PLANNING HOW TO CUT THE COST OF MISSION PLANNING

Marc Niézette

Anite Systems GmbH
Robert Bosch Strasse 7,

D-64293 Darmstadt, Germany
Marc. Ni ezett e@\ni t eSyst ens. de

ABSTRACT

Over the past years, the European Space Agency (ESA)
has invested heavily in the creation of infrastructure
software for supporting the development of their
mission-specific on-ground software, allowing in recent
years the development and maintenance of Mission
Control System (MCS) and satellite simulator software
at low cost.

This paper discusses how this approach can be
extended to Mission Planning. It shows how the
development of a mission planning kernel has led to a
significant reduction of the development and
maintenance costs of the Mission Planning Systems
(MPS) for both the Envisat and Mars-Express missions,
and presents the direction in which the mission
planning kernel should be driven, in order to support a
wider range of mission types'.

1. MPS COST DRIVERS

1.1. MPS is considered late in overall development

Experience shows that the Mission Planning System
tends to be considered somewhat later in the overall
development process when compared with the ‘key’
operational systems (the control system itself, the
attendant mission simulator, etc.). This ordering is quite
logical, as these items are critical to the mission from a
very early stage - the control system must be in perfect
working order from the moment that the launcher
begins to ascend. Depending upon the mission, the
Mission Planning System may not be called upon for
some days, if not longer.

However, care must be taken to ensure that other
elements are not left too late, due to all attention being
focused on the control systems, if later problems are to
be avoided.

! The views presented are those of Anite Systems and

do not necessarily reflect the views of the European
Space Agency.

Ilan Shaw

Anite Systems GmbH
Robert Bosch Strasse 7,

D-64293 Darmstadt, Germany
| an. Shaw@ni t eSyst ens. de

1.2. MPS is prone to requirement changes

The Mission Planning System within the Mission
Operations Centre is typically the focal point for a large
number of varied inputs, from several different sources.
All of these items have to be ingested and combined
with the overall mission plan, prior to the production of
the final consolidated planning. Changes to any of these
interfaces will have a direct impact on the planning
system - and this effect can be further compounded by
the fact that some of these interfaces may be defined
relatively “late in the day” (as discussed above), this
immaturity resulting in numerous updates as the overall
ground segment comes towards its final configuration.

Of course, the fact that the MPS must typically support
a wide variety of different interfaces may be a
contributing factor to the question already raised,
namely “Why is the MPS considered late in the Ground
Segment development process?” The implementation
of the interface-specific elements of the system should
only commence once the interfaces are reasonably
defined, otherwise the process would dissolve into a
never-ending stream of updates. In addition, it is always
preferable for the MPS to be tested out with typical
operational data for a given interface, such example
data often only becoming available late in the day.
Experience shows that the testing of MPS subsystems
with “home-made” data sets, as well as costing
valuable time, often leads to surprises when the real
item finally becomes available. This point is a
contributory factor when considering why it is difficult
to achieve 100% scenario coverage during testing of the
planning system.

In addition to the external interfaces of the system, it
may be the case that the MPS software has to interface
with planning algorithms developed by third parties.
Such items often evolve in the course of the
development / mission, and the calling MPS software
may require several updates in order to track the
different inputs / outputs of these “black boxes”.

In these days of tight cost control, there could well be a
tendency to attempt to “live without” all functionality
which is not considered as absolutely essential. Such an
approach needs to be carefully weighed up on a case-

by-case basis, as the cost of retro-fitting functionality at
a later point in time may turn out to be significantly
more expensive than considering the same item up front
in the initial design phases. Furthermore, transferring
tasks (which could have been automated) to the
operations staff is not without costs and risks,
particularly when staff are already stretched with
operational workloads.

2. APPROACH TO COST CONTROL

From the cost drivers identified above, it can be
concluded that the design of a Mission Planning system
must have the flexibility to accommodate significant
changes in the course of development and maintenance,
due to the instability of the User Requirements.

The system should therefore be highly configurable, in
order to minimize the software changes that would
result from changes to the specification. As changes are
unpredictable, the design model of the system should
be kept as close as possible to the model of the user’s
specification.

The system should also allow easy integration of
external planning modules into the planning logic.

2.1. Generic Mission Planning Systems

Reacting to requirements changes can be better tackled
in highly configurable systems, as the changes can then
be addressed at the level of the system configuration.

ESA have started in the middle of the 90°s several
study projects whose purpose was to analyse the
feasibility of a generic approach to Mission Planning,
and to propose and prototype a generic mission
planning model. The results of three of these studies
were taken as a starting point for the definition of our
general approach to MPS development.

Completed in 1997, the Generic Mission Planning
Facility (GMPF) study proposed a high-level model of
the planning domain very close to the typical User
Requirements formulation. The model covers the
representation of the requests to the MPS, plans,
activities, and resources. The planning constraints and
processes are represented as high-level rules with
declarative semantics. The key advantage of the
approach is the absence of impedance mismatch
between the requirements specification and the
modelling of the problem. This is especially important
when the specification enforces the use of a procedural
algorithm for the planning of instruments. The main
weakness of the study is the absence of a clear
executable semantics for the planning rules. The
prototype was not integrated into an operational
planning chain.

Completed in 1997, ATOS-3 is a prototype mission
planning model and system based on constraint-based
techniques. It relies heavily on the use of the
commercial scheduling product ILOG Scheduler, and
makes use of the same approach to problem modelling.
It maximises the use of the commercial tool for both
modelling and planning/scheduling. It is limited in the
pure planning functionality (generation of activities)
and does not provide an in-depth modelling of the
specificities of the Space Mission Planning. The
prototype was integrated in the planning chain for the
ISO mission, but was not responsible for generation of
executable schedules.

Completed in 1998, ATOS-4 is a prototype model-
based Mission Control System based on the use of a
generic all-purpose model of the mission shared by all
components of the MCS (planning, diagnosis,
monitoring, and procedure execution). Structural and
behavioural information is held in the all-purpose
model and imported and interpreted in a local planning
model. The planning algorithm is based on partial-order
planning techniques. The main drawback of the
approach is the impedance mismatch between the
planning rules specification, and the partial order
planning framework. The prototype was fully
integrated in the Mission Control System, configured to
handle a fraction of the ERS-2 mission.

All the prototype systems listed above share a model
for several components of the planning model. The
external interface to the MPS is defined in terms of
Services, which represent the types of request supported
by the system (e.g. take an image). Plans are
collections of Events, representing either input from the
environment (predicted orbital events, etc.) or device
and instruments activities. Resources required for
planning are classified and modelled according to their
behaviour.

The key differences between these planning models lie
in the planning process implemented, and in the gap
between the model and the user’s representation of the
planning domain and problem.

Flexibility can only be ensured if the modelling is close
enough to the user’s perspective. Changes to the
specification that are requested from the user are highly
dependent on his own perception of the problem. A
huge mismatch between the internal modelling of the
domain and problem in the planner and the user’s own
model can lead to situations where the internal
modelling is totally invalidated by a change.

This has led to the choice of a general approach to
modelling and planning along the philosophy of the
GMPF study. This approach has the advantage of
modelling the planning domain in a representation
close to the user’s representation. This maximises the

? Advanced Technology Operations System

configurability of the system by the user himself,
reduces the risk that changes to the specification
invalidate completely the planning model, and
facilitates the communication between the users and the
software development team.

2.2. General benefits from the development of a
planning kernel

In this section, we discuss the general benefits which
we have observed by taking the approach of re-using a
kernel of existing software.

Many of the advantages are quite clear. Assuming a
well designed architecture, there is no need to reinvent
the wheel. Of course, some aspects may need to be
extended, or modified slightly. However, the central
components of the model should all be equally valid,
regardless of the mission. Note that the infrastructures
mentioned are all based on Object Oriented techniques,
and as such, lend themselves to such adaptation.

As well as the architecture, actual software is in place
at the start of the new development phase. This core of
software, already validated in the scope of other host
missions, provides the development team with a flying
start in terms of getting to the position of having a basic
running system. The specialised aspects can then be
worked on, being appended to the framework that is
already in place.

A further benefit of the kernel approach is the isolation
of documentation concerned solely with the
functionality covered by the planning kernel, any
mission specific items being documented in a “delta”
document. This further reduces the effort required for a
later planning systems, as the generated documents will
be focusing on the key points — this will also reduce the
time needed to review and maintain the documentation.

There are also tangible benefits in the area of staffing —
both for the team who develop the software, the team
who will support the system (may be the same
development staff), and the team who will use the
system operationally.

If a kernel of software is known to a group of
development / support staff, regardless of the host
mission to which the staff member is currently
assigned, then it becomes easier to move staff onto a
project where extra effort is required at short notice.
Particularly in scenarios where the system needs to be
developed under compressed time schedules, the
familiarisation time required by a new team-member
can be prohibitive — by the time the engineer is up to
speed, a large proportion of the available development
time is lost.

A further point concerns the User Interface of the
application, and the manner in which the various tools
are linked together. If the essential style and layout
remains constant throughout the kernel-based planning

systems, the operations staff assigned to the area of
Mission Planning do not need to relearn the basic
concepts each time, rather they can concentrate on the
mission specifics, as well as any new features that
appear in the new version.

3. ENVISAT FOS MISSION PLANNING SYSTEM

3.1. Envisat Mission

ESA's earth observation mission Envisat-1 was
launched on March 1st 2002 from Kourou in French
Guyana. The Envisat payload is the most complex ever
used on an ESA mission, with 9 active instruments and
a complex Data Management System.

The Envisat FOS® MPS is the final link of a chain of
planning systems that contribute towards the overall
planning of the Envisat payload and ground segment. It
is responsible for planning the operations of the
monitoring instruments, merging the partial plans it
generates with specific payload observation plans
received from the Envisat Payload Data Control Centre,
global constraints checking and consolidation of the
final plan released for execution.

The MPS is then responsible for generating the
executable outputs, i.e. the command schedules needed
to drive the spacecraft itself, the ground station
schedules, and the instructions list to human operators,
as well as for reporting on plan generation and plan
execution.

3.2. Specific Cost Drivers

In addition to the general cost drivers identified in the
earlier sections, key factors have influenced the design
approach:

e Specification of the planning requirements

The planning requirements are specified as rules,
which identify a situation and an action to be taken
when the situation occurs on the plan.

e Integration of third-party software

The planning of several instruments is actually
performed by external routines provided as C
libraries by the customer, which have to be
integrated in the planning software.

e User Interaction

The requirements on the interaction between the
user and the system lead to planning being divided
into intermediate steps, which can be selected
individually by the user.

3.3. Mission Planning Kernel

Following the considerations developed in section 1,

° Flight Operations Segment

the development of the Envisat FOS MPS was based on
a Mission Planning Kernel providing a set of C++
libraries of re-usable components that cover the main
areas of the Mission Planning domain.

They are split in four main groups:

e Input components, used to import data into the
MPS.

e Output components, used to format the MPS
outputs, such as schedules and reports.

e Planning components, combined to create the core
of the planning and scheduling applications.

e HCI components, used to compose the graphical
user interface.

HCI Components

1L

Planning

S e)
_‘/ omponents _‘/

Input Components

syuouodwo) indino

Figure 1 Kernel Components

The following subsections detail the content of each of
these groups, and describe how they contribute to the
configurability of the Mission Planning System.

3.3.1. Input Components

The Input components are based on file parsers, built
using compiler generation tools.

Integrating a new input file into the system requires
creating a file handler class, which acts as a data holder
for the content of the file, describing the grammar for
the file syntax, generating the parser from the grammar,
and linking the file handler and the parser.

3.3.2. Output components

The Output components consist, as the Input
components, of a set of file handler classes that are data
holders for the output data. The data is generated by
filtering the content of internal objects, such as plans
and schedules.

Integrating a new output file into the system requires
the creation of a file handler for the file, and the
provision of operators that format the file in the
expected format.

3.3.3. Planning components

The planning components are themselves divided in
two subgroups covering static configuration data
required for planning (planning rules, instrument
descriptions), and dynamic data defining the actual plan
itself (plan object, activities, etc.).

The static elements are stored in the Mission Planning
database. They include:

e Mission elements, describing the various
instruments and the platform as well as the
environmental elements (visibility, eclipse, etc.)
for the purpose of planning;

e Planning rules, grouped into rule modules, and
associated with the System elements;

e Services, describing the interface to the planning
system in terms of combination of system states
that can be requested for interacting system
elements;

e Resources, describing the various resources
required by the planner (storage capacity, link
capacity, etc.) and their behaviour (consumable,
reusable, etc.).

e Commands, describing the commands or command
sequences implementing the various system states.

The dynamic elements generated in the course of the
overall planning process are stored separately from the
static ones. This covers:

e Service requests, which are created from the
planning input files by the planning process;

e Plans, which are created by the planning process;

e Activities, which are created by the planning
process;

e Occurrences of environment element states, which
are created from the planning input files by the
planning process;

e Command or command sequence calls, which are
created by the scheduling process.

Configuring the MPS for a specific mission involves
the population of the Mission Planning database with
the static elements characteristic for the mission. Of
these static elements, the essential ones are the planning
rules, which implement a planning algorithm in layers,
each layer being implemented by a rule module.

The use of rules to support the planning algorithm of
the Envisat FOS MPS aims at keeping the planner more
configurable with respect to changes to the mission
specification rules and constraints. It also allows giving
more control to the user on the planning process via
control of the sets of rules to be executed on the plan.

The rule-based components of the MPS are delivered as
a library of standard conditions and actions, which can

be used to create rules. The rule condition and action
evaluations are directly written in C++ in the code of
the condition and action classes.

3.3.4. HCI components

The HCI components are fully decoupled from the
other components, and rely on a set of standard
interfaces to communicate with the underlying MPS
applications.

The HCI components are built on top of the ILOG
Views library of re-usable C++ components. They can
be easily modified, and new components can be easily
created, by using the facilities of the ILOG Views
interface builder.

3.4. Planning Framework and Rule-based approach

Ref. Orb. TL Requests
G !

\ Requests

Selection Rule

Link

Selection Rule

. Switches

Selection Rule

Visibility v I v I I
Requests) 9

Links] _— Y
Switches - | - L]

v

Figure 2 Planning Modules Application

The C++ library of configurable components of the
kernel provides the core of the functionality required
for developing a planner. The core of the system is
based on planning modules that implement
transformation of the working plan, and are integrated
into the planning logic through the definition of module
dependencies (precedence, mutual exclusiveness, etc.).
The modules have a standard interface. They are loaded
at runtime by the planning module applicator, which
orders and selects them according to their dependencies
before executing them.

All MPS internal modules rely on the rule-based
components provided as part of the kernel, but the
planning modules can consist of any code that can be
called from C++. This facility is used to a large extent
in Envisat FOS MPS, where the basic planning of
several instruments is performed by routines provided
by the customer. The integration of external planning

algorithms is performed by encapsulating the
functionality needed in a planning module and making
it accessible to the system. The planning module acts in
this case as a wrapper, converting the MPS internal data
representation (plan, events, constraints, etc.) into the
data representation required by the external algorithm,
and converting back the result into elements of the
internal planning domain model.

Figure 2 illustrates the application of rule modules for
plan refinement.

3.5. Cost savings in Envisat

The approach to development of the Envisat FOS MPS
based on a mission planning kernel led to significant
savings in the development, maintenance, and
operations phases, as detailed below.

3.5.1. Development

The overall approach to cost savings in the
development phase relies on the expectation that many
changes to the original specification will have to be
integrated into the system during the development. If
the original specification had been very stable, the use
of a kernel would have most likely led to an increase of
the cost of the system development, as the
implementation of generic software does not come for
free.

The original specification of the Envisat FOS MPS
included 450 user requirements. About 380 significant
requirement changes were introduced during the
development phase, in addition to significant updates to
the definition of the external interfaces. New external
planning components with changing interfaces had to
be integrated at short notice.

The modularity and configurability of the system have
allowed for these changes to be included during the
course of development while ensuring that the final
deadline was met.

3.5.2. Maintenance

More than 60 additional change requests were
implemented on very short notice since launch, without
significant impact on operations.

3.5.3. Operations

The key cost driver for operating MPS is the number of
staff required for operating the system. Re-using the
same HCI approach and concept as the one already
implemented for the other Mission Planning Systems
operated at the same control centre has simplified the
training of the mission planners to the new system. The
training costs could be kept to a minimum, and the
mission planning staff could more easily be shared
between several missions.

The configurability of the system also allows for users

to implement modifications without software support
intervention, which reduces the need for significant
software support in the longer term.

Finally, automation of non-critical time consuming
tasks, e.g. report generation, have led to reducing again
the manual intervention needed to operate the system.

4. MARS-EXPRESS MISSION PLANNING
SYSTEM

Following the success of the approach for the
development of the Envisat FOS MPS, the planning
system for the Mars Express mission was based on the
kernel software that existed at end of the main Envisat
development phase.

4.1. Mars Express mission

The Mars Express mission is, in many regards, the ideal
target mission for testing out new approaches. Europe’s
first voyage to the red planet is the first of the so-called
“Flexible” range of missions of the ESA long-term
Scientific Programme “Horizons 20007, where new
working practices are being tried out in order to reduce
the time / cost needed to bring a mission from initial
concept to launch-readiness. Against this background
of cost reduction, the benefits provided by software re-
use are essential.

There are a number of crucial differences between the
new target mission, and the previous host system.

Each of these factors is now discussed.

4.2. Configurable Interface to the MCS

For the Envisat-1 mission, the Flight Operations
Control Centre is based on an older generation of MCS
infrastructure software, SCOS-1B, this item being the
forerunner of the SCOS-2000 infrastructure which
supports the more recent missions. The MCS for the
Mars Express mission is based heavily on that of the
Rosetta mission - which is, in turn, based on the later
infrastructure.

The kernel has been modified to support SCOS-2000 —
at the same time, the system has been updated such that
the interface with the MCS is more configurable, with
the result that other Control Systems can be more easily
interfaced with.

4.3. Refinements made for the new kernel

As well as those changes enforced by the new target
mission, a number of further updates have been made to
the kernel. Some of these are the result of extensive
experience of using the system in an operational
context; others have been made to take advantage of
“state of the art” techniques.

4.3.1. Tools to assist repeated System Testing

In order to assist the mission planner with the
regression testing of new deliveries of the system, the
kernel will provide test tools that run pre-defined test
scenarios using a set of input data, the output of the test
tool being compared against a set of known test results.

4.3.2. Configuration database default population

The original kernel was designed for flexibility, the
resulting planning system for Envisat taking advantage
of these features, in order to provide a system with a
high degree of user configurability. However, a number
of shortcomings were identified in the course of the
first months of operational testing and usage. Efforts
have been made to address these limitations.

A shortcoming lay with the core database
configuration, it not being possible to modify the
default settings of database objects without software
support (to modify the initialisation code). Under the
new scheme, all objects entering the configuration
database are held in XML files, these files to be
ingested at the database population stage.

In this way, it is possible to configure all aspects of the
mission (payload, platform, resource models, rules) at
the configuration level, no code change being
necessary.

4.3.3. Move away from commercial database

The kernel previously utilised a commercial database,
this has been replaced with a freeware offering — with
improved performance. In addition, the kernel software
has been revised to provide a better interface to the
database subsystem, such that future changes to the
chosen DBMS can be easily taken on board.

4.3.4. Complete user tailoring of MPS output

The kernel version in place for the Envisat development
allowed for a number of the outputs to be specified to a
large extent by the user, utilising “templates” which are
picked up at run-time, combined with planning data,
and the resultant output being written to the associated
files. This mechanism has been extended as follows:

e The majority of MPS output file types can now be
defined in this fashion. Absolutely all aspects of
these file types can be amended by the user

e The templates to define the output files are now
formatted using XML (as are all configuration files
within the MPS) — differing formats are no longer
employed

4.4. Cost savings in Mars Express

4.4.1. Development

The use of the kernel has allowed the Mars Express
planning system to be developed within the (narrow)
allowed budget, with the vast majority of required
functionality being delivered in under a year, including
a substantial group of change requests that were
implemented at very short notice. This is despite the
fact that substantial updates were needed in order to
support the new database arrangement, as well as the
numerous improvements made in the light of
operational experience.

ERS-1

ERS-2 |

Envisat

Mars-
Express

Fi gure 3 Conparison of devel opnment
efforts

As the number of commercial third-party products used
for the development has reduced, there is a significant
saving on initial licence costs.

Figure 3 illustrates the effort required to develop the
Mars-Express MPS re-using the Envisat mission
planning kernel, compared to the effort required to
develop the ERS-2 MPS based on the ERS-1 MPS,
which were both bespoke systems of similar size not
developed around a generic kernel,

4.4.2. Maintenance

As might be expected, as a consequence of the kernel
having already been validated within the scope of an
earlier mission, problem reports raised to date are
typically in areas that are new for Mars Express — and
for nearly all logged problems, a “workaround” was
immediately available using the extensive configuration
possibilities.

Also, the reduced number of commercial third-party
products means a cost saving of maintaining support for
these products.

The automated test harness will facilitate the repeated
performance of well-defined test scenarios, thus saving
time when testing out new software releases.

4.4.3. Operations

As the kernel becomes progressively more
configurable, the operations staff are less reliant on
software support when addressing minor issues, many
day-to-day changes can wusually be handled by

configuration database updates.

On this note, it has been recognised that configuration
itself can be a time-consuming activity. Therefore,
aspects of the kernel that used to be configurable, but
involved manual update for potentially many entries
(e.g. import of a revised command database) have been
upgraded to assist the mission planners in their work.

The provision of a fully configurable file interface
again reduces the required level of support, as the vast
majority of changes made to MPS interfaces can be
tracked by updates to the appropriate template.

5. DIRECTION FOR FUTURE IMPROVEMENTS

5.1. Supporting a wider range of missions

The use of the Envisat mission planning kernel for
different mission types has already been demonstrated
by its re-use for the Mars-Express mission. For both
missions it was used to implement the planning
functionality typical from the planning stage performed
at the operation centre, i.e. planning of the data
management system and constraint checking. At this
stage of planning, the objective is to ensure the safety
of the spacecraft and not to optimise the scientific
return of the mission.

The re-use of the kernel for other mission types within
the same context has already been assessed. For
instance, the development cost for the MOC* MPS of
the XMM® observatory mission was estimated to be
less than half the Mars-Express MPS development cost.

But taking optimisation aspects into consideration for
the planning of observations would require an
extension of the kernel to integrate optimisation
techniques.

The techniques can be implemented using the general
rule-based mechanism of the kernel, or specific
optimisation code can be integrated using the general
framework for integration of planning modules, as it is
currently done in Envisat with the integration of
external planning routines.

For instance, an optimisation technique such as the
simulated annealing used for planning the XMM
science requests at the SOC® could be implemented in a
specific rule module class. It is also foreseen that
limited CSP layer will be integrated to the MPS kernel
in order to provide the basics for the development of
search algorithms for observation planning.

* Mission Operations Centre
> X-ray Multi Mirror Mission
% Science Operations Centre

5.2. High-level Query language

A high-level query language would allow the mission
planners to express constraints that they want fulfilled
by the generated plan. These constraints can then be
used in generic rules to ensure the global consistency of
the plan after refinement. It would also make easier the
development and integration of new rule-based
modules, and can be the basis for an actual rule
language for planning. The query language would
especially concentrate on the temporal dependencies
and that can have to be checked between activities and
events.

5.3. Ground Segment planning

Improved planning of Ground Segment activities
(independent on-board/on-ground planning windows)

The MPS kernel currently concentrates on spacecraft
and ground station planning within a given time
window. Ground Segment planning is for the time
being limited and in a way decoupled from the
spacecraft activities planning. More elaborate Ground
Segment planning is foreseen, enabling the automated
generation of on-ground schedules maintaining
mapping between on-board / on-ground planning
windows and references to spacecraft and ground-
station scheduling products in Ground Segment
schedules.

5.4. Port to other platforms

As the Envisat development began in 1997, the chosen
platform reflected the available hardware of the time
(Solaris 2.6).

Being a newer development, the Mars Express MPS
was targeted at the Solaris 8 platform. In order to
maximise the benefit of this operating environment, the
decision was taken to move to a 64 bit application, to
increase the addressing range available to the planning
system. In connection with this move the kernel has
been transitioned to the new ANSI C++ standard.

In the future, it is planned to port the kernel to the
LINUX environment, which will further reduce the
overall cost of the planning system solution.

5.5. User-configurable time representations

At the moment, time formats introduced by a new
target mission need to be implemented within the
software (i.e. checking of time format, output of new
format, etc). It is foreseen that all time formats will be
brought out as configurable items, such that the user
may define all representations that are to be recognised,
and to register the format with a central date handler
(without requiring any update to code).

6. CONCLUSION

We have presented in this paper an approach to Mission
Planning Systems development that addresses the
dynamic nature of the planning requirements by basing
the development on a kernel of configurable generic
component relying on a representation of the planning
domain close to the user’s representation.

The Envisat FOS MPS, based on the generic planning
kernel, has successfully supported the most complex
satellite ever launched by Europe. Numerous change
requests were rapidly satisfied.

The Mars Express MPS has been rapidly developed,
having used the kernel as a starting point. The kernel
has been further extended in the scope of this project,
these changes further improving the ability of the
system to be reconfigured for new missions.

There is still space for improvement within the mission
planning kernel, with additional functionality and
mission support to be added in coming versions.
Although the volatile nature of the planning system
development is not likely to change, the use of kernel
helps to mitigate these influences. Therefore, it is
expected that the effort required to implement the next
“target” mission will be even less than that required for
Mars Express. Also, the savings outlined in this paper
will become even greater as new mission planners
come under the same umbrella.

7. BIBLIOGRAPHY

[1] R.Monk et al., Study on Generic Mission Planning
Facilities for Operations (GMPF) Final Report,
Ref: GMPF-FR-01, Issue 1.0, January 1997.

[2] J.Wheadon et al., ATOS-4, Advanced Technology
in Spacecraft Mission Operations, Proc. Int. Sym.
Ground Systems for Space Mission Operations.
SPACEOQOPS ‘98, Tokyo, June 1998.

[3] M.Niézette, Mission Planning for Earth
Observation Missions, Proceedings of the Second
NASA International Workshop on Planning and
Scheduling for Space, San Francisco, March 2000.

[4] L.Shaw, M.Niézette et al., Mission Planning for
Europe's latest earth observer, Proc. Int. Sym.
Ground Systems for Space Mission Operations.
SPACEOPS 2000, Toulouse, June 2000.

[5] I.Shaw, M.Niézette et al., 4 new world for the
Generic Mission Planning kernel, Proc. Int. Sym.
Ground Systems for Space Mission Operations.
SPACEOPS 2002, Houston, Texas, October 2002

