1 cm 
Surface correlation length 15.2 cm 
Radar wavelength 24 cm 
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5.8.1 Effect of the Angle of Incidence 
Figure 5-26 shows the HH scattering cross-sections for the three scattering 
mechanisms, plus the total scattering cross-section, which is the sum of the 
three individual scattering mechanisms, as a function of the angle of incidence. 
We notice that for angles of incidence less than 30 deg, the HH scattering is 
dominated by direct backscattering from the ground. For angles between 30 and 
about 55, double reflections dominate the HH return, while for angles larger 
than about 55 deg, the scattering is dominated by the vegetation layer. 

Fig. 5-27 shows the same plots, this time for the HV terms. Direct scattering 
from the ground is absent because we chose to model the surface scattering 
with a first-order small perturbation model, which predicts no cross-polarized 
return. In the cross-polarized return, we note that double reflections dominate 
for angles <30 deg, while vegetation scattering dominates for larger angles. 

The situation is quite different for the VV case shown in Fig. 5-28. For angles 
less than 35 deg, the scattering is dominated by the underlying ground surface 
scattering. For angles larger than 35 deg, the vegetation scattering dominates. In 
the case of VV, double reflection scattering is typically much less than the other 
two, and does not really contribute much to the overall scattering. 

 
Fig. 5-26. Backscatter cross-sections for the three different scattering  

mechanisms as a function of angle of incidence at HH polarization. 
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The specifics of which mechanism dominates is obviously a function of the 
parameters used to characterize the vegetation and the soil. These results do 
point out an important point to keep in mind when analyzing scattering from 
vegetated surfaces, however. The dominant scattering mechanism may be 
different for the different polarizations. Focusing on an angle of incidence of 
40 deg in Fig. 5-26 – Fig. 5-28, we note that the dominant scattering 
mechanism at HH is double bounce reflections, while at VV and HV the 
scattering from the vegetation canopy dominates. 

5.8.2 Effect of Cylinder Radius 
We shall evaluate the effect of the cylinder radius by fixing all other parameters 
at the values given in Table 5-1, and also fix the angle of incidence at 40 deg. 
We then vary the cylinder radius in our simulations. The results are shown for 
the different polarization combinations in Fig. 5-29 for the vegetation layer 
scattering only. From this calculation it is clear that larger cylinder sizes scatter 
much more efficiently and as a result the vegetation scattering contribution 
increases rapidly with increasing cylinder size. For larger cylinders, the 
increase in scattering is slower, so the rate of increase of the vegetation 
scattering also decreases. 

 
Fig. 5-27. Backscatter cross-sections for the three different scattering  

mechanisms as a function of angle of incidence at HV polarization. 
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Fig. 5-28. Backscatter cross-sections for the three different scattering  
mechanisms as a function of angle of incidence at VV polarization. 
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Fig. 5-29. Scattering from the vegetation layer as a function of the cylinder 
radius. For thin cylinders, there is a dramatic increase in scattering as the 
cylinder radius increases. 
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Figure 5-30 shows the scattering at HH polarization for all the scattering 
mechanisms. For very thin cylinders, the surface scattering dominates. As the 
cylinders become thicker, the double reflection term starts to dominate as the 
ground term is attenuated. As the cylinder radius increases further, the double 
reflection term also decreases, and the vegetation scattering becomes dominant. 
Not only is the vegetation scattering itself increasing, but the extinction through 
the vegetation layer is also increasing, as shown in Fig. 5-31. 
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Fig. 5-30. The scattering contributions of the different scattering mechanisms as a 
function of cylinder radius. Only the HH terms are shown. See the text for discussion. 
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Fig. 5-31. Extinction as a function of cylinder radius. The extinction generally  
increases as the cylinders get thicker. 

5.8.3 Effect of Cylinder Moisture 
The cylinder moisture determines the cylinder dielectric constant as described 
in Section 5.7.1. We now fix all the parameters to their values in Table 5-1 in 
Section 5.8, and also fix the angle of incidence at 40 deg. 

Panel (a) in Fig. 5-32 shows the vegetation scattering as a function of the 
cylinder water content. As expected, the radar backscatter increases as the 
cylinder water content (and hence the dielectric constant) increases. The higher 
dielectric constant means a larger dielectric contrast between the cylinder and 
the air, resulting in more efficient scattering. The stronger scattering at larger 
dielectric constant values (or equivalently higher cylinder moisture values) also 
leads to higher extinction as shown in the panel (b) in Fig. 5-32. 

5.8.4 Radar Vegetation Index 
We pointed out in Chapter 3 that the radar vegetation index is an indicator of 
the randomness observed in the scattering, similar to that measured by the 
entropy. We shall discuss this aspect next. The amount of vegetation is often 
characterized by the so-called vegetation water content. This quantity is the 
amount of water, typically expressed in kilograms per square meter, contained 
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(a) 

 
(b) 

 
Fig. 5-32. Vegetation scattering (a) and extinction coefficient (b) as a 
function of the cylinder moisture content. Both quantities increase rapidly 
with increasing cylinder moisture. 

in a column of vegetation with a surface area of 1 square meter. The example 
we analyzed above would translate to about 1.24 kg/m2. Unfortunately, the 
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vegetation water content is a function of many vegetation parameters, namely 
the radius, length, and density of cylinders, the depth of the vegetation layer, 
and volumetric moisture of the cylinders. 

Figure 5-33 shows the calculated radar vegetation index as a function of the 
vegetated water content for a number of different cases. The parameters for the 
different cases are shown in Table 5-2. 

First, we notice that for all cases the RVI increases as the vegetation water 
content increases. This is the result of the fact that at higher vegetation water 
contents, the scattering from the vegetation layer itself dominates, resulting in a 
higher RVI. The details differ between the cases however. 

Cases 1 and 2 are identical except for the vegetation moisture content. This 
quantity is used to calculate the dielectric constant of the vegetation as 
mentioned earlier. In each of these two cases, we keep the vegetation 
volumetric moisture constant, (and as a consequence the dielectric constant of 
the vegetation will be constant) and vary the number of cylinders per unit 
volume to increase the vegetation water content. Here vegetation water content 
refers to the water content of the layer, not to the moisture in each individual 
cylinder. These two cases would represent increasing amounts of vegetation 
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Fig. 5-33. Radar vegetation index as a function of the vegetation water content  
for various scenarios. See the text for discussion. 
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Table 5-2. Parameters for several cases of vegetated water content. 

Case Radius Layer Height Density Vegetation Moisture Soil Moisture  
1 1 mm 1 m Varies 0.5 0.2 
2 1 mm 1 m Varies 0.2 0.2 
3 2 mm 1 m Varies 0.2 0.2 
4 2 mm 0.5 m Varies 0.2 0.2 
5 2 mm 1 m 1000 Varies 0.2 
6 2 mm 1 m 1000 Varies 0.3 

elements such as one would encounter during a growing season, although the 
constant vegetation water content and layer height would be artificial. In the 
case of the lower vegetation moisture (Case 2) the RVI increases slower than 
the higher vegetation water content case. This is a consequence of two factors. 
First, the higher moisture case means the dielectric constant of the cylinders is 
higher, leading to stronger scattering by the vegetation, and hence larger RVI 
values, as discussed earlier. At the same time, the higher dielectric constant also 
means higher attenuation through the vegetation because of the larger 
extinction, which decreases the surface related terms, and leads to higher RVI 
values. 

Next, we compare cases 2 and 3. The only difference in this case is that for case 
3 the individual cylinders are larger than for case 2. As shown before, larger 
cylinders scatter more efficiently, and hence the vegetation term is relatively 
speaking larger than the others, leading to a larger RVI. At the same time, the 
more efficient scattering means a larger extinction through the vegetation layer, 
decreasing the contribution from the ground related terms (see Fig. 5-31). This 
also increases the RVI, so that case 3 generally has larger RVI than case 2. 

Case 4 is the same as case 3, except that the vegetation layer is half the height. 
This means that for the same vegetation water content, case 4 has double the 
cylinders that case 3 would have. The two RVI curves are identical. The reason 
for this is clear when the equations from the previous Section are considered. In 
all cases, we find the product of the density and the layer height. Therefore, if 
all other parameters are held constant, as long as this product is the same, we 
would expect the same result. 

The cases discussed so far all have constant vegetation water content. For a 
given vegetation canopy over short time scales, the vegetation elements do not 
change their size and number, and the layer height can be considered constant. 
However, due to changing soil moisture and other environmental conditions, it 
is possible that the cylinder moisture content can change, thereby changing the 
vegetation water content. This is studied with cases 5 and 6.  Both cases are 
identical except that the soil moisture of case 6 is higher than that of case 5. 
Here we keep the cylinder physical dimensions and number (density) fixed, and 



274  Chapter 5 

vary the cylinder moisture content. Compared to case 3, this shows a different 
behavior. At first, when the vegetation water content is very low, (now 
vegetation water content is directly proportional to cylinder moisture), the 
dielectric constant of the cylinders is small, leading to inefficient scattering 
from the vegetation layer (see Figure 5-32), and a low RVI. As the moisture 
increases in the vegetation, the scattering from the vegetation quickly becomes 
dominant, leading to a rapid increase in the RVI. Once the vegetation scattering 
dominates, there is little additional change in the RVI. Case 6 shows indeed that 
the underlying soil moisture plays a relatively small part. When the surface is 
wetter (case 6), the soil term stays dominant a while longer, meaning that the 
rapid increase of the RVI happens for a slightly higher value of vegetation 
water content. This is a small effect, however. 

5.8.5 Effect of Soil Moisture 
The important question is whether we can observe changes in soil moisture by 
observing the overall scattering from the vegetation. As shown in the previous 
examples, under certain conditions, either the direct backscatter from the soil 
surface itself, or the double bounce scattering may dominate even though both 
these terms are attenuated. In these cases, we would expect to measure a change 
in the overall backscatter from the vegetation layer as the soil moisture changes. 

Figure 5-34 shows the results of a simulation where we have assumed that the 
vegetation moisture does not change, even though the surface soil moisture 
changes. All other parameters, such as cylinder length, diameter, etc, as well as 
surface roughness also remain constant. The values of the parameters used in 
the simulation are as given in Table 5-1, except we used a cylinder density of 
1600 cylinders per cubic meter. 

The total scattering terms for both HH and VV show an approximately linear 
relationship with the soil moisture when plotted in dB. In fact, when fitting a 
linear function to these graphs, we find 
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dB m R
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σ

σ

= − =

= − =
 (5.8-2) 

Both these functions fit the simulated data very well. From this one result it 
appears that the VV polarization shows more sensitivity to the underlying 
ground surface moisture. A look at the individual scattering mechanisms in 
Fig. 5-34 shows that the scattering from the ground surface actually dominates 
in this case. As the previous examples showed, when the vegetation water 
content increases, the scattering from the vegetation becomes more dominant. 
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Fig. 5-34. These graphs show the sensitivity of the various scattering terms to changes in 
the surface soil moisture, assuming that all other parameters are constant. The 
vegetation water content is 0.8 kg/m2. The incidence angle is 40 deg. 

Figure 5-35 shows the slope of the linear fits to the simulated data for different 
values of vegetation water content. These values were calculated using different 
values of the cylinder moisture to vary the vegetation water content. The 
cylinder size and density were kept fixed. 

The data shows, as expected, a decrease in sensitivity to surface soil moisture 
for increasing vegetation water content. The sensitivity at VV decreases faster, 
because the VV scattering from the vegetation and particularly the extinction 
for vertical polarization increases faster with increasing vegetation water 
content. Both these factors combine to decrease the sensitivity to scattering 
from the underlying soil surface. HH polarization retains a reasonable 
sensitivity to surface soil moisture even for the larger vegetation water content 
values. 

Different graphs are shown for different cylinder densities. The cylinder density 
has a small effect on the overall sensitivity to soil moisture, with smaller 
densities generally resulting in smaller sensitivities. At first glance this seems 
counter intuitive as one would expect fewer cylinders to have less extinction, 
and therefore should show more sensitivity to the underlying soil moisture. The 
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Fig. 5-35. This data shows a decrease in sensitivity to surface soil moisture as the 
vegetation water content increases. The VV sensitivity decreases faster than the  
HH sensitivity. 

explanation for the graphs lies in the fact that the sensitivity is displayed as a 
function of the water content of the vegetation layer; not the moisture content 
of the cylinders. The layer water content is, among other factors, the product of 
the cylinder moisture and the cylinder density. Therefore, for a particular 
vegetation layer water content, the lower density layer has a higher cylinder 
moisture content, and hence a larger dielectric constant. The higher dielectric 
constant gives a bigger increase in scattering efficiency (and a larger associated 
extinction) than what is lost because of the lower density, resulting in a lower 
sensitivity to soil moisture. Note that in the lowest density case the graph stops 
at a vegetation water content of about 3 kg/m2. At this value, the cylinders have 
to be 100% moisture in order for the vegetation layer to have this much water 
per unit area. 

In the simulations above, we assumed that the vegetation moisture stays 
constant, regardless of what the underlying soil moisture might be. In practice 
one might expect that as the soil gets wetter, the vegetation moisture might 
increase, even if there might be a delay between the two values. Unfortunately, 
there seems to be little quantitative experimental data on this topic. Figure 5-36 
shows the case where the vegetation moisture is 100% correlated with the soil 
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Fig. 5-36. These graphs show the strength of the various scattering components 
assuming that the soil moisture and the vegetation moisture are the same value. There 
is significant more sensitivity to moisture if these two quantities are the same. 

moisture. This simulation shows that there is a significant increase in sensitivity 
to soil moisture if the vegetation and soil moistures are correlated. In fact, the 
two functions for this case are 
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 (5.8-3) 

In fact, the HH sensitivity is nearly twice the maximum value we found before. 

This last example is perhaps unrealistic, but can be considered a limiting case. 
In practice we can expect some correlation between the vegetation moisture and 
the soil moisture, even if it is not exactly 100% as assumed above. Any 
correlation will increase the sensitivity to soil moisture over that calculated 
assuming no correlation. 

5.8.6 Inverting for Soil Moisture: The Data Cube 
The aim of remote sensing is to be able to infer some of the geophysical 
properties of the terrain from measurements. With a single frequency 
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polarimetric radar, we have a limited number of measurements. In the case of 
terrain with reflection symmetry, we have at most 5 independent measurements, 
the cross-sections at HH, VV and HV, and the magnitude and phase of the 
correlation between HH and VV. Our model, on the other hand, has many more 
input parameters, even for the simple single layer model described here. When 
this model is extended to multiple layers, the number of input parameters 
increases dramatically. It is therefore impractical to solve uniquely for all of 
these input parameters with only a limited number of observables. It is 
therefore clear that we will have to combine some of the physical 
characteristics of the vegetation into a single descriptor in order to have any 
chance of inverting the observations. 

In addition to the difficulty of having a limited number of observations, the 
modeling requires a large number of calculations for each case. This makes 
inversion of the data computationally quite challenging. One way to get around 
this problem is to construct “data cubes” for each model. This approach would 
calculate the polarimetric parameters for a range of input parameters. For 
example, one choice would be to fix many of the model parameters such as 
cylinder radius, length, and density, and then calculate the polarimetric 
parameters as a function of surface roughness, soil moisture, vegetation water 
content and angle of incidence. These values are then stored in files for later 
use. Each observation can then be “inverted” by searching these data cubes for 
the best simultaneous match to all the observables. 

Many different ways could be used to define the best match between the 
observed and simulated data. As an example, for a multi-polarized radar that 
measures HH, VV and HV cross-sections, one could choose to define the error 
between the observations and the simulations as 

 ( ) ( ) ( )2 2 2
hh obs hh sim vv obs vv sim hv obs hv simσ σ σ σ σ σΕ = − + − + − . (5.8-4) 

We can calculate this quantity for all values in the data cubes, and choose that 
set of parameters that minimizes this error to be representative of the vegetated 
terrain. 

The cube inversion method has been studied extensively by Arii (2009) [37] in 
his thesis, where he compares different combinations of polarimetric 
parameters and the accuracy with which the vegetation parameters can be 
inferred. He not only looked at the multi-polarization case described above, but 
he also looked at including all the polarimetric parameters in the inversion. 
Since some of the elements of the covariance matrix are complex numbers, he 
proposes using the natural logarithm of the radar cross-sections in the error 
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calculations. This will allow the incorporation of the measured polarimetric 
phases in addition to the magnitudes. 

Arii [37] found that for vegetation water content values less than about 0.5 
kg/m2 adding the other polarimetric parameters made little difference in the 
accuracy of the inversion for soil moisture. However, for vegetation water 
contents larger than this value, adding the cross-correlation between HH and 
VV made a substantial difference, improving the accuracy of the inversion 
substantially. 

Arii also points out that the inversion accuracy is very sensitive to the exact 
values of the cylinder parameters. In his investigation, he simulated the data 
cubes with a fixed radius of 2 mm, and then generated test data with radii 
ranging between 2 and 3 mm. He then used the data cubes to invert the data. 
The resulting errors in soil moisture estimates were largest for larger vegetation 
moisture contents, with the error exceeding 10% at a vegetation water content 
of 2.5 kg/m2 when the radius of the test cylinder was larger than 2.3 mm. Based 
on these results, Arii concluded that for such an inversion scheme to be 
successful, one would need use have a family of data cubes generated for 
different vegetation classes. 

5.9 Time Series Estimation of Soil Moisture 
So far we have discussed estimations of soil moisture that happens at a 
particular instant of time. We will call these “snap-shot” algorithms, since they 
would provide us with an estimate of the moisture as if we took a picture at a 
specific time. In doing so, we do not rely on any knowledge about the past 
values of the soil moisture at that specific location. In this Section we shall 
discuss a different approach in which we will track changes in the soil moisture 
over time. 

To derive such a time series algorithm, we note that the polarimetric 
backscattering cross-section can be written as 

 1 2( , ,......, )pq pq Nf P P Pσ = , (5.9-1) 

where Pi  (i = 1, 2, …, N) represents a remote sensing variable such as soil 
moisture, surface roughness, and parameters characterizing vegetation. The 
subscripts p  and q  can be h  or v  depending upon the polarization 
configuration. The time variation of the backscattering cross-section is 
calculated as 
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Notice that pq if P∂ ∂  represents the backscattering cross section sensitivity to 
physical quantities such as soil moisture. This is the term that is used in the 
“snap-shot” algorithms to estimate soil moisture from polarimetric radar data. 
However, the time-series formulation shown in Eq. (5.9-2) has an additional 
term, iP t∂ ∂ , that can be thought of as a temporal filter, which provides a 
weighting factor for each sensitivity. That is, if the time variation of a 
parameter such as soil texture and the vegetation structure is not significant 
enough to change the model function appreciably over a specified time scale, 
we can ignore the effect of that parameter on the temporal variation of the radar 
cross-section. 

To best define a time-series algorithm, we have to consider the time scale over 
which the radar cross-section varies. There are three fundamental time scales of 
importance: 1) diurnal time scale, 2) soil moisture response time after a 
precipitation event and 3) the time scale over which a model function is 
invariant; this is the time scale that soil moisture will be retrieved. In order to 
minimize the diurnal effect on the soil moisture retrieval accuracy, time-series 
data must be collected at the same solar time (elapsed time after sun rise). In 
addition, from the time scale of the soil moisture response due to a precipitation 
event, we can define the sampling requirement of the time-series approach. 

For the time-series approach, it is preferred that the radar data are collected 
using the same imaging geometry for each measurement. Especially the 
incidence angle should be constant for all time-series measurements unless the 
incidence angle effect on the backscattering cross-section can be properly 
compensated for. This can be accomplished with proper mission design. For 
instance, the Hydros radar configuration discussed by Entekhabi et al. (2004) 
[38] minimizes the imaging geometry change of a spaceborne radar. Even in 
this configuration, however, the azimuth angle of these observations can 
change; the impact of such azimuth angle variations was observed and 
characterized by Baup et al. (2007) [39] for surfaces in Mali. Except for one 
area that showed some azimuthal variation, they found little evidence, even in 
areas covered with sand dunes, for azimuth angle variations creating significant 
variations in radar cross-section. Nevertheless, it is obvious that a constant 
illumination geometry would eliminate any variations other than geophysical 
changes. 
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For bare surfaces, there are three parameters to be considered: soil moisture 
( )P1 , surface roughness ( )P2 , and soil texture ( )P3 . If P2  and P3  vary in time 
much slower than P1  (soil moisture), Eq. (5.9-2) can be approximated by 

 31 2 1

1
  if  ,  << pq pqf PP P P

t P t t t t
σ∂ ∂ ∂∂ ∂ ∂

≈
∂ ∂ ∂ ∂ ∂ ∂

. (5.9-3) 

Under this assumption, the temporal variation of a backscattering cross section 
depends only on the soil moisture variation ( 1P t∂ ∂ ). Therefore, 

 1
1

pq
pq

f
P

P
σ

∂
∆ ≈ ∆

∂
. (5.9-4) 

It should be pointed out that if the surface roughness is influenced by soil 
moisture, this formulation can include this effect. For example, if the surface 
roughness changes when soil becomes dry after a precipitation event 

2 1( ( ))P g P= , then 
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In this case the backscattering cross section can be written as 

 1
1 2 1

pq pq
pq

f f g P
P P P

σ
∂ ∂ ∂

∆ ≈ + ∆ ∂ ∂ ∂ 
. (5.9-6) 

The time scale over which this approach can be used to track soil moisture 
changes depends on the time scale over which the quantity inside the square 
brackets change. As long as the time is short enough that we can consider this 
quantity to be constant, we can attribute changes in the observed radar cross-
section to changes in soil moisture. 

For vegetated surfaces, at least two additional parameters must be added to 
include the vegetation scattering: vegetation structure ( )P4  and vegetation 
dielectric constant or water content ( )P5 . If we ignore the vegetation structure 
( )P4  change and assume that the vegetation dielectric constant is affected by 
soil moisture ( P5 = h P( )1 ), the backscattering cross section change can be 
written as 

 1
1 5 1

pq pq
pq

f f h P
P P P

σ
∂ ∂ ∂

∆ ≈ + ∆ ∂ ∂ ∂ 
. (5.9-7) 
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Here, we have also assumed that the roughness change due to the soil moisture 
variation is much less significant than the dielectric constant change of 
vegetation. After a precipitation event, the dielectric constant of vegetation can 
change significantly as observed by McDonald et al. (2002) [40]. Both the 
vegetation dielectric constant and soil moisture will therefore be influenced by 
a precipitation event. This effect of the dielectric constant change of vegetation 
is represented by the second term in Eq. (5.9-7). 

The next step is to derive model functions using experimental data: those 
shown in Eq. (5.9-6) for bare surfaces and in Eq. (5.9-7) for vegetated surfaces. 
We note that if these model functions are approximately linear, ∆P1 does not 
have to be small since higher order terms of ∆P1 can be ignored. 

Model functions for bare surfaces can be derived using theoretical solutions 
such as SPM and IEM as shown in the previous Section. Kim and van Zyl 
(2009) [11] linked the radar cross-section expressed in dB to soil moisture 
directly. A similar time-series approach was successfully applied to European 
Remote Sensing Satellite (ERS) data by Wagner and Scipal [41]. For vegetated 
surfaces, Kim and van Zyl (2009) [11] used L-band radar data collected using a 
truck-mounted radar system from May to October 2002 at USDA-ARS (U.S. 
Dept. of Agriculture-Agricultural Research Service) OPE3 (Optimizing 
Production Inputs for Economic and Environmental Enhancement) test site in 
Beltsville, MD [42]. The results are shown in Fig. 5-37. 

From the experimental data Kim and van Zyl (2009) [11] found that both H- 
and V-polarization backscattering cross sections at L-band can be modeled 
better using a linear relationship between the radar cross-section expressed in 
dB and volumetric soil moisture ( mv ) as 

 1010log ( )pp vCm Dσ = +  (5.9-8) 

A similar result was reported previously at C-band by Ulaby et al. (1986) [17]. 
Therefore, using this linear relationship, one can write the time series algorithm 
for the soil moisture as 

 ( )1010logv ppm A Bσ= +  (5.9-9) 

Since the two unknowns, A  and B , may vary from one pixel to the next, one 
must develop a method to reliably estimate A  and B  for each pixel. Kim and 
van Zyl (2009) [11] point out that in order to determine the two unknowns ( A  
and B ) in Eq. (5.9-9), it is necessary to estimate at least two soil moisture 
values corresponding to two backscattering cross sections. As an example, if  
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Fig. 5-37. Linear fit of L-band HH and VV backscattering cross sections (dB) for various soil 
moisture (unitless) collected during the USDA-ARS OPE3 (2002) [42] field experiment for a 
corn field (biomass > 2.5 kg/m2). In order to remove the diurnal effect, the radar data 
collected near 8:00 AM were used in this figure. The incidence angle is 35 deg. 
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the extreme soil moisture values (as an example, 35% for the maximum value 
and 5% for the minimum value) of time-series data are known, A  and B  can 
be estimated using the corresponding maximum and minimum backscattering 
cross sections. This might not be very practical since these extreme values may 
not be known for each pixel. On the other hand, if the time period includes 
completely dry and completely wet (i.e., run-off) conditions, the estimation of 
A  and B  are relatively straightforward.  

Using experimental data, Kim and van Zyl (2009) [11] showed that for bare 
surfaces, it is possible to estimate volumetric soil moisture better than 2% if the 
extreme soil moisture values are known exactly. The accuracy slightly degrades 
for vegetated surfaces. If incorrect extreme values are used, the retrieval 
accuracy becomes worse. In order to evaluate the effect of the error in extreme 
soil moisture values statistically, Kim and van Zyl (2009) [11] performed a 
simple simulation by adding a random error to the exact soil moisture value of 
two extreme conditions (wet and dry). The random error is simulated using a 
uniform random variable. The simulation results are shown in Fig. 5-38. The 
abscissa value (x) in Fig. 5-38 represents the uniform random error over  
[–x, +x]. The retrieval error is calculated by averaging the magnitude of 
estimation errors when these random errors are introduced to the inversion 
process. For both bare and vegetated surfaces, the extreme soil moisture values 
(wet and dry) must be known better than 6% in order to reduce the retrieval 
error to be less than 4%. 

Our previous simulations showed that as the vegetation water content increase, 
the slope of the linear function relating radar cross-section to soil moisture 
changes (see Figure 5-35). Therefore, over the full growing season, one may 
have to segment the radar data in order to apply the correct model function for a 
vegetated surface. The Radar Vegetation Index (RVI) has been proposed to 
identify vegetated surfaces [11]. The RVI values for the time-series data from 
the USDA-ARS OPE3 are shown in Fig. 5-39. When RVI > 0.35, the biomass 
level of the corn field was higher than 2.5 kg/m2 except one data point. The 
peak biomass was about 7 kg/m2. From this analysis, a vegetation model 
function must be used when RVI > 0.35. When we consider the attenuation due 
to vegetation (biomass as high as 7 kg/m2), it is not obvious that the radar 
sensitivity to the soil moisture variation is due to the direct scattering from a 
soil surface. It is possible that the dielectric constant change of vegetation 
enhances the sensitivity. 
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Fig. 5-38. Average retrieval errors of volumetric soil moisture 
(%): (a) HH for a bare surface (diamond: 30 deg, square: 40 
deg. and triangle: 50 deg.), (b) VV for a bare surface 
(diamond: 30 deg, square: 40 deg. and triangle: 50 deg.) and 
(c) HH and VV for a corn field (diamond: HH and square: VV) 
(Kim and van Zyl, 2009) [11]. 
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Fig. 5-39. RVI (Radar Vegetation Index) estimated from polarimetric radar data collected 
during the USDA-ARS OPE3 (2002) field experiment. The abscissa represents time in weeks. 
When RVI is compared with biomass measurements, the condition that RVI > 0.35 defines all 
data with biomass > 2.5kg/m2 except one point (6th week). 

5.10 Summary 
In this Chapter, we examined methods for using radar data to estimate surface 
soil moisture and roughness. Many different models exist to calculate the radar 
cross-section as a function of surface roughness and surface dielectric constant. 
Herein, we looked only at a small subset of these models and showed that they 
all predict sensitivity to soil moisture. 

We also looked at a few of the more commonly used inversion algorithms and 
compared the results. Most of these models perform reasonably well for bare 
surfaces. For vegetated surfaces, however, the models become very 
complicated and the soil moisture inversion becomes less accurate. 

Most of the models we discussed here fall into the class of “snapshot” 
algorithms; that is, they try to estimate the soil moisture using data only from 
one instant in time, effectively ignoring all prior information that might exist. 
We also discussed a different approach that holds the promise of being 
applicable to many different types of surface covers. This time series approach 
fits a linear function through the radar cross section as a function of soil 
moisture using the extreme values of the radar cross-sections as indicators of 
saturated wet and completely dry conditions. As long as these extreme values 
are accurate to within 6 percent, soil moisture can be estimated to an accuracy 
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of better than 4 percent. The obvious disadvantage of the time series approach 
is that inversions can only be performed once the extreme values have been 
observed. 

The science of inverting radar data for soil moisture will receive a significant 
increase in attention in the near future. As of the writing of this book, the 
Japanese Advanced Land Observing Satellite Phased Array type L-band 
Synthetic Aperture Radar (ALOS PALSAR) system is acquiring polarimetric 
SAR data that could be used to check many of these algorithms. The National 
Aeronautics and Space Administration (NASA) is also planning the Soil 
Moisture Active Passive (SMAP) mission for launch in 2015. This system will 
carry both a radar and a radiometer to routinely cover the globe specifically for 
the purpose of estimating surface soil moisture. Undoubtedly, this area of 
research will expand rapidly to meet this challenge, and the climate research 
community can look forward to excellent results from these missions. 
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