
Title – Autonomous Operations Through Procedure Automation

Category – Autonomous Operations - II

Authors: Terma:: R. Patricki, Vitrociset SpA (Italy): F. Croceii

ABSTRACT

The SCOS-2000 system, as developed by ESOC, has dramatically reduced the cost of Mission Control Systems for ESOC
over the past 10 years – sometimes by a factor of as much as 10. This has been achieved by the increased standardization
(CCSDS et al) and the use of lower cost technologies.

This is a considerable contribution to reducing the costs of the mission operations, but are there ways to find further savings
beyond those already achieved? In this paper we cover two projects currently underway, which based on this SCOS-2000
infrastructure will help to further reduce operations and life cycle costs.

This paper describes an Automation tool – the ASE tool from Vitrociset – and how this has been integrated with the
standard SCOS-2000 system. This will allow highly automated operations of both the spacecraft and the ground segment,
allowing the mission operations team to only work during normal office hours. The cost saving is through the lower number
of personnel required for the operations activities.

1 Introduction

This paper first gives a statement of the problem – how the
operational concepts within ESOC and the resulting
architecture of SCOS-2000 have been defined. We then
describe the ASE tool that brings the automation to the
system, and finally the two missions that have currently
baselined the tool for use in their mission operations.

2 SCOS-2000

2.1 Introduction
SCOS-2000 is the latest spacecraft control software to be
used by ESOC for it’s mission operations.

The capabilities in SCOS-2000 are derived from the ESOC
experiences in spacecraft operations since the 1970’s. Prior
to the introduction of SCOS-2000 as the de-facto baseline
choice for all new missions, ESOC had developed two
previous generations of systems.

The first was the MSSS system, developed on SEL-Gould
machines and used for their first missions. This was
followed by the SCOS-I system – based on a VAX/VMS
host using SUN Workstations for the MMI displays.

The experience gained from these two systems are
reflected in the functions offered by the newer SCOS-2000
Systems.

2.2 SCOS-2000 Technologies
SCOS-2000 was originally conceived as a Solaris system
using a modest number of COTS Software products in
addition to specially developed software. Terma and
Vitrociset were responsible for taking this system to a
common source code that runs on both Linux and Solaris.
In the process some of the proprietary COTS products
were replaced with opensource equivalents.

The result of this exercise has been to drive down the cost
of a basic SCOS-2000 installation to a few thousand
dollars, without any degradation in quality. The recurring
costs are limited to the PC Hardware and one or two
remaining proprietary COTS products.

The other cost benefit is that many of the development
tools (C++ compilers etc) are also not only robust products
due to their wide usage but available at little or no cost.
Without the need for any great investment in hardware or
software, potential users can have a system for very low
initial costs.

3 Operational Concepts

3.1 Introduction
Until recently, all the users of systems at ESOC have not
seen the need for procedure automation. The operations are
conducted by means of written flight operations
procedures, with the operations personnel interacting with
the system for monitoring, sending of commands etc.

For some of the more repetitive operations, a few special
functions have been introduced which make the life of the
operator easier.

For example, when a lot of telecommands have to be
uplinked to the spacecraft (as an output of the mission
planning requirements or flight dynamics), the concept of
autostacks has been introduced. The MPS (or FD or any
other system) will output a list of commands which can be
save in a defined format, known as a saved stack file. This
file can then be loaded into the SCOS system and sent as
an automated stack (as opposed to the manual stack for
sending individual commands). This greatly reduces the
operator workload, together with the reduction in the
potential number of operator errors.

However, functions such as these can only be seen as
easing operator workload and reducing the chance of
introducing human error into the operational activities.

3.2 Automating Spacecraft Operations
The first point to make is that automating spacecraft
operations can to a large extent be achieved by the actual
spacecraft design. Spacecraft are tending to get more
complex and a major part of this is due to the introduction
of more autonomous systems on board which do not
require intervention from the ground. Secondly, for many
years, spacecraft have had on board queues for
telecommands, so that the commands can be uplinked in
batches (for example during a pass, or an operator shift),
leaving the spacecraft to run itself for a period. Thirdly,
some of the newer ESA missions have an on board control
language where so-called On Board Control Procedures
can be uplinked to the spacecraft and run autonomously
from the ground.

3.3 Automating the mission
The next step in further reductions of operator workload
can have three goals:

• Reducing the size of 24/7 operations teams

• Removing the need for 24/7 operations (e.g.
reduce to 2 shifts, or normal office hours)

• Reduce spacecraft operations to on an as required
basis

To do this requires more than just automating the
spacecraft operations but also the ground segment
operations. This includes control of the ground stations as
well as control of the control centre itself. For Some
particular types of mission this can also extend to
distribution of the data generated by the mission (e.g.
meteorological, Earth Observation and Science missions).

4 The Automation System

4.1 Main Requirements
Therefore we have the main high level requirements for an
automation system:

• It must have a language and language environment
that allows people to define and run schedules and
procedures to automate the spacecraft operations
(ability to send telecommands, access telemetry etc)

• It must have a high level of integration between the
automation system, the spacecraft control system and
ground segment to allow proper control of the SCS/GS
– this covers both statements to allow the control of
the SCS as well as access to data within the SCS/GS
to allow monitoring of the different activities and
status of the system. This latter point also relies on the
other elements of the ground segment (ground
stations, data centres etc) to provide whatever data is
necessary to both provide such data and have an
interface to allow their control.

4.2 The ASE tool
The Automated Scheduler Executor is a tool developed for
automating such operations. The main characteristics of
the tool are as follows:

• It uses a procedure automation language - PLUTO
(Procedure Language for Use in Test and Operations)
– which is an emerging standard being defined by
ESA in this area.

• It allows abstraction of the space and ground system –
the so called Space System Model – which, rather than
giving the tool access to the full
telemetry/telecommand data base (which is far too
detailed), it allows access to those entities that are
necessary for the automation of the system. It also
allows definition of a tree structure for the
space/ground system, which means that at a lower
level node, all the telemetry, telecommands and
automated procedures that are relevant to that node are
organised together

• It is written in Java – making t platform independent

5 The ASE tool

5.1 Background
The “Automatic Scheduling Execution” (ASE) is a
system developed by Vitrociset in answer to an ESA study
for Mission Control System (MCS) procedure automation.
The study addressed the need to have a degree of

automation in addition to the standard telemetry and
telecommands monitoring and control functionality.

ASE is compliant to the proposed ESA standard ECSS
(European Cooperation for Space Standardization) ECSS-
70/32 “Procedure Language for Use in Test and
Operations” (PLUTO). At a high level, PLUTO defines
common specifications for procedures Mission Operations
and the pre-lauch AIT/AIV operations.

PLUTO defines three key elements:

• a procedure reference language,

• the specifications of the procedure execution
environment

• a Space System Model (SSM).

The SSM allow to represent mission functional and
physical units into an hierarchical structure of software
system elements with each element embedding the
knowledge of the actual mission unit or equipment.

ASE is fully compliant to PLUTO extending what the
standard defines with procedure execution scheduling
capabilities. The system high-level functions include:
PLUTO procedure editor, procedure execution engine,
procedure execution tracing and debugging, execution
scheduler, PLUTO Space System Model.

ASE currently includes interfaces to the ESA SCOS-2000
generic TM/TC kernel for telemetry, telecommand and
events references.

ASE is entirely written in JAVA and includes.

5.1.1 ASE Functions and System Overview
ASE provides three major component functional areas:

• Procedure preparation environment

• Procedure scheduling and execution environment

• Schedule file reception and validation

The three functional areas are properly separated within
the ASE environment - meaning that the user can prepare
procedures independently from actual operations. The user
has also the possibility to test procedures within the
procedure preparation environment without interfering
with the execution of operational procedures/schedules or
with the schedule reception and validation process.

The following picture provides a high level view of the
ASE packages with the dependencies among the packages.

Prepara tion Execution Rece iver

PLUT O
Language

Space System
M odel

HM I

EXIF

Data Item s

Al l packages have
depend iences wi th
"da ta i tem s"

OT S

preparation and
SSM have
dependencies

ASE High Level Functions

Figure 5-1 – ASE High Level Functional Packages

At very high level ASE includes:

• Preparation: procedure and Space System Model
preparation and editing environment

• Execution: execution and scheduling environment

• Receiver: schedule file reception and scheduling
environment

The three main packages make use of other packages
providing lower-level services to them. The service
packages are:

• PLUTO Language: providing the PLUTO compiler
and the PLUTO execution engine

• Human Machine Interface (HMI): displays, views
and in general GUI components implementing the user
interfaces to the different ASE functionality

• Space System Model: implementing the PLUTO
Space System Model.

• External Interface (EXIF) used by Space System
Model to interact with the external world

• Data Item: are data item models and related methods
to handle them

• OTS: includes functionality identified to be
implemented by external software packages.

The ASE execution environment includes:

• an Agenda, which is the higher level scheduling
control and editing element where schedules (see next
bullet) execute. The agenda is capable to handle and
schedule an unlimited number of schedules (the actual
maximum number is limited by the system resources).

• Schedule: software entity that can be scheduled for
execution within the agenda. This the entity where a
schedule is executed. Multiple schedules can be
present in the agenda, with the possibility to handle
execution of overlapping schedules (concurrent
activities).

• Task Request: entity that can be scheduled for
execution within the schedule and in charge to provide
the runtime environment, where a procedure is
executed. A procedure runs always within a task
request.

The whole ASE scheduling environment, as defined by the
user in terms of task requests (hence procedures) and
interlocks among procedures (specifying when a procedure
can be executed and if it has a dependencies with the
execution status of other procedures), can be saved within
files and then re-loaded for execution.

Time windows associated to task requests (as execution
qualifiers) are handled as delta time according to a
schedule reference time. Every time a schedule is re-
loaded the user can enter such reference and, at schedule
loading, task requests time windows are re-computed as
absolute times according to the schedule reference time
and the delta-time associated to each task request.

The PLUTO Space System Model (SSM) provides the
definition of the mission and interface with the mission
control system. The ASE SSM includes:

• Hierarchical decomposition of the mission into system
elements

• Objects associated to each systems, that is, parameters
(telemetry), activities (telecommands, procedures,
system activities), events

• Interface with the mission control system

It must be noted that ASE has generalised the concept of
the PLUTO SSM by including besides all mission
elements (tied to the standard TM/TC data defintion) with
system and application elements. As an example the ASE
agenda is present in the ASE SSM as a system element.
The Agenda system element can include schedules as
dynamic (created as required) system elements and each
schedule system element include task request as

appropriate. All these elements have associated
parameters.

Another basic functionality implemented by the ASE SSM
is the interface to the mission control system. ASE is
highly integrated with SCOS-2000 not only for telemetry
and telecommand references but also for the following
services:

• Event injection

• MISC Dynamic handling

• Roles and Privileges

The following figure summarises the system functional
modules and their internal and external interfaces.

Spacecraft
Control
Kernel

(SCOS-
2000)

Operational DB
(ODB)

E2

Schedule
Files

Procedures

ASCII Files

E1 Procedure
Editor
(PED)

Schedule Files
Receiv er &
Validator

ASE Execution
(AEX)

ASE
SSM

Kernel
(ASK)

MISC
Dy namic

telemetry

telecommands

events

E7

E6

E5

External
Schedule
Request

(e.g.
Mission

Planning)

ASE PLUTO Kernel
(APK)

MIB
Database

New Entry
in Agenda

E
M
C
S

I/F

External
Procedures
Providers
(e.g. OPS)

Prep
Envir.

Exec.
Envir.

`

Procedure
Source

Compiled
procedures

Exec.
Envir.

`
SSM Editor

(SED)

E3

Compilation
Requests &

Results

MIB Importer

E4

E11 E10

AEX and SSM MMI

User

User User

E8

E9

MISC
Variables

User
Profile

Figure 5-2 – ASE High Level Functional Modules

The data transferred across the external interfaces is
summarised in the table below.

ID Data Description Source Destination

E1 Procedure PLUTO Procedures
imported into ASE

OPS cfm

E2 Schedule File XML File Activities receiver

E3 Operational
Database

ASCII Files generated from
the MS Access operational
database

DBS db

E4 N/A User activities for editing
and

User SED

E5 Events Events Injection SSM SCK

E6 Telecommand Telecommand Injection SSM SCK

E7 Telemetry Telemetry parameters
values

SCK ssm

ID Data Description Source Destination

E8 MISC
Dynamic

MISC variable value and
change value notification

SCK ssm

E8 MISC
Dynamic

MISC variable value
setting

SSM SCK

E9 User Roles
and Privileges

Roles and privileges
definition and authorization
for ASE Login validation

SCK Ssm

E10 N/A User interaction with the
ASE MMI

User N/A

E11 N/A User interaction for
procedure creation and
editing

User PED

5.1.2 ASE Schedule Files
An ASE functionality relevant to the ATIS study is the
format and reception of schedule files.

Schedule files are files defining the ASE scheduling
environment in terms of :

• Schedule execution attributes (start time, finish
time,…)

• Task requests definition (procedure name, procedure
input parameters, start time, finish time,…)

• Execution constraints among tasks (follower, interlock
type, interlock subtype)

Schedules are created within the ASE procedure
scheduling environment, by editing task requests and
associating execution parameters to each task request.
They can be saved via the ‘Save Schedule’ option
available in the ASE schedule file menu and they can be
loaded via the ‘Load Schedule’ option available in the
same File menu.

A schedule can also be made available to ASE by injecting
the related file into a directory polled by the ASE receiver.
The ASE user is notified of a new schedule detected by the
ASE receiver and has the possibility (after validation) to
schedule it for execution into the agenda.

Schedule files are formatted using the EXtensible Markup
Language (XML) data representation specifications.

5.1.3 ASE / SCOS-2000 Interfaces and
Operational Scenario

SCOS-2000 includes a set of external services (EXIF) for
data provision and injection. These services have been
implemented as CORBA servers which can be referenced
by client applications such as ASE, for data processing and
system configuration at client side. Services are:

• Data provision: Telemetry, telecommand
(telecommand history), events

• Data injection: Telemetry, telecommand, events

Mission data provision/injection and system services are
SCOS-2000 external services used by ASE for interacting
with SCOS-2000.

Currently ASE uses a subset of such services, that is:

• Data provision: Telemetry

• Data injection: telecommand and events

In addition to these services, ASE interacts with SCOS-
2000 for other services access available as standard SCOS-
2000 kernel interfaces. These are

• Configuration: access to SCOS-2000 MISC dynamic
variable (to be noted that ASE reads also MISC static
variable). ASE receives and sends changes to SCOS-
2000 dynamics system configuration variables. This
interface is supported on the Spacecraft Control
Kernel by the existing MISCdynamic server. ASE is
adapted to restrict the configuration variables that may
be changed by ASE to a subset, to reduce the risk of
system variables being inadvertently modified by a
faulty procedure.

• Roles and Privileges: for user login and privileges
control. ASE obtains user log-in information, and
associated roles and privileges, in order to check the
privileges for restricted activities such as sending TC
directives. (ASE can be operated without commanding
privileges for the purposes of procedure testing, in
which case TC directives are not sent to the Spacecraft
Control Kernel for uplink). In case SCOS-2000 server
is not available ASE performs user roles and
privileges checking through a local configuration.

The following picture report the overall set of interfaces
available (EXIF and kernel) with the indication of those
used by the current version of ASE.

 SCOS-2000

S2K Kernel

S2K EXIF

ASE

TMP

SSM
Interfaces

ECH

EVI

MISC

USER

TTM Param values

Telecommands injection

TM Param Registering

Events injection

MISC vars set

MISC vars get and notification

Roles and Priv Information

TMP

TCI

EVI

MMD

MRP

TMI

EVP

TCP

TC Verifications

ASE SSM Kernel
(ASK)

Figure 5-3 – SSM External Interfaces

6 Missions

It is currently baselined for 2 missions:

• The ESA Rosetta mission is a deep space mission to
rendezvous and drop a lander on a comet. Launch is
set for early 2004, with comet rendezvous in 2001.
Rosetta already has a lot of on board autonomy – for
example the use of on board control procedures. It has
periods when it will be out of ground contact for many
months (it passes behind the sun). When visible,
ground contact will be limited to a few hours per day,
and the majority of operations during these periods
will be automated.

• The second mission is Radarsat-2. This is a
commercial Earth Observation Mission. It is a LEO
satellite which has passes of a few minutes 14 times a
day. During the passes it is necessary to uplink many
telecommands for the spacecraft operations (up to 48
hours ahead). The mission will provide SAR Images
to customers. The customer requirements are put into
a mission planning system, which generates an
appropriate list of telecommands, which is then passed
to ASE/SCOS-2000 for automatic uplinking during a
pass.

7 Conclusions
The combination of systems and technologies
demonstrates the following:

• SCOS-2000 is an open spacecraft control
infrastructure that will allow efficient interfacing to
other operational products

• The technology – Linux, Gnu compilers, Java etc
provide a very low cost and robust baseline for the
system, allowing the exploitation of cheap PC
Hardware

• The ASE tool will allow much more cost effective
operations through the high degree of automation it
can bring to the system

End Notes:
i Roger Patrick – rmp@terma.com
ii Francesco Croce - Francesco.croce@vitrociset.it

