
COMPONENT ARCHITECTURE
THE SOFTWARE ARCHITECTURE FOR MISSION REQUIREMENTS

Thomas Huang

Space Science Data Systems Section
Jet Propulsion Laboratory, NASA

Pasadena, CA 91109, USA
Thomas.Huang@jpl.nasa.gov

ABSTRACT
Software reuse is a common strategy in developing
complex systems and has proven successful in reducing
labor and maintenance costs. However, simply reusing
modules will not produce a system that is adaptable to a
variety of mission requirements. Because of this, projects
often involve development of similar software systems
from scratch in order to satisfy requirements. The end
result is a system that can only operate in a specific
environment and be used only in a specific way, with
consequentially higher costs for maintenance and user
training.

Component architecture consists of a framework that
defines the standard interactions between components and
standard interfaces for useful components to attach to the
framework and interact with other components. Modern
object-oriented programming languages are very good in
their support for static interfaces, but need additional
work in the area of dynamic interfaces. Reflection, which
is available in some OO languages, should be considered
in developing model component systems to enable
dynamic discovery of service components at runtime.
This enables software systems to be assembled at
deployment time and provide users the ability to
customize the software system with respect to their
operating environment.

Our File Exchange Interface (FEI) is a file transaction
service that offers portable, high performance, database-
driven file management and transfer service. Unlike the
common File Transfer Protocol (FTP), FEI provides file
integrity verification on the fly, user authentication and
authorization support, and database transaction
management. FEI played a major role in file archiving
and delivery service in flight missions such as Galileo,
Mars Pathfinder, Deep Space 1, Cassini, and Space
Infrared Telescope Facility. The new FEI version 5, code

named Komodo, is a component-based service to enable
pluggable support for various mission security
requirements, database repositories, communication
protocols, concurrency model, and file systems.

This paper presents the challenges in developing a
dynamic service such as FEI to support various mission
requirements while still being able to reduce cost on
maintenance without sacrificing reliability and
performance.

Keywords : Component, Component Configurator,
Software Product Lines, Design Patterns, Reflection,
Framework, Database.

1. INTRODUCTION

Despite dramatic increases in network and desktop
computer performance, it remains difficult to design,
implement, and reuse communication software for
complex distributed systems. As the world’s eyes and
ears to the unknown frontier, the Multimission Image
Processing System (MIPS) at JPL is expected to be able
to accurately process all live science data gathered by
spacecraft and distribute the processed data products to
the science communities with respect to stringent quality-
of-service (QoS) requirements. The image-processing
framework, shown in Figure 1, consists of intelligent
business components that perform acquisition and
processing of telemetry data, cataloging of data products
and onboard instrument states, visual verification and
monitoring, science data processing, and distribution to
subscribing science communities. While the framework
defined the system’s core services, each mission has its
own set of requirements. These requirements may specify
the method of telemetry data acquisition, visualization
interface (if any), where and when data product
distribution occurs, and most importantly of all the QoS

