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1. INTRODUCTION 

Through a series of studies and prototype developments, 
SciSys is developing an approach to low-cost ground 
segments that support automated mission operations, based 
on an open, layered architecture, consisting of Data Access, 
Operations Language, Procedure and Schedule layers.   

The Data Access layer is consistent with current 
standardisation activities within the OMG Space Domain 
Task Force and combines a publish/subscribe approach to 
data distribution with a remote action interface for an 
extensible set of core data items.  The core data items 
include status parameters, control commands and alert 
notifications, but may also be extended for a given system 
to include observation orders, planning requests, orbit 
vectors, etc.  The system model for this data access layer is 
defined in an XML schema.   

The Operations Language layer provides a procedural 
extension to the declarative system model, allowing 
engineering staff to define operations (expressions, 
conditions, rules and scripts) that reference and invoke 
actions on the objects at the Data Access layer.  ICOL is a 
Java implementation of this layer, developed by SciSys hat 
can be embedded in both C++ and Java applications.  The 
ICOL definition environment checks consistency of 
operations against the XML system model and generates 
executable Java that can be invoked by the ICOL execution 
environment.  ICOL can be used directly for applications 
such as parameter derivation, command checking and 
synchronous test scripts.   

Automation within spacecraft mission control systems is 
often restricted by the scope of scripting languages or 
external interfaces provided by the spacecraft control 
system system used.  Using the ICOL operations language 
layer as a base, SciSys is currently developing an automated 
procedure execution system (APEX), a lightweight Java 
implementation of its UNiT graphical procedure automation 
system, that has been successfully deployed in a number of 
multi-satellite control centres.  APEX procedures will 
themselves be expressed in XML, and support execution of 
procedures defined in ESA’s PLUTO language. 

2. COST EFFECTIVE GROUND ARCHITECTURE 

Smallsats, individually or in constellations, are increasingly 
being considered as a cost effective means of implementing 
commercial or service-oriented Earth Observation missions.  
As the cost of the space segment falls, there is an 
expectation that there will be a commensurate fall in the 
cost of the associated ground segment and mission 
operations.  In practice, however, the ground segments 
require all the same elements found in their larger 
institutional equivalents, plus the additional complexity of 
providing open access to the services provided and 
increased automation. 

BNSC has partially funded a number of studies that has 
enabled SciSys and its partners to define a Cost Effective 
Ground Architecture (CEGA) for such missions.   
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Figure 1: Cost Effective Ground Architecture 

The CEGA architecture, illustrated in Figure 1, is an end-
to-end system integrating User Ordering, Mission Planning 
and the Data Processing System via the same central 
backbone to provide a generic framework to control the 
information processing and product dissemination. Mission 
specific data processing algorithms, image display and 
product archive solutions may be added into this framework 
to provide the services required by the user. 

The modular and layered approach is designed to allow 
rapid configuration and integration of mission specific 
systems from generic components; and common 



 

 

implementation of interfaces, data access and data 
manipulation. 

An overview of the technology elements central to the 
CEGA Architecture is shown in Figure 2 below. 
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Figure 2: Schematic of Core CEGA Technologies 

A central feature of the architecture is the real time data 
distribution layer that integrates all of the ground segment 
elements onto a common backbone. Generic data types 
representing the fundamental information shared between 
the ground segment applications are made available through 
this layer.  This is consistent with the M&C Data Access 
service proposed by the OMG Space Domain Task Force, 
but extends the concepts to address order handling and data 
processing as well as monitoring and control.  There are 
examples of existing systems which support such a service, 
implemented using CORBA of which SciSys has direct 
experience. 

The CEGA architecture also insulates its core applications 
from any mission specific protocols used in communication 
with external systems, including the space segment. A 
Protocol Handler is used to interpret the communication 
protocols used and to extract the embedded data.  For 
example, a protocol handler is used to handle the 
monitoring and control interface to the spacecraft. 
Commands are encoded before transmission to the 
spacecraft and parameter data is extracted from the 
spacecraft telemetry and made available to applications via 
the data distribution layer. The concept of Protocol 
Handlers is used throughout the CEGA architecture, 
wherever data crosses an external interface. Hence, the core 
ground segment can be truly ‘generic’ in it’s handling of 
‘mission’ data irrespective of the data formats and transport 
protocols used to get it to the ground segment.   

CEGA allows the development of standard ground segment 
services and the tools to support them.  These can then be 
mapped to external protocols.  Classically, the space-
ground interface and its protocols dictate ground segment 

design. Protocol Handlers may themselves be generic where 
they support a standard protocol, such as CCSDS Packet 
TM/TC or a manufacturer’s own proprietary protocol. 

Protocol Handlers are used in the following interfaces: 

 Space to ground links 
 Ingestion of Ancillary Data 
 Dissemination of Products. 

The powerful combination of a standard interface to 
mission data coupled with the use of Protocol Handlers 
makes the CEGA architecture very flexible in the number 
of configurations the core system may be deployed in. The 
addition of functionality through extra applications may be 
introduced in line with the business plan and needs of the 
service. As the service establishes itself the ground segment 
may be extended to cope with additional demand or to 
maintain service timeliness. New dissemination 
technologies may be incorporated into the ground segment 
and offered as part of the service with minimal cost and 
impact through the simple addition of an extra Protocol 
Handler to convert the products to a different format or 
transport mechanism. 
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Figure 3: Layered Architecture 

The layered approach to the CEGA architecture is 
illustrated in Figure 3.  This shows client applications 
accessing core data items through an Operations Language 
layer that provides the means of combining and 
manipulating the data items, in terms of complex 
expressions, conditions and scripts that can be defined by 
engineering users rather than software developers.  This 
layer also delivers the objective of an open, modular design 
by allowing any application conforming to the interface to 
be integrated into the ground segment, and available 
through the data distribution layer. 

The Operations Language layer is bound through the 
Application Object Server layer to the underlying means of 
data distribution.  Where the Data Distribution layer is itself 
standard, this integration only needs to be performed once 



 

 

for each class of data item, and is then available for use by 
any application via the Operations Language layer.  The 
abstraction of the Application Object Server layer allows 
legacy applications and alternate data distribution solutions 
to be integrated into mission specific system. 

3. DATA DISTRIBUTION LAYER 

The CEGA architecture described previously identifies a 
Data Distribution Backbone. It is intended that this should 
be a generic layer that will be applicable to a wide range of 
future Space Ground Systems. 
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Figure 4: OMG M&C Data Access Service 

The OMG Space DTF RFP2 addresses the development of 
a standard specification for a Space Domain Monitor and 
Control Data Access Service [see Figure 4]. The DD layer 
described here is based on the requirements listed in the 
RFP, but extends them to support additional Space Domain 
Types. 

The Data Distribution (DD) layer comprises a set of Data 
Access Services providing access to instances (data items) 
of a set of generic data types.  These Data Access Services 
provide the interface between client applications that are the 
consumers of data items and which may act upon them, and 
the service providers that maintain and publish those data 
items.  For any given data type, there may be a number of 
distributed service providers, partitioned by the scope or 
“domain” of the data items they are responsible for.  For 
example there could be multiple TM Parameter service 
providers, each servicing a single satellite domain.  There 
may be many TM Parameter clients, corresponding to 
various applications: displays, automation, analysis, etc. 

Each service provider is responsible for the instances (data 
items) of one or more classes (data types) that are made 
available to the various client applications via a Publish and 
Subscribe model. 

The service provider is an integral part of the DD layer, 
however it can only provide a service by interfacing with a 

system server which is an underlying server function of the 
ground segment. The system server may in turn obtain data 
via a protocol handler from an external system. 

The following data types have currently been identified as 
part of the core CEGA architecture: 

 Parameters: status information directly telemetred by 
the controlled system, or derived/maintained by the 
system server. 

 Commands: any symbolic control directive, to the 
spacecraft, other controlled systems, or the system 
server itself. 

 Alerts: raised asynchronously to report a significant 
event occurrence or anomaly. 

 Planning Requests: an operational activity that 
requires scheduling.. 

 Order: a user request for a data product, which may 
require scheduling of spacecraft activities and contacts. 

 Ingestion Status: the reception status of auxiliary data 
required for payload processing. 

 Orbit Vector: a description of the satellite orbit 
trajectory. 

The DD layer consists of service providers, which provides 
two types of access for each supported data type within the 
context of a specified session: 

• Data Delivery – illustrated in Figure 4 by the block 
arrows. For each data type the client application 
initiates the transfer of data by subscribing to a 
specified subset of data items that are published by the 
service provider. In response, the Service Provider 
supplies the current status of each subscribed data item 
and thereafter it’s evolving status. 

• Actions – illustrated by upward solid arrows. In each 
case, the client application can manipulate data items 
as follows 

 Value Assertion [e.g. set parameter] 

 Instance Creation/Destruction [send command] 

 Method Invocation [acknowledge alert] 

The DD layer offers two standard APIs. 

The Data Distribution Interface is a standard interface, 
which allows clients to subscribe for data items, and 
subsequently receive updates. The Data Distribution 
Interface also allows Clients to invoke actions and be 
informed of the action result. The use of the standard 
interface ensures that clients require no knowledge of the 
System Servers. 



 

 

The System Server Interface defines a standard interface, 
which the DD layer itself uses to communicate with the 
System Servers. The use of this interface allows the DD 
layer to be reused with different underlying systems. It is 
likely that the DD layer will support more than one 
implementation of this interface. e.g. a direct interface may 
be developed which is linked in with the system server to 
allow the system server to efficiently update the DD layer 
but it may also be necessary to provide a networked 
interface to allow the system server to execute on a 
different platform to the DD layer. 

The DD Layer supports multiple sessions. The term session 
is used with respect to the DD layer, to refer to a coherent 
data source, which may be represented by any of the 
following: 

1. An Operational Satellite [or other controlled system] 

2. A Satellite in Test Configuration 

3. A Satellite Simulation 

4. Dynamic Replay of Historical Data from archive. 
Sessions of this type do not support actions. 

4. OPERATIONS LANGUAGE LAYER 

The role of an Operations Language (OL) is to support the 
configuration and execution of control scripts required for 
the operation of a particular target application.  The control 
scripts contain expressions and flow control statements 
which may reference application data as operands and call 
application actions during their execution.  Re-use of 
previous operations languages has been restricted by factors 
such as non portability, application specificity, inadequate 
performance or a non intuitive syntax. These factors have 
combined to restrict standardisation in this area.  The 
Integrated Common Operations Language (ICOL) attempts 
to address these issues. 
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Figure 5 Potential applications of ICOL 

ICOL is a platform independent, Java based environment, 
capable of providing common OL script and expression 

execution services across multiple spacecraft control 
applications. Figure 5 shows the potential target 
applications which require an embedded operation and 
expression execution component including : TM/TC 
processing; Status Displays; Procedure Execution; 
Automated Actions; Mission Planning and Scheduling; and 
Test and Check-out Systems. 

The ICOL environment supports the definition of the 
System Model objects such as parameters, commands and 
events.  These objects encapsulate both the data and actions 
which are available to a particular application. Operations 
control scripts encoded in ICOL can access application 
objects via the intuitive and convenient reference scheme 
provided. Thus during ICOL script execution Application 
Data required for expression evaluation can be accessed 
such as spacecraft telemetry parameter values. Also during 
script execution Application Actions such as sending 
commands or raising system events can be initiated. The 
ICOL script syntax supports operation algorithm definition 
by providing a rich set of built in data types, control 
statements and mathematical functions. 

ICOL Architecture 

The ICOL development environment comprises of suite of 
component libraries and APIs, implemented in Java, which 
can be integrated into target applications written either in 
Java or C++. Integration to C++ uses a suite of wrapper 
objects around an interface implemented by the Java Native 
Interface (JNI).  Figure 6 shows that ICOL components 
provide services for both the offline definition and on-line 
execution of ICOL scripts. 
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Figure 6   ICOL Component & API Architecture 

The ICOL Definition Environment includes an Editor API 
which allows ICOL source code to be cross referenced and 
type checked against the Application Objects defined in the 
System Model before being compiled into executable Java 
byte code. The ICOL Execution Environment consists of 



 

 

APIs which allow ICOL control script execution to be 
initiated and which support the referencing of Application 
Objects from expressions via the Data and Action servers. 

ICOL Concepts 

The ICOL scripting syntax is based on the portable Java 
language and which has the additional benefits of being an 
industry standard modern structured programming language 
supporting a rich set of in built types, functions and control 
statements. However, as it is intended to be written by 
spacecraft operations engineers who are assumed not to be 
experienced software engineers, ICOL supports only a 
simplified sub set of syntax constructs and functions 
available in Java. 

Access to both data and actions encapsulated by 
Application Objects is supported by an intuitive and concise 
referencing scheme. References to Application Object data 
can be used as operands in expressions written in ICOL. On 
ICOL compilation the data references are replaced by calls 
to the Data server. 

The ICOL environment supports its own XML based syntax 
for the definition of the System Model Application Object 
types and instances which can be scoped into domains and 
sub domains representing the decomposition of the 
application model into a sub system hierarchy. ICOL 
supports Object Orientated type definition including data & 
action encapsulation and object class inheritance. ICOL 
also supports the partitioning of Application Object types 
and instance definition into different files which increases 
the flexibility of configuration control. 
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Figure 7 ICOL System Model definition files 

Figure 7 shows the structure of the System Model definition 
files and the categories of Application Object types and 
instances that can defined. The arrows between object 
classes show the direction of inheritance from a base class. 

The ICOL Standard Types define all built in standard 
simple, date, time and enumerated types supported by 
ICOL. Also provided are ICOL Parameter and Command 

base class definitions which can be instanced directly or 
form the base of an inheritance hierarchy. 

Application Types can be defined which can use or inherit 
from any of the ICOL Standard types.  These allow the 
definition of standard enumerated types and object classes 
that are configured to be used across a particular mission or 
application. 

User Types which allow the definition of specialized 
enumerated types and object classes that are configured for 
a particular User or subsystem. User types can use or inherit 
from any of the ICOL Standard or Application types. 

Performance 

Performance is critical to the success of ICOL which is 
targeted to be embedded in applications which require a 
high rate of expression evaluation e.g. a telemetry 
processing kernel. 

To benchmark the performance of ICOL and to determine 
the impact of using Java technology, three versions of an 
example application were produced for comparative 
performance evaluation.  Table 1 shows that each version 
implements the same architecture but use either Java or 
C++ to implement the different layers. 

Version 
Layer  

1 (hybrid) 2 (pure 
Java) 

3 (pure 
C++) 

Application Executive 
layer  

C++ Java C++ 

ICOL Execution 
Environment layer 

Java Java C++ 

Application Object Server 
layer 

C++ Java C++ 

Table 1   Performance prototype characteristics 

The tests were run on a 500MHz PC Pentium II with 256 
Mbytes memory. The three sets of test data were generated 
each of which simulated the execution of 1000 distinct 
ICOL scripts. Figure 8 shows the performance of each 
version of the prototype application in executing the tests 
measured in average execution time of each ICOL script in 
micro seconds. 

The results show that there is an approx. 50% performance 
penalty associated with pure Java ICOL execution 
compared to a pure C++ execution of the same ICOL script. 
This performance penalty is increased to approx. 300% if 
Java OL execution is integrated into a C++ application 
using the object wrappers implemented in JNI. This is due 
to the known inefficiencies of the JNI interface for function 
calling and data passing. Although significant, the 
measured performance overhead of using Java was 
anticipated and is within the expected range based on 
previous experience of Java implementation. 
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Figure 8   ICOL performance test results 

From these tests we conclude that although the performance 
impact for using Java is significant; ICOL performance 
would be more than sufficient for most applications. Also 
the performance penalty for using Java is offset by its 
advantage of true platform independence for OL execution. 

5. AUTOMATED PROCEDURE EXECUTION 

The Automated Procedure Execution (APEX) product is a 
portable “lightweight” procedure execution environment 
that uses and demonstrates the data distribution and 
operations language layers outlined above. It facilitates the 
automation and testing of spacecraft operations when 
integrated into a monitoring and control system or a test and 
checkout application. APEX is targeted at low cost 
missions, including small satellites. 

The APEX toolkit provides a generic environment designed 
to require the minimal integration and configuration effort 
for each new mission. To satisfy the requirements of the 
targeted low cost missions, emphasis is placed on a low 
deployment cost and a minimal resource footprint. To this 
end APEX is based on Java technology and open standards, 
without the use of expensive 3rd party COTS software. In 
particular Java based ICOL is used for expressions which 
control the execution flow of procedures. 

The procedure model has been captured in an XML 
schema. The schema supports the users to define correctly 
structured procedures using XMLSpy which is a low cost 
commercial XML editor.  Integration of procedure 
definition with ICOL allows the procedure control 
condition expressions to be checked against the System 
Model. 

APEX builds on SciSys’ extensive experience and 
investment in providing automated monitoring & control 
systems, most recently through deployment of the UNiT 
toolkit for EUTELSAT, UK MOD and EUMETSAT. In 
particular, the proven conceptual model of UNiT automated 

operations procedures has been re-used in the context of the 
APEX environment.  This procedure model has been 
modified and re-implemented for lightweight execution of 
individual procedures, with clear separation between the 
execution engine itself and support for visualisation and 
display.  This approach enables the distributed execution of 
procedures, resulting in a flexible and scalable solution for 
the deployment of automation.  It is also consistent with a 
long-term goal of on-board deployment of procedures. 

APEX Architecture 

Figure 9 shows the APEX system architecture that 
comprises four major elements: 

• APEX Procedure Definition element provides 
tools which supports the definition and checking 
of procedures. 

• APEX Procedure Execution element provides a 
lightweight and portable environment for the 
execution of procedures. 

• APEX Procedure Display element provides 
display components which allow the visualisation 
of single procedure status in detail and an 
overview status of all executing procedures. 

• APEX Procedure External Control element 
provides an interface allowing procedures to be 
executed on request by an external source. 

Figure 9 shows the decomposition of the elements into the 
main components and interfaces. 
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Figure 9: APEX System Architecture 



 

 

Procedure Model 

Procedures correspond to pre-defined operational activities 
that can either be scheduled as a ground-based activity, or 
manually initiated from a display client.  Procedures may 
also call Sub-Procedures which permit decomposition into 
smaller and more maintainable units.  This allows 
operational activities to be defined more flexibly such that 
they can be used in different operational contexts. 

The definition of a procedure comprises its public interface 
(including arguments), local variables and a set of Thread 
definitions. Each procedure contains a primary thread and, 
optionally, a number of secondary threads shown in the 
Single Procedure Display Figure 10. 

 
Figure 10 Single Procedure Display 

Each Thread constitutes an independent flow of control 
through the procedure.  The single Primary Thread 
corresponds to the main flow of control and is usually 
activated as soon as the procedure is started and continues 
to execute until the procedure terminates.  Secondary 
Threads support monitoring or contingency functions that 
are performed in parallel with the Primary Thread within 
the context of the active procedure.  Threads comprise an 
Activation Condition and a sequence of Steps.  A Thread 
activates following the evaluation of its Activation 
Condition to true and then proceeds to execute the Steps in 
sequence.  Threads can be enabled and disabled from other 
Threads to prevent execution if required by the procedure 
logic. 

A Step comprises a Trigger, Body, Confirmation & 
Recovery. All of these components, with the exception of 
the Body are optional. 

The Body of a Step determines what action it may perform 
which may be thread flow control, operator interaction, a 
Sub-Procedure, a Sub-Thread or a sequence of Application 
Actions. 

Each Step is broken into three clear phases that of 
triggering, body execution and confirmation shown in 
Figure 11 : - 

• Trigger - A Step may have an optional Trigger 
which controls the synchronisation and checking that 
conditions are correct to start execution. A Trigger 
consists of a Wait Condition and a Pre-Condition to 
check that the step is ready for execution. 

• Body - Execution of the Step Body involves 
execution of the intended Step logic e.g. execution of 
an Application Action or flow control construct such 
as a loop or branch statement. An optional Watch 
Condition can be associated with the Step Body 
which is used to check that execution is proceeding 
normally such that, on failure, suitable Recovery 
contingency handling can be applied. 

• Confirmation - Once the body is complete then an 
optional confirmation phase of the current step can 
be executed before moving on to execute the next 
Step of the sequence.  A Confirmation consists of a 
Wait Condition and a Post-Condition to check that 
step execution has completed successfully. 

Trigger Body of Step
Confirmation

 
Figure 11 Phases of a Procedure Step 

Recovery actions can be associated with the phases of Step 
execution. If a failure occurs during the execution sequence 
e.g. trigger fail, body fail or confirmation fail then 
appropriate Recovery actions are invoked. 

In the procedure model described above all condition 
expressions used to control procedure execution are coded 
as ICOL expressions.  The ability of ICOL to access 
application data, e.g. telemetry parameter values, in 
expression evaluation can then be harnessed to 
automatically control the flow of procedure step execution.  
Also low level atomic actions to be performed by a 
procedure such as parameter value assertion or spacecraft 
command initiation can be performed as ICOL actions. 


