

COST EFFECTIVE GROUND ARCHITECTURE:
A LAYERED APPROACH TO AUTOMATED MISSION OPERATIONS

Roger Thompson
SciSys Ltd., UK

roger.thompson@scisys.co.uk

Julian Long
SciSys Ltd., UK

julian.long@scisys.co.uk

Ivan Dankiewicz
SciSys Ltd., UK

ivan.dankiewicz@scisys.co.uk

1. INTRODUCTION

Through a series of studies and prototype developments,
SciSys is developing an approach to low-cost ground
segments that support automated mission operations, based
on an open, layered architecture, consisting of Data Access,
Operations Language, Procedure and Schedule layers.

The Data Access layer is consistent with current
standardisation activities within the OMG Space Domain
Task Force and combines a publish/subscribe approach to
data distribution with a remote action interface for an
extensible set of core data items. The core data items
include status parameters, control commands and alert
notifications, but may also be extended for a given system
to include observation orders, planning requests, orbit
vectors, etc. The system model for this data access layer is
defined in an XML schema.

The Operations Language layer provides a procedural
extension to the declarative system model, allowing
engineering staff to define operations (expressions,
conditions, rules and scripts) that reference and invoke
actions on the objects at the Data Access layer. ICOL is a
Java implementation of this layer, developed by SciSys hat
can be embedded in both C++ and Java applications. The
ICOL definition environment checks consistency of
operations against the XML system model and generates
executable Java that can be invoked by the ICOL execution
environment. ICOL can be used directly for applications
such as parameter derivation, command checking and
synchronous test scripts.

Automation within spacecraft mission control systems is
often restricted by the scope of scripting languages or
external interfaces provided by the spacecraft control
system system used. Using the ICOL operations language
layer as a base, SciSys is currently developing an automated
procedure execution system (APEX), a lightweight Java
implementation of its UNiT graphical procedure automation
system, that has been successfully deployed in a number of
multi-satellite control centres. APEX procedures will
themselves be expressed in XML, and support execution of
procedures defined in ESA’s PLUTO language.

2. COST EFFECTIVE GROUND ARCHITECTURE

Smallsats, individually or in constellations, are increasingly
being considered as a cost effective means of implementing
commercial or service-oriented Earth Observation missions.
As the cost of the space segment falls, there is an
expectation that there will be a commensurate fall in the
cost of the associated ground segment and mission
operations. In practice, however, the ground segments
require all the same elements found in their larger
institutional equivalents, plus the additional complexity of
providing open access to the services provided and
increased automation.

BNSC has partially funded a number of studies that has
enabled SciSys and its partners to define a Cost Effective
Ground Architecture (CEGA) for such missions.

Basic M&C
Server

Basic M&C
Server

Adv. M&C:
Derivation
Monitoring

TC Checking

Adv. M&C:
Derivation
Monitoring

TC Checking

Protocol
Handler

Protocol
Handler

AutomationAutomation

M&C
Displays

M&C
Displays

DATA DISTRIBUTION: Parameters, Commands, Alerts, Planning Requests, Orbit Vectors, Orders, Ingestion StatusDATA DISTRIBUTION: Parameters, Commands, Alerts, Planning Requests, Orbit Vectors, Orders, Ingestion Status

AnalysisAnalysis Flight
Dynamics

Flight
Dynamics PlanningPlanning OrderingOrdering Data

Ingestion
Data

Ingestion

Order
Server
Order
Server

Data
Acquisition

Data
Acquisition

Data
Processing

Data
Processing

Product
Dissemination

Product
Dissemination

Protocol
Handler

Protocol
Handler

Protocol
Handler

Protocol
Handler

Protocol
Handler

Protocol
Handler

ProcessorProcessor

ICOL APEX

Key:

Figure 1: Cost Effective Ground Architecture

The CEGA architecture, illustrated in Figure 1, is an end-
to-end system integrating User Ordering, Mission Planning
and the Data Processing System via the same central
backbone to provide a generic framework to control the
information processing and product dissemination. Mission
specific data processing algorithms, image display and
product archive solutions may be added into this framework
to provide the services required by the user.

The modular and layered approach is designed to allow
rapid configuration and integration of mission specific
systems from generic components; and common

implementation of interfaces, data access and data
manipulation.

An overview of the technology elements central to the
CEGA Architecture is shown in Figure 2 below.

Network Layer – moving data between systems

Expressions, Rules, Scripts:
“If A+B>20 Then Send Z”

Client

Ops Language: ICOL

Subscribe
A,B

Execute Notify

Publish

Client

Ops Language: ICOL

Subscribe
A,B

Execute Notify

Publish

Server

Subscribe

Publish

Server

Subscribe

Publish Actions
Send Z

Actions

Actions
Send Z

Actions

Real-Time Distribution “backbone” – Data Objects distributed to “Subscribing” Processes:
Parameters, Commands, Alerts, Orders, Orbit Vectors, Planning Requests

Protocol HandlerProtocol Handler

Figure 2: Schematic of Core CEGA Technologies

A central feature of the architecture is the real time data
distribution layer that integrates all of the ground segment
elements onto a common backbone. Generic data types
representing the fundamental information shared between
the ground segment applications are made available through
this layer. This is consistent with the M&C Data Access
service proposed by the OMG Space Domain Task Force,
but extends the concepts to address order handling and data
processing as well as monitoring and control. There are
examples of existing systems which support such a service,
implemented using CORBA of which SciSys has direct
experience.

The CEGA architecture also insulates its core applications
from any mission specific protocols used in communication
with external systems, including the space segment. A
Protocol Handler is used to interpret the communication
protocols used and to extract the embedded data. For
example, a protocol handler is used to handle the
monitoring and control interface to the spacecraft.
Commands are encoded before transmission to the
spacecraft and parameter data is extracted from the
spacecraft telemetry and made available to applications via
the data distribution layer. The concept of Protocol
Handlers is used throughout the CEGA architecture,
wherever data crosses an external interface. Hence, the core
ground segment can be truly ‘generic’ in it’s handling of
‘mission’ data irrespective of the data formats and transport
protocols used to get it to the ground segment.

CEGA allows the development of standard ground segment
services and the tools to support them. These can then be
mapped to external protocols. Classically, the space-
ground interface and its protocols dictate ground segment

design. Protocol Handlers may themselves be generic where
they support a standard protocol, such as CCSDS Packet
TM/TC or a manufacturer’s own proprietary protocol.

Protocol Handlers are used in the following interfaces:

 Space to ground links
 Ingestion of Ancillary Data
 Dissemination of Products.

The powerful combination of a standard interface to
mission data coupled with the use of Protocol Handlers
makes the CEGA architecture very flexible in the number
of configurations the core system may be deployed in. The
addition of functionality through extra applications may be
introduced in line with the business plan and needs of the
service. As the service establishes itself the ground segment
may be extended to cope with additional demand or to
maintain service timeliness. New dissemination
technologies may be incorporated into the ground segment
and offered as part of the service with minimal cost and
impact through the simple addition of an extra Protocol
Handler to convert the products to a different format or
transport mechanism.

Procedure Execution &
Operations Automation Monitoring & Control Planning & Scheduling

Application
Executive
Layer

Procedure Execution &
Operations Automation Monitoring & Control Planning & Scheduling

Application
Executive
Layer

Commands Other ObjectsParameters Events

Application
Object Server
Layer Commands Other ObjectsParameters Events

Application
Object Server
Layer

Data Distribution

Data
Distribution
Layer Data Distribution

Data
Distribution
Layer

Operations
Language
Layer OL Expressions, Statements & Object References

Operations
Language
Layer OL Expressions, Statements & Object References

OL Execution APIOL Execution API

Object Data
Access & Action
Invocation API

Object Data
Access & Action
Invocation API

Object UpdateObject Update

Figure 3: Layered Architecture

The layered approach to the CEGA architecture is
illustrated in Figure 3. This shows client applications
accessing core data items through an Operations Language
layer that provides the means of combining and
manipulating the data items, in terms of complex
expressions, conditions and scripts that can be defined by
engineering users rather than software developers. This
layer also delivers the objective of an open, modular design
by allowing any application conforming to the interface to
be integrated into the ground segment, and available
through the data distribution layer.

The Operations Language layer is bound through the
Application Object Server layer to the underlying means of
data distribution. Where the Data Distribution layer is itself
standard, this integration only needs to be performed once

for each class of data item, and is then available for use by
any application via the Operations Language layer. The
abstraction of the Application Object Server layer allows
legacy applications and alternate data distribution solutions
to be integrated into mission specific system.

3. DATA DISTRIBUTION LAYER

The CEGA architecture described previously identifies a
Data Distribution Backbone. It is intended that this should
be a generic layer that will be applicable to a wide range of
future Space Ground Systems.

Mission Control SystemMission Control System

M&C Data Access Service ProviderM&C Data Access Service Provider

M&C Data Access Service Client:
Status and Control Displays

Ground-based Automation (Procedures, Schedules, FDIR)
Mission Planning, Analysis Tools, Flight Dynamics

Payload Control and Data Centres
On-board Software Maintenance

M&C Data Access Service Client:
Status and Control Displays

Ground-based Automation (Procedures, Schedules, FDIR)
Mission Planning, Analysis Tools, Flight Dynamics

Payload Control and Data Centres
On-board Software Maintenance

Controlled System: Space and/or Ground Segment
(Live, Simulated or Test Environment)

Controlled System: Space and/or Ground Segment
(Live, Simulated or Test Environment)

Archive

Parameters Command Status Alerts

Set
Parameter

Send
Command

Inject
Alert

M&C Data Access
Service Interface

Information
Model

TM/TC Space Link,
SLE or other Comms

Figure 4: OMG M&C Data Access Service

The OMG Space DTF RFP2 addresses the development of
a standard specification for a Space Domain Monitor and
Control Data Access Service [see Figure 4]. The DD layer
described here is based on the requirements listed in the
RFP, but extends them to support additional Space Domain
Types.

The Data Distribution (DD) layer comprises a set of Data
Access Services providing access to instances (data items)
of a set of generic data types. These Data Access Services
provide the interface between client applications that are the
consumers of data items and which may act upon them, and
the service providers that maintain and publish those data
items. For any given data type, there may be a number of
distributed service providers, partitioned by the scope or
“domain” of the data items they are responsible for. For
example there could be multiple TM Parameter service
providers, each servicing a single satellite domain. There
may be many TM Parameter clients, corresponding to
various applications: displays, automation, analysis, etc.

Each service provider is responsible for the instances (data
items) of one or more classes (data types) that are made
available to the various client applications via a Publish and
Subscribe model.

The service provider is an integral part of the DD layer,
however it can only provide a service by interfacing with a

system server which is an underlying server function of the
ground segment. The system server may in turn obtain data
via a protocol handler from an external system.

The following data types have currently been identified as
part of the core CEGA architecture:

 Parameters: status information directly telemetred by
the controlled system, or derived/maintained by the
system server.

 Commands: any symbolic control directive, to the
spacecraft, other controlled systems, or the system
server itself.

 Alerts: raised asynchronously to report a significant
event occurrence or anomaly.

 Planning Requests: an operational activity that
requires scheduling..

 Order: a user request for a data product, which may
require scheduling of spacecraft activities and contacts.

 Ingestion Status: the reception status of auxiliary data
required for payload processing.

 Orbit Vector: a description of the satellite orbit
trajectory.

The DD layer consists of service providers, which provides
two types of access for each supported data type within the
context of a specified session:

• Data Delivery – illustrated in Figure 4 by the block
arrows. For each data type the client application
initiates the transfer of data by subscribing to a
specified subset of data items that are published by the
service provider. In response, the Service Provider
supplies the current status of each subscribed data item
and thereafter it’s evolving status.

• Actions – illustrated by upward solid arrows. In each
case, the client application can manipulate data items
as follows

 Value Assertion [e.g. set parameter]

 Instance Creation/Destruction [send command]

 Method Invocation [acknowledge alert]

The DD layer offers two standard APIs.

The Data Distribution Interface is a standard interface,
which allows clients to subscribe for data items, and
subsequently receive updates. The Data Distribution
Interface also allows Clients to invoke actions and be
informed of the action result. The use of the standard
interface ensures that clients require no knowledge of the
System Servers.

The System Server Interface defines a standard interface,
which the DD layer itself uses to communicate with the
System Servers. The use of this interface allows the DD
layer to be reused with different underlying systems. It is
likely that the DD layer will support more than one
implementation of this interface. e.g. a direct interface may
be developed which is linked in with the system server to
allow the system server to efficiently update the DD layer
but it may also be necessary to provide a networked
interface to allow the system server to execute on a
different platform to the DD layer.

The DD Layer supports multiple sessions. The term session
is used with respect to the DD layer, to refer to a coherent
data source, which may be represented by any of the
following:

1. An Operational Satellite [or other controlled system]

2. A Satellite in Test Configuration

3. A Satellite Simulation

4. Dynamic Replay of Historical Data from archive.
Sessions of this type do not support actions.

4. OPERATIONS LANGUAGE LAYER

The role of an Operations Language (OL) is to support the
configuration and execution of control scripts required for
the operation of a particular target application. The control
scripts contain expressions and flow control statements
which may reference application data as operands and call
application actions during their execution. Re-use of
previous operations languages has been restricted by factors
such as non portability, application specificity, inadequate
performance or a non intuitive syntax. These factors have
combined to restrict standardisation in this area. The
Integrated Common Operations Language (ICOL) attempts
to address these issues.

Server Computers

Off-Line Workstation Off-Line Workstation

History ArchiveHistory Archive

Live, Simulated or Test Domains

On-Line Workstation

M&CMMIM&CMMIMission
Planning
Mission
Planning AnalysisAnalysisFlight

Dynamics
Flight

Dynamics

Domain
M&C

Processor

Domain
M&C

Processor
Operations
Automation
Operations
Automation

Data Distribution
Packets, parameters, commands, events, procedures, schedules

ICOL Application

Figure 5 Potential applications of ICOL

ICOL is a platform independent, Java based environment,
capable of providing common OL script and expression

execution services across multiple spacecraft control
applications. Figure 5 shows the potential target
applications which require an embedded operation and
expression execution component including : TM/TC
processing; Status Displays; Procedure Execution;
Automated Actions; Mission Planning and Scheduling; and
Test and Check-out Systems.

The ICOL environment supports the definition of the
System Model objects such as parameters, commands and
events. These objects encapsulate both the data and actions
which are available to a particular application. Operations
control scripts encoded in ICOL can access application
objects via the intuitive and convenient reference scheme
provided. Thus during ICOL script execution Application
Data required for expression evaluation can be accessed
such as spacecraft telemetry parameter values. Also during
script execution Application Actions such as sending
commands or raising system events can be initiated. The
ICOL script syntax supports operation algorithm definition
by providing a rich set of built in data types, control
statements and mathematical functions.

ICOL Architecture

The ICOL development environment comprises of suite of
component libraries and APIs, implemented in Java, which
can be integrated into target applications written either in
Java or C++. Integration to C++ uses a suite of wrapper
objects around an interface implemented by the Java Native
Interface (JNI). Figure 6 shows that ICOL components
provide services for both the offline definition and on-line
execution of ICOL scripts.

ICOL
Executable
Operations

[Java]

Executable
Operations

[Java]

Data Server APIExternal Action API

Application
Data

Servers

Application
Data

Servers

Application
Action
Server

Application
Action
Server

Execution API

ICOL
Execution

Environment

ICOL
Execution

Environment

On-line
Application

On-line
Application

Off-line
Application

Off-line
Application

Application
MIB

Application
Mission

DB

ICOL Source Fragments

ICOL
Definition

Environment

ICOL
Definition

Environment

Editor API

ICOL
Source

Operations

ICOL
Source

Operations

Application
Object

Definition
[XML]

Application
Object

Definition
[XML]

Figure 6 ICOL Component & API Architecture

The ICOL Definition Environment includes an Editor API
which allows ICOL source code to be cross referenced and
type checked against the Application Objects defined in the
System Model before being compiled into executable Java
byte code. The ICOL Execution Environment consists of

APIs which allow ICOL control script execution to be
initiated and which support the referencing of Application
Objects from expressions via the Data and Action servers.

ICOL Concepts

The ICOL scripting syntax is based on the portable Java
language and which has the additional benefits of being an
industry standard modern structured programming language
supporting a rich set of in built types, functions and control
statements. However, as it is intended to be written by
spacecraft operations engineers who are assumed not to be
experienced software engineers, ICOL supports only a
simplified sub set of syntax constructs and functions
available in Java.

Access to both data and actions encapsulated by
Application Objects is supported by an intuitive and concise
referencing scheme. References to Application Object data
can be used as operands in expressions written in ICOL. On
ICOL compilation the data references are replaced by calls
to the Data server.

The ICOL environment supports its own XML based syntax
for the definition of the System Model Application Object
types and instances which can be scoped into domains and
sub domains representing the decomposition of the
application model into a sub system hierarchy. ICOL
supports Object Orientated type definition including data &
action encapsulation and object class inheritance. ICOL
also supports the partitioning of Application Object types
and instance definition into different files which increases
the flexibility of configuration control.

SSM
Type
Definition
Files

ICOL Parameter
Base Class

ICOL Enum
Types

ICOL Simple
Types

ICOL Command
Base Class

ICOL Standard
Types

App. Parameter
Class

App. Object
Class

App. Enum
Types

App. Command
Class

Application
Types

User Command
Classes

User Object
Classes

User Enum
Types

User
Types

SSM
Instance
Definition
Files

Domain
Hierarchy

Parameter
Instances

Static
Objects

Dynamic
Objects

Command
Instances

Data Item IDs
User Object
Instances

Run-Time
Instances

Data access
& Action

Invocation

Dynamic
Object

Invocation

User
Configuration

Figure 7 ICOL System Model definition files

Figure 7 shows the structure of the System Model definition
files and the categories of Application Object types and
instances that can defined. The arrows between object
classes show the direction of inheritance from a base class.

The ICOL Standard Types define all built in standard
simple, date, time and enumerated types supported by
ICOL. Also provided are ICOL Parameter and Command

base class definitions which can be instanced directly or
form the base of an inheritance hierarchy.

Application Types can be defined which can use or inherit
from any of the ICOL Standard types. These allow the
definition of standard enumerated types and object classes
that are configured to be used across a particular mission or
application.

User Types which allow the definition of specialized
enumerated types and object classes that are configured for
a particular User or subsystem. User types can use or inherit
from any of the ICOL Standard or Application types.

Performance

Performance is critical to the success of ICOL which is
targeted to be embedded in applications which require a
high rate of expression evaluation e.g. a telemetry
processing kernel.

To benchmark the performance of ICOL and to determine
the impact of using Java technology, three versions of an
example application were produced for comparative
performance evaluation. Table 1 shows that each version
implements the same architecture but use either Java or
C++ to implement the different layers.

Version
Layer

1 (hybrid) 2 (pure
Java)

3 (pure
C++)

Application Executive
layer

C++ Java C++

ICOL Execution
Environment layer

Java Java C++

Application Object Server
layer

C++ Java C++

Table 1 Performance prototype characteristics

The tests were run on a 500MHz PC Pentium II with 256
Mbytes memory. The three sets of test data were generated
each of which simulated the execution of 1000 distinct
ICOL scripts. Figure 8 shows the performance of each
version of the prototype application in executing the tests
measured in average execution time of each ICOL script in
micro seconds.

The results show that there is an approx. 50% performance
penalty associated with pure Java ICOL execution
compared to a pure C++ execution of the same ICOL script.
This performance penalty is increased to approx. 300% if
Java OL execution is integrated into a C++ application
using the object wrappers implemented in JNI. This is due
to the known inefficiencies of the JNI interface for function
calling and data passing. Although significant, the
measured performance overhead of using Java was
anticipated and is within the expected range based on
previous experience of Java implementation.

0 50 100 150 200 250
Average script execution time (micro secs)

1 (C++/Java
Hybrid)

2 (pure Java)

3 (pure C++)

Im
pl

em
en

ta
tio

n
ve

rs
io

n

Test 1

Test 2

Test 3

Figure 8 ICOL performance test results

From these tests we conclude that although the performance
impact for using Java is significant; ICOL performance
would be more than sufficient for most applications. Also
the performance penalty for using Java is offset by its
advantage of true platform independence for OL execution.

5. AUTOMATED PROCEDURE EXECUTION

The Automated Procedure Execution (APEX) product is a
portable “lightweight” procedure execution environment
that uses and demonstrates the data distribution and
operations language layers outlined above. It facilitates the
automation and testing of spacecraft operations when
integrated into a monitoring and control system or a test and
checkout application. APEX is targeted at low cost
missions, including small satellites.

The APEX toolkit provides a generic environment designed
to require the minimal integration and configuration effort
for each new mission. To satisfy the requirements of the
targeted low cost missions, emphasis is placed on a low
deployment cost and a minimal resource footprint. To this
end APEX is based on Java technology and open standards,
without the use of expensive 3rd party COTS software. In
particular Java based ICOL is used for expressions which
control the execution flow of procedures.

The procedure model has been captured in an XML
schema. The schema supports the users to define correctly
structured procedures using XMLSpy which is a low cost
commercial XML editor. Integration of procedure
definition with ICOL allows the procedure control
condition expressions to be checked against the System
Model.

APEX builds on SciSys’ extensive experience and
investment in providing automated monitoring & control
systems, most recently through deployment of the UNiT
toolkit for EUTELSAT, UK MOD and EUMETSAT. In
particular, the proven conceptual model of UNiT automated

operations procedures has been re-used in the context of the
APEX environment. This procedure model has been
modified and re-implemented for lightweight execution of
individual procedures, with clear separation between the
execution engine itself and support for visualisation and
display. This approach enables the distributed execution of
procedures, resulting in a flexible and scalable solution for
the deployment of automation. It is also consistent with a
long-term goal of on-board deployment of procedures.

APEX Architecture

Figure 9 shows the APEX system architecture that
comprises four major elements:

• APEX Procedure Definition element provides
tools which supports the definition and checking
of procedures.

• APEX Procedure Execution element provides a
lightweight and portable environment for the
execution of procedures.

• APEX Procedure Display element provides
display components which allow the visualisation
of single procedure status in detail and an
overview status of all executing procedures.

• APEX Procedure External Control element
provides an interface allowing procedures to be
executed on request by an external source.

Figure 9 shows the decomposition of the elements into the
main components and interfaces.

APEX
Procedure
Displays

APEX
Procedure
Displays

Procedure
Overview
Display

Procedure
Overview
Display

Single
Procedure

Display

Single
Procedure

Display

Procedure Definition

MCS/EGSE
Mission Control or
Check-out System

MCS/EGSE
Mission Control or
Check-out System

APEX Procedure
External Control
APEX Procedure
External Control

Procedure
Log

Overview
Log

APEX
Procedure
Definition

Environment

APEX
Procedure
Definition

Environment

Procedure Catalogue

APEX
Procedure
Execution

APEX
Procedure
Execution

Procedure
Execution
Manager

Procedure
Execution
Manager

Procedure
Execution

Engine

Procedure
Execution

Engine Live Procedure COS Events

Live Overview COS Events

Procedure Control

Replay

Replay

Procedure Initiation / Control

External
Procedure
Definition

TM/TC Definitions

Parameters
Commands

Events

Procedure Initiation & Control
Procedure Status

Procedure
Catalogue

XML
Procedure
Definition.

Scope of Proposed Study

Figure 9: APEX System Architecture

Procedure Model

Procedures correspond to pre-defined operational activities
that can either be scheduled as a ground-based activity, or
manually initiated from a display client. Procedures may
also call Sub-Procedures which permit decomposition into
smaller and more maintainable units. This allows
operational activities to be defined more flexibly such that
they can be used in different operational contexts.

The definition of a procedure comprises its public interface
(including arguments), local variables and a set of Thread
definitions. Each procedure contains a primary thread and,
optionally, a number of secondary threads shown in the
Single Procedure Display Figure 10.

Figure 10 Single Procedure Display

Each Thread constitutes an independent flow of control
through the procedure. The single Primary Thread
corresponds to the main flow of control and is usually
activated as soon as the procedure is started and continues
to execute until the procedure terminates. Secondary
Threads support monitoring or contingency functions that
are performed in parallel with the Primary Thread within
the context of the active procedure. Threads comprise an
Activation Condition and a sequence of Steps. A Thread
activates following the evaluation of its Activation
Condition to true and then proceeds to execute the Steps in
sequence. Threads can be enabled and disabled from other
Threads to prevent execution if required by the procedure
logic.

A Step comprises a Trigger, Body, Confirmation &
Recovery. All of these components, with the exception of
the Body are optional.

The Body of a Step determines what action it may perform
which may be thread flow control, operator interaction, a
Sub-Procedure, a Sub-Thread or a sequence of Application
Actions.

Each Step is broken into three clear phases that of
triggering, body execution and confirmation shown in
Figure 11 : -

• Trigger - A Step may have an optional Trigger
which controls the synchronisation and checking that
conditions are correct to start execution. A Trigger
consists of a Wait Condition and a Pre-Condition to
check that the step is ready for execution.

• Body - Execution of the Step Body involves
execution of the intended Step logic e.g. execution of
an Application Action or flow control construct such
as a loop or branch statement. An optional Watch
Condition can be associated with the Step Body
which is used to check that execution is proceeding
normally such that, on failure, suitable Recovery
contingency handling can be applied.

• Confirmation - Once the body is complete then an
optional confirmation phase of the current step can
be executed before moving on to execute the next
Step of the sequence. A Confirmation consists of a
Wait Condition and a Post-Condition to check that
step execution has completed successfully.

Trigger Body of Step
Confirmation

Figure 11 Phases of a Procedure Step

Recovery actions can be associated with the phases of Step
execution. If a failure occurs during the execution sequence
e.g. trigger fail, body fail or confirmation fail then
appropriate Recovery actions are invoked.

In the procedure model described above all condition
expressions used to control procedure execution are coded
as ICOL expressions. The ability of ICOL to access
application data, e.g. telemetry parameter values, in
expression evaluation can then be harnessed to
automatically control the flow of procedure step execution.
Also low level atomic actions to be performed by a
procedure such as parameter value assertion or spacecraft
command initiation can be performed as ICOL actions.

