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Preface

This book is a compilation of research results obtained primarily over the
past two decades in the application of groups of oscillators coupled in various
configurations to the excitation of phased-array antennas. Much of the work
was carried out at the Jet Propulsion Laboratory of the California Institute of
Technology under contract with the National Aeronautics and Space
Administration (NASA) building on the early work at the University of
Massachusetts, Cornell University, and the University of California, Santa
Barbara. More recent work at several institutions in Spain and especially at the
Centre Tecnologic de Telecomunicacions de Catalunya (CTTC), as well as a
variety of institutions across Europe and Asia is also described. A motivation
for much of this work was the promise of a method of providing beam agility at
electronic speed that is simpler than the conventional method of using a phase
shifter at each element or module and controlling these phase shifters in a
coordinated manner. More generally, however, the effort has focused on the
integration of transmitter, receiver, and antenna including the beam-steering
function in a single planar package.

The intended audience for the book comprises primarily designers of
phased-array antennas and the associated electronics, but the book may also be
of interest to those who may, through understanding the principles presented,
envision other innovative applications of oscillator arrays such as distribution
of timing signals and phase locking in general. In the same way, graduate
students may find inspiration for research work leading to theses or
dissertations based on extending the work described here.

With regard to the references, as a general rule we have used peer reviewed
archival journal articles and not conference presentations in the interest of ease

xiii



xiv Preface

of access. We have, however, made a few exceptions in this regard in cases of
very recent work that, as far as we know, has not yet appeared in the peer-
reviewed literature and in one case for the use of figures with proper attribution.
We have endeavored to present a comprehensive treatment of the work in this
field to date but recognize that we cannot be sure that we are aware of everyone
in the world with interest in and contributions to this fascinating area of
research. We, therefore, extend apologies to any who feel their work has been
slighted in any way. Be assured it was unintentional.

The book begins with a note concerning the early use of coupled oscillators
in the field of mathematical biology wherein researchers used them as an
artifice in representing the behavior of neurons in what is known as a central
pattern generator in a manner amenable to mathematical analysis. The
application to phased array antennas owes its origin primarily to Karl Stephan
at the University of Massachusetts [1] [2] [3] and to Richard C. Compton at
Cornell and his student, Robert A. York. [4] [5] [6] [7] However, the modern
emphasis on the study of the dynamics of such arrays was inspired by the
interest of James W. Mink of the U. S. Army Research Office [8] in spatial
power combining at millimeter wave frequencies. Thus, the presentation
continues with a discussion of the utility of oscillator arrays in phased array
antennas and a detailed discussion of the mathematical analysis of the dynamic
behavior of such arrays. The mathematics is at a level that should be easily
accessible to graduate students in the physical sciences. Advanced calculus,
linear algebra, complex variables, and Laplace transforms are the primary tools.

The treatment is arranged in two passes. On the first pass in Part I, we
formulate the analysis in the simplest possible manner while retaining the
essence of the dynamic behavior, the so-called phase model. Most of the results
are based on a linearization of the equations valid for small inter-oscillator
phase differences. This permits introduction of the key features of array
behavior with a minimum of complexity. We then describe a number of
experimental demonstrations of this approach to phased array beam agility and
validation of the approximate theoretical results in Part II. In Part III, we return
for a second pass at the analysis, this time including a more sophisticated
theoretical description of the oscillators permitting detailed study of the impact
of their nonlinear properties. Much of the contemporary research in this area is
focused on these properties and their potential utility in modern physical array
implementations with many and varied applications. In Part III the presentation
of experimental work is integrated with the theoretical as appropriate.

In preparing material for this book, a number of sign errors, typographical
errors, and, in rare cases, errors of substance were uncovered in the references.
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Every effort has been made to correct these so that where the book differs from
the literature; it is the book version that is correct.

Ronald J. Pogorzelski and Apostolos Georgiadis
Pasadena, California and Castelldefels - Barcelona, Spain

June 2011
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Part I: Theory and Analysis

Chapter 1
Introduction — Oscillators and
Synchronization

Oscillation is among the simplest of dynamic behaviors to describe
mathematically and has thus been conveniently used in modeling a wide variety
of physical phenomena ranging from mechanical vibration to quantum
mechanical behavior and even neurological systems. Certainly not the least of
these is the area of electronic circuits. Many years ago, van der Pol created his
classical model of an oscillator including the nonlinear saturation effects that
determine the amplitude of the steady-state oscillation. [9] Soon afterward,
Adler provided a simple theory of what is now known as injection locking and
coupled oscillators became a valuable design resource for the electronics
engineer and the antenna designer. [10] Moreover, circuit theorists were able to
apply these principles to long chains and closed rings of coupled oscillators to
model biological behaviors such as intestinal and colorectal myoelectrical
activity in humans. [11] [12].

1.1 Early Work in Mathematical Biology and Electronic
Circuits

Biologists, in trying to understand how neurons coordinate the movements of
animals, have defined what is known as a “central pattern generator” or “CPG”
for short. A CPG in this context is a group of neurons that produce rhythmic or
periodic signals without sensory input. Biologists have found that CPGs are
conveniently modeled mathematically if treated as a set of oscillators that are
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coupled to each other, most often using nearest neighbor coupling but
sometimes using more elaborate coupling schemes. Taking this viewpoint and
performing the subsequent mathematical analysis has enabled biologists to
fruitfully study the manner in which vertebrates (such as the lamprey)
coordinate their muscles in locomotion (swimming) and how bipeds (such as
you and I) do so in walking or running. The muscles are controlled by signals
from a CPG. [13] [14] Electronics engineers have also found oscillators to be
useful but more as a component of a man-made system rather than a model of a
naturally occurring one as in biology. Legend has it that the first electronic
oscillator was made by accident in trying to construct an amplifier and
encountering unwanted feedback that produced oscillatory behavior. In any
case, to deliberately make an oscillator, one starts with an amplifier and
provides a feedback path that puts some of the amplifier output into its input
whence it is amplified and again returned to the input, and so on. The feedback
signal is arranged to arrive at the input in-phase with the pre-existing signal at
that point so the feedback is regenerative. Thus, the amplitude of the circulating
signal would continue to increase indefinitely. However, the amplification or
gain of practical amplifiers decreases as the signal amplitude increases. Thus,
an equilibrium is quickly reached where the amplitude is just right so the
amplifier gain balances the losses in the loop. Then the oscillation amplitude
stops increasing and becomes constant. This equilibrium occurs at a particular
frequency of oscillation depending on the frequency response of the amplifier
and the phase characteristics of the feedback path. Thus, the amplitude and
frequency become stable and constant. These can be controlled by changing the
circuit component values.

Before long it was realized that an oscillator could also be controlled by
injecting a signal from outside the circuit into the feedback loop. This, in a
sense, adds energy to the circuit at the injection frequency making it easier for
the circuit to sustain oscillation at that frequency. Therefore, if the injected
signal is strong enough, the oscillator will oscillate, not at its natural or free
running frequency but, rather, at the injection signal frequency and the
oscillator is said to be “injection locked.” If the injection signal comes from
another oscillator similar to the one being injected and the coupling is
bidirectional, the pair is said to be “mutually injection locked.”

If many oscillators are mutually injection locked by providing signal paths
between them, mutual coupling paths, they can be made to oscillate as a
synchronized ensemble. The ensemble properties of such a system are both
interesting and useful, and it is this aspect that so intrigued the mathematical
biologists. However, some years ago, it was noted by antenna design engineers
that these ensemble properties may be exploited in providing driving signals for
phased-array antennas. This is because, the phases of the oscillators in a
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coupled group are coordinated and form useful distributions across the
oscillator array. These phase distributions will be discussed in great detail in the
remainder of this book, but, for now, we only note that in, for example, using a
linear array of mutually injection locked oscillators coupled to nearest
neighbors, one may create linear phase progressions across the array by merely
changing the free-running frequencies of the end oscillators of the array anti-
symmetrically; that is, one up in frequency and the other down by the same
amount. Such a linear distribution of signal phases, when used to excite the
elements of a linear array of radiating antenna elements, produces a radiated
beam whose direction depends on the phase slope. This slope is determined by
the amount by which the free-running frequencies of the end oscillators are
changed. Electronic oscillators can be designed so that their free-running
frequencies are determined by the bias applied to a varactor in the circuit. These
are called voltage-controlled oscillators or “VCOs.” So we have now described
an antenna wherein the beam direction is controlled by a DC bias voltage, a
very convenient and useful arrangement that is, in large part, the subject of this
book.

1.2 van der Pol’s Model

Although having published some related earlier results, in the fall of 1934,
Balthasar van der Pol, of the Natuurkuedig Laboratorium der N. V. Philips’
Gloeilampenfabricken in Eindhoven published, in the Proceedings of the
Institute of Radio Engineers, what has become a classic paper on his analyses
of the nonlinear behavior of triode vacuum-tube based electronic oscillators [9].
The beauty of his work lies in the fact that he included in his model only the
degree of complexity necessary to produce the important phenomena observed.
Thus, his mathematical description remained reasonably tractable permitting
detailed analytical, and more recently computational, study of all the salient
behaviors of such circuits.

An important aspect that was missing from the earlier, linear treatments was
that of gain saturation. Recall that it is this saturation of the gain that produces a
stable steady-state amplitude of oscillation. van der Pol included this as a
negative damping of his oscillator which depends quadratically on the
oscillation amplitude and becomes positive for sufficiently large amplitude. He
also allowed for a driving signal with a frequency different from the resonant
frequency of the oscillator. The inclusion of these two features in his model will
enable us to use it to describe in this book both the steady-state and the
transient behavior of coupled oscillator arrays.

Consider the oscillator of Fig. 1-1 and let Y, be a resonant parallel combination
of an inductor, a capacitor, and a resistor. Application of Kirchhoff’s current



4 Chapter 1

jot

law to the node at the top of Y, , using phasors with e
yields,

time dependence,

- 1 jo 5
oly+(—+—-0"C)V =0 1.2-1
jolp +( Tt ) (1.2-1)
Now, van der Pol recognized that the active device current, iy, would be a

nonlinear function of the node voltage and modeled that nonlinear function in
the time domain as,

. 3
in(0) =—g( g()— gy (z)) (12-2)
using the constants ¢, g;, and g3 for consistency with Section 7.5 where the van

der Pol model is revisited in the context of circuit parameter extraction. Thus
we have that,

d . d , . d
—ip(t)=—-eg —v(t)+3 1) —v(t 1.2-3
“ip(0)=—eg S0+ 3683y ()2 v(0) (123)

or in phasor notation,
jolp =-jos(g -3¢V |V (1.2-4)
capital letters denoting phasors. Substituting this into Eq. (1.2-1) yields,
—ja)g(gl —3g3V2)V+(%+j7w—a)2CjV =0 (1.2-5)

which may be rewritten in the form,

[—ng(gl—3g3V2)+%+%—a)2C}V:ja)YV:0 (1.2-6)

ACTIVE
DEVICE Yoo <— y=y+Y,=0
Re(Yp)<0

Fig. 1-1. An oscillator as a negative admittance.
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where,

1 1
Y:—S(gl —3g3V2)+jE+E+j(0C (1.2—7)

Now, expanding this admittance in a Taylor series about the resonant
frequency,

1
Oy =—F7— (1.2-8)
NLC
results in,
2 1 |
Y = —g(gl -3g3V )+ ol +E+ joC
. (1.2-9)
2\, 2J0
0
where,
O=onRC (1.2-10)

is the traditional quality factor of the oscillator. Use of this expression for the
admittance is how we will introduce the van der Pol model into our analysis of
an injection locked oscillator below.

1.3 Injection Locking (Adler’s Formalism) and Its
Spectra (Locked and Unlocked)

To analytically describe the injection locking phenomenon, an oscillator can be
viewed as an admittance with a negative real part connected to a resonant load
admittance with a positive real part as shown in Fig. 1-1. Using this
representation we proceed now to develop a differential equation for the
dynamic behavior of the phase of the oscillation.

The voltage across the load admittance can be written in time varying phasor
form as,
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VZA(Z‘)ejH(t) (1.3-1)
where,
) =t +t) (1.3-2)
Note that " may also be written,
V= /00— InA0)] (1.3-3)

Kurokawa [15] suggested that the time derivative of this phasor be written in
the form,

dav . dp .d
—= +——j—InAdlV 1.3-4
dr ][a)‘) a } (13-4

and that the quantity in brackets be identified as the “instantaneous frequency,”
@, That is,

dv .
E = ]a)instV (13'5)
where,
dp .d
., = +——j—In4 1.3-6
inst |:a)0 dt ]dt :| ( )

The negative admittance of the device, Yp, is a function of both the frequency
and the amplitude of the oscillating voltage across it. The oscillator operates at
the frequency and amplitude that makes this negative admittance equal to the
negative of the load admittance, Y;, so that the total admittance is zero.
Following Chang, Shapiro, and York [16], we may expand the admittance in a
Taylor series about this operating point in the form,

oY
Y(a)inst’A)zYL+YD(wO’AO)+(a)inst_a)0)% + o (1.3-7)
@

where we have neglected the amplitude dependence of Y. Multiplying by V' we
obtain Kirchhoff’s current law at the top node of Fig. 1-1.
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Y(o,

nst> AV =
oY

1.3-8
YLV+YD(0)03A0)V+(Wmst_500)% ( )

Vi oo =0

20

In steady state, the oscillator will oscillate with frequency w, and amplitude A4,
making the derivative term zero. Then the load current cancels the oscillator
current for a total of zero current exiting the node. However, if a signal is
injected at the node from an external source, this equilibrium is changed to,

Iinj +Y(a)instaA)V =
oY 1.3-9
Ly + Y1V +Yp (@, )V + (@ —0)) | V+ - =0 (1.3-9)
Ow a
Inserting Eq. (1.3-6) for the instantaneous frequency results in,
dp .d oY
I . +Yy(wy, )V +Y,V+|——j—InA|—| V=0 i
inj T Yp(@o, 4)V +Y, [dt I }aw% (1.3-10)
or,
Y I .
{@_jiln/l}_ (a)O,A0)+ i _
dt "~ dt oY ol , (1.3-11)
86:)600 8&)%

We will now substitute the negative admittance appropriate to the van der Pol
oscillator model and analyze the oscillator assuming that a current, [, is
injected.

Recall that near w, van der Pol’s model gives,

2j0
Y=—¢(g -3¢ |+ (0-ay) (1.3-12)
( ) %ROSC
so that,
or| _ 20
Ow @, a)ORosc (13-13)

Taking the real part of (1.3-11) using (1.3-13) yields,
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do Ling
—+Re| ———1|=0 1.3-14
dt 2jQ 4, ( )
a)ORosc
Letting Vm] :Rosc]inj )
dp Vini
—+—Im| — =0 1.3-15
dt 20 [ Vv ( )
Using phasor notation for the injection signal, Vinj = Al-njejgi”’ and using
(1.3-2),
d9 @ Ay i(8,6) @ A
E—COO'FETIIHQ =0y +—= Sln(é’mj—é’) (1.3-16)
) o Ainj )
Defining, —— = A, , the so-called “locking range,” we have,
20 A
do .
— =0y + Aoy, sm(@l-nj —6’) (1.3-17)

dt

known as Adler’s equation [10]. Taking the imaginary part of Eq. (1.3-11)
leads in the same manner to a differential equation for the amplitude dynamics
but, treatment of that aspect will be postponed until Chapter 7 dealing with
nonlinear analysis of oscillator arrays. For clarity and simplicity in the initial
description of the array properties, the amplitude variation will be assumed
negligible. If you are particularly interested, however, you may wish to consult
Nogi, et al. [17], Meadows, et al. [18] , and Seetharam, et al. [19] which discuss
some aspects of amplitude behavior.

Although the differential equation given by Eq. (1.3-17) is first order, it is
nonlinear. Remarkably, however, it can nevertheless be solved analytically.
Once the solution is obtained, it can be used to describe the dynamic behavior
of the locking process and, very interestingly, the spectrum of the oscillations
under both locked and unlocked conditions. We begin by solving Eq. (1.3-17)
and then proceed to exhibit the spectral properties of the solution.

First, we define,
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y=0-0,, :(go—(omj)+(ab—a)mj)t (1.3-18)
so that Eq. (1.3-17) may be written,
dy . Awyy,
—=-Aw siny + 1.3-19
dt lock ( 14 A Dok ( )
_ . Aa)inj _ A
where Aa%nj =Wy, —@. Now defining K = and T=A),,l, we
Drock
have the deceptively simple looking differential equation,
dy .
—=—(siny + K 1.3-20
= (siny +K) (1.3-20)

Integrating from an initial time, 7, to an arbitrary subsequent time, 7,

w@)  dy z
J. ———=—| dr (1.3-21)
v(@) (siny+K) %
we arrive at,
T=17— W(T)—dl// 1.3-22
0 l//(fo)(sinw+K) (13-22)
and it remains to carry out the integration. Using the substitution,
u =tan L (1.3-23)
2
the integral may be cast in the form,
1 (v 2du
2u 1.3-24
where,
T
Uy = tan(y/(zo)j (1.3-25)
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By factoring the denominator of the integrand and expanding in partial
fractions, the integral, Eq. (1.3-24), can be expressed in terms of the natural
logarithm function in the form,

iju 2c;u _ 1 ln(u—uzj
K “ou2+?u+1 1—K2 u—1u

u

(1.3-26)

U

where u; and u, are the roots of the quadratic in the denominator of the
integrand. That is, Eq. (1.3-22) becomes,

IV/(T) dy _
v (@) (siny +K)
y(7)
| Ktan(l/zlj+(l— 1—K2) (13-27)
In =7y—
1-K? Ktan(l//j+(l+\/l—l(z)
2 w (7o)

Recall that the natural logarithm function is related to the inverse hyperbolic
tangent function by,

I+x _
In| —= |=2tanh™!(x) (1.3-28)
I—x
if 0 < x? < 1. Upon using Eq. (1.3-28) in Eq. (1.3-27) we obtain,
v (7)
2 O 1-K?
T=71, +—2tanh —_— (1.3-29)
1-K K tan (l//j +1
2
w (7o)
provided K 2 <1. This condition is equivalent to,
‘Awinj < |Aa)lock| (1.3-30)

which means that the injection signal frequency is within one locking range of
the free-running frequency of the oscillator corresponding to the so-called
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“locked” condition. If K 2 >1, the oscillator is said to be “unlocked” and the
solution given by Eq. (1.3-27) becomes,

w(7)
2 » K?-1
= _— (1.3-31)
K~ -1 Ktan(wj+l
v ()

Now, rewriting Egs. (1.3-29) and (1.3-31) explicitly evaluated at the limits and
rearranging a bit results in,

1

1-K? (2' 2'0)
[ ) 2 (1.3-32)
tanh”! 1-K 3 | 1 K
Ktan(l//(r)j Ktan( j
2
and,
1 [
——VK* -1 (T—TO) =
1.3-33
O VKZ -1 4 K?-1 ( )
tan —tan
Ktan(W( )j K tan vz O)
2 2
We now make use of the following pair of identities.
t -1 -1 _ -1{ X —Xp
anh™ (x)—tanh™ (x,) = tanh (—j (1.3-34)
1 - xx
tan_l(x)—tan_l(xo) = tan_l[mJ (1.3-35)
I+ xxq

Applying these to Egs. (1.3-32) and (1.3-33), respectively, we obtain,
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11<27r0}

(
{tan(‘//( ) tan[‘”(;o)ﬂ (1.3-36)
K+Ktan(l//( )jtan(l’”( 0)j+tan[l’[/(r)j+tan("y(10)j

tanB 1-K? (T—fo)}

{tan(l/l(r)j—tan(l//(ro)ﬂ (1.3-37)
2 2

K+K tan(l//(r) j tan(l//(ro)j +tan (V/(T)) +tan (‘//(TO))

tanh {l
2

These equations may now be solved for (7). The results are,

w(r)=
tan["//(ro)j—tanh{l l—Kz(r—ro)}{Kﬂan(‘”(To)ﬂ
2tan™! 2 2 2 (1.3-38)
l+tanh[;m(r—ro)}{l_ﬂ(tan(‘//go)ﬂ
w(7)=
(W(To)jﬂan[ Kz—l(r—fo)}{Kﬂan(W(%)ﬂ
2tan”! 2 2 2 (1.3-39)

l—tanB Kz—l(r—ro)}{HKtan(W(zTO)ﬂ

These represent the exact analytic solution of Eq. (1.3-20) giving the dynamic
behavior of the phase of an externally injection locked oscillator for all time

subsequent to 7). While they are actually the same solution, Eq. (1.3-38) is
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conveniently applied when K 241 , and Eq. (1.3-39) is conveniently applied
when K2 >1. When K* =1, Egs. (1.3-38) and (1.3-39) are identical.

We will now proceed to study the spectral properties of this solution. It will be
expedient to return to the logarithmic representation in Eq. (1.3-27). For the
locked condition we have,

(W;T)) ( W) Ktan(l//(r‘))j+(l+m)
(!//(r)j (1+W) (w(m)) (_ . Kz) (1.3-40)
(ro—r)m

Exponentiating both sides yields,

Ktan('//;z')) (1—@) Ktan[lﬂ(zro)}r(nm)
tan(‘”g)}(nm) Ktan(V’(T())j+(l_ _KQ) = (1.3-41)
e_(r_fo)@

For simplicity of notation, the second factor in the curly brackets, being a
constant that depends on the initial conditions, will be defined to be 1/Cy. Thus,

w(7) 2
Ktan( 2 j ( : K) :Coe—(r—ro)m

(1.3-42)
Ktan(l//( )j (1+m)
Now solving for w (7),
| V1-K2 1+ Gue Ny
w(r)=2tan Fa l_Coe—(T—To)@ X (1.3-43)

Recall that,
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tan - (x)_E n[fij (1.3-44)

So that Eq. (1.3-43) may be written in the form,

=K 1Ny
~(r-7y WI-K? K

K
(1) = jl 1= Coe (1.3-45)
(// T :] n > -
K2 | 1+ Goe TN
K 1-C ef(z'fro) 1-K? K
0
Again exponentiating both sides,
R S R T )
_ K 1-C e—(z’—ro)\/l—Kz K
V(@ = 0 (1.3-46)

JI- k2 | 14 g (NI
+

1
K 1— Coe—(r—ro )\ll—K2 K

This can be rearranged as,

V(@)

(JKH_\/_—) (JK+1+H)Coe_(’_’0)@ (1347)
(J'K—l+m) (]K 1_\/_7) (-t V1=K

Equation (1.3-47) gives the dynamic behavior of the oscillator voltage as the
phase evolves from y(7,)to w(r). This behavior is exponential, not
oscillatory, and the steady-state value of the phase at infinite time is
—sin ' (K) . Returning to Eq. (1.3-1) and using Eq. (1.3-18) we find that the
oscillator voltage in steady state is,

— A(t)ej‘g(t) — Aej(l/H Onj) _ Aef(‘Sinfl(K)Jr(”m/”’m/t
(1.3-48)
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Thus, the spectrum is a single line at frequency @;,; and there is a steady-state

phase difference between the oscillator signal and the injection signal of

sin(K).

Suppose we allow K to become larger than unity in magnitude. In such a case,
the injection signal frequency lies outside the locking range around the free
running frequency and the oscillator will be in the “unlocked” condition
described by Eq. (1.3-39). Now, however, the spectral properties of the solution
become more interesting. We follow an approach suggested by Armand. [20] In
this situation, Eq. (1.3-47) becomes,

V() —
(jK+1—j\/K2—1) (JK+1+JVK2 )Coe He) (1.3-49)
(]K 1+]/ ) (]K 1— ][KZ ) z'To)

or,

. A, — A,Cye /T

Jw(r) _ 1 20

¢ _{B - B,C ‘ff} (1.3-30)
1 2C0€

where,
A = jK +1- jNK?* -1
Ay = jK +1+ jNK? -1

(1.3-51)
B, = jK -1+ jNK?* -1
B, = jK—-1-jNK*-1
T=VK*-1(r-1,) (1.3-52)

and,
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Ktan(W( 0)] (l—j\/Kz—l)
2
Cy = (1.3-53)

0
Ktan[l//(zro)j+(l+j\/l<2 —1)

Expanding Eq. (1.3-49) in a geometric series yields,

d’w(f):ﬁ {Al A2}Z(B2cj e T (1.3-54)
B B BJ,5\B

Now, the magnitude of the common ratio of the series is,

B
22 CO
B

2
K -1- J\/KT”Ktan +(1 JVK 1‘:
JK -1+ jNK ‘Ktan( 5 j+(1+]\/ 1‘ (1.3-55)

1+(K—\/ﬁ)2
1+(K+\/ﬁ)2

This is less than unity for positive K and the series converges for all 7. If, on
the other hand, K is negative, we instead expand the reciprocal of Eq. (1.3-49),

—iT
—iT
Al — A2COe J

© n
ﬂ+{ﬂ_&}z(ﬁco]
Al Al AZ n=l1 Al

and the magnitude of the common ratio is,

(1.3-56)
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A G| =
4

jK+1+j\/—|‘Ktan
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-l

JK +1-jNK ‘

1+

Ktan( j+(1+]\/1<2 1)‘ (1.3-57)

K+\/ﬁ)2
1+(K—\/@)2

which is less than unity for K negative. Expressions (1.3-54) and (1.3-56) thus
provide convergent series representations of the solution for the phase
dynamics under unlocked conditions and we note that they are actually Fourier
series. As such, the coefficients are the amplitudes of the harmonics of a line
spectrum representing the oscillator signal. This spectrum has a well-known
classic form that is easily observed experimentally using a spectrum analyzer
and is depicted schematically in Fig. 1-2.

Amplitude [dB]

K>1

-

.

Amplitude [dB]

K<-1

oo

Wipj

|K|>1

‘Awinj ‘ > AW,

<—.JAw, * Aa),oc,(2

inj

Fig. 1-2. Spectra of an unlocked injected oscillator.
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(This K is Kurokawa’s [15], which is the negative of Adler’s [10] and
Armand’s [20].)

These mirror-image spectra have a number of interesting features. The most
obvious feature is that they are one-sided, which may seem puzzling, but is a
natural result of the analysis. Secondly, the amplitudes decrease linearly on a
logarithmic scale as one progresses away from the injection frequency. This is a
consequence of the geometric nature of the series representing the solution.
Finally, the spacing between the spectral lines decreases with the proximity of
the injection frequency to the oscillator free running frequency and, when the
injection frequency differs from the free running frequency by exactly one
locking range, the spacing goes to zero and the oscillator locks, reducing the

spectrum to a single line at ;.

Before we can legitimately call this analysis of injection locking complete,
there remains one important issue to consider. The oscillator model shown in
Fig. 1-1 exhibits a parallel resonance. It is, of course, possible to design an
oscillator that exhibits a series resonance, and the question then becomes: How
is this difference manifest in the formalism presented? This question has been
studied in detail by Chang, Shapiro, and York [16]. They pointed out that the
Taylor series for the admittance in the parallel resonant oscillator, Eq.(1.2-9), is
identical in form to the Taylor expansion of the impedance in the series
resonant case. We can see this by considering the series resonant oscillator
shown in Fig. 1-3. In this case the resonant load, Z;, on the active device is a
series combination of an inductor, a capacitor, and a resistor.

The output signal here is the current through this resonant series combination
rather than the node voltage used in the parallel case. Application of
Kirchhoff’s voltage law around the oscillator loop yields,

ACTIVE
DEVICE Z 7=1,+2,=0
Re(Z,)<0

Fig. 1-3. An oscillator as a negative impedance.



Introduction 19

1
Vp+(joL+R+—=)=0 (1.3-58)
joC

Using a van der Pol type nonlinearity, the analog of Eq. (1.2-2) is,
vp(t) ==&(ni) -1’0 (1.3-59)
and the analog of Eq. (1.2-7) is,
N 11
Z:—g(rl—3r3] )+](0L+R+.—:— (1.3-60)
joC Y

Expanding Y in a Taylor series about the resonant frequency, we arrive at
1 2j

¥~ - Y

R—g(rl —-3nl ) apR

(0-ay) (1.3-61)

Comparing with Eq. (1.2-9) we see that the salient difference is the change in
sign of the linear term in frequency. This in turn induces a change in the
algebraic sign of the sine term in Eq. (1.3-17) resulting in,

do .
=00 = Aoy sin (6:;-6) (1.3-62)
and the remainder of the analysis proceeds as for the parallel resonant case
above. We will further describe the implications of this when we consider more

than one oscillator.

1.4 Mutual Injection Locking of Two Oscillators

Consider now two parallel resonant oscillators, identical except for free-running
frequency, coupled together so that each injects a signal into the other. Such a
system was considered by Stephan and Young [3] in which the coupling was
due to free-space mutual coupling between radiating elements excited by the
oscillators. We may describe this situation using Adler’s Eq. (1.3-17) for each
oscillator. That is,

% = Wy + Aa)lock sin (02 — 01) (14-1)
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do .
d_tz = 6002 + Aa)lock Sin (91 — 92) (14-2)

where the subscripts identify the oscillators. Subtracting these equations yields,

d(6,-6,)

We now define,

1/7 = 01 - 92 (1.4'4)
K="=t (14-5)
2Awlock
T=2A@, 4t (1.4-6)
so that Eq. (1.4-3) becomes,
d—"”z—(sinynk) (1.4-7)

dt

which is identical with Eq. (1.3-20) except for the tildes and all of the preceding
results apply. Note that the locking range is replaced by twice the locking range
in this equation. This happens because the injecting oscillator frequency is
permitted to change under the influence of the oscillator being injected. The
result is that the two oscillator frequencies can differ by nearly twice the
locking range and still maintain lock. This is true because it will turn out that
the steady-state oscillation frequency of the pair is the average of the two free-
running frequencies, and we can show this as follows.

. - . ~ |
Recall that in steady state, if K <1 so the oscillators are locked, ¥ =—sin = K
, a constant, so its time derivative is zero. Further, from Eq. (1.4-4) we have,

6,=0,+y (1.4-8)

so that, in steady state,
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A 4% 4V _°7 (1.4-9)

Therefore,
2‘“9} = ‘w} ‘m} (1.4-10)
dt dt dt
or,
d—ajzi O +6, ) _ oy +ap (14-11)
dr dt 2 2
Similarly,
d_ggzi(el“gz _ W1+ Oy (14-12)
dr drt 2 2

Thus, we conclude that the steady-state frequency of the two oscillators, when
mutually locked, that is, the “ensemble frequency,” is the average of their free-
running frequencies.

It now becomes clear how it is that the locking range for the two oscillators is
twice that for one. One may visualize each oscillator differing from the
ensemble frequency of the pair by one locking range so that the total difference
between the free-running frequencies of the two oscillators is, not one, but two
locking ranges. The term “ensemble frequency” has no relevance when one of
the oscillators injection locks the other and is not influenced by the injected
oscillator as discussed previously. In that case, as was demonstrated, the steady-
state frequency is the injection frequency.

Now suppose that the coupling between the oscillators is accomplished via a
transmission line so that there is a phase delay associated with the coupled
signal. This coupling phase changes the phase relationship between the coupled
signal and the oscillator that produced it and thus modifies the behavior of the
oscillator pair. We can account for this in our formulation by inserting the

coupling phase shift through the transmission line, @ ,,, into Eqgs. (1.4-1) and

(1.4-2) resulting in,

do .
d—tlza)01+Aa)lock Sln(¢92—91—q)12) (14-13)
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do .
d_zz = @y + Ajyep Sin (6, =0, — D) (1.4-14)

where we have assumed that the transmission line is reciprocal so that the
coupling phase is the same in both directions. Using trigonometric identities,
Egs. (1.4-13) and (1.4-14) may be re-written in the form,

do :
7;1:[“’01 ~ MA@y sin®y; cos(6, -6 | (1.4-15)

+[A@yg cOs Dy, |sin(6, - 6))

7; = [a’oz — Ay, SIn Dy, cos (G _92)] (1.4-16)

+[A@ye cOs D), [sin(6 -6, )
Again by subtraction we obtain,

d(6,-6,)

o =(wy, — @9y )~ 2 (MA@}, cOs D, )sin (6, —6,) (1.4-17)

Comparing with Eq. (1.4-3) we see that the locking range has been modified by
the cosine of the coupling phase. We define this effective locking range to be,

Aty = Ay, cosDyy (1.4-18)

and using this in place of the unmodified locking range, the preceding theory
may be applied to the case having non-zero coupling phase. One obvious
consequence of this is that, if the coupling phase is 90 degrees (deg) or an odd
multiple thereof, the effective locking range becomes zero and the two
oscillators cannot be made to lock.

If, instead of subtracting Egs. (1.3-15) and (1.3-16), we add them, we obtain

@ = (g1 + @p )= 2(AGjpey sin D, )cos (6, —0,)  (1.4-19)

and we note that the ensemble frequency Eq. (1.4-12) is replaced by,

Wy + O .
Deps = (012—02)_(Aa)lock Slnq)lZ)COS(el -0,) (1.4-20)

which varies sinusoidally with coupling phase. This variation of ensemble
frequency with coupling phase has been studied in somewhat more detail by
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Sancheti and Fusco in the context of an active radiator coupling with its image
in a reflecting object [21] [22].

Before moving on to study arrays of oscillators we take a quick look at the
stability of the behavior of two coupled oscillators. Much more detail on this
subject may be found in Chapter 7. The stability of the solution can be assessed
by assuming that the oscillators are evolving according to a solution of
Eq. (1.4-17) and perturbing the phase difference away from that solution by a

small amount, O . This results in the following differential equation for the
time dependence of the perturbation.

%:—[2szock cos @, cos (6, —492)]5 (1.4-21)

This equation has the solution,
S5(t) = e—[2Aa)lock cos®,, cos( 46, )}t (1.4-22)

The solution for the oscillator phase difference is stable against the
perturbation, J, if the exponent is negative. That is,

cos®, cos (6 —6,)>0 (1.4-23)

This means that, if the magnitude of the coupling phase is less than 90 deg, the
oscillators will lock such that their phases differ by less than 90 deg; while if
the magnitude of the coupling phase is greater than 90 deg, the oscillators will
lock such that their phases differ by more than 90 deg; that is, they will tend to
oscillate out of phase. This behavior was predicted and observed by Stephan
and Young [3] and formulated and studied in more detail by Humphrey and
Fusco [23] [24] using an earlier theoretical construct they formulated for linear
chains of coupled oscillators [25].

Conversely, for series resonant oscillators, the stability condition is,
cos®, cos (6, —6,)<0 (1.4-24)

and the behavior of the oscillators will be opposite that described above. These
properties have been exploited by Lee and Dalman in switching pairs of
coupled oscillators from symmetric to antisymmetric phase by changing the
coupling phase [26]. All of these effects have been observed experimentally as
reported by Chang, Shapiro, and York [16]. Thus, the optimum coupling phase
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for parallel resonant oscillators is an even multiple of 180 deg, while that for
series resonant oscillators is an odd multiple of 180 deg.

Very recently, it was pointed out that a given oscillator can present either series
or parallel resonance depending upon where in the oscillator circuit the
coupling is implemented [27].

1.5 Conclusion

In this Chapter we have developed a theory of oscillator behavior that admits
the possibility of coupling the oscillators together such that they can mutually
injection lock and thus oscillate as a coherent ensemble. This behavior is
central to the remainder of the book as it forms the basis of the applications to
be discussed. In Chapter 2 this theoretical framework will be applied in
describing the behavior of arrays containing many oscillators coupled together
in linear and planar configurations. The coupling for the most part is with
nearest neighbors only. More elaborate coupling schemes have been studied in
mathematical biology but remain as a potentially fruitful but largely untapped
resource in the arena of phased-array antennas.



Chapter 2
Coupled Oscillator Arrays — Basic
Analytical Description and Operating
Principles

In this chaper we will show how to use the theory developed in Chapter 1 to
mathematically describe a linear array of oscillators coupled to nearest
neighbors. It was Karl Stephan who first showed that such arrays can be useful
in providing excitation signals for a linear array of radiating elements in that if
locking signals are injected into the end oscillators of the array, variation of the
relative phase of the locking signals can be used to control the distribution of
the phase of the signals across the array [1]. Later, Liao and York pointed out
that by merely tuning the end oscillators of the array the phase distribution can
be controlled without any external injection signals [28]. We will show that,
while the equations and associated boundary conditions at the array ends can
describe the nonlinear behavior of the array through numerical solution, if the
inter-oscillator phase differences remain small, the equations may be linearized.
The linearized version may be solved analytically for the dynamic behavior of
the phase, and from this one may obtain the dynamic behavior of the beam
radiated by the elements of this linear phased array antenna.

An important consideration in the analysis is the manner in which the

oscillators are coupled. The coupling can be represented as a ‘“coupling
network™ connected to the array of oscillators, and this network can be

25
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described in terms of its port characteristics; that is, in terms of its admittance
matrix or its scattering matrix.

The above theoretical description will then be generalized to planar arrays of
oscillators coupled to nearest neighbors and the phase dynamics obtained by
solution of the resulting equations. Here again, the coupling can be described in
terms of port characteristics.

2.1 Fundamental Equations

Recall that two oscillators coupled together as symbolized in Fig. 2-1 were
described by Egs. (1.4-1) and (1.4-2). We now consider the generalization to
2N+1 oscillators shown in Fig. 2-2. The generalization of Egs. (1.4-1) and
(1.4-2) is,

do,

— =@ + Awy, Sin (‘9i+1 —0,-D; )
dt (2.1-1)

+ Aa)lock sin (ei—l - 91 - (Di,i—l )

where i is an integer index that identifies each oscillator and runs from
—N to N. We choose the number of oscillators to be odd so that there will be a
center oscillator. This is not really necessary as the theory can be adapted to an
even number of oscillators also. (A simple artifice for accomplishing this is to
generalize N to half of an odd integer value so that 2N+1 becomes an even
number and let the index, i, take on only half integer values from —N/2 to N/2
with unit increments.)

O

Fig. 2-1. Two coupled
oscillators.

-0 00—

Fig. 2-2. 2N + 1 coupled oscillators.
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However, from a practical point of view, it is convenient to have a center point
at which to inject an external signal from a stable oscillator for the purpose of
stabilizing the array oscillation. We therefore select the number to be odd. Note
that, because the end oscillators are coupled to only one other oscillator, they
are described by differential equations with only one sine term on the right side;
that is,

do_ .

TN =@y + AW,y SN (‘9—N+1 —0_y -~ (D—N,—NH) (2.1-2)
do .
d—;V=a)0N +Aa)lock Sln(HN_l—ﬁN—(DN’N_l) (21-3)

Note further that, because the maximum magnitude of the sine function is unity,
the end oscillators of the array can be detuned from their nearest neighbors by a
maximum of one locking range without losing lock whereas the center
oscillator can be detuned up to two locking ranges. The maximum permitted
detuning of the other oscillators will lie between one and two locking ranges.
(See Section 3.1, Eq. (3.1-35).)

This system of simultanecous nonlinear first-order differential equations,
(2.1-1)—(2.1-3), can be solved numerically beginning with an initial phase
distribution and oscillator tuning thus providing the phase distribution at all
subsequent times. However, numerical solution does not provide an intuitive
grasp of the behavior and how the parameters affect it. This intuitive
understanding may be more easily gleaned from an approximate analytic
solution. Then, later, if a more exact result is needed, the numerical approach
can be applied.

Before proceeding to solve Egs. (2.1-1) to (2.1-3) by linearization, we remark
that the oscillator tuning required to produce a desired steady-state phase
distribution may be easily obtained from these equations. That is, in steady state
the time derivatives are zero, and from (2.1-1) to (2.1-3) the oscillator tuning is
merely,

Wy = Opep = =AW, SIN (¢i+1 —0; =P )

2.1-4
—Awjyep Sil’l((ﬂi_l Q= (Di,i—l) ( |

ab,—N _a)ref :_Aa%ock Sin(¢—N+I —Q N _(D—N,_NH) (2.1-5)
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DN ~ Oy =Dy SN (P 1~y —DPy ) (216)
where we have defined a new phase variable via,

6 =0 +a)reft (2.1-7)
and @, is taken to be the ensemble frequency of the array.

Let us assume for the moment that the coupling phases are a multiple of m, and
sum (2.1-4)—(2.1-6) over the 2N+1 array elements. We find that under this
assumption,

N
Z W, _Na)ref =
i=—N

& . . (2.1-8)
ADpee Y, Sin(@—@ D) +sin( @ —¢ —P)
i=—N+1
_Aa%ck Sin((oN—l — PN _CD) _A@ock Sin((D_N_l —O_N —d)) =0

so that,

1 N
Oy = .ZN%I- (2.1:9)
“

the average of the free-running frequencies. Thus, we have shown that for
coupling phase equal to a multiple of , the ensemble frequency of the array is
the average of the free running frequencies of the oscillators.

As an example, in an array with zero coupling phase, a linear phase distribution
with an inter-oscillator phase difference of d¢ requires,

@ =W =0 (2.1-10)
)N — B ==y SIN( ) 2.1-11)

By~ Ore = Ay 5in(5) (2.1-12)
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Thus, beginning with all the oscillators tuned to the reference frequency, tuning
the leftmost oscillator down in frequency by half of the locking range and
tuning the rightmost oscillator up in frequency by half of the locking range will
produce a phase distribution across the array with a positive slope of 7/6
radians between oscillators, 7/6 being the arcsine of 1/2. If the oscillator
outputs are used to excite radiating elements spaced a half wavelength
(7 radians) apart, the radiated beam will be directed 9.6 deg from normal to the
array, that is, the arcsine of 1/6. It is this method of beam-steering that was first
described by Liao and York. [28] Of course, much more general phase
distributions are possible and the required oscillator tunings to produce them
are given by Egs. (2.1-4)—(2.1-6).

2.2 Discrete Model Solution (Linearization and Laplace
Transformation)

In order to render the analytic solution tractable, we assume that the arguments
of the sine functions in Egs. (2.1-1)—(2.1-2) are close to an integral multiple of
27, Specifically, we will assume that the coupling phase is zero and that the
inter-oscillator phase differences are small so that the sine functions can be
approximated by their arguments. In this approximation, Eq. (2.1-1) becomes,

do:
dt[ = wo; + A@pyer (0111 =20, +6,_1) (2.2-1)
Similarly, Egs. (2.1-2) and (2.1-3) become,
do_
dtN =@y N +ADy (0-n—0_y) (2.2-2)
do
d_zN = won + A (Oy-1 =0y ) (2.2-3)

Note that these approximate linearized equations would seem to imply that the
end oscillators of the array can be detuned by 7/2 locking ranges and the center

one can be detuned by Tt locking ranges and still remain locked because the
phase differences between oscillators remain less than or equal to 7/2.
However, from the full nonlinear theory of Section 2.1, we know that this is
actually not true. These linearized equations only apply when the phase
differences are small so that the sine functions may be accurately replaced by
their arguments and 7z/2 is certainly not a small value in this sense.

In terms of the new phase, Eq. (2.1-7), we find that Egs. (2.2-1)+(2.2-3)
become,
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do;
_dtl =00 = Opep + AWy ((Pi+1 —2¢; + (Pi—l) (2.2-4)
do_
dtN =0) N T Opep + A@pper (¢—N+1 - q’fN) (2.2-5)
do
d—tN =0gN ~ Orep + AWy ((PN—l ~®N ) (2.2-6)

Now we have a system of first-order linear differential equations that describe
the dynamic behavior of the oscillator array. Unlike the system of first-order
nonlinear differential equations from which it was derived, this system can be
solved analytically.

We begin by writing these linear equations, Egs. (2.2-4)—(2.2-6), in matrix
form,

d

L) 0y1- [0, 1+ B0 1[0 (22-7)
where [@] is a 2N+1 element vector of oscillator phases, [wy] is a similar vector
of oscillator free-running frequencies, and [M] is a (2N+1) by (2N+1)
tridiagonal matrix with —2’s on the diagonal, except for the —1’s in the upper
left and lower right corners, and 1’s on the first super and sub diagonals.

Dividing by A, yields,

% =[AQ e 1+ [M 1[0] (2.2-8)
T

where T:A@()Ckf and [AQ

Wy, — @ .
une) = {Ol—ref} , a vector of oscillator free

Awlock
running frequencies relative to the reference frequency (detuning frequencies).
Laplace transformation with respect to 7 gives,

[~ [MTI[@] =AY, 0] (2.2-9)

with the tildes indicating transformed quantities and with [/] being the identity
matrix. We now define eigenvectors, [v], , and eigenvalues, /4, , of the matrix
[M] to be such that,

[MIIV], = AV, (2.2-10)
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Our intention is to express the solution of Eq. (2.2-9) as a sum of these
eigenvectors with unknown coefficients. When this sum is substituted into
Eq. (2.2-9), the orthogonality of the eigenvectors will be employed to determine
the coefficients of the expansion and thus obtain the solution in series form.
Since the number of eigenvectors is finite, this series will be a finite sum; that
is, a closed form. Moreover, as we will see in the next section, in steady state,
an approximation of this sum may be carried out to produce a simple functional
form for the phase distribution.

Note that Eq. (2.2-10) is a three term recurrence relation for the elements of the

eigenvectors, V;; that is,
Vi —(2+A4,)v;+v,; =0 (2.2-11)
with the two auxiliary conditions,

Vg —(+4,)vy =0 (2.2-12)

Vo —(+A4,)voy =0 (2.2-13)

Now, Eq. (2.2-11) is satisfied by the Chebyshev polynomials, 7;(x,) and
Ui(x,), where,

2+ 4,
X, =—— (2.2-14)
2
so that Egs. (2.2-12) and (2.2-13) become,
W1 (x,)—(2x, =)Wy (x, ) =0 (2.2-15)
W () —(2x, =D 5 (x,,) =0 (2.2-16)

where W; is a linear combination of 7; and U, ;. Equivalently, using (2.2-11) we
have,

W (%) —Wy(x,) =0 (2.2-17)

W1 (6,) =W (,) =0 (2.2-18)

These boundary condition equations determine the permissible values, x,,. Let



32 Chapter 2

W.(x,)=orL(x,)+o U (x,) (2.2-19)

so that

W.;(x,) = Ti(x,) oy Uiy (x;,) (2.2-20)

Adding and subtracting Eqs. (2.2-17) and (2.2-18) using Egs. (2.2-19) and
(2.2-20) yields,

Ty () —Ty(x,)=0 (2.2-21)

Uy(x,)=Un(x,)=0 (2.2-22)

Using the trigonometric expression for 7, Eq. (2.2-21) yields,

sin ((N + %j cos ! (xn)jsin [% cos_l(xn)j =0 (2.2-23)

which implies that,

o = cos| 2 2224
==L 2N +1) (2:2-24)

so that the eigenvalues are given by,

2nrw .2 nrx
Ay =2 — |-2=-4 P — -
n COS[(2N N l)j sin [(2N N l)j (2.2-25)

the subscript 7 indicating that the elements of the corresponding eigenvectors

are Z(xn) . Conversely, using the trigonometric expression for U, Eq. (2.2-22)

yields,
cos((N+%jcos_l(xn)] =0 (2.2-26)
which implies that,
(2n + 1) V4 5907
Xy, =COS| ———+ 2-
o (2N +1) (2227

so that the eigenvalues are given by,
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_ (2n+1)7r H_ .9 (2n+1)7r/2 ]
A =208 —(2N+1) 2=—4sin —(2N+1) (2.2-28)

the subscript U indicating that the elements of the corresponding eigenvectors

are Ui—l (Xn) In (2.2-25) and (2.2-28) the index » runs from 0 to N after which

the eigenvalues repeat. Thus, we have arrived at two sets of eigenfunctions, one
set, the T’s, excited by the symmetric part of the detuning function and the
other set, the U’s, excited by the antisymmetric part, with respect to the array
center.

We may now expand the solution of Eq. (2.2-9) in these eigenvectors as,

N
[@1=> 4,1, +B,[vy ], (2.2-29)
n=0

Substituting this expansion into Eq. (2.2-9), we obtain,

N
[SLI1-[MT1Y. Aulvrl, +B,lvy ], =
n=0

N ~
Z An (S - ZTn)[VT]n + Bn (S _ZUn)[VU ]n = [AQtune]
n=0

(2.2-30)

Using the orthogonality of the eigenvectors, we may now solve for the
coefficients 4, and B,

[Aﬁtune] ° [VT ]n
= 2.2-31
(S_ﬁ'Tn)[vT]n .[VT]n ( )
[AQ,,,.]® [VU I (2.2-32)

" (=2 oD s

Substituting into Eq. (2.2-29),
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N ~
51— [AQtune] ° [VT ]n
o= v, oo,
+ iv: [Aétune] ® [VU ]n
n=0 (S - ﬁUn)[VU ]n i [VU ]n

(2.2-33)

[VU ]n

and, if the detuning function is a step function at time zero, the inverse Laplace
transform 1is,

N

= AQ .
[(0] 2N 11 i;N tune,i

AQ °
Z [ wnel®vr 1, vy 1, ( T”T) (2.2-34)

/1Tn vrl,elvr ],

Z [AQtune [VU ]n [VU ]n (1 _ eﬂ’UnT )

/IUn[VU] o [VU ]n

The first of the three summations, the one arising from the zero eigenvalue,
indicates that the steady-state ensemble frequency of the array is shifted by the

average oscillator detuning; i.e., the sum of the elements of the [AQ

tune ]
vector divided by the number of oscillators.

Recall that we assumed at the start of this section that the coupling phase is
zero. Returning for a moment to Eq. (2.1-1) and using Eq. (2.1-7), we may
write,

= Wp; — Opef + A6’)lc)ck sin ((DHI P~ (Di,i+1)
dt (2.2-35)

+ Ay, sin ((Pi—l —0 =D, )

If the coupling phases are taken to be equal, this can be rearranged to read,

do; ;
i~ (W 0ng) =80 sin(@)[cos(r —g)+eos(=0)]

+ A,k cos(CD) [sin(gom -, ) +sin(¢)l~_1 -, )]

or,
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e (@07 = By )+ Ay [sin (@11 - ;) +sin (9, - 9,) ] (22-37)

where,

yef = Opep +DAyoz SN (P)[ c08(141 — ) +c08(91 — 1) | 22-38)

and

Aty =Ny, cs( D) (2.2-39)

which is the same as Eq. (1.4-18). Thus we conclude that, in a 2N+1 oscillator
array, a uniform coupling phase modifies the effective locking range according
to Eq. (2.2-39) just as it did for two oscillators, and the ensemble frequency is
modified according to Eq. (2.2-38). Interestingly, if the inter-oscillator phase
difference is 90 deg, the ensemble frequency becomes independent of the
coupling phase as pointed out by Humphrey and Fusco [25].

The speed of the array response to the application of a step tuning is determined
by the smallest nonzero eigenvalue. From Eq. (2.2-28) this is,

2
Jo =—dsin?| 12| T (2.2-40)
@N+D)) (@N+])

This provides the important result that the linear array response time constant is
roughly proportional to the square of the number of elements, the
approximation becoming more accurate as the number of elements is increased.

While the time constant is unaffected, the effective steering speed of such
arrays, as defined by the radiated beam peak neglecting aberration, may be
increased by “over-steering.” That is, one may apply more detuning than
necessary to achieve the desired steady-state phase gradient but reduce it to the
required value during the beam-steering transient. Generalizing this concept,
one may apply arbitrarily time-varying detuning as suggested by Heath et al.
[29]. In particular they considered sinusoidal detuning and showed that the
maximum stable inter-oscillator phase shift is thereby increased from 90 to
138 deg.

2.3 Steady-State Solution

In this section we will investigate the steady-state solution for the phase
distribution in a bit more detail. From Eq. (2.2-34), the steady-state solution is,
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_ < [AQtune] ® [VT ]n
o nzz:l Aralvr 1, vy 1, rl
4 [AQtune].[VU]

) ngo Aunlvu 1n o vy 1 o 1

(2.3-1)

in which we have suppressed the linear term in time that merely represents a
shift in the ensemble frequency due to the detuning. The denominators of the
terms of the series may be written explicitly as,

N

rlyolvrli= Y T(x,) =

i=—N

N .
Z cos’ —2m7r =N+l
(2N +1) 2

i=—N

(2.3-2)

and,
N 2
byl olvule= 2 Ui (%) =
i=—N

i 52t
sz((m)zjiz_N (@N+1)
(2N +1)

(2.3-3)

N+l
2

. 2n+1
sin2[ G1+D7
(2N +1)
Suppose that one of the oscillators, say the /™ one, is step detuned at time zero

from the ensemble frequency by one locking range. The solution given by
Eq. (2.3-1) then becomes,

o1 2 S )

No2U; (xy,) ' | (2.3-4)
+r§) (=Aun ) (2N +1) Wit (5] Sln(cos (xUn)>

Thus, the elements of the vector of oscillator phases may be written,
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cos( j2nr Jcos( i2nx J
0= 2 i (2N +1) (2N +1)
2N +14 4Sm2[ nz j
(2N +1)
[j(2n+1)7z] , [i(2n+1)ﬁ] (23-5)

2 ism N+ S @eN+D

2N +1.3 Asin? (2n+1)7z/2
(2N +1)

The series given by Eq. (2.3-5) has a finite number of terms so it can be
summed numerically. As an example, we evaluate this series for N = 10, a
21-element array, with oscillator number 5 detuned one locking range, and plot
the phase of each oscillator in Fig. 2-3 as the dots.

Noting that the lowest order terms in n contribute most of the sum, we
approximate the eigenvalues in the denominators of Eq. (2.3-5) as follows.

2
4sin2( i jz( nw j (2.3-6)
@n+1)) " L@N+D)
(204022 ((2n+1) 2

(2.3-7)

4 =
v )T v

Substituting these approximations in Eq. (2.3-5) gives,
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j2nw i2nr
N COS cos
z (2N +1) (2N +1)
n=1 2nmw ?
(2N +1)

sin| 7 (2n+1)7 in i(2n+1)7z (2.3-8)
2 3 (2N +1) (2N +1)

+ 2
2N+1,5 ((2n+1)7zj

(2N +1)

If the upper limit of these summations is extended to infinity (adding
presumably negligible terms), the sum may be written as the simple quadratic
function,

1

= |+ (2N +1 '—i+l 2N+12} -
Thus, we see that the steady-state phase distribution when one oscillator is
detuned is approximately parabolic with a slope discontinuity at the detuned
oscillator. To compare with the earlier example, we evaluate this function for
N =10, a 21-element array, with oscillator number 5 detuned one locking range
and plot the phase of each oscillator in Fig. 2-3 as x’s. Note that the
approximation is quite accurate. In fact, in the present example, the maximum
error is only about 4 milliradians (mr) of phase.

Finally, we note that, since the eigenvalues repeat, if the sums in Eq. (2.3-5) are
continued to an infinite number of terms instead of stopping at &, the result
would be a set of delta functions, one at each oscillator, with amplitude (area)
equal to the phase of that oscillator.
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Oscillator 6 detuned by one locking range.
9 x
% o | x b SR
5 .
Q x
an x
- 0 x
T x
O] x
(V)] x
S 2t x X
- w X
o [ X e Exact Phase
4 X Approximate Phase
1 1 1 1 1 1 1 L 1 L 1 L 1

P18 64202 46 810
Oscillator Index

Fig. 2-3. A possible phase distribution
for a 21-element array.

2.4 Stability of the Phase Solution in the Full Nonlinear
Formulation

In the previous sections of this chapter, we found that linearization provided a
path to analytic solution for the phase distribution across the array. It was also
pointed out in passing that the full nonlinear formulation provided the oscillator
tuning necessary to achieve a desired steady-state phase distribution. In this
section we discuss the properties of the steady-state phase solution of the full
nonlinear formulation largely as described by Heath, et al. [29]. Recalling that
linearization permitted solution of the problem, we expect that the effect of a
small perturbation of an assumed solution of the nonlinear equations can be
investigated in a similar manner. This is the approach taken by Heath, et al.
[29] in determining the stability of the solution in the fully nonlinear case. To
place this in the framework of our previous analysis we begin with
Egs. (2.1-1)—~(2.1-3) and introduce (2.1-7) to obtain,
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do; .
== 0y — Oy + Ay Sin (@ — 0~ Dy )
dt (2.4-1)

+ Ay, sin ((/’i—l 0 —D;; )

do_ .
dtN =gy = Opr + Ay SIN ((P—N+1 —Q_N— ‘D—N,—N+1) (2.4-2)

do .
d_tN = O)N — Oper + AWy, SIN (¢N71 —oN — Py N ) (2.4-3)

Following Heath, et al. [29], we assume a solution of (2.4-1)—(2.4-3) with a
uniform inter-oscillator phase difference (linear phase distribution) and uniform
reciprocal coupling, as was the case in the earlier example given by
Egs. (2.1-10)—(2.1-12), and let the phase of each oscillator be changed by a

small time dependent perturbation, 77; ; that is,

91‘ :gpi+a)reft+77i (2.4-4)
Equations (2.4-1)—(2.4-3) then become,
an.:
"= Do [0s (99— @)
—2cos(®)cos(5p)n; (2.4-5)
+cos (S + (D)WH]
d
Z—tN = Aa)IOC‘k COS(5¢_®)(U—N+1 _77_N) (2.4_6)
d;]ZN = Ao €08 (S0 + D) (175 — 7y ) (2.4-7)

and again we note that the system coefficients matrix multiplying the vector of
1 ’s will be tridiagonal with diagonal elements —2 cos(®)cos(5¢p) except for

the upper left and lower right corners which are —cos(&p—CD) and
—cos(5p+®), respectively. The super-diagonal elements are cos(5p—®)

and the sub-diagonal elements are cos(Sp +®).
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From the analysis in Section 2.2, we recall that the stability of the system
depended upon the eigenvalues of the system matrix, Egs. (2.2-25) and
(2.2-28), being negative. So it is in the present case. Thus, we must determine
the eigenvalues for this new more complicated system matrix. Heath, et al. [29]
provide us with a prescription for doing this. The first step is to symmetrize the
matrix by defining new eigenvector elements related to the 77 ’s as follows.

First, define a new variable, ¥ , via,

— cos(Sp—®) |2 (2.4-8)
" cos(dp+ D)

Now, substitution of Eq. (2.4-8) into Egs. (2.4-5)—(2.4-7) yields,

s rey [ oo (B0~ (3p B

—2cos(®)cos(5p)y; (2.4-9)

+ \/cos(égo —®)cos(Sp+ CD)VHJ

dy_
dtN :Awlock\/cos(5¢—®)005(5¢+®)7‘]‘”1 (2.4-10)
_Aa)lock COS(§¢_CD)]/_N
dy
TtN = ADjyep 108 (Sp— ) cos (Sp+ D)y (2.4-11)

— Ao €08 (Sp+ D) 7y

The system matrix for Egs. (2.4-9)—(2.4-11) is symmetric. Rearranging these
equations a bit results in,

dyi _ Aa)lock\/cos(5(/)—®)cos(5¢+ D) [ 741

dt
~ cos(&p—q))+ cos(Sp+@) 7] (2.4-12)
cos(Sp+®@) '\ cos(Sp—D) Jit7i
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U5 iy oo (G- D)os (59 0)
coS(&P—CD) s
y _ P\ )
V-N+1 COS(§(0+(I))7/_N
B s (T
w0539+ ) (2.4-14)
y _ e\
VN-1 COS(&(D—CD)]/N

As in Section 2.2, these equations may be written in matrix form. The stability

is determined by the eigenvalues, ﬂn , of the system matrix, which can be

found as follows. Let,

a1 \/cos(§(p—®)+\/cos(§go+q))

a =Cos (2.4-15)
2( | cos(Sp+®) | cos(dp—D)
Now the analogs of Egs. (2.2-11)—(2.2-13) are,

Viog—Qcosa+A,)v;+v,; =0 (2.4-16)
Vo —(@“+4,)vy =0 2417
Vo —(€ + 2, vy =0 (2:4-18)

and the argument of the Chebyshev polynomials is,

2cosa + 4,

X, = — (2.4-19)

Substituting Egs. (2.2-19) and (2.2-20) into Eqgs. (2.4-17) and (2.4-18) and

setting the determinant of the coefficients of &7 and &y, equal to zero gives

us the following transcendental equation for the eigenvalues.
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. - . _ 2.4-20
X, sin [(ZN +1)cos™ (x, )} =sin [(2N +1)cos™ (x, )} cosa )
So either,
X, =cosa (2.4-21)
and, from Eq. (2.4-19) the eigenvalues are zero, or,
sin [(2N+1)cos_1 (x, )} =0 (2.4-22)
and the eigenvalues are,
A, =2cos " |-2cosa
2N +1
/o (2.4-23)
. . a
= —4sin?| 2% +4sin?| =
2N+1 2
The time dependence of the n™ perturbation mode will be,
eﬂnAa)lock \/cos(é'(p—q))cos(5¢+®) t_ o0t (2.4-24)

and

o, =AW, \/ cos(5p—®)cos(Sp+D) (2.4-25)

Substituting Eq. (2.4-23) into Eq. (2.4-25),

/2 o
o, =—4A sin’ s —sin?| =
n w"’c’{ (2N+1j 2

x\/cos(§¢—®)cos(5¢+q))

(2.4-26)

The n™ perturbation eigenmode will be stable if O, has a non-positive real part.

In general, the phase distribution across the array will be stable if all of the

o, 'S have non-positive real parts. Note that in the typical case where @ is an
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integral multiple of 77, is zero. Then, if ‘5(0‘ is less than 77/2 all of the

eigenvalues are real and non-positive so the array phase distribution is stable
against small perturbations.

In this section we have shown that, by linearizing the equations about an
arbitrary solution for the phase distribution in a linear array in which only the
end oscillator free running frequencies are controlled, we may study
analytically the stability of the solution against small perturbations. Heath, et al.
[29] have also shown that exact stable constant phase gradient solutions of the
nonlinear equations with arbitrary time dependence can be obtained if one is
willing to control the free-running frequencies of all of the oscillators in the
array rather than just the end ones.

2.5 External Injection Locking

It was mentioned in passing in Section 2.1 that we chose the number of
oscillators in the array to be odd so as to provide a convenient center point at
which to inject a stabilizing external signal. In this section we discuss the
needed modifications to the mathematical formulation to accommodate an
external injection signal and account for its impact on array behavior.

Beginning with Eq. (2.1-1) we envision an external signal injected into the p”
oscillator and add a term to the equation representing this signal.

i
dt

= W +Aa)lock Sin(eﬁl _91' _cDi,i-H)

+ é‘ipAa)lock,p,inj Sin ( einj - ep - ch,inj )

where é:pis the Kronecker delta function and Aa)lock, p,inj 18 the locking range

between the external oscillator and the injected oscillator in the array. Note that

the phase of the injection signal must remain within 77/2 radians of that of the
injected array oscillator to maintain lock. For simplicity, let all of the coupling
phases be zero and assume that the inter-oscillator phase differences are small
to permit linearization. Then, introducing Eq. (2.1-7) we have,

— =0y — a)ref + Aa)lock (¢i+1 - 2¢i + Diq )
dt (2.5-2)

- 5l'pAa)lock,p,inj (§0p - ¢inj)
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By replacing Eq. (2.2-4) with Eq. (2.5-2) while Egs. (2.2-5) and (2.2-6) remain
unchanged, Eq. (2.2-9) now becomes,

[s[T1—-[M1+[d1N[@] =[AQy 0 1+ 1By ] (2.5-3)

where [d] is a matrix with one non-zero element, », at position pp on its

diagonal, [¢inj ]is a vector with one non-zero component, the p* one., and

_ Aa)lock,p,inj

(2.5-4)
Aa)lock

Here again the tilde denotes Laplace transformation with respect to the scaled
time, 7 . Equation (2.2-11) is thus replaced by,

Viog —(2+76y, + A4,)v; +v =0 (2.5-5)

And Egs. (2.2-12) and (2.2-13) are unchanged.

We now postulate eigenvectors with two sets of elements, those to the left of
and including the injection site / = p labeled “L” and those to the right of and
including the injection site / = p labeled “R.” That is,

I/Vi(L) (xn) = “}L)E(Xn) + a((][l)(]i_l (Xn ), i< p (2.5-6)

R R R .
W@ = T )+ Uiy (v,); i2p @5)
and we require that the p” elements match at the injection site; that is,
L R
W3 (o) =30 (x,) (2.5-8)
Now Eq. (2.5-5) with i=p, Eq. (2.2-12), Eq. (2.2-13), and Eq. (2.5-8) are four

. . L L R R .
equations in the four unknowns, Oéw ), Oll(]), Oéw ), and Ol[(]). The equations

are homogeneous, so the determinant of the coefficients must be zero if we are
to obtain a nontrivial solution. As usual, this condition yields a transcendental

equation for X, thus giving the eigenvalues, ﬂ,, . The transcendental equation

in this case is,
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sin(cos_1 X, ) sin ( (2N +1)cos™! X, ) =

1 1 | 1 (2.5-9)
rcos((N+§+p) cos xnjcos((N+§—p) cos xnj

Note that if » = 0 we recover the eigenvalues for the uninjected array, Egs.
(2.2-24) and (2.2-27).

Proceeding as in the uninjected case, the solution may be expressed in terms of
the eigenvectors and eigenvalues in the form,

W (1A, 1+ (1) 0 V],
= 2.5-10
1= L 0, e, (210

and the inverse Laplace transform follows immediately. For practice, you may
wish to explicitly compute the eigenvalues and eigenvectors and evaluate the
solution from Eq. (2.5-10).

The beam-steering scheme proposed by Stephan [1] requires two injection
points, i = p; and i = pg, characterized by two locking-range ratios, 7, and r;.
The solution procedure described above can be generalized to accommodate
such a situation as follows. We postulate eigenvectors in three parts, one to the
left of both injection points denoted “L”, one between the injection points
denoted “B”, and one to the right of both injection points denoted “R.” The
elements of these vectors are linear combinations of Chebyshev polynomials as

L L B B
before. Thus, there will be six unknown coefficients, Oéw ), Olgj) , Oéw )’ agj),

R R : .. o e
0é~ ), and a((])- Imposing the end conditions, continuity at each injection
point, and the modified three term recurrence at each injection point,

V1 -2+n +ﬂ.n)vpL +Vp 4 = 0 (2.5-11)

Vo — (241 +ﬂn)va V4 = 0 (2.5-12)

provides a homogeneous system of six equations for these unknown
coefficients. Setting the determinant of this system equal to zero yields a
transcendental equation for the eigenvalues and the solution proceeds as before.
This transcendental equation is,



COAs—Basic Analytical Description and Operating Principles 47

sin(cos_1 X, )sin((ZN +1)cos™! X, ) +
1 -1 1 -
+77 COS (N+E+pL)cos X, |cos (N+E—pL)cos X,
+7g cos((N+%+pR)cos1 xnjcos((N+%—pR)cos1 xnj (2.5-13)

+$cos((2N+l+2pL)cosf1 xn)
sin(cosf xn)

xcos((2N+1—20D)cos_lx..\sin((pn — pi)cos™! x.n\i:0

Note that if either 7, or r¢ is zero, we recover Eq. (2.5-9). Here again you may
want to perform the detailed calculations to obtain the explicit solution.
Solutions of this type will be discussed in further detail in connection with the
continuum model treated in Chapter 3.

In the extreme case where all of the oscillators are injection locked to the same
external oscillator, the solution simplifies considerably. Returning to
Eq. (2.5-3), we find that the elements of [d] are all equal as are the elements of

[gomj] . So that Eq. (2.5-3) becomes,

[s[I1-[M1[@]=[A, ] (2.5-14)

where,

[M]=[M]-[d] (2.5-15)

and
[Zfztune] = [Aﬁtune] + r[@inj ] (2.5-16)

Eq. (2.5-14) is now identical in form to Eq. (2.2-9), and the solution in the form
of Eq. (2.2-34) follows immediately. However, if the injection signals differ
sufficiently in phase, the elements of the right side of Eq. (2.5-16) can exceed
unity and the oscillators therefore lose lock. This phenomenon has been
exploited in discriminating between signals arriving at disparate angles in
illuminating a phased array. For a given illumination angle the signals at each
element differ from those of nearest neighboring elements by a constant phase
difference and, if used to inject the corresponding oscillators of a coupled
oscillator array, represent the second term on the right side of Eq. (2.5-16).
Thus, as the incidence angle increases, the phase differences increase and
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eventually the array loses lock. This permits identification of signals arriving
outside a given range of incidence angles. [18]

Before proceeding to planar arrays, we remark at this point that one may also
produce beam-steering via a variant of the Stephan approach in which the
external injection signals are provided by the end oscillators of the array and
their phase is controlled by adjusting the coupling phase between the end and
next to end oscillators [30].

Finally, we add that, as shown by Heath, control of the coupling phase also
affords the possibility of creating a so-called “difference pattern” in which a
null is formed instead of a beam. [31] This is done by switching the phase of
one interior coupling by 7 radians. Of course, such a null can also be steered via
either detuning or injection of the end oscillators.

2.6 Generalization to Planar Arrays

Nearly all of the formalism presented in connection with linear arrays of
oscillators can be generalized to planar arrays. The simplest of planar arrays
consists of a linear array of linear arrays placed side by side as shown in
Fig. 2-4. Assuming nearest-neighbor coupling, this implies that each oscillator
is coupled to four others and can be described mathematically by analogy with
Eq. (2.1-1). That is,

do..

v _ @i + Ay sin(&iH’j -, _q))
CELICEVEC ALY 2.6-1)
+ Aa)lock Sil’l(@l-yj_l — Hz/ — (I))

+ Aa)lock Sln(ei,jﬂ - tgz'j - (D)

where, for simplicity, we have assumed that all of the coupling phases are
equal. The oscillators are indexed separately in the two orthogonal directions x
and y in the plane of the array by indices i and j, respectively. The four sine
terms correspond to coupling to the four nearest neighboring oscillators
implying that for a zero-coupling phase, the center oscillator may be detuned by
as much as four locking ranges, and the array will still remain locked.
Similarly, the corner oscillators may be detuned by two locking ranges. The
largest permitted detuning of the other oscillators will lie between two and four
locking ranges. The effects of a uniform coupling phase can be determined in
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Fig. 2-4. Planar array with nearest neighbor coupling.

the same manner as in the one-dimensional case. That is, an effective locking
range and ensemble frequency shift can be determined as a function of coupling
phase. Letting the coupling phase be zero and linearizing as we have done in
the case of linear arrays, we obtain,

do..

d;’ = @ + AWep (9,-+1, =0 ) +ADcp (‘9i—1,j B 6’1'])

+ AW, (91', j-1= 0y ) + Ayocr (Hi,ﬁl — 0y ) (2.6-2)

= W + ADypex (‘9i+1,j —20; + ‘91'—1,]')

+ Ay, (9-

172040, 4 )

or, using Eq. (2.1-7) and T = A@ockt , we find that,

dwij _ [ wOij - a)ref

dr | Awpy ] (2000

(2.6-3)
+ (¢i,j—1 —20;+¢; in )

Laplace transformation leads to,
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$Qyj = Ay, +(¢i+1, j 2P+ 0, j) 2.64)
2.6-4
+<(5i,j—1 —2¢; +(5i,j+1)

Wpjj — Opef

where, [Aane]z{ P
lock

}, elements of a rectangular matrix. This
equation may now be written in matrix form by defining a matrix [¢@] with
elements (51‘]‘- We now define eigenmatrices, [v], with elements, V;;, and

eigenvalues, ﬂmn , satisfying,

(Vi-‘rl,j —2Vl] +Vi—1,j) +(Vl',j—l _2‘21] +Vi,j+1) = A‘mnvl] (2.6-5)

The key concept enabling analytical treatment of planar arrays is separability of
the behavior in the two orthogonal directions. That is, if we define the two
dimensional phase distribution to be the product of two one dimensional
distributions,

Vi =Vivy (2.6-6)
Then Eq. (2.6-5) becomes,
Vi (Vi+1 —2y, +Vi—1) Vi (VH =2, +Vj+]) =AmVv;  (2.6-7)

Dividing by the product, V;V;, results in,

(Vie1 =2vi +viy) N (Vj—l ~2v; +Vj+1) 2

mn
Vi v;

(2.6-8)

The first term on the left is dependent only on i and is independent of j.
Similarly the second term on the left is dependent only on j and is independent
of i. The right side of the equation is independent of both i and j. Thus, we have
a sum of a function of i and a function of j equal to a constant which implies
that each of these functions must itself be a constant. That is,

(Vi+1 —2v;+vy )

=4, (2.6-9)

Vi
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Vi

=1 (2.6-10)

n

and

Ap+ A, =4, (2.6-11)

Using the definition of [M] from Eq. (2.2-7), we may write Egs. (2.6-9) and
(2.6-10) in the forms,

[M]][v], = A,V (2.6-12)

and

[M]][v], = 4,[v], (2.6-13)

which are identical to Eq. (2.2-10). Thus, the eigenmatrices have been separated
into the outer product of eigenvectors, one for the i dependence and one for the
j dependence, and each of these eigenvectors is identical with those of the linear
array of section 2.2. That is,

vl =v1, ®[v], (2.6-14)

The eigenvectors and eigenvalues of Egs. (2.6-12) and (2.6-13) were found in
section 2.2, and we will use them here to express the solution of Eq. (2.6-4) in
the form,

[@]= zzcmn [V (2.6-15)
m n
Substitution of this form into Eq. (2.6-4) gives,

SZ Z Cmn [V]mn = A(ltune + ﬂ“m Z Z Cmn [V]mn
m n m n
+ ﬂ'n Z Z Cmn [V]mn

We now make use of the orthogonality of the eigenvectors. Premultiplying by

(2.6-16)

V] p and post multiplying by [V]q , we have,
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SCpq (0, 9071, ) (D], oDV, ) =11, 0 A, o[V,

(2.6-17)
+(/1p +lq)([v]p -[v]p)([v]q o[v]q)

so that,

[v]p . Aﬁmne .[V]q

C. =
" (S —Ap =44 )([V]p *[v], )([V]q °[V]q) (2.6-18)

And Eq. (2.6-15) becomes,

o (V] ® A e o [V], _
L0 e IR (T B LA

the planar analog of Eq. (2.2-33). The stability analysis of Section 2.4 also
carries over to the planar case as discussed by Heath, et al. [29]. One may
similarly derive a planar analog of (2.5-10) should there be external injection
[2]. The dynamic behavior of the phase distribution for these cases will be
discussed in greater detail in connection with the continuum model presented in
Chapter 3. However, we remark here that Karl Stephan and his student,
William Morgan, reported application of his external injection beam-steering
technique to a four-by-four planar array of mutually injection-locked oscillators
[2]. They also developed a theory for such arrays in which the coupling is
accomplished via a general multiport coupling network described by an
admittance matrix as will be further described in Section 2.7 [2] [3]. They
considered theoretically the use of such an oscillator array to excite an array of
tapered slot radiators reasoning that the higher gain of these elements would
mitigate grating lobes if the array size were increased by using element spacing
greater than a half wavelength.

2.7 Coupling Networks

So far we have focused primarily on the behavior of the oscillators in the array
but very little on the manner in which they are coupled. We merely asserted that
the coupling was present with a certain assumed strength and coupling phase.
In addition, two other parameters are important in the design of coupled-
oscillator arrays, the network quality factor or O, which is related to the
bandwidth, and the load presented to the oscillators by the network. Although
not essential, two simplifying assumptions are quite commonly made. The
coupling strength is assumed to be weak in a sense to be detailed shortly, and
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the coupling network Q is assumed to be small relative to the oscillator O so
that the network can be assumed to be frequency independent over the
operating bandwidth of the oscillators. Finally, it is essential that the load
resistance presented to the oscillators be smaller than the maximum negative
resistance the oscillator can produce so that oscillation can be sustained. In
order to systematically design appropriate coupling networks, it is necessary to
derive relationships between these three parameters and the values of the
components used in constructing the network. In this section, such relationships
will be derived.

Before proceeding, we remark that the consequences of violation of the above
simplifying assumptions have in fact been studied. The case of strong coupling
was treated in this context by Nogi, et al. [17]. They showed that strongly
coupled arrays exhibit many modes in which the oscillator amplitudes as well
as the phases vary across the array and that only one mode has constant
amplitude. They further suggested that all other modes can be suppressed by
placing a series resistor at the center point of each coupling line. The principle
underlying this approach was pointed out very early by Stephan and Young. [3]
The implications of narrow-band coupling networks were studied by Lynch and
York [32]. The analysis becomes more complicated than in the broadband case
[33], but useful results can still be obtained. Very recently these issues were re-
examined by Seetharam and Pearson [19]. They showed that strongly coupled
oscillator arrays exhibit wider locking ranges and lower phase noise levels but
that the broadband assumption concerning the coupling network is violated,
necessitating the use of the more complicated theoretical formalism.

Generally, the oscillators may be viewed as being coupled by a multiport
passive network to which an oscillator is to be connected at each port. This
situation was analyzed by Pogorzelski [34]. The network is characterized by its
complex admittance matrix; and for a linear array, if the desired coupling is to
nearest neighbors, then the admittance matrix will be tridiagonal. For analytical
simplicity, we assume an infinitely long array. We want the oscillators to
operate in identical environments, so we design the network to be periodic with
period unity in the oscillator index. Its admittance matrix will therefore have
equal diagonal elements, Y;;, and equal off-diagonal elements, Y;,.

Focusing now on the network alone, in terms of the complex impedance matrix
we may write the network equations in the form,

[Z] [Ipoﬁ]:[Vpon] (2.7-1)
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where the vector components are the port currents and port voltages. Because

the network is periodic, the elements of the impedance matrix, Zmn will have
the form,

Zon=2Zpm=2y (2.7-2)

where the port indices, m and n, extend from minus infinity to plus infinity for
this infinite network. In this sense, ¢ denotes the “distance of the element from
the main diagonal of the matrix.” Furthermore, the network periodicity implies

that the components of the eigenvectors, [W] Ap’ of the impedance matrix will

have uniform phase progression and uniform amplitude across the network
ports. That is, the elements of the eigenvector with inter-port phase difference
A @ are,

— ,JmAp -
w, =e (2.7-3)
Defining,
[1 po,,] =Ipp| W] Ao (2.7-4)
and
[me] =Vpp| W] A (2.7-5)
every equation in the system given by Eq. (2.7-1) becomes,
. i{A
D2 |1y, =V, (2.7-6)
n=—oo

Now, the tridiagonal admittance matrix gives us,
Inp =Vap (Yll +¥,e/A? +Y12e‘fA<") 2.7-7)

Combining Egs. (2.7-6) and (2.7-7), we have,

S 7 oA _ 1 i
2 e (Y, +2Y, cos Ag) G78)

n=—o0
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a Fourier series for which the coefficients, Zg , can be found by means of the

usual integration. That is,

1oz e /%o
277 (Y, +2Y;, cosar)

Z, (2.7-9)

The integration can be carried out analytically to yield,

V4
1 VB3 —4%5 -1,
Z,= (2.7-10)
IR 2hy

This approach is quite similar to that used in the analysis of phased-array
antennas to obtain the well-known relationship between the mutual coupling
coefficients among the elements and the active reflection coefficients of the
array [35]. The result is that we have expressed the elements of the impedance
matrix and admittance matrix of the coupling network in terms of the two
parameters, Y;; and Y;,.

We now define the complex coupling coefficient of the coupling network in the
following way. Let the voltage at the n™ port be ¥, and the current into the n™
port be 1,. We can establish a Norton equivalent circuit at the (n+1)* port as
follows. The open circuit voltage is,

V.=17 (2.7-11)
and the short circuit current is,
I.=V XY, (2.7-12)

Thus, the Norton admittance is,

2 42 2 _4y2
Y, :Vnlez_lez K1_4Y12—Y11m (2.7-13)
N1z vz 2y

Now, using the Norton equivalent circuit and connecting load admittance G, to
the port, the voltage at port n+1 is,

1 Y
Vin =1 12

=V, 2.7-14
G +Yy "G, +Yy @719
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The complex coupling coefficient, K | is defined to be the ratio of the voltage
at port n+1 to the voltage at port n. That is,

—1
K=—""— 2.7-15
G, +Yy ( )

In the weak coupling approximation, Y;, is small and to first order in Y;,, we
have,

K~ —12 (2.7-16)

This coupling factor determines the locking range because the injection signal
arriving at an oscillator, i, from a neighboring one, j, is the amplitude of the

oscillator signal, 4;, multiplied by K so the locking range is given by,

oy K4; Yooy
20 420G,

Awy, = (2.7-17)

For comparison, see Eq. (1.3-16).

Before proceeding, we wish to highlight an interesting point regarding the
nature of the coupling. If a current is injected into the n™ port of the network
with all other ports open circuited, the voltage appearing at port n+m is, from
the impedance matrix, just Z,/Z, times the voltage at the injected port. (See
Eq. (2.7-10).) That is, open-circuit voltages appear at all ports throughout the
network, not just at the adjacent ports. In this sense, each oscillator really
influences all the others, and the coupling is “all to all” rather than “nearest
neighbor” in nature. The fact that the admittance matrix is banded might seem
to imply nearest-neighbor coupling, but the banded nature of the matrix merely
implies that, when a voltage is applied to the n™ port with all the other ports
shorted, short-circuit current flows only in the adjacent ports. The limited
influence results from shorting the ports not from limited coupling. That said,
we proceed to define the coupling factor of the network, as the ratio of the
open-circuit voltages at adjacent ports when a current is injected into the n™
port of the network with all other ports open circuited. From Eq. (2.7-10), that

ratio is,
2 2
Y5 -4Y5 Y
8:\/ 11~ — 17 (2.7-18)

2%,

For weak coupling, this becomes,
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-X
o~ 112

(2.7-19)
Y,

where we have effectively neglected the coupling to the non-nearest neighbor
ports by working only to first order in this ratio. This same result is obtained if
we define the coupling factor by applying a voltage to the n™ port, shorting all
the others and taking the ratio of the (n+1)" port current to the n™ port current.
This obtains because if G, is large compared to Y;,, the coupling is weak and
the ports are all nearly shorted.

The coupling factor appearing in the expression for the locking range given by
Eq. (2.7-17) depends on both the oscillator load and the coupling network.
Based on the discussion above, we can separate these by writing Eq. (2.7-16) in

the form,
—nzj(nlj
K=|—=||—|=¢&n (2.7-20)
( Y G,

so that the first factor, & , characterizes the network coupling and the second
factor, 77 , characterizes the coupling of the oscillators to the network.

The second important parameter in network design is the network quality factor
or Q. Fundamentally, Q is defined in terms of energy stored and energy lost per
unit time, but equivalently, QO can also be defined in terms of the frequency
dependence of the port admittance near resonance; that is,

oY
_%om
Q2Y

W=,

(2.7-21)

a unitless quantity. For our coupling network we thus have the formula,
0
w

o
net 2‘ Y|| +2Y); cosAp

(Y, +2Y;, cos A(p)‘

(2.7-22)

o= a)l‘CS

And, for our formulation to apply, this must be much smaller than the Q of the
oscillators.
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Finally, the third parameter in the design of these arrays is the amount of
negative resistance that must be provided by the oscillators. When operating
normally, the current entering each port of the network is related to the port
voltage by the port admittance; that is,
Iry
Yyp =——=Y +2},cosAp (2.7-23)
Vagp

4

Since the inter-oscillator phase difference cannot exceed 7/2 and Y;, has a
negative real part, the maximum susceptance presented to the oscillator by the
network is Re(Y;;). Thus, we conclude that the oscillator must be designed to
provide a minimum of this amount of negative susceptance plus an amount
sufficient to compensate for the internal load susceptance, G;, to maintain
oscillation when connected to the network.

Let us now consider a concrete example of a network of the sort commonly
used in experimental studies of linear coupled oscillator arrays. Each unit cell
consists of a one wavelength long transmission line of characteristic impedance
Zc, two parallel resistors to reduce the network Q by reducing reflections at the
transmission line ends, and two series resistors to control the coupling strength.
Such a network is shown in Fig. 2-5 wherein the circles indicate terminals
where the oscillators are connected at each end of the unit cell. Using the
definitions of the elements of the admittance matrix, we may determine that,

1 [ Rp+2Rg
Ny =—
R¢\ Rp+Ryg
(2.7-24)
1 Rp
12—~
2Rg \ Rp + Ry
so that from Eq. (2.7-19) for weak coupling,
Rs Rs
L X X J Rp Rp o000
O . I O

Fig. 2-5. Unit cell of an infinite one-dimensional coupling network.
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ex 2 1 Rp 2.7-25
Y, 2\ Rp+2R 2.7-25)

and the oscillators must provide negative susceptance, -G, Where,

1

_Gosc > Re(Yll): _[

Rp+2Rg
—£-_=5 2.7-26
RS J ( )

Rp + Rg

In order to determine the network QO using Eq. (2.7-22), it is necessary to
explicitly display the frequency dependence of the admittance parameters
induced by the transmission lines. That is, from transmission line theory, we
have,

(Zg coshyl+Zesinhyl)+ ZL(ZR sinh y¢+ Z cosh y ()
C

Y, =2 (2.7-27)

;\1‘»5‘_

S (Zgcoshyl+Zcsinhyl)+ ;Z (Zgsinhyl+Zc cosh yt)

_Zr
R
Yo =— - (2.7-28)
Z—S(ZR coshyl+Zsinh () +Z—S(ZR sinh y¢ + Z cosh ()
R C

where Z; is the impedance of the parallel combination of R, and R,, and vy is the
propagation constant of the transmission line. The frequency dependence arises
because ¥ is linear in (. Using these expressions in Eq. (2.7-22), we find

that,
Ze Zp) 2\ zo  Zp

£+£ —cosAg
Zr R,

Oper = % (2.7-29)

(Note that this does not agree with equation (18) of [34] due to an algebraic
error in the derivation of that equation.) Typical oscillators used with this
network have Q’s on the order of 100. To minimize the Q of the network, we
chose parameter values to minimize reflections at the ends of the transmission
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lines. That is we chose ZR zZC so that for small inter-oscillator phase
differences we have,

Ot ®—— (2.7-30)

and for resistors of comparable value, the network Q is of order unity, clearly
much smaller than the oscillator O as assumed in the mathematical model.

Another particularly simple coupling network was proposed by Humphrey and
Fusco; that of a single capacitor between adjacent ports of the network. [36]
The corresponding parameters can be derived from the previous example by
setting R, to infinity and replacing R, by 1/(2jewC). Thus,
Y,=2j
H Zj,wc (2.7-31)
Y, =—joC

Note that the approximation of Eq. (2.7-19) is not valid for this network so
Eq. (2.7-18) must be used and we obtain,

JY2 —4Y3 -,
e~ 11 12 11 -1

2Y),
1 (2.7-32)
Qnet - 5
-G, >0

Note further that the coupling phase is zero.

The approach outlined above for coupling networks designed for linear arrays
of oscillators can be generalized to the case of planar arrays in which, for
example, each oscillator is coupled to its four nearest neighbors via the network
unit cell shown in Fig. 2-5. The admittance matrix is then block tridiagonal, and
each diagonal block is tridiagonal while the off-diagonal blocks are diagonal.
The matrix is symmetric, and the elements along any diagonal are equal. Thus,
the admittance matrix has only three independent elements. The diagonal
elements are denoted by Y,, the off diagonal elements of the diagonal blocks by
Y., and the diagonal elements of the off-diagonal blocks by Y,. As shown in
[34], the integral in Eq. (2.7-9) then becomes the two dimensional integral,



COAs—Basic Analytical Description and Operating Principles 61

e "™ eI dudy

Y, +2Y, cosu+2Y, cos v)

zZ, = é " ( (2.7-33)

The impedance matrix, though full, also has a block structure. The elements
along any diagonal within a block are equal. Similarly, the blocks along any
block diagonal are equal. Using a generalization of the notation used previously
for the linear case, the first subscript indicates the “distance” from the diagonal
within each block and the second subscript indicates the “distance” of the block
from the block diagonal.

The integrals given by Eq. (2.7-33) for nearest neighbors, Zy; and Z,, as well as
the integral for the diagonal elements Z,), can be expressed in terms of elliptic
integrals. That is,

2 16Y. Y,
Zoo = K —

i -a(r )[4

5 (2.7-34)

Z 2 [Yd—ZYxJ 1677,
01 2
2
ﬂ\/de—4(Yx—Yy) 27 Y —4(Y, Yy)
(2.7-35)
_{Yd—zyx—znyH 3 4y, 9 16Y,7, 2
2Y, 270y =25 =20 | y2 (v, -y,
) Y, -2Y, 16Y,Y,
2y = ; > 3% K= 2
7Y 4(Yx Yy) x Y _4(Yx Yy) |
. (2.7-36)
_[Yd—zyx—zyyjn z 4y, 16Y,7,
2 2 2
27, 270, =20 =20,y 2 (v, -,

where K is the complete elliptic integral of the first kind and IT is the elliptic
integral of the third kind. [37] The analogs of the voltage ratio of Eq. (2.7-18)
are,
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Y4
g =10 (2.7-37)
Zy
and
Zy)
g, =——" 2.7-38
y Zoo ( )

These expressions are quite cumbersome. However, as shown in Ref. [34], one
may obtain more manageable expressions by evaluating the integrals
asymptotically for large subscript via the method of stationary phase when the
other subscript is zero. While technically only valid for large index, the form of
these expressions exhibits a common ratio between the ports which may be
taken to be a measure of the coupling. That is, one obtains,

2
Y, +2Y Y, +2Y
P QR iy iy | s A (2.7-39)
2Y, 2Y,
and
2
oo | Yar2n ), (Y2 ) (2.740)
Y 27, 27,

as the analogs of Eq. (2.7-18). For weak coupling, Y, and Y, are small compared
with Y; and we obtain,

. Y
~— (2.7-41
Ty, 2y, )
and
Y
y R (2.7-42)
Y, +2Y,

Similarly, the analogs of Eq. (2.7-20) are,

Y Y, +2Y
K, ~ x 4 (2.7-43)
Y, +2Y, G,
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~Y, (v, +2v.
K, z( > ][ 4 xj (2.7-44)
v, +2r, )\ G,

The network QO can again be expressed as the logarithmic derivative of the port
admittance with respect to frequency. That is,

0
Q‘&U(Yd +2Y, cosAp, +2Y, cos Agoy)

Oper = 2.7-45
e 2‘ Y; +2YxcosAgp, +2Y, cosAg, ( )
w:wI‘BS
Finally, the oscillators must provide negative resistance such that,
~G e > Re(Yy) (2.7-46)
For a network using the coupling configuration shown in Fig. 2-5,
Y, = i Rp+2Rg
R¢\ Rp+Rg
(2.7-47)
1 R
Y, = Yy - | P
2Rg\ Rp + Ry
so that,
S| LV 2.7-48
72| R, +4R, (2.7-4%)
2 (Rp+2R
_Gosc > _( - 3 ] (2.7-49)
Rg¢\ Rp+Ryg
and,
(ZR_ZC}rl Zp  Zc cos Ag, +cosAp,
Orer = £y (2.7-50)
£+£ B cosA@, +cosAp,
Zrp R, 2

For ZR = Z and small inter-oscillator phase differences we again have,
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7Z'Rp

Ot zZE (2.7-51)

which is typically much smaller than the oscillator Q.

In this section we have discussed the analysis of coupling networks for infinite
arrays both linear and planar. Although, in practice the arrays are of course
finite, the analysis of infinite arrays is more tractable and provides insight into
how the circuit parameters affect the array behavior. Thus, relatively simple
approximate formulas obtain for the coupling strength, network Q, and needed
oscillator negative resistance in terms of circuit element values facilitating the
design of such networks.

2.8 Conclusion

In this chapter, the oscillators of the arrays were treated as individual circuits
capable of oscillation in themselves. These were coupled to form a mutually
injection-locked system of oscillators. In that sense, the modelling was discrete,
and the phase distributions studied were distributions of the phases of the
individual oscillator outputs, which (of course) have meaning only in terms of
the individual oscillator output signals. In the next chapter, however, we will
introduce the concept of the continuum model in which the phase distributions
are continuous functions. It is emphasized that the values of these continuous
functions still only have physical meaning when the functions are evaluated for
arguments corresponding to individual oscillators. Arguments between these
are for mathematical convenience and the corresponding function values have
no physical significance.
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The Continuum Model for Linear Arrays

All of the analysis presented so far has treated each oscillator as a discrete
device with an injection port and an output port from which a signal emanates
having a discrete phase value relative to a phase reference. For this reason, the
mathematical model represented has been termed the discrete model. We
emphasize that the discrete model encompasses the dynamic behavior of the
oscillator array both nonlinear and, if desired, linearized. No new phenomena
are added to this range of capability by means of the formulation to be
discussed in the present chapter. However, it will be shown that, provided one
is willing to linearize, the so called “continuum model” offers considerable
advantage in terms of insight and applicability of familiar mathematical
techniques. Although the continuum model is fundamentally approximate
primarily because of the linearization, it nevertheless provides intuitive
understanding of the behavior of coupled oscillator arrays with small inter-
oscillator phase differences, an important special case in terms of practical
application. Moreover, it provides a basis for understanding the impact of
nonlinearity when the inter-oscillator phase differences increase beyond the
limits of accurate linear approximation.

The continuum model in this context was suggested by Pogorzelski, et al. [38].
In essence we replace the index identifying the oscillators with a continuous
variable such that, when the continuous variable takes on the value of the index
for a given oscillator, a continuous function of that variable takes on the value
of the phase of that oscillator. Thus, only the values of the function at integer
values of its argument have physical meaning. The values between integer

65
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values of the argument serve only to facilitate the formulation in terms of a
differential equation.

3.1 The Linear Array without External Injection

To derive the continuum model of a simple linear array of oscillators coupled to
nearest neighbors, we begin with Eq. (2.2-4) for the linearized discrete model
with zero coupling phase and replace the discrete index i with a continuous
variable, x.

do(x,t)
2 = @y (x, 1) — @,
dt (1) = Brgy (.1-1)

+ Ay [(x + Ax,1) = 20(x, 1) + @(x — Ax, 1) ]

where Ax =1. Now treating ¢(x,) as a continuous function of x, expanding
each term in a Taylor series about x, and retaining terms up to second order in
Ax, we obtain,

op(x,1)
ot

Finally, dividing by the locking range and using the normalized time variable,
= AC@oclct , we have,

8(0()6 7)

2
=ah(X,0) = Oyop + DDy ——5— 0 (p(x ) (3.1-2)

2
=AQ, (x, ) (p(x 2 (3.1-3)

This is the fundamental equation for the continuum model of a simple linear
array of oscillators with nearest neighbor coupling and no external injection. It
is the well-known diffusion equation. Laplace transformation with respect to
time results in,

dzgo(x s)
i’

a simple second-order linear differential equation for the transform of the phase
distribution.

s(x,8) =—AQ, . (x,5) (3.1-4)

Suppose that the array is infinitely long and that one oscillator is step detuned at
time zero by C locking ranges where C is less than two. Without loss of
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generality, we may select the detuned oscillator to be the one at x=0. For this
situation, Eq. (3.1-4) becomes,

2~
d7plxs) Z(x)zc’s)—sgb(x,s):—gé‘(x) (3.1-5)
S

As discussed in Ref. [38], it might be considered more correct to use, in place
of the delta function, a square pulse one unit wide to represent the detuning.
However, it is shown in Ref. [38] that the difference in the results is very small,
and (in the spirit of the continuum model) the use of the delta function affords
considerable convenience with minor impact on the results.

The differential equation given by Eq. (3.1-5) has an exact solution in closed
form. It is,

3 C s
X,§)=—-r=e 3.1-6

and the inverse Laplace transform is,

o(x,7)= C\/ze_xz/(47)u(r) —%‘x‘ erfc( ‘x‘ ju(r) (3.1-7)
Vs

2N

Figure 3-1 shows a plot of this function over the range —10<x <10 from time
zero to time equal to 250 inverse locking ranges for C = 1. Note that as time
goes to infinity, the phase diverges as the square root of the time, never
reaching a steady state. This may be viewed as a manifestation of the branch cut
of Eq. (3.1-6) in the complex s plane. However, differentiating the phase with
respect to time gives the simple expression for the frequency,

OXD) =y _C |1 ian), (3.1-8)
T

A Dock 2

and thus the frequency converges to the reference frequency at infinite time as
one over the square root of the time. This function is plotted in Fig. 3-2 for C
equal to unity.

Next, let us consider a finite length array over the range

—a- % <x<a+ % For example, if a =10 there will be 21 oscillators in the
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Fig. 3-1. Dynamic phase behavior of an infinite
linear array.

Freq.-Ref.[Locking Ranges]

Fig. 3-2. Dynamic frequency behavior of an infinite
linear array.

array and the overall length will be 2a+1 or 21 unit cells. Now, in addition to
using Eq. (3.1-4), we must determine the boundary conditions at the ends of the
array in order to obtain the solution. These conditions can be easily obtained via
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an artifice outlined in Ref. [38]. That is, we imagine two additional fictitious
oscillators added to the array, one at each end and coupled to the corresponding
end oscillator. These oscillators are dynamically tuned so that at all times their
phase is maintained equal to the phase of the corresponding end oscillator of
the true array. Under these conditions, as may be seen from Egs. (1.4-1) and
(1.4-2), there will be no mutual injection between the end oscillators and the
fictitious ones. Thus, the fictitious ones may be removed without effect.
However, since the phase of the end oscillator and the corresponding fictitious
oscillator are always equal so that the phase difference is zero, and since in the
continuum model this difference is represented by the derivative with respect to
x, one may conclude that the appropriate boundary condition is that the
derivative of the phase with respect to x must be zero; that is, a Neumann
boundary condition. At this point, having both the differential equation
Eq. (3.1-4) and the boundary conditions, we are in a position to treat the case of
a finite length linear array via the continuum model. This will be accomplished
using two alternative approaches described below both of which, of course,
yield the same result.

Before proceeding on this course however, we note an interesting result
obtainable directly from the differential equation and the boundary conditions.
Suppose we integrate Eq. (3.1-3) over the length of the array.

a+% 5 a+% aJ%

0 p(x,7) 0

— = 2 dx—— x,7)dx =— AQ x,7)dx (3.1-9
| ~ = jl(p( ) jl wne (% T)dx (3.1:9)
—-a— —-a— —-a——

2 2 2

The first term is zero by virtue of the Neumann boundary conditions at the
array ends. Thus, we may write,

a+l a+—
I 2 jz o(x. T)dx =—— jzAQ (x,0)dx  (3.1-10)
2a+lor <7 2a+1 4T '
5 )
or,
1 1
at+— a+s
1 op(x,7) 1
dx = @, (X, 7)dx— @ 3.1-11
2a+1I ot 2a+1 Il hune (6 E)AE= O (3.1-11)

—a— —a—
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Now from Eq. (1.3-6), neglecting amplitude variation, we have that the
instantaneous frequencies of the oscillators are given by,

o

WDinst = a)ref + E (3.1-12)
Substituting this into (3.1-11),
1 1
a+— a+—
! j o, dx=— jz W, (x,7)dx (3.1-13)
2a+1 T 2q41 0 MO '
-a—y _aL

That is, the average over the array of the instantaneous oscillator frequencies is
equal to the average over the array of the oscillator tuning (or free running)
frequencies. In steady state the instantaneous frequency is equal to the
ensemble frequency. So, we can conclude that the steady-state ensemble
frequency of the array is the average of the oscillator tuning frequencies.
(Recall the assumption of zero coupling phase.)

We now set ourselves the problem of determining the phase dynamics of a
finite linear array when one oscillator in the array is step detuned at time zero.
The solution of this problem will be a Green’s function permitting solution for
an arbitrary distribution of detuning including the antisymmetrical detuning of
the end oscillators for beam-steering as suggested by Liao and York [28]. The
first approach will be to construct a solution as a superposition of a particular
integral and two homogeneous solutions of the differential equation. The
particular integral is known from the solution of the infinite array problem. It is
essentially Eq. (3.1-6) generalized to accommodate detuning an arbitrary
oscillator at x = b instead of the one at x = 0. That is,

C_ detfs
284S

Pp(x,8) = (3.1-14)

Adding to this two independent homogeneous solutions with unknown
coefficients, Cr and C;, we postulate the desired solution in the form,

P(x,s5) = _C s

+Cre ™ +Cre™* (3.1-15)
258
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The two unknown coefficients are now determined by applying the boundary

conditions at the two ends of the array, x = a +% and x =q + %, resulting in

the two simultaneous linear equations,

1 cC _

—Cpsu+ Cps —=———e 0 (3.1-16)

u 2su

1 C
—Cps =+ Cpfsu = ——ebVs (3.1-17)

u 2su

where,
1
(a+)s -

y=e 2 (3.1-18)

Solving Egs. (3.1-16) and (3.1-17) simultaneously for Ci and C;, we obtain,
¢ (leb\/; + e_b*/;j

Cp = 25+/s “12 . (3.1-19)
(=)
and,
_ ¢ (le_b\/;+eb*/;j
c, = 25s “12 . (3.1-20)
(=)

The solution given by Eq. (3.1-15) is then,
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2
(lz—uzj (3.1-21)

which simplifies to,

Ccosh[(2a+1—|x—b|)\/§]+Ccosh[(x+b)\/;] (3.1-22)
S/ sinh[(2a+1)\/§]

Note that, despite the presence of square roots of s, there are no branch cuts in
the s plane because this function is even in the square root of s. Thus, the
inverse Laplace transform can be computed purely via residue calculus. The
poles, s,, are located by,

P(x,s) =

SplSn sinh[(2a+1)\/§}=0 (3.1-23)
Thus,
nr
- == 3.1-24
& (2a+1) Tn (3.1-24)

Except for the double pole at s = 0, the residues at these poles are,

cosh[(2a+1—|x—b|)\/§] +cosh[(x+b)\/§] (3.1-25)

s,(2a+1)

residue, =(—1)"C

and the residue at the double pole is,
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iduey = 3.1-26
residue Yo+l ( )
The inverse Laplace transform is thus,
Cr

X,T)=

#l0.7) 2a+1
OOcos(x—b)( ne j +(—D”cos(x+b)( nz j

N z 2a+1 2a+1

2a+1n:1 nr 2 (3.1-27)

(2a+1
_( nr jzr
x| 1—e 2a+1
This may be rewritten in the form,
Cr

X,T)=

P 7) 2a+1
., 2cos b(zmﬂj cos x[zmﬁj 2mr Y

., C Z 2a+1 2a+1 e 2a1) ©

20415 2mr } (3.1-28)

2a+1
2n+1 2n+1
2sin{b ((”Jr)”ﬂsh{x (("Jr)”ﬂ (2mt1)2 )

i C i 2a+1 2a+1 l—e 2a+l !

2a+1,5 (2n+1)7 ’

2a+1

The overall time constant of the array dynamics is determined by the smallest
eigenvalue. In general, this is given by the n = 0 term in Eq. (3.1-28); that is,

2
0'0:( dd j (3.1-29)

2a+1
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However, if the detuned oscillator happens to be the center one, the residues of
the n series are zero and the smallest eigenvalue is the one for m = 1; that is,

2
UO:( 2 j (3.1-30)

Thus, when the center oscillator is detuned, the array responds four times faster
than if any other oscillator is detuned. (There is an error in Ref. [38] where this
response is claimed to be only twice as fast.)

Recall now that from Eq. (3.1-13) the ensemble frequency of the array is the
average of the tuning frequencies. When one oscillator out of the 2a+1
oscillator array is detuned by C locking ranges, the ensemble frequency of the
array measured in locking ranges will thus change by C/(2a+1) locking ranges.
This is manifest in the solution Eq. (3.1-28) as the linear time dependence of
slope C/(2a+1) as a function of the scaled time, T . Aside from this linear
term, from Eq. (3.1-28) we see that the steady-state phase distribution across
the array is given by,

o oo 2 el 2

%S(x):2a+lz

" (;Zj (3.1-31)
]
+2a+1;§ ((2n+1)71']2
2a+1

a Fourier series which can be summed in closed form to yield the simple
expression,

__C 252 gl 2] (3.1-32)
¢SS(X)_2(2a+1)[x +b”—(2a+1)[b x|+6(2a+1) }

This may be compared with the result from the discrete model where we
approximated the eigenvalues and extended the sums to an infinite number of
terms to arrive at the simple approximate result Eq. (2.3-9). Recall that in the
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linearized discrete model the eigenvalues repeat so, if the sums are continued to
an infinite number of terms, a set of delta functions results. Here, in contrast,
the sums are in fact infinite and result in a smooth function passing through the
correct value of oscillator phase as x passes through the corresponding index of
that oscillator. Thus, the two results, discrete and continuum, are only equal at
the oscillators and not in between.

As indicated in Ref. [38], because the inter-oscillator phase difference cannot
exceed 77/2, this steady-state result indicates that the detuning C is limited by,

7(2a+1)

““2(arh)

(3.1-33)

However, when operating near the limits of lock, this is not a very good
approximation so it is suggested in [38] that the sine terms be approximated by

defining an effective locking range, Ad}lock , as follows.

A@@sﬂA@zA@M%j)@wﬂ@M (3.1-34)

For small phase differences the effective locking range will be nearly equal to

the true locking range, but near the limits of lock, it will be 2/7 times the true
locking range. Thus, as pointed out in Ref. [38], though still approximate, the
maximum detuning is more accurately given by,

2a+1

TAYO N z(—)A%ck (3.1-35)

(a-+}8)
Let us now return to the problem of determining the phase dynamics of a finite
linear array when one oscillator in the array is step detuned at time zero and
solve it via an alternative approach. We wish to solve Eq. (3.1-5) subject to
Neumann boundary conditions at the array ends. Following Pogorzelski, et al.
[38] in this alternate approach we first determine the eigenfunctions and
eigenvalues defined by,

d2W€
dx?

= A,w, (3.1-36)

such that,
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dw, 0
de |1 - (3.1-37)
x-a+2
and
dw, 0
dx x=—a—1 - (3.1-38)
2

Clearly, the appropriately normalized eigenfunctions are,

Lo \/Ecosh(xm) (3.139)

" J2a+1

and

~ \/Esinh(x\/Z)
N

and the eigenvalues are given by,

(3.1-40)

sinh{%(a+%j =0 (3.1-41)

and

cosh {\/Z [a +%j =0 (3.1-42)

Thus the explicit eigenvalues are,

9 2
A, :—( m”j (3.1-43)
2a+1
and
2
Ay =~ —(2n+1)” (3.1-44)
2a+1

We now express the solution of Eq. (3.1-5) as a sum of these eigenfunctions.
That is,
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P= Ayt + Y By, (3.1-45)
=0 =0

Substituting this into Eq. (3.1-5) generalized to an arbitrary detuned oscillator
at x = b gives,

A, A, +B,A,v, —sA,u, +B,v, = —25(x—b) (3.1-46)
s

Now using the orthogonality of the eigenfunctions over the length of the array,
we obtain,

__ Cu, ()
m = 54, —s) (3.1-47)
and
Cv,y(b)
=——0 < 1-4
"y —s) (3.1-48)
The solution is then immediately written as,
e UM OUMC IR R C RN
m=0 S(Ay —5) =0 s(A,—5)
or, inserting the explicit expressions for the eigenfunctions,
C i 200sh(b‘//1m)cosh(x,//1m)
p=——
s = 2a+1)(4, —5)
w0 (2arl) (3.1-50)

¢ & 2sinh (b2, )sinh(x|/2, )
_?;0 (2a+1)(4,—s)

Except for the zero eigenvalue term, m = 0, each term of these series has one
simple pole at s equal to the corresponding eigenvalue. Thus, the inverse
Laplace transform follows immediately as the sum of the residues at the pole in
each term of the series,
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2mr 2mmr )
2cos| b cos| x 2mr
2(1"1‘1 2a+1 2a+l v
5 1-e
2a+1m=1 2
2a+1 (3.1-51)
2n+1 2n+1 ,
2sin| b M sin| x M (2n+l)7
Cc & 2a+1 2a+1 | e | °
—e

+2a+1n§ ((2,,”1)7,]2

2a+1

which is, of course, identical to Eq. (3.1-28). For the case where @ = 10 and
b =5, this solution is plotted as a function of time in Fig. 3-3. Note that the
shape of the distribution at late times is very much like the corresponding
steady-state solution shown in Fig. 2-3. Being the solution for a delta function
source on the right side of the differential equation, this is the Green’s function
for the problem and as such it can be used to obtain solutions for arbitrary
detuning distributions.
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Fig. 3-3. Linear array phase distribution under
step detuning of the oscillator at x = 5.
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To summarize, we have described two methods of solving the continuum-
model partial-differential equation for the dynamic behavior of the phase across
a linear array of mutually injection locked oscillators. Both methods entailed
Laplace transformation with respect to the scaled time. The first method was a
direct solution of the resulting second-order ordinary differential equation by
postulating a solution as a superposition of a particular integral and two
homogeneous solutions with unknown amplitude coefficients. The coefficients
were determined by the Neumann boundary conditions at the array ends. The
inverse Laplace transform was obtained as a sum of the residues of at the poles
of the transform. In the second method, the Laplace transformed equation was
solved by postulating a solution as a sum of eigenfunctions of the second order
differential operator each satisfying the Neumann boundary conditions at the
array ends. Recognizing this to be a self-adjoint boundary value problem of
Sturm-Liouville type, it should not be surprising that the solution for the
desired Green’s function can be written as a sum of these eigenfunctions.
Conveniently, each term of the sum, except the one corresponding to the zero
eigenvalue, has one simple pole so that the inverse Laplace transform is
immediately obtainable as a sum of the corresponding residues, one for each
term of the eigenfunction series.

3.2 The Linear Array with External Injection

Thus far, the continuum model has been applied to arrays in which the phase
control is accomplished by detuning one of the oscillators. The beam-steering
method proposed by Stephan [1] requires that two or more array oscillators be
injected with an externally derived signal. Thus, to accommodate this, it is
necessary to generalize the continuum model along the lines followed in
Section 2.5. Following Pogorzelski, et al. [39], we begin with Eq. (2.5-2)
rewritten in terms of the continuous variable, x, and the scaled time, 7, as,

d¢(x, T) _ 2 _a)ref

+(@(x+Ax,7) = 20(x,7) + p(x — Ax, 7))

dr Aw,

"’CZ (3.2-1)

Dlock, p.inj
—0(x—p)————0(x,7) — ;,, (7)
Aa)lock ( " )
Now we define,
A -
() = S - p)— sk (6.22)
Aa?ock

and expand in a Taylor series about x keeping terms up to second order in Ax
so that Eq. (3.2-1) becomes,
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e do
V= =00,V (I 2 (3.23)

Here the spatial distribution of the external injection signals is given by V(x)
while the temporal dependence is given by (Q,y-(T) so we have implicitly

assumed that these dependences are separable; that is, all of the injection signal
phases have the same time dependence. While this is a convenient
simplification, it is not essential in that one could include more than one such
injection term in the equation and obtain a solution albeit somewhat more
complicated than the one presented here. Equation (3.2-3) is the generalization
of Eq. (3.1-3) required to accommodate external injection for our purposes and
we will use it to study the phase dynamics of such an externally injected array.

Suppose we consider an infinitely long linear array wherein all of the oscillators
are tuned to the ensemble or reference frequency and the oscillator at x = b is
externally injection locked to an oscillator of strength C with Cy radian step
time dependence of its phase. Our generalized differential equation then
becomes,

2
a_f CS—-b)p-TC —_AQ,  —CCoS(x—bu(z) (324
Ox dr
where,
A .
_ 2@tock.p.inj (3.2-5)
Aa)lock

Laplace transformation with respect to the scaled time results in,

2~
8—‘2” —CS(e—b)f—sp=—2 CS(x—b) (3.2-6)
ox S
We now define,
. . C
G=p-—2 (32-7)
s
so that Eq. (3.2-6) becomes,
2~
A _Co(x-b)a —s@t =G, (3.2-8)

&
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The particular integral of this equation is,

~ C
Py = —TO (3.2-9)

We postulate a homogeneous solution of the form,
@y = Cle‘ﬁ‘x‘b‘ (3.2-10)
so that our proposed solution is,

Dy = &‘i‘ Cle_\/;‘x_b‘

S

(3.2-11)

Now integrating Eq. (3.2-8) across the delta function at x = b, we find that,
—p*
=Cq(b) (3.2-12)

Imposing this condition on the solution given by Eq. (3.2-11), we obtain,

C - GC
1="7 = \ -
5(2\/;+C) (3.2-13)
Substituting this into the solution given by Eq. (3.2-11) gives,
. C —Jslx—
& =_0{—C o Vst —1} (3.2-14)
s | 2ds+C
and from Eq. (3.2-7),
~ GC —s|x-b|
P(x,5)=—————e€ ]
NENYS 6215)
Finally, the inverse Laplace transform of Eq. (3.2-15) is,
()= Col erte| =2
o(x,7) = erfc
0 2\/;
(3.2-16)

_ 2 -b
e e 7 eorfe C£+|x | u(r)
2 2Jr
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(See Ref. [37] equation 29.3.89.) This is the phase distribution across the
infinite array as a function of time. It is zero at time zero and smoothly evolves
to a final value of C) at infinite time as shown in Fig. 3-4 for Cy= 1 radian and
C = 1. Note that the injection frequency as well as the initial and final ensemble
frequencies are all the same. Because it is the solution for injection at a single
point in the array, you might think that it is a Green’s function that can be used
to construct solutions for arrays injected at multiple points. However, as we
shall see in Section 3.4 when we discuss Stephan’s beam-steering scheme [1]
involving two injection points, this is not the case because the form of
differential equation itself differs from Eq. (3.2-6) when there are multiple
injection points.

The corresponding problem where the injected frequency is step shifted by C,
locking ranges at time zero was treated by Pogorzelski, et al. [39]. In that case
the array oscillator frequencies evolve from the ensemble frequency at time
zero to the injection frequency at infinite time.

Next, we consider an array of finite length, 2¢ + 1, in which all of the
oscillators are tuned to the same frequency, taken to be the reference frequency
and one of the oscillators, the one at x = b, is injected with an externally
generated signal of strength C defined by Eq. (3.2-5) that is step phase shifted
at time zero by C, radians. Equation (3.2-6) applies, but this time we wish to
solve it subject to Neumann boundary conditions at the array ends. Here again
we have a choice of two methods of solution. Let us begin by postulating the
solution in the form of a particular integral plus two complementary functions
that are solutions of the homogeneous equation. That is, using Egs. (3.2-7),
(3.2-9), and (3.2-10) we have,

P = Cbe_\/;‘x_b‘ + CRe_X\/; + CLeX\/; _ % (3.2-17)
s
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Fig. 3-4. Phase distribution versus time for an infinite
linear array with one oscillator externally injected.

with the three conditions,

AP0 e ) (3.2-13)
d x=b"
apl (3.2-19)
dx x=a
anl _ (3.2-20)
dx x=—a

Now, Egs. (3.2-18), (3.2-19), and (3.2-20) can be used to determine the three
constants, C,, Cr, and C;. Then, using Eq. (3.2-7), we get,

P(x,5) =

G {Ccosh[(2a+1—|x—b|)\/;]+Ccosh[(x+b)\/;]} (3.2-21)

2sD(s)

where,
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D(s)=+ssinh| (2a+1)Js |+

CCOSh[[a+%+bj\/§}cosh[(a+%—bjﬂ

Here again there are no branch cuts, and the inverse Laplace transform is
expressible as a sum of residues at the poles; that is, the zeros of D(s), all of
which lie on the negative real axis of the s plane. Note that Eq. (3.2-22) is very
reminiscent of Eq. (2.5-9) of the discrete model of this array. Comparing these
two equations, we may ascertain that the continuum approximation is

(3.2-22)

particularly accurate for small values of s when \/; ~ sinh (\/; ) which, of

course, corresponds to late time. In fact, the pole closest to the origin of the
s plane provides us with the time constant of the array which determines the
late time behavior. Let us examine Eq. (3.2-22) to see if we can estimate the
location of this pole.

In anticipation of the fact that the pole lies on the negative real axis, we define
¢ so that,

Js=—o=ifo=i& (3.2-23)
Then,
D=—¢sin|(2a+1)& |+

Ccos[(a+%+bj§}cos[(a+%—bjg} (3.2-24)

Setting D equal to zero, yields the transcendental equation,

2§Sin[(a+%]§}osﬁa+%)§}:
CCOS[(a+;+bjg}os[(a%_bH

For small &, the solution occurs where the cosine functions are near zero and

(3.2-25)

the sine function is near unity. Thus, we define a new variable,

T
2a+1

n=&E- (3.2-26)

and write Eq. (3.2-25) in the form,
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V2
2 -
(77 2a+1
Ccos a+l+b 77+£+ br
2 2 2a+1

1 T br
xcos||a+——b |n+—-
2 2 2a+l

or

forsz el el

Jof o Lo o [o+2)

_Csin{(a+%+bj77+ br

: 1 brr ]
xsin||a+——b |n-—
2 2a+1 |

Using the identity for the sine of a sum, we arrive

2( N jcos (a+lJ sin_
g 2a+1 2 g i

2a+1}

—C{sin{(a+%+bjﬂ}cos( .

32l
+cos a+§+b 7 |sin

: ( 1 ] br ]
xssin| | a+——>b |n |cos
2 2a+1

[e32)e]
—cos a+5—b 7 |sin

Near 7 =0,

85

(3.2-27)

(3.2-28)

(3.2-29)
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. ( br )}
+ Sin
2a+1 (3.2-30)
br

which is a quadratic equation for 7;. That is,
2
1 2| 2
a+—| —b
| Zsec? br +2btan br n— tan’ br =0
C 2a+1 2a+1 2a+1

We can now look at two limiting cases. First, if C is small, the solution
becomes that of the uninjected array, namely, 77 = 0. If, on the other hand, C is

(3.2-31)

large,
{bi(a+lﬂ
2 br
= 3 ta ( ]
(H 1) e 2a+1 (3.2-32)
2
and
{bi(a+lﬂ
B 2 ( br j V4
&= tan +
2a+1 2a+1 (3.2-33)
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If b is small; that is, if the injection point is near the center of the array,

[bi(a+lﬂ
£~ 2 ( br ]4_ V4
|:(a+;j2 _b2:| 2a+1 2a+1 (3.2-34)

Choosing the sign in the numerator to obtain the solution nearest the origin of
the s plane, we have,

T

S~ m (3.2-35)

Thus,

ol (3.2-36)

Smin ~ 2(a+|b|+1)

and that the late time behavior of the array goes as,

2
—LHJ T (3.2-37)
e 2(a+|b|+1)

The formula given by Eq. (3.2-33) fails if b is at either end of the array because
we have effectively divided by zero in the derivation. We can no longer assume
that C is infinite. Retaining a finite value of C and rewriting the transcendental
equation results in,

Etan[(2a+1)¢]=C (3.2-38)

If C is small, the solution is approximately,

/ C
~ 3.2-39
d 2a+1 ( )

but if C is large,
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/

ng;:i:T_ (3.2-40)
C

Interestingly, for large a, Eq. (3.2-40) is consistent with Eq. (3.2-35) if b is at
the either end of the array so, for large C and large a, these formulas agree.

Returning now to Eq. (3.2-21), the poles are easily found by iterative bisection
because they are all on the negative real axis. The residues are easily computed
once the poles are known and the residue series gives the inverse Laplace
transform. As an example, this inverse transform is plotted in Fig. 3-5 for the
case where a = 10, b =5, Cy=1, and C = 10. The time constant of this array is
96.12 inverse locking ranges, whereas the approximate formula Eq. (3.2-36)
gives 103.75 inverse locking ranges. Note that for the injected oscillator x = 5,
the response is much faster than that of the entire array. This is because for this
oscillator, the residues of the poles close to the origin of the s plane are small
and the more distant poles hold sway.

/
0.6 ,///
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Fig. 3-5. Oscillator phases for oscillator 5
externally injected.
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As discussed in connection with the detuned linear array, the above analysis
can also be performed by expanding the solution in eigenfunctions of the
differential operator. The relevant operator in this case is,

&
—5~Co=b) (3.2-41)

The presence of the delta function produces a slope discontinuity in the
eigenfunctions which must satisfy,

82wn
22 ~Co(x—b)w, =4,w, (3.2-42)
and the boundary conditions,
d
Wnl o~ (3.2-43)
dx xX=a
dw, -0 (3.2-44)
dx X=-a
The solution is postulated in the form,
w, = Cbe_\//l_”‘x_b‘ + CRe_x\/]“_” + CLex‘//l_” (3.2-45)

Now we note something interesting about Eq. (3.2-42); that is, it is essentially

Eq. (3.2-6) with Cj set to zero and s set to ﬂn. Therefore, we can obtain the

eigenfunctions by means of a limiting process applied to Eq. (3.2-21) instead of
solving for the three constants using Egs. (3.2-42), (3.2-43), and (3.2-44).
Suppose we set,

G=a (3.2-46)
and,

s=4,+a (3.2-47)

in Eq. (3.2-21) and take the limit as ¢ approaches zero where ﬂn is the n”
value of s for which D(s) equals zero. In this limit both the numerator and
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denominator of Eq. (3.2-21) approach zero, but the ratio is finite and

approaches W,,. That is,

W (x) =

%{ a Ccosh[(2a+1—\x—b\)1//1n +a]+a Ccosh[(x+b)ﬂM,, +a] } (3.2-48)
22 (4, +a) DO, )

a=0

But, except for a factor of Cy, this is nothing but the residue of Eq. (3.2-21) at
the n™ pole. Not only have we found the eigenfunctions, but they are already
multiplied by the coefficients needed to form the solution by summation except
for an overall multiplicative constant of Cj. In effect, in Eq. (3.2-48) we are
computing,

__¢.»
= s (3.2-49)

where the bracketed expression in the denominator is the normalizatiintegral;
that is, the integral of the square of the arbitrarily normalized eigenfunction, f,,
over the array length and,

f,(x)= Ccosh[(2a+l |x— b|)\/7]+Ccosh[(x+b)\/Z] (3.2-50)

The desired solution is therefore,

5) = COZW W=y LD JaB)f5(X)

w2 < s S > (3.2-51)

the well-known form of the solution as a sum of eigenfunctions.

Thus, we see that the inverse Laplace transform of the eigenfunction sum
representing the solution, @(x,7), is just the sum of the residues of

Eq. (3.2-21) multiplied by the Laplace transform kernel, e*" . This same
property was evident in the treatment of the linear array with one oscillator
detuned. It is the reason why Eqgs. (3.1-28) and (3.1-51) are identical. Thus, in
the present case, we can rest assured that, had we pursued the eigenfunction
expansion approach to completion, the result would have been exactly that
plotted in Fig. 3-5. The two approaches, the residue series based on the
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eigenfunction sum and the residue series based on the particular integral and
complementary function are not just equivalent, they are in fact identical.
3.3 Beam-steering via End Detuning

The beam-steering concept suggested by Liao et al. [28] involves
antisymmetric detuning of the end oscillators of the linear array. The phase
dynamics produced in this situation can be analyzed by means of the continuum
model presented in Section 3.1. Beginning with Eq. (3.1-51), we may superpose
two such solutions, one with b equal to minus a and the other with b equal to

plus a and with C’s of opposite sign. Let, C:Aﬁ%/ A[%ck and,
Dine(X) = Oy +AOPO(x~a) —Awro(x+a) (3.3-1)
Then we obtain,

o(x,7)=

2sin| b 7V o r41)7 ()Y
& 2a+1 2a+1 {2&1] Yl (33-2)
5 l1—e

The steady-state phase distribution is then given by,

¢(x,00) =

Aoy & 2{b((zz+fi”ﬂmﬁwﬂ 63

Aot 13 n+1)z )
. Qa1 2
2a+1
which can be summed in closed form to yield,
A
Pxo0) =T x (3.3-4)
A@wk

a linear phase distribution as indicated in Ref. [28].

The function given by Eq. (3.3-2) is plotted in Fig. 3-6 for end oscillators of a
21-oscillator array step detuned at time zero by one half locking range.
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Figure 3-7 shows the corresponding far-zone radiated field if the oscillator
outputs are used to excite the elements of a half wavelength spaced array of
isotropically radiating elements. It shows that the beam is steered from normal
to the array initially, to 9.16 deg from normal corresponding to the steady-state
inter-element phase difference of a half radian or 28.65 deg given by

Eq. (3.3-4) when Acw; =; A@,,;, - The linearization of the sine functions in the

full nonlinear theory introduces some error, but the qualitative behavior is well
represented. In fact, the actual steady-state inter-element phase difference is
30 deg resulting in beam-steering to 9.59 deg rather than the 9.16 deg given by
the linearized theory.

These plots depict the dynamic behavior for an interval just a little longer than
one array time constant.

We have shown that the beam-steering scheme suggested by Liao and York
[28] is indeed treatable using the continuum model of coupled oscillators and
that the phase transient ensuing from antisymmetric step detuning of the end
oscillators produces a smoothly scanning beam in the far zone. The maximum

Fig. 3-6. Oscillator phases for a 21-oscillator linear array with end
elements antisymmetrically detuned by half the locking range.
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Fig. 3-7. Far-zone radiated field of a 21-element half

wavelength spaced phased array excited by the
oscillators of Fig. 3-6.

scan angle is limited by the maximum permissible inter-oscillator phase

difference. However, this can be mitigated by frequency multiplication of the
oscillator outputs, which similarly multiplies the phase excursion [40].

3.4 Beam-steering via End Injection

The beam-steering scheme proposed by Stephan [1] requires that each of the
end oscillators be externally injected. The phase distribution across the array is
then controlled by adjusting the relative phase of these injection signals by
means of a phase shifter which thus controls the beam direction. The dynamic
behavior in this situation can be analyzed using the continuum model, but the
analysis presented in Section 3.2 for a single injection point cannot be directly
applied. If, for example, we represent the solution as a sum of eigenfunctions,
the eigenfunctions for two injection points differ from those for one. Similarly,

if we approach the analysis using a particular integral and complementary
function, both of these will differ from those for one injection point. Thus, it

93
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will be necessary to reformulate the problem for two injection points from the
beginning.
To be definite, we assume that the oscillators of the array are all initially tuned
to the reference frequency and are thus in-phase with each other and that two
arbitrary oscillators in the array at x = b, and x = b, are injection locked to
external signals which are initially in-phase with the oscillators of the array and
that at time zero the phase of each of these signals is stepped to a finite constant
value. The strengths of the two injection signals are denoted by B; and B,, and
the amplitude of the corresponding temporal step functions are denoted by p;
and p,, respectively. Then, Eq. (3.2-3) becomes,

o’p dg

6x2 [B15(x b1)+825(x bz)]¢ dr (34_1)

=—B6(x—b) pju(r) — B,6(x —by) pou(7)
Laplace transformation results in,

0% B
2 [B5(x—by)+ Byd(x—by)] 057
Ox (3.4-2)

= -B5(x~b) L Bys(x—by) P2
S S

Now, as shown previously, we may solve this equation either by means of an
eigenfunction expansion or by means of superposition of a particular integral
and a complementary function. In the former approach, the complexity arises in
the normalization of the eigenfunctions, which involves integration of the
square of the eigenfunctions of the array. In the latter, this is automatically
taken care of by the residues. Thus, we elect to proceed with the latter approach
as was done in [39].

The solution of (3.4-2) is postulated in the form,
o= Cle_\/;‘x_bl‘ + Cze_\/g‘x_bﬂ +Cre ™ +C Le’“g (3:4-3)

The four unknown constants are determined by the boundary conditions at the
array ends, Egs. (3.2-19) and (3.2-20), and the conditions on the derivatives at
the injection points, Eq. (3.2-18). These four constraints yield four equations
for the four unknowns in Eq. (3.4-3). The solution is,



The Continuum Model for Planar Arrays 95

P8 = 5o
{Bz P cosh{\/z_ ((2a+1)+(by +x)~|b, —x|)}
xcosh{g((zaﬂ) (b2+x)—|b2—x|)}
+Blp1cosh{f((2a+1 (b +x)~|by - XI)}
xcosh{\/z_((ZaH (By +x) [y - XI)}
+%cosh{§(za+l+zbl)}
xcosh{g(%ﬁl—(bz+b1)_|b2_x|_|b'_x|)}

(3.4-4)

xsinh{é((lb ~by)~|by = +|py —x|)}

N BB, py cosh {g( 2a+1-2b, )}

Js

x cosh {

§(2a+1+(b2 +by) = by — x| |y _x|)}

e

(- =)

xsinh{

where,
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Dy(s)=+s sinh| (2a+1)s |

+B cosh[\/;(a+%+blﬂcosh[\/§(a+%—blﬂ
+B, cosh{\/; [a +%+b2ﬂcosh[\/§ (a %‘bZH (3.4-5)

+%smh[\/§ (by=h)]

xcosh{\/;(a+%+b1ﬂcosh{\/;(a+%—bzﬂ

Note that, if either of the B’s is zero, we recover Egs. (3.2-21) and (3.2-22) for a
single injection point. The form of the solution presented in Ref. [39] is slightly
different but fully equivalent except for a typographical error in

the sinh [\/; (2b1 - |b2 - x|)] term, which should have been

sinh \/; 2b, +|b, —x|) |. The pole locations on the negative real axis of the
1102

splane are easily found by iterative bisection, and the inverse Laplace
transform is then obtainable as a residue series.

As a first example, we compute the solutions when unit strength injection
signals are applied to the end oscillators of a 21-oscillator linear array, and at
time zero their phase is step shifted antisymmetrically by one radian producing
a phase difference of two radians. The dynamic behavior of the resulting phase
distribution is shown in Fig. 3-8.

An analytic expression for the steady-state solution for the phase can be
obtained by application of the final value theorem to the transform (3.4-4) and
(3.4-5). The result is,

1

2B, +2B, +2B,B, (b, — by

@(x,0) {2B,p, +2B, p,

(3.4-6)
+B,By [ (py+ p)(by =)= (P2 = 1) (b2 = x|~ [br = 1) ]}
For the case shown in Fig. 3-8, this expression reduces to,
p(x,0) = = (3.4-7)

11
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Fig. 3-8. Phase dynamics for injected end elements.

Notice that the steady-state phases of the injected oscillators at x = 10 and at
x = —10 are not equal to the phases of the corresponding injection signals, plus
and minus one radian. This is because the end oscillators are also injected by
virtue of their coupling to their nearest neighbor in the array, and the phase of
that neighbor differs from the phase of the external injection signal. Thus, the
total injection of the end oscillator is not in phase with the external injection
signal. However, as the strength of the injection signals is increased (large
values of the B’s are used), the steady-state phase of the end oscillators will
approach the phase of the corresponding injection signals because the signal
from the corresponding neighboring oscillators becomes negligible.

We again remark, as in Section 2.5, that the injection signals may be derived
from the end oscillators of the array and used to inject the next to end
oscillators to achieve beam-steering. The continuum model has been used to
study this approach also [41].

Recall that the phase of the injection signals can differ from the initial phase of
the injected oscillators by no more than 71/2 radians for a maximum total phase

difference of 7T radians across the array. Thus, for strong injection, the beam-
steering angle is limited to a maximum of
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0,0 =sin~!| — 2 4
) nax = SIN [(2a+l)S] (3.4-8)

where S is the electrical radiating element spacing in radians. In our present
example, if the element spacing is a half wavelength so S = m, then the
maximum steering angle is 2.73 deg, a disappointingly small angle.
Fortunately, this problem is easily eliminated by gradually increasing the
injection phase instead of stepping it. [1] That way, the phase difference
between the injected oscillator and the injection signal can be maintained less
than 7/2 radians while the phase difference between the two injection signals is
increased to a large value. The new limit on steering angle is now imposed by
the requirement that the inter-oscillator phase difference be less than
n/2 radians to maintain overall lock, a limitation also present in the detuning
case. In the present example, this limits the steering angle to 30 degrees, a
certainly more acceptable limit.

As an example of this enhanced beam-steering scheme, we compute the
response of the array of the previous example, but this time we gradually
increase the injection-signal phase difference by convolving the step function
with a temporal Gaussian. By virtue of the linearity of the p dependence of the
equation, we may obtain the corresponding phase response by convolving the
step response with the same Gaussian. Since the solution is a residue series,
each term has simple exponential time dependence so the convolution can be
carried out analytically term by term as described in detail in Ref. [39].

Let the Gaussian be,

o(7) = o (7-6)/100 (3.4-9)

Then, setting p, equal to 277 radians and p; equal to —27 radians for a total
phase difference of 47 radians, the expected steady-state beam-steering angle
of a half wavelength spaced array will be 10.48 deg. The steady-state inter-
oscillator phase difference is 0.628 radians, for which the sine functions are
approximated by their argument with about 7-percent accuracy. However, there
are times during the transient at which this difference becomes as large as
0.878 radians near the array ends. At these times, the sine functions are
approximated with only 14-percent accuracy. Thus, the actual inter-oscillator
phase difference will be somewhat larger. The phase behavior for these
parameters and unit amplitude injection as predicted by the continuum model is
shown in Fig. 3-9, and the corresponding far zone beam is shown in Fig. 3-10.

We have shown the utility of the continuum model in analyzing the transient
behavior of linear arrays of mutually injection locked oscillators with external
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injection. Beam-steering of linear phased arrays of radiating elements can be
achieved by externally injecting the end oscillators of the array and varying the
relative phase if the injection signals as suggested by Stephan [1]. In order to
achieve significant beam-steering angles via this approach, it is necessary to
apply the phase shift to the injection signals gradually so as to avoid excessive
inter-oscillator phase differences resulting in loss of lock. Here, as in the
detuning approach, the steering angle range may be extended via frequency
multiplication.
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Fig. 3-9. Phase dynamics for gradually changing
injection phase.
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the oscillators of Fig. 3-9.

3.5 Conclusion

In this chapter, the continuum model was shown to provide considerable

physical insight into the general behavior of one-dimensional coupled oscillator

arrays. It highlights the fact that the phase behavior is governed by the diffusion

equation, and as a consequence, the transient response time is proportional to
the square of the array length. In the next chapter we extend the continuum
model to planar arrays. This broadens the nearest neighbor coupling concept to
a wider range of topologies. That is, in the planar case we can envision not only

the Cartesian scheme discussed in Chapter 2, in which each oscillator is

coupled to its four nearest neighbours, but also hexagonal and triangular
schemes in which each oscillator is coupled to three or six nearest neighbours,
respectively. By means of the continuum model, we will see that these coupling
topologies produce similar phase behavior but result in differing response times

for the arrays.



Chapter 4
The Continuum Model for Planar Arrays

As described in Section 2.6, coupled oscillator arrays can be constructed in a
planar geometry in which each oscillator is coupled to more than the two
nearest neighbors of the linear array case. In that section a Cartesian coupling
topology is described in which each oscillator is coupled to four nearest
neighbors, and the array boundary is rectangular. In such an arrangement, the
phase distributions suitable for beam-steering are obtainable either by detuning
the edge oscillators [42] or by injecting them with external signals with
adjustable phase [43]. Both of these approaches are treatable via the continuum
model. Further generalizing the planar arrangement, one may use alternative
coupling topologies such as the triangular lattice in which each oscillator is
coupled to six nearest neighbors and the array boundary is triangular or the
hexagonal lattice in which each oscillator is coupled to three nearest neighbors
and the array boundary is again triangular [44] [45]. As will be shown in this
chapter, these coupling topologies are also treatable using the continuum
model.

4.1 Cartesian Coupling in the Continuum Model without
External Injection

We begin with Eq. (2.6-3) for a 2M + 1 by 2N + 1 rectangular array with zero
coupling phase replacing the discrete indices i and j with the continuous
variables x and y, respectively; and we expand the phase function in a two-
dimensional Taylor series retaining terms to second order. By this process, we
obtain the two-dimensional analog of Eq. (3.1-3); that is,

101
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d @y(X, 9, 7) = W,r | 0% 0*
do _| ©%ot%y A PR N 4 (4.1-1)
dr Awlock ox 8)/
or
o’ ¢ do
S 2L 2P A, (4.1-2)

o g dr

subject to Neumann boundary conditions at the array edges. (These boundary
conditions may be ascertained via the fictitious additional oscillator artifice
described in Section 3.1.) Averaging Eq. (4.1-2) over the two dimensional array
and using the boundary conditions as in Egs. (3.1-9) to (3.1-13), it can be
shown that the ensemble frequency of the array is the average of the tuning
(free running) frequencies of the oscillators.

Laplace transformation of Eq. (4.1-2) with respect to the scaled time, -, results
in,

P20 sp=-AD 4.1-3)

where the tilde denotes the transformed function. As in the one-dimensional
case, this equation can be solved by postulating a solution as a sum of
eigenfunctions of the two-dimensional differential operator, the Laplacian
operator, and solving for the coefficients of this expansion. As indicated in
[42], the eigenfunctions are,

Jeenn = N 1 cosh(\/ax)cosh(\/gy)

ee,mn
fookt = ! - sinh (s, x)sinh ({5, )
00,kl

(4.1-4)

Jeomt = N;fcosh(\/gx) sinh(\/gy)
ee,m
sinh( skx)cosh(\/gy)

foe,kn =
00,kn

where the eigenvalues are,
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_[Crea ? (Y
N Y " 2a+1

) (4.1-5)
(20+1)7 onz \
+1 2a+1
and the normalization constants are,
Noeym =%\/(2a+1)(2b+1)77m;7n
N oo it zl\/(2a+l)(2b+1)
? (4.1-6)
Nee :E\/(2a+1)(2b+1)77m
Nt =%\/(2a+1)(2b+1)77n
where,
_25 m=0 4.1-7
I 1; m=0 @-1-7)

The general solution procedure follows that used in the case of the linear array.
That is, we postulate a two dimensional delta function source to obtain the
Green’s function as an expansion in the two dimensional eigenfunctions. Then,
we integrate the product of this Green’s function and the actual source function
over the array to obtain the phase distribution as an expansion in the
eigenfunctions. This solution is presented in Ref. [42].

The Green’s function, g(x,y,x’,y’,s), is a solution of,
—+8y——s¢:—5(x—x')5(y—y') (4.1-8)

The solution of this equation expressed as a sum of eigenfunctions is,
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~ o - f;@ mn ('x” y')fee mn ('x’ y)
g=2 2= :

1=0 m=0 Sm +S}’l —S
N i i Joo st (X' V) oo et (%, )
1=0 k=0 Sk +SE—S

(4.1-9)

+ i i Jeomt XY feomt (X: )

=0 m=0 Sm+S/f_S

i i i foe,kn (x” y,)fee,mn (x, y)
n=0 k=0 Sg+Sy =S

This Green’s function can then be multiplied by the detuning function,
AQ
is easily obtained as the sum of the residues at the poles as in the one
dimensional case. Recall that the detuning of the oscillators required to produce
a desired phase distribution across the array can be determined by merely
substituting the desired phase distribution into Eq. (4.1-2). From the theory of
uniformly spaced phased array antennas, the steady-state phase distribution

ame (X5 ¥',8), and integrated over the array. The inverse Laplace transform

necessary to produce a beam steered to spherical coordinate angles, 190,% ,

with the polar axis normal to the plane of the array, is

Q Q

—x(‘x+a‘ —‘x—a‘)+—y
2 2

Pss (x,) = (jy+8~|y-0]) @1-10

where,
h .
Q = —27zzsm 6y cos @,
4.1-11)

h . .
Q, = —27zzsm 6, sin ¢,

and % is the element spacing while A is the wavelength. Substituting into
Eq. (4.1-2) with the time derivative set to zero to obtain the steady-state result,
we find that,

AQ, . =—Q, [5(x+a)—5(x—a)}—Qy [5(y+b)—5(y—b)] (4.1-12)

Thus, we discover that beam-steering requires detuning of only the edge
oscillators and that the needed detuning is constant along each edge. This leads
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us to seek dynamic solutions of Eq. (4.1-2) that result from a temporal step
detuning of the edge oscillators that is constant along each edge. That is, we
limit ourselves to detuning functions of the general form,

AQ Q6 (x+a)u(r)+Q 6 (x—a)u(r)
+Qy15(y +b)u(r) + Qy25(y —b)u(r)

tune —

(4.1-13)

For step temporal dependence, the Laplace transform of the detuning is,

AQ :QXIé(x+a)+ﬁ§(x—a)
s

tune
S

(4.1-14)

0 0

+ -5 (y+b)+—225(y-b)
S S

The presence of the delta functions facilitates integration of the product of the
Green’s function and the tuning function leading to the solution.

Qxl +Qx2 +Qy1+Q,V2] ( )

(p(x’y’r):[ 2a+1 2b+1

_1\? pr 2
+ ! i(QXﬁ( ! sz)cos(zaﬂ(ﬁa)j 1—e(2i):1j ’ u(7)
2a+1

2
p=1 pr
(261 +1j

((—l)p Q,+Q, ) cos ( 2p

" (x-a)]

Eoik
l—e 2a+l1 M(T)

1 < a+
2a+12_:l 7V
p= [p ) (4.1-15)
2a+1
. (Qy1+(—1)pr2)cos( Pz (x+b)j (em Y.
1 2b+1 2b+1
+2b IZ > l-e u(7)
o pr
2b+1
o ((—l)prl"'QyZ)Cos( o (x—b)j (Y
+ ! z 2b+1 l—e \2041 ’ u(r)
2b+1

b
Il

2
1 pr
[2b+1)
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which is the solution for the special case of constant detuning along each edge
of the array. In steady state, this reduces to Fourier series that can be summed
in closed form resulting in,

Qxl +Qx2 + le +Qy2j

(p(x’y’r):[ 2a+1 2b+1

2 2
. Qle;sz {2a+l+a +x _(x+a+x_a)}

6 2a+1

2
(Q,+Q,,
2

]
__M}[(Ha_x_a)] (4.1-16)

{2b+1 b2+ )2

]

'yl

e (TR

which clearly shows that symmetric detuning gives rise to parabolic steady-
state phase distributions whereas antisymmetric detuning results in linear
steady-state phase distributions. In the antisymmetric case where

Q,=Q,=-L and Q,=-0Q,=-0, Eq (41-16) reduces to
Eq. (4.1-10).

The phase distribution as function of time for beam-steering to 10 deg of polar
angle at —110 deg of azimuth as given by Eq. (4.1-15) is shown in Fig. 4-1.
Note that during the transient, the phase distribution is not planar, but in steady
state at infinite time it becomes planar. Figure 4-2 shows the beam peak and
3-dB contour of the far-zone radiated field of a half-wavelength spaced array of
isotropic radiating elements excited by this two-dimensional oscillator array
during the transient period at intervals of 10 inverse locking ranges. Because
the phase during the transient is not planar, the directivity of the antenna is
decreased. Assuming no losses, the gain is equal to this directivity. The gain is
plotted as a function of time in Fig. 4-3 and compared with the ideal gain were
the phase planar. The gain reduction observed in steady state relative to the
initial gain is characteristic of phased-array antennas and is commonly referred
to as “projected aperture loss” due to scanning. This term derives from the fact
that for large arrays this loss is quite accurately approximated by the cosine of
the beam-steering angle from normal as if the effective aperture of the array is
reduced by projection in the direction of the beam peak.
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Finally, Fig. 4-4 shows the behavior of the far-zone beam as a sequence of step
beam-steering detunings is applied.

6 = 10 degrees
soo r P =-110 degrees T=1 600 t=10

Fig. 4-1. Aperture phase distributions versus time in a two-dimensional array
(edge oscillators detuned for beam-steering). (Reprinted from [42] with
permission, ©2001 IEEE.)
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Fig. 4-2. Beam trajectory detuning during the

beam-steering transient. (Reprinted from [42]
with permission, ©2001 IEEE.)
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with permission, ©2001 IEEE.)

4.2 Cartesian Coupling in the Continuum Model with
External Injection
If beam-steering of a planar array is to be accomplished through external

injection as proposed by Stephan [1], the continuum model is based on the two
dimensional generalization of equation Eq. (3.2-3); that is,

dp p dg
e ORIV
ox° oy dr (4.2-1)
—AQ,une(x,y,T)—V(x,y)(oi,y-(x,y,r)
Now, because none of the oscillators are to be detuned,
AQ = 0. Following Stephan [1], the perimeter oscillators are to be

injection locked to external signals that are phase shifted with respect to one
another to steer the beam. Thus, we choose the form,

V(x,y)=CP(x)+CQ(y) (4.2-2)

tune
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where
Aa)mj
C=—— (4.2-3)
Aa)lock
and
CP(x)=C0(x—x])+C,0(x—x5)
(4.2-4)

CO()=Cyo(y—y)+C)28(y—3)
so that Eq. (4.2-1) becomes,

Op g dg

22,29 _cp)p-Comp-L =

ox” oy dr (4.2-5)

- CP(X)(Dinj,x (X, s T) - CQ(y)goinj,y (x, Vs T)

where for notational convenience, we have separated the injection phases
associated with the P(x) and Q(x) distributions of injection signals into the two
functions, @ xand @jy; ,, . Laplace transformation gives,

0’p  0°¢ . L

T2+ %9 cP(ng-CO()G-s5 =

ox oy

- CP(X)éinj,x(x’ y,S) - CQ(y)gbm],y ()C, y’s)

(4.2-6)

Following [43], we now determine the eigenfunctions of the differential
operator,

o* &

subject to the Neumann boundary conditions at the array edges. Let the
eigenfunctions be products of an x dependence and a y dependence; that is,

X(x,sx)Y (y, Sy) so that by separation of variables we have,
X"-CPX -5, X=0

4.2-

Y'-CQY —5,Y =0 (4.2-8)

where the double primes indicate the second spatial derivative. Using
Eq. (4.2-4), we obtain,
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X"=Q0(x—x)X -Q,0(x—x5)X -5, X=0

" ' , 4.2-9
Y'=Q 8= Q8- i)Y =5,y =0 ¢

First, consider the x dependent part. As in [43] the x region is divided into three
parts, and a solution is postulated in each of these ranges of x. That is,

X =4 cosh{@(a+%+xﬂcosh{\/§(a+%—xl’ﬂ
+ 4, cosh[\/g(a +%+xﬂ cosh[\/g(a +%—x§ ﬂ (4.2-10)

1
for —a—ESxSx{

sl ol ]
+A2COSh{\/g(a+%+xﬂ005h{\/§(a+%—x§ﬂ (4.2-11)

for x5 <x<x

X =4 cosh{\/g(mr%—xﬂcosh{\/g(a +%+x{ﬂ
+ A, cosh {\/g(a +%—xﬂ cosh {\/g(a +%+x§ ﬂ (4.2-12)

1

Jor x)<x<a+—

2
This postulated solution satisfies the Neumann conditions at the array edges.
The constants, 4, and A4, and the eigenvalues S,, are determined by

/ /
imposing the slope discontinuities across the injection points, X; and X, . That

s,
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X'|x{— = CxlX(xll)

X

; (4.2-13)
X '
X | . = szX(xz)

—

X

These conditions lead to two homogeneous linear equations for A| and A2
which may be written in the form,

My, My || 4| |0
- (4.2-14)
My My, || 4, 0
in which,

My = s, sinh| fs, 2a+1)]
+Cyy cosh{\/g[a+%+xl’ﬂcosh{\/§(a+%—x{

} (4.2-15)

M12:Cx1cosh{\/§(a+%+x{] cosh @(a%-xgj (4.2-16)

M21:Cx2cosh{\/§(a+%+x{j cosh \/g(a+%—x'2j (4.2-17)

My, = s, sinh[ s, (2a+1)]
+Cyy cosh[\/g(a +%+x’2ﬂcosh{\/§(a +%—xéﬂ

Setting the determinant of the two-by-two matrix in Eq. (4.2-14) equal to zero
to permit a nontrivial solution for the 4’s provides a transcendental equation for
the eigenvalues, s,. The eigenvalues all lie on the negative real axis of the s
plane and can thus be easily computed numerically by any one-dimensional
root finding method, such as the Newton-Raphson method. [46] For each value
of s, for which the determinant is zero, s,,, we have either that,

A1:M12
Ay =—M»,

(4.2-18)

(4.2-19)

or that,
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Al :_Mll

(4.2-20)
A2 = M21

These two possible solutions are, in fact, the same to within a multiplicative
constant but this constant has no effect once the eigenfunctions are normalized.
Thus, either Eq. (4.2-19) or (4.2-20) may be used and the ultimate result will be
the same. Normalization of the eigenfunctions is, of course, accomplished by
integrating their square over the range of x; that is, from —(2a + 1)/2 to
(2a + 1)/2. This integration can be carried out giving a rather complicated but
nevertheless closed-form result for the eigenfunction, X(x,s,,).

Proceeding in the same manner one may obtain a corresponding closed form
expression for Y(y,s,) and the Green’s function, g , that satisfies,

—S+——[C8(x—x))+Cr8(x—x3)] g

_|:Cy15(y_y{) + Cy25(y—y'2):|g (4.2-21)
- 1 , ,
—S5g&= —55()6—)6 )o(y—y")

may then be expressed in the form,

5= i i X, 8,)Y (75, X (%,5,)Y (7,5,
n=0m=0 S(S_Sm +Sn)

Now the solution to Eq. (4.2-6) is,

(4.2-22)

B b+% a+§ -
Q(X,y,S):—I 1J. 1g(x7y7x9yas)
—b— a5 (4.2-23)

[P (3. 5) + Q0 )y, (3 5)

where P and Q are given by Eq. (4.2-4). The presence of the Dirac delta
functions in Eq. (4.2-4) facilitates the integration. Let,

- 1
Bin (%, 3,8) = (4.2-24)
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so that the injection phase time dependence is a step function. The inverse
Laplace transform is then computable as a sum of the residues, R,,(x,y), at the
poles in Eq. (4.2-22) where s = s,, + s,. Thus, the solution takes the form,

P(x,y,7)=D. > R, (x, y)[l—e(s'"“")r}u(r) (4.2-25)
n=0m=0

Note that while there is a pole at s = 0, its residue is zero so Eq. (4.2-22) does
not have a double pole at s = 0 and the inverse Laplace transform does not have
a term linear in time. Therefore, there is no frequency shift as there was in the
case of perimeter detuning. Because there is no detuning, the ensemble
frequency of the array does not change. The injection frequencies are all equal
to this ensemble frequency so all oscillation remains at this same frequency.
Were the injection frequency different from the ensemble frequency, the
steady-state oscillation frequency would be equal to the injection frequency and
a term linear in time would appear in the solution.

The desired steady-state solution (for infinite time) is a planar phase
distribution. We can determine the injection phases needed to produce that
steady state directly from Eq. (4.2-5). Let us use uniform-strength injection
signals so that,

Cx :Cxl :CyZ :Cyl = Sinj (4.2-26)

At infinite time, Eq. (4.2-5) becomes,

Do, o
7SS 4 7 7SS [Cxlé‘(x—xl') + szé(x—xé)] Dinj — Pss
PR RRRP (=) (4.2-27)

[ CuS( = +C28(=3%) |(2 — 23 )

The right side of this equation is zero except on the extended perimeter of a
rectangle defined by,

(=) (x—=25) (y—21) (y—2%) =0 (4.2-28)

Thus, the left side must also be zero except on these four lines. The solution we
seek is linear in x and y, and will have slope discontinuities on the rectangle
defined by Eq. (4.2-28). The slope of the phase surface will be set by the
desired beam direction as in Eq. (4.1-11). Thus,
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Q

—X|)+ y(‘y—y{ —yh|) (4229

Py (X, y)_ (‘x xl

Substituting Eq. (4.2-29) into Eq. (4.2-27) , we obtain,
¢m] x(x y)[ x15(x xl)+ 25()6 XZ)]

+ 0, (6] Cud(r= ) +C08(r—15) | =

Q Q
_Qx_Cx17x|xé_x{|+C (|y y1|_|y y2|):|5(x x1)+

Q +C,»

Sly=sAl=ly-ss)) (=) + (4230)

Q ! ! Q
—Qy—cy17y|J/2—J’1|+Cy1 5 (|x xi| =[x x5

Q,+Cp—¥h = M|+ (), (|x xi| = —xj| 5()’ )

}
)}&y )+
}

so that the required injection phases may be written,
winj,x( ay) ——|:(|X X1| _|)C )C2|)

2 (x—x'z)_l_ 2 (x—xl’)

Cu |x1 x2| x2|

+

} (4.2-31)

~33))

2 (y=n) 2 (v=)
Cy =2 Cpp M-

0
Doy, (%, ) =7y[(\y—y{
(4.2-32)

+

For these injection phases, at late times, Eq. (4.2-25) is very slowly converging.
However, we may remedy this as follows. If the Fourier series for the steady-
state solution Eq. (4.2-29) is subtracted from the solution Eq. (4.2-25), the
resulting series converges rapidly for late times. Then to obtain the complete
late time solution one merely adds the steady-state solution Eq. (4.2-29) to this
rapidly converging series. This solution conveniently complements the form
given by Eq. (4.2-25) that converges rapidly for early times. (Convergence
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acceleration of this sort may also be applied in steering via detuning and in the
one-dimensional cases treated in Chapter 3 if desired.)

If C,-,,j is large (strong injection), the last two terms in each of Egs. (4.2-31)

and (4.2-32) are negligible, and the injection phase equals the desired steady-
state phase at the injection points as in the one-dimensional case. This strong
injection assumption was implicit in the analyses presented in Refs. [39] and
[43] because the small terms were neglected in accelerating the series, but this
fact was not explicitly noted.

As an example, the solution given by Eq. (4.2-25) was computed for a 21-by-21
element array with injection signals of strength parameter C equal to 0.7 on the
perimeter phased to steer the beam 10 deg from normal at —110 deg of azimuth.
This requires that we apply the phase shift gradually as discussed in
Section 3.4. We choose to do this linearly over an interval of 50 inverse locking
ranges, after which the injection phases become constant. The solution for
linear-injection phase can be obtained from that for constant-injection phase by
integration with respect to time or division by s in the Laplace domain. The
phase distributions across the array at four instants of time are shown in
Fig. 4-5. Figure. 4-6 shows the corresponding trajectory of the beam peak and
3-dB contour during the beam-steering transient at intervals of 10 inverse
locking ranges. Here again, as shown in Fig. 4-7, because of the phase
aberration (deviation from planarity) across the aperture during the transient,
the directivity of the antenna decreases, but this loss is recovered in steady state
when the phase distribution again becomes planar. The so-called “projected
aperture loss” discussed in Section 4.1 is also clearly visible. Finally, Fig. 4-8
shows the result of applying a sequence of injection phases resulting in
sequential beam-steering to several angles.

4.3 Non-Cartesian Coupling Topologies

The planar arrays presented so far have made use of a Cartesian coupling
topology in which oscillators on a Cartesian lattice were coupled to four nearest
neighbors. However, this is by no means the only coupling topology leading to
planar arrays that admit beam-steering. In this section we treat, via the
continuum formulation, two other possible topologies, triangular (Fig. 4-9) and
hexagonal (Fig. 4-10).

In the triangular case, shown in Fig. 4-9, the unit cells are hexagons and each
interior oscillator is coupled to six nearest neighbors. [44] The oscillators are
identified with pairs of integer values of the coordinates p and ¢ ranging from
1 toN.
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Fig. 4-5. Aperture phase distributions versus time (edge oscillators injection locked
for beam-steering). (Reprinted from [43] with permission, ©2001 IEEE.)
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Fig. 4-8. Sequential bream-steering (1 varies from 0 to 400 in
increments of 10). (Reprinted from [43] with permission, ©2001
IEEE.)

Using these coordinates, the discrete model yields the system of differential
equations,

op
afq = Oppe, pqg a)ref
_Aa)lock I:Sil’l((ppq - (op—l,q) + Sin(¢pq - ¢p+1,q) (4_3_1)

+ Sin(¢pq - ¢p+1,q—l) + Sin(¢Pq N ¢P,q_1)

IRy = Pp 1) +SINDpy =Pyt gi1) |
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Fig. 4-9. Oscillators coupled on an equilateral triangular lattice. (Reprinted with
permission from [44], ©2004 IEEE.)
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Fig. 4-10. Oscillators coupled on a hexagonal lattice. (Reprinted with permission
from [44], ©2004 IEEE.)
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where we have assumed that the coupling phases are multiples of 27T. We
remark that this system of nonlinear equations can be solved numerically to
yield the full nonlinear solution for the dynamic behavior of the phase
distribution. However, as mentioned earlier, the analytic solution of the
linearized formulation provides more insight. Linearizing and expanding in
Taylor series to second order leads to,

02 02 0? 0
2(619? ’ 5}7(;2 " 6q(20j_ 8_(: = A8 (P-4) (43-2)

where, as before, T=Aqpyt and Ay =(Dyue —Grr) Ay

Transforming to Cartesian coordinates, x and y, we arrive at,

62¢ 62¢ op 1
(axz + ayz - or, . :_ﬁAQtune (4.3-3)

and Ty; = (3/2)T. This equation is very much like Eq. (4.1-2) for the Cartesian
case except for the scaling of the time and the detuning.

In the hexagonal case, shown in Fig. 4-10, the unit cells ar triangular and each
interior oscillator is coupled to three nearest neighbors [44]. Following a
procedure analogous to that presented above for the triangular case leads to,

2 2
(2 £el f}— 20— 3A (43-4)
X Y hex

and Tpee = T/4. Again, this equation is very much like Eq. (4.1-2) for the
Cartesian case except for the scaling of the time and the detuning.

Finite arrays using the triangular and hexagonal coupling schemes may be
constructed with equilateral triangular boundaries, and the boundary conditions
on the phase will again be of the Neumann type. Just as was the case for
rectangular arrays, if the oscillators on the triangular boundary are detuned, the
steady-state interior phases are governed by Laplace’s equation, and planar
distributions are an obtainable special case. The desired steady-state solution to
produce a beam steered to spherical coordinate angles, (6, ¢, ), is,

(x 00)——@ 3= |sin @, cos gy + ysin 6, sin (4.3-5)
PLx Y, y) \/g 0 2\ s 0 Do -
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where d is the separation of the radiating elements in the y coordinate for fixed
x, and A is the wavelength. Substituting this desired steady-state phase
distribution, Eq. (4.3-5), into the partial differential equations, Egs. (4.3-3) and
(4.3-4), gives the required detuning of the perimeter oscillators.

2rd . 217
AQtune|x:y\/§ =- ) SIHHO COS((DO —Tj
2rwd . 2
AQypel, 5 =="—sinby COS(% +Tj (4.3-6)

2rd .
AQ‘””e|x:A«/§/2 - _JSIH 6y cos(gpo)

where A4 is the length of a side of the array, Nd, and « is 1/\/5 for the

triangular coupling and J3 for hexagonal coupling. Note that the sum of these
detunings is zero for all steering angles so that the ensemble frequency of the
array is unchanged.

At this point we note for later reference that it is possible to obtain the needed
tuning for a given planar steady-state phase distribution from the full nonlinear
formulation Eq. (4.3-1). Inserting the desired phase Eq. (4.3-5) into Eq. (4.3-1)
and evaluating on the boundary of the triangle we obtain,

+Lsin_2”d sin @, cos| @ +£
\/5 | ad 0 079 |
1 . _27Z'd . Ve 1
AQtune|x:_y\/§ =$Sln HSID 90 COS| ¢y —g
- - (4.3-7)
2zd V4

1 . )
+—=sIn sin g, cos| @y ——

N7} 2 )]

1 . |27d . 5x
APund - = " {J % (‘” ?ﬂ

+Lsin 2ﬂdsin@ cos[ +5—7rj
\/g al 0 20 6
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which reduces to Eq. (4.3-6) for small 6;. that is, for small inter-oscillator
phase differences when the linearization is accurate. Note that the sum of these
detunings is exactly zero regardless of steering angle.

We propose that the solutions of the partial differential equations, Eq. (4.3-3)
and Eq. (4.3-4), be obtained as series of the eigenfunctions of the differential
operators subject to Neumann boundary conditions on the triangular boundary
of the arrays. These eigenfunctions have been studied in the context of
waveguides of triangular cross section and are thus well known. They are
expressed as sums of three products of two of the trigonometric functions, sine
and cosine. These eigenfunctions and their useful properties are summarized in
the appendix of Ref. [44].

We wish to solve,

%9 g 0
[—axz +—ay2 _ﬁ = —aAane (43-8)

with the detuning function given by Eq. (4.3-6), and we will assume that the

detuning is a step function in time. Laplace transformation of Eq. (4.3-8) gives,
AN - a
_f'i__(z” —S¢ = _aAQtune = __AQtune(xa ») (4.3-9)
Ox oy s

The solution will be of the form,

P(x,9,7) =Y. CpHi) (x, ;V)(l —e Im! )M(T ) (4.3-10)

where the H functions are the normalized eigenfunctions on the triangle with
the superscript denoting even or odd symmetry of the function in y. Thus, the
unknown coefficients may be found from the desired steady-state phase
distribution, Eq. (4.3-5), by setting 7 to infinity in Eq. (4.3-10) and setting the
resulting sum equal to the steady-state solution. Then, the orthogonality of the
eigenfunctions permits us to find the coefficients, C,,,. This procedure is
completely equivalent to expressing the Green’s function as a sum of the
eigenfunctions and then integrating the product of the Green’s function and the
desired steady-state phase distribution as was done in the Cartesian case.

As was done in Ref. [44], we now provide a number of computed examples
demonstrating the dynamic behavior obtained via the various formulations of
the problem; that is, the nonlinear model, the linearized discrete model, and the
continuum model for both the triangular and hexagonal coupling topologies.
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We begin with triangular coupling with N = 28 resulting in a 435-oscillator
array. We completely preclude the appearance of grating lobes in the visible

region by selecting the radiating element spacing, d, to be A/ J3. We note,
however, that, because the maximum permissible phase difference between

coupled oscillators is 90 deg, the element spacing can be as large as /1\/3/ 2
without the appearance of visible grating lobes. The array size, A, in the
continuum model is taken to be 4,/(N+I)(N+2) instead of Nd because that makes

the array area equal to the sum of the unit cell areas, resulting in a more
accurate directivity. Figure 4-11 shows the aperture phase distribution for four
instants of time computed using the continuum model with perimeter detuning
given by Eq. (4.3-6) and unit step temporal dependence and steady-state beam-

pointing angles 6,, @) = 10 deg, 45 deg). Note the rather severe phase
aberration at time equal to 10 inverse locking ranges. Figure 4-12 shows the
directivity (gain in the absence of loss) computed by pattern integration as a
function of time during the beam-steering transient. The solid curve is the result
of planar phase distribution, and “projected aperture loss” is again evident. In
the left plot, the continuum result is compared with the full nonlinear solution
obtained numerically, and in the right plot the numerical solution of the
linearized discrete model is compared with the nonlinear solution. Note that the
dip in gain at about 10 inverse locking ranges correlates with the severe
aberration at that time in Fig. 4-11. The nonlinear solution used Eq. (4.3-7)
while the linear ones used Eq. (4.3-6) as detuning. Because the angle from
normal is only 10 deg, the error in the linear approximation of the sine
functions is less than 6.5 percent, and the linearized and continuum results
agree well with the full nonlinear result taken to be the correct behavior.
Figure 4-13 shows the trajectory of the beam peak and 3-dB contour during the
beam-steering transient as computed via the three formulations, and, as should
be expected for this small steering angle, they agree very well.

Now, if the final beam angle is increased from 10 deg to 25 deg, the error in the
linear approximation of the sine function is almost 49 percent, and the
discrepancy between the linear and nonlinear results in Fig. 4-14 show the
impact of this in that the gain error at the dip is about 2 dB, and the curves are
slightly different in shape. However, there is still qualitative agreement between
the linear and nonlinear results.
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Fig. 4-11.

(Reprinted with permission from [44], ©2004 IEEE.)
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Figure 4-15 shows the trajectory of the beam peak and the 3-dB contour during
the beam-steering transient as computed using the three formulations and the
agreement among them is good even though the accuracy of the linearization is

questionable.
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Fig. 4-15. Beam dynamics for triangular coupling with (00,(00) = (25 deg, 45 deg).

(T varies from 0 to 600 in increments of 50.) (Reprinted with permission from [44],
©2004 IEEE.)

Consider now a hexagonally coupled array in which we again choose d to be
2/3 _If we choose N to be 28, this hexagonally coupled array will have

784 oscillators. This makes the distance between the corner elements a bit less
than in the triangular case for N = 28. Choosing the array size, 4, to be Nd
here makes the array area equal to the sum of the unit cell areas as was done for
the triangular coupling example. Assuming that the radiating elements are
arranged as in Fig. 4-10, the separation between periodic lines of elements will
be A/2, and there will be no grating lobes in the visible region. Here again,

however, the spacing d can be as large as 2 \/3_ / 2 and still not produce

grating lobes because the phase differences must be less than 90 deg to
maintain lock.

Figure 4-16 shows the aperture phase distribution at a sequence of times for

steady-state beam-steering angles of (6o,0,) = (20 deg, 45 deg). The behavior is
very similar to that observed with triangular coupling except for the time scale
of the response, which is considerably slower for the hexagonal coupling. Of
course, one must remember that this array has many more oscillators than the
triangular one. The temporal behavior of the gain of this array is shown in
Fig. 4-17 as computed using the full nonlinear model, the linearized model, and
the continuum model. Because for this steady-state beam-steering angle, the
error in the linear approximation to the sine function is only about 9 percent,
these results agree quite well. The dip in the gain at about 60 inverse locking
ranges is consistent with the significant phase aberration seen at that time in
Fig. 4-16. Finally the trajectories of the beam peak and 3-dB contour as
computed using the three formulations are shown in Fig. 4-18 for a steady-state
beam position 20 deg from normal to the array. If this angle is increased to
30 deg, the approximation error increases to about 20 percent, and Fig. 4-19
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shows the impact of this in terms of the discrepancies between the full
nonlinear result taken to be correct and those of the two linearized theories.
Finally Fig. 4-20 shows the corresponding beam trajectories.

As pointed out in [44], it might seem appropriate to correct the detuning needed
for a given set of steady-state beam-steering angles as was done for triangular
coupling in the manner of (4.3-7) but this is not very effective for reasons that
will become clear as we discuss the true steady-state phase distribution for a
hexagonally coupled array. [45] For one thing, there is a tendency to choose
detunings that do not sum to zero thus producing quadratic phase distributions
instead of planar ones. One may artificially impose a zero sum but the proper
choice of detuning still lacks a firm theoretical basis.

PHASE [DEG]

PHASE [DEG]

-13.5 2338 X
STEADY STATE

PHASE [DEG]
PHASE [DEG]

135 2338

Fig. 4-16. Aperture phase for hexagonal coupling with (00,(po) = (20 deg, 45 deg).
(Reprinted with permission from [44], ©2004 IEEE.)
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To obtain the results shown in Figs. 4-19 and 4-20, a correction factor was
applied to the three detunings of Eq. (4.3-6). The factor was derived at an
azimuth angle of 30 deg because, as will be seen, it is only at 30 deg plus
integral multiples of 60 deg that planar phase distributions are rigorous steady-
state solutions for the phase distribution. For reference, this correction factor as

given in Ref. [44] is,
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s1n{
Correction Factor =

Chapter 4

2rd . (ﬁﬂ
sin 6, cos| —
A 6

(4.3-11)
2rd . (7[)
sin @, cos| —
A 6

and this factor is multiplied by each of the edge detunings in Eq. (4.3-6), thus

preserving th
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Fig. 4-19. Gain dynamics for hexagonal coupling with (00,(po) = (30 deg, 45 deg)
(Reprinted with permission from [44], ©2004 IEEE.)
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Now let us revisit in more detail the matter of the steady-state phase
distribution in a hexagonally coupled array. We begin by formulating the full
nonlinear set of differential equations for such an array. Following Pogorzelski
[45], we write for each oscillator,

Op
?xy = Ohypexy — a)ref _Aa%ck

(4.3-12)
X Sin((pxy_wx—é‘,y)—i_Sin((pxy_wx%’y_’@é‘)-’_sm(w)g/_q)x%’yi;é)

in which the coupling phase is assumed to be a multiple of 2z and 6=1/ \/5, the

spacing between coupled oscillators. We have particular interest in the steady
state so we set the time derivative equal to zero and get,

Otune,xy ~ Oref _
Aa)lock

Sin(¢xy - ¢x—§,y) + Sin((pxy 4 5 B3 ) + Sil’l((ny —-Q 5 B3 )
x+5, y+75 x+§, y—75

(4.3-13)

Recall that the desired phase distribution is given by Eq. (4.3-5). Substituting
Eq. (4.3-5) into Eq. (4.3-13), we obtain for the non-perimeter oscillators,

sin [Dcos((po)]+sin{Dcos((p0 +2?7[ﬂ+sin {Dcos(goo —%”ﬂ =0

(4.3-14)

where D = @ sin @,. Now Eq. (4.3-14) can be rewritten in the form,

3

sin{gcos((po)}sin Qcos((po +Ej sin Qcos((po—%j =0 (4.3-15)
2 2 3 2 3 '

and it is clear that for small D; that is, small 6, this equation holds

approximately true. Moreover, it holds exactly true for ¢, = %i % for integer
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values of n. However, it does not hold true for arbitrary D and ¢y . Thus, we

conclude that no possible detuning of the perimeter oscillators can result in a

planar aperture distribution for azimuth angles other than ¢, = zanr

6 3

Pogorzelski noted, however, that if one postulates a phase distribution of the
form,

2rd
o(x,y)= —
(4.3-16)

N . . .
x{(x—ﬁJ sin 6, cos ¢, + ysin g, sin (po} tAp,,

in which the ambiguous sign denotes alternation from one oscillator to its
neighbor, an exact solution for the perimeter detuning that will produce it is

possible provided A(Q\yis set to the proper value. Substituting Eq. (4.3-16) into
Eq. (4.3-13) yields for the non-perimeter oscillators,

sin[2A¢xy —Dcos (g, )J+sin{2A(pxy —Dcos((po +2?”H

(4.3-17)
. 2
+sin {2A(pxy - Dcos(goo - ?H =0
and solving for %, we obtain,
Apy =t 22 (4.3-18)
S Den '
where,
. . 27
Num =sin [D cos ((po )] +sin {D cos((po + ?ﬂ
(4.3-19)

+sin {D cos((po —z?ﬂﬂ
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Den = cos[D cos((oo )] +cos [D cos ((00 + Zgﬂ

+cos {D cos ((po - Zgﬂ

Finally substituting Eq. (4.3-16) with Eq. (4.3-18) into Eq. (4.3-13) yields the
perimeter detuning required to produce this non-planar phase distribution. The
result is,

.| 27d . 27
AQ, .. |x:yJ§ =—sin {/1—\/5 sin g, cos ((po —Tj - 2A(pxy}

(4.3-20)

.| 27d . 2
Aane|x:—y\/§ =—sin {/1—\/5 sin 6, cos((po +?j—2A¢xy} (4.3-21)

.| 27xd .
Aune |x=(3N—1)J§ 6= S L—ﬁ sin 6 cos (@) - 2A%}
for the edge elements and

BN-DV3 (N-1))_
6 2 |

AQt une (

2rd 27
—sin| ——=sin &, cos +— [-2A
AQM{GN -3 W _I)J = (4.3-22)

6 2
.| 27xd . 27
—sin| ——=sin @, cos —— [=2A

1

2rd
A0 | —=,0 | =—sin| —=sin g, cos —2Ap,
f (\/g ] {/1\/5 0 ((/)0) (0)}

for the corner elements. Because of Eq. (4.3-17), the sum of these detunings is
always zero so that the ensemble frequency of the array remains constant.
Figure 4-21 shows a typical phase distribution for such an array. Figure 4-21(a)
shows the phase distribution, and Fig. 4-21(b) shows the deviation, +4.67 deg,
from planar.
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One would perhaps expect that such a phase aberration would result in a

decrease in gain. However

as discussed in detail in Ref. [45], this is typically

2
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not the case. The power that would have been radiated by a planar phase
distribution is partially shifted by the phase alternation into the invisible region.
Thus, this part is not radiated, and the power input to the antenna is decreased
by the same amount. As a result, the directivity is unaffected by the phase
alternation! The only circumstance resulting in a decrease in the gain is when
the combination of element spacing and steering angle results in one or more
grating lobes in the visible region. Analytical estimation of this effect is
discussed in Ref. [45].

Finally, we remark that a planar steady-state phase distribution is of course
attainable if one is willing to detune all of the oscillators in the hexagonally
coupled array. This would require that alternate oscillators be detuned in
opposite directions in frequency by an amount that depends on the scan angle.

4.4 Conclusion

In this chapter we have discussed a variety of coupling topologies for planar
arrays, and we have shown that the continuum model can be used to describe
the dynamic behavior of the phase distribution over these arrays. By this means
we have demonstrated that beam-steering can be accomplished by detuning the
perimeter oscillators or in the Cartesian case by injection locking them to
external signals. Beam-steering by external injection in the triangular case was
not treated but appears to be possible, though the analysis may become
somewhat more challenging.

In the next chapter we point out that all of the preceding results are
fundamentally non-causal in that the response begins immediately upon
application of the detuning or phase shift of the external locking signal
regardless of the physical separation of the cause and effect. A modified
formulation is proposed to render the solutions causal.
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Chapter 5
Causality and Coupling Delay

In the analysis presented in the preceding chapters, it was tacitly assumed that
the coupling was implemented using nondispersive transmission lines
characterized by a phase shift of ® generally taken to be an integral multiple of

27 (plus 7T in the case of series resonant oscillators). However, the theory
made no provision for the transit time through the coupling line. As a result, the
solutions were non-causal. That is, each oscillator in the array responded
immediately upon changing the tuning of an oscillator or the phase of an
injection signal no matter what the distance between the excitation and the
response. This is characteristic of the diffusion equation that arises from the
continuum model. Heat conduction analyzed in this manner is similarly non-
causal. Following Pogorzelski [47], we propose to remedy this situation by
explicitly introducing time delay in the coupling. This time delay is determined
by the physical length of the line and its propagation velocity.

5.1 Coupling Delay

A nondispersive transmission line introduces a pure time delay in that the signal
applied at one end of the line is duplicated at the other end after the delay time.
At that point the signal is reflected if the termination is not matched to the line
impedance. For our analysis we will assume a matched termination. Now, if the
analysis is done via Laplace transformation of the applied signal, the transform

of the delayed signal is merely the original transform multiplied by e *? where

d is the delay time and s is the transform variable conjugate to the time variable.

137
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Suppose now that we envision an array of coupled oscillators and take the
reference frequency to be the initial ensemble frequency of the array. We define
the coupling phase delay using this reference frequency. That is,

@, .t
= =y d (5.1-1)

Vp
where £ is the physical length of the line and v, 1s the phase velocity. The line
length is chosen so that the coupling phase is a multiple of 277 (plus 7 in the
case of series resonant oscillators). Now, using the reference frequency, we
define the phase, @, of the phasor signal voltage, V, by

V= A(t)dﬂ(t) (5.1-2)
where,
A1) = @yt + ) (5.1-3)

Recall from Chapter 1 that /' can be written in the form,

7 — /OO A() (5.14)
so that,
Im[In(V)] = @0t = p(2) (5.1-5)

Crucial to our analysis is the fact that any function of the input signal will be
delayed by the nondispersive transmission line in the same manner as the signal
itself so that the Laplace transform of any function of the input signal

multiplied by ¢~*? will be the transform of the same function delayed. Thus,

we may apply this delay factor to the Laplace transform of ¢(¢)given by

Eq. (5.1-5) to obtain the transform of the phase delayed by the coupling line.
This forms the basis of our introduction of coupling delay into the analysis of
coupled oscillator arrays.

The following question regarding this treatment of time delay was posed by a
particularly astute student so we thought it appropriate to answer it here as you
may be similarly puzzled. Slightly paraphrased, the student asked that we
consider a linear array in which one of the oscillators is detuned upward, thus
changing the ensemble frequency of the array. “Is it not then true,” he asked,
“that the coupling phase produced by coupling lines of fixed length would be
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changed and would thus be no longer a multiple of 277 ?” To clarify this point,
recall that, assuming that the reference frequency is held constant, the solution
for the time evolution of the oscillator phases will contain terms linear in time
representing the shift in ensemble frequency (as in Eq. (3.1-51)). The slope of
this linear dependence relates the time delay to an equivalent phase shift
through the transmission line. So, for example, if the phase at the input end of
the line is,

@,)=ct (5.1-6)

then the phase at the output end of the line is,
OO =DP+@, (t—d)=D+a(t—d)=¢@,()+DP-ad  (5.1-7)

an effective coupling phase delay of @—ad . Conversely, due to the linear time
dependence, the new ensemble frequency will be

Wpps = Oper T (5.1-8)
and the effective coupling phase will be,
wensg —

Gy == =g, d=—(@,; +a)d=0-ad (5.9

Vp

So, we conclude that indeed the coupling phase has changed but, that change is
embodied in the linear time dependence of the phases arising from the change
in ensemble frequency and need not be explicitly imposed on the formulation

by a change in the @ parameter.

5.2 The Discrete Model with Coupling Delay

Returning to the linearized discrete model of a linear array of (2N + 1)
oscillators discussed in Section 2.2 we have,

do;
d[l = Wqy; — a)ref + Aa)lock (§0i+1 - 2¢z + @i_l) (52'1)
do_
dtN = OoN = Opep + A0t (P11 =0y ) (5.2-2)
do
N DoN — a)ref + Aa)lock (¢N—1 - ¢N) (5.2-3)

dt
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Laplace transformation with respect to 7= A@ockt results in,

SQ; = Afztune,i + (é’i-a—l =20, + Py ) (5.2-4)
Sgb—N = Afztune +(¢—N+I _gb—N) (5.2-5)
S¢N = Afztune +(_¢N +¢N—1) (5.2-6)

and, introducing the coupling delay factors for delay of d inverse locking
ranges, we have,

Y. e Y

SQ; = Agztune,i +(¢i+le ’ _2%’ + pi€ ’ ) (5.2-7)
~ =~ ~ —sd  ~
SO_N = Ag)tune +(¢—N+le ° _¢)—N) (5.2-8)
~ ~ =~
SPN =D +(—¢N TPn-e ) (5.2-9)
Rearranging yields,

Grone ! = (s+2)@; + Gy =—AQe; (5.2-10)
Gy = (s+DG_y =—AQye_y (5.2-11)
~(s+ D)@y + Py ==Aye n (5.2-12)

These equations may be written compactly in matrix form as,
(ST [M1NP) =40 ] (5.2-13)

in which [M] is given by,
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1 -
_ e—sd 2 _ e—sd
[M]= -2 - (5.2-14)
. _ e—sd
—e 1

We now have two alternative approaches available for solving this system of
linear equations. We can expand the solution as a sum of eigenvectors of the
matrix [/]s — [M], or we can solve the system via Cramer’s rule. Following
Pogorzelski [47], we choose the Cramer’s rule approach. The result is,

(aOUN+n<fl _bUN+n<72)(a0UN7n>fl _bUan;2) ~
b(ag Uy —2a0pUs o +b2U2N—3)

(7)1' = (_l)rg—n< une, j
(5.2-15)

where U is the Chebyshev polynomial of the second kind of argument a/(2b),
ay =S+1, a=s5+2,and b= —e Now, U can be written in the form,

sin{(m+1)cos_1 (;’;ﬂ

U, (;—b) = (5.2-16)
sin [cos_l (aﬂ
2b
and defining Q to be,
—icos!| L —sech™ —& 2
O=—e [2bj —e ! [ aj:_za_b_ (2"_[)] —1 (5.2-17)
U becomes,
U e (@7 ()
" 2b 2\ (5.2-18)
2.0l —1| -1
5

Substituting Eq. (5.2-18) into Eq. (5.2-15) yields,
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) Aﬁtune,j (Qn< +RQ—(2N+1)Q—n<)(Q—n> +RQ—(2N+1)Qn>) 5219
P = 4"
\/az _ap? (1_R2Q72(2N+1))
in which,
+b
R=- Q (5.2-20)

1+bQ

In Eq. (5.2-19), n- is the greater of i and j while n< is the lesser. The form of
Eq. (5.2-19) is suggestive of an image series produced by reflections at the ends
of the array, where Q plays the role of a “propagator.” The series may be
obtained by expanding in powers of the reflection coefficient, R. When R is set
equal to zero, we obtain the solution for an infinite array,

~ AQz‘une J n -n
§; = ——l_ Q" Q7" (5.2-21)
C Ja? - 4p?

or, using Eq. (5.2-17),

~ e -1
(b _ AQtune,j e ‘l J‘SeCh ( s+2 ] (5 2_22)
= .
Js+2)% —de2

Consider now an example of a 17-element array with coupling delay of two
inverse locking ranges (ILRs) and step detuning of the center oscillator by one
locking range. The inverse Laplace transform of Eq. (5.2-19) may be easily

obtained by expanding it in powers of —b = ¢~

series will be of the form,

. Each term of the resulting

C(e™s)P
— i (5.2-23)
s(s+2)?
which has a known inverse transform,
T—pd
I £r"”e_ZT dr' (5.2-24)

|
o P

The solution is plotted in Fig. 5-1. This solution exhibits several easily
understandable features. First, the center oscillator is the only one detuned, and
it is detuned at time zero. Thus, its nearest neighbors on either side do not
change phase until one delay time has elapsed, giving the influence of the
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center oscillator detuning sufficient time to propagate to them. The center
oscillator phase evolution continues exponentially and unperturbed until two
delay times have elapsed. Then the influence of the phase changes of the
neighboring oscillators impact the center oscillator, causing the slope change at
time equal to four inverse locking ranges. This multiple reflection-like behavior
continues to spread throughout the array creating the ripples in the phase visible
in Fig. 5-1. For comparison, the corresponding phase behavior in the absence of
coupling delay is shown in Fig. 5-2 and is noncausal.

The preceding discussion indicates that the array behavior will not begin to
differ from that of the infinite array until eight delay times have elapsed
(16 inverse locking ranges) and that even then the effect will begin with the
outermost oscillators. The center oscillator behavior will not differ from that of
the infinite array until 16 delay times have elapsed (32 inverse locking ranges).
Thus, these plots do not indicate that the array is of finite size. To display finite
array effects, we plot similar curves for a seven element array in Fig. 5-3 and
Fig. 5-4. In this case the end effects begin to appear in the phase behavior of the
end oscillators after three delay times (six inverse locking ranges). This may be

seen by comparing the curves for i =23 in Figs. 5-1 and 5-3.  Note that they

Phase (Radians|  phase Distribution (Discrete Model - Delay = 2 ILRs )
f -

Center Oscillator: i=0————*%

0.8

1=%]

L6

.4}

1=%4
—r’——,/l_/ oy
—_— Time (ILR)

2.5 ] et 10 12.5 IS I7.3 20

Fig. 5-1. Phase dynamics for a 17 element linear array with two inverse locking
range coupling delay. (Reproduced by permission of American Geophysical
Union from [47], ©2008 American Geophysical Union.)
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Phase (Radians) Phase Distribution ( Discrete Model - No Delay )
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. Center Oscillator: i=0———% i==1
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— e TImMe (LR
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Fig. 5-2. Phase dynamics for a 17 element linear array with no coupling delay.
(Reproduced by permission of American Geophysical Union from [47], ©2008
American Geophysical Union.)

differ only for time greater than six inverse locking ranges. However, the
curves in Figs. 5-2 and 5-4 differ for all times because with no coupling delay
the end effects begin immediately and, of course, acausally.

Thus, we have shown that the introduction of coupling delay in the linearized
discrete model of coupled oscillator arrays eliminates the noncausal nature of
the solutions in the absence of coupling delay. We now proceed to apply this
approach in the continuum model.

5.3 The Continuum Model with Coupling Delay

In this section we develop a generalization of the continuum model of
Section 3.1 that accounts for coupling delay. The causality properties of this
generalization will be discussed in terms of the infinite linear array which, of
course behaves identically to a corresponding finite array for times early
enough to preclude end effects. Our approach will be that of Section 3.1 where
we begin with Eq. (3.1-1) with the time delay, d, inserted in the arguments of
the appropriate terms leading to,



Causality and Coupling Delay 145

“ﬂ“f'm“' Phase Distribution ( Discrete Model - Delay - 2 ILRs)
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0.8
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25 3 7.5 10 12.5 15 175 20

Fig. 5-3. Phase dynamics for a 7 element linear array with two inverse locking
range coupling delay. (Reproduced by permission of American Geophysical
Union from [47], ©2008 American Geophysical Union.)
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Fig. 5-4. Phase dynamics for a 7-element linear array with no coupling delay.
(Reproduced by permission of American Geophysical Union from [47], ©2008
American Geophysical Union.)
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dp(x,1) _ _
dt —CU()(X) Wyef (5.3-1

+Awy,y . [(p(x+Ax,t—d)—2¢)(x,t)+(p(x—Ax,t—d)]

Introducing the scaled time, T, and the detuning function, AC,,., as before,
Laplace transformation leads to,

5P, 5) = A

+[§b(x +Ax, ) —20(x, 1)+ A x—Ax, )¢ d} 32
Then, expanding in Taylor series to second order in AX ,
2~
%—[(5%2) e —2} Ax,8)=—AQ (x,5)¢  (533)
the analog of Eq. (3.1-4). Setting,
AQ e (%,5) =§5(x—y) (5.3-4)

corresponding to step detuning of the oscillator at x = y at time zero by one
locking range, we obtain the Green’s function, g, as the differential equation
solution,

e—‘x—y‘ (s+2)e* -2

gi(s,x,y)= (5.3-5)

25\(s+2)e* —2

At this point, a serious difficulty is encountered with respect to causality. If one
were to compute numerically the inverse Laplace transform integral for
Eq. (5.3-5), one would find that the influence of the nearest neighbors of the
detuned oscillator begins at time d. This violates causality because, as pointed
out in Section 5.2, this influence must not begin until time 2d, the round trip
transit time between the detuned oscillator and its neighbors. Following
Pogorzelski [48], we begin our study of this apparent paradox by comparing the
denominator of Eq. (5.3-5) with that of Eq. (5.2-22) known to be causal. That
is, the denominator of Eq. (5.2-22) is,

Js+2)2 4629 = J(s+2)-2e J(s+2)+2e7  (5.3-6)

while the denominator of Eq. (5.3-5) is,
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J(s+2)—2e (5.3-7)

Thus, the two solutions, the causal one Eq. (5.2-22), and the present one,
Eq. (5.3-5), have different branch points in the complex s plane. Solution

Eq. (5.3-5) has branch points where s+ 2 =2¢"

sd whereas the causal solution

Eq. (5.2-22) has these plus additional branch points where s+2=-2¢"% .
Now, computing the inverse Laplace transform via integration on the
Bromwich contour will involve deformation of the contour around the branch
cuts associated with these branch points. Thus, it becomes clear that the
solution Eq. (5.3-5) will be missing the contribution from half of the branch
cuts in the causal solution Eq. (5.2-22). As shown in [48], this is the root of the
causality difficulty.

Why do we find ourselves in this situation? Our approach was successful in the
absence of coupling delay, but something went wrong when delay was
included. This can be understood by looking at the nature of the solutions
corresponding to the two sets of branch cuts shown in Fig. 5-5 where the dots
correspond to Eq. (5.3-7) and the circles to the remaining branch points of the
complete set, Eq. (5.3-6).

We have assumed in deriving the partial differential equation Eq. (5.3-3) that
the solution will be smoothly varying in the interior of the array so that the
inter-oscillator phase differences are small validating the linearization of the
sine functions in Adler’s formalism. Thus, in the interior of the array where the
detuning is zero, the second derivative will be small and

(s+2)e" 2 (5.3-8)

corresponding to the dot branch points in Fig. 5-5. However, we can switch

from the dots to the circles by replacing e with ™ Doing this in Eq.
(5.3-2) we obtain,

5@ (x,s) :AQW

+[—g21(x+Ax,s)e_Sd —2(21(x,t)—¢1(x—Ax,s)} 539
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Fig. 5-5. Branch point locations for
delay of two inverse locking ranges.
(Reproduced by permission of
American Geophysical Union from

[48], ©2008 American Geophysical
Union.)

so it is evident that I, the solution associated with the circle type branch

points, alternates in sign between adjacent oscillators and is thus clearly not

slowly varying. Therefore, we cannot use the Taylor expansion to advantage
here. However, if we define,

P (6,5 =P(x, ™ (5:3-10)
then @2 is slowly varying even though (51 is not and we may write,
o (x,85)=0Q, .

+[@(X+Ax,s)e_s”l—%(x,t)—@(x—Ax,s)] (310



Causality and Coupling Delay 149

and expand in Taylor series to obtain,

(x,s)eSd (5.3-12)

tune

d’@,(x,s . ~

w+[(s+2)em’ +2}(02(x,s) =AQ
dx2

corresponding to the circle type branch points. Thus, it becomes clear that our

assumption of slowly varying phase, implicit in the use of the Taylor series,

eliminated the solutions associated with the circle type branch points. The
Green’s function corresponding to these branch points is,

_e—j‘x—y‘\l(s+2)e“l +2
g2 (erv y) = 4
25jy (s +2)e’" +2

and the causal Green’s function is a linear combination of Eq. (5.3-5) and
Eq. (5.3-13); that is,

SHIFCTY) (5313

o iyl 2+(s+2)e e - 2H(s+2)e
a(s,x,y)=A ¢ —B
257 2—(s+2)e™ 2572 +(s+2)e™

where 4 + B =1 so that the proper detuning function is generated on the right
side of the differential equation. It remains to determine 4 and B.

I (5.3-14)

For large values of s, far from the origin of the s plane, we can obtain a fairly
accurate estimate of the branch point locations. These locations are defined by,

(s+2) =42¢7% (5.3-15)

where the upper sign corresponds to the dots and the lower one to the circles.
Inserting s =0+ jo,

(o+2+jo) =+0¢ /¥ (5.3-16)

For || >> 0 +2,
w~ Do 0d i (@dEn/2) (5.3-17)

Thus,
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a)pdi%=2p7r (5.3-18)
and we have
o~ 2m-1 )" (5.3-19)
for the dots and
o ~| 2mit|Z (5.3-20)
for the circles. Now, from Eq. (5.3-17),
~n,—od
o‘wp‘ ~2e (5.3-21)
so,
1 “"P‘
~——In| — -
Ty { > J (5.3-22)

for p = m or n. Armed with these approximate branch point locations, we are in
a position to estimate 0g(z,y,y)/ 07, the time derivative of the phase of the

detuned oscillator. This will exhibit the temporal discontinuities associated with
the arrival of influence from neighboring oscillators and highlight the causal
behavior. First, from Eq. (5.3-14),

esd esd

sg(s,y,y)=4 -B (5.3-23)
2j\2-(s+2)e  2j2+ (s +2)e

Now, envisioning the inverse transform as a sum of branch cut integrals, we
recognize that the result will be approximately,
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sin[zmﬂ _m}
ogT.y. ), a |, ., Ai d 2], 1
ot aN2d +1 o [ 2d

(5.3-24)

. | 2mrr  mwr
» Sin { p + 72d } 1
+2B E 1+—
/d

m=0 I: nziﬂ :| I 2d

Here we have used the s’s given by Eq. (5.3-19) through Eq. (5.3-22) and,

® —u(r+d) .
a=[——du= (5.3-25)
0 U T+d

The expression on the right side of Eq. (5.3-24) is a Fourier series except for
the time dependence of the coefficients. Recall that this series was obtained
using the large s approximation so only the high-order terms are accurate. The
high-order terms of this series govern the discontinuities in the time

dependence. Now, looking at Eq. (5.3-24) for 7=d,

5 - sin[[Zn—zJﬂ} 1
g(T»J’»J’)z a A+2Az 1

or ﬂ\/2d +1 el [%}2 +g
(5.3-26)
) 1
w smHZm-l—zjﬂ} 1
2B 1+ —
I S 7 S Y

and we see that if 4 = B, the high-order portions of the two series will cancel

term by term so that there will be no discontinuity at T=d. However, at
7 =2d we have,
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(r.y.y) @ oy = sin[ (4n-1)7 L
ot m2d +1 o [ 2d
[( ) ] (5.3-27)
© sin| (4m+1)x 1
+2B [M] 3 d
m=0 d

and the high-order terms no longer cancel but add. Thus, there will be a

discontinuity at 7=2d . This is to be expected because it allows for one round-
trip interval to the nearest neighbors from the time when the oscillator is
detuned. We conclude that the discontinuities will occur at the proper times for
causality to be satisfied only if A = B. From this condition and the fact that
A + B = 1, we determine that both 4 and B are equal to !5, and from
Eq. (5.3-14) the causal Green’s function is,

o il 2(s+2)e e Jaol 2H(s+2)e
g(s,x,y)= e -
4sj\2—(s+2)e 4sj\2+(s+2)e™

As shown in Ref. [48], a better approximation to the exact discrete model
solution may be obtained from the form,

o Jx—)lCy2~(s+2)e" e Jix-{Cy2H(s+2)e
2(s,x,y)=C e —C
4sj\]2—(s+2)e" 45jy2+(s+2)e™

with optimal selection of the constant, C. From Ref. [48], the optimal value of
Cis,

HITEY) (53.08)

HITD) (5.3.09)

C-= % (5.3-30)

The temporal behavior of the phase of each oscillator in the array is most easily
seen by plotting the time derivative of the phase because this makes more
obvious the times at which the influences from the neighboring oscillators
arrive. Thus, in Figs. 5-6 through 5-10, we compare the result of the
approximate continuum formula Eq. (5.3-29) in solid lines with that of the
discrete model Eq. (5.2-22) in dashed lines considered to be the exact result.
The coupling delay in this example is two inverse locking ranges (ILRs). The
fine scale wiggles shown in the inset of Fig. 5-6 arise from the truncation of the
series of branch cut integrals to a finite number of terms.
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Frequency in
Radians/LR Phase Distribution - Continuum Model - Delay=2 ILRs
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Fig. 5-7. Time derivative of the phase of the nearest neighbors of the
detuned oscillator. (Reproduced by permission of American Geophysical
Union from [48], ©2008 American Geophysical Union.)
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Fig. 5-8. Time derivative of the phase of the second nearest neighbors of
the detuned oscillator. (Reproduced by permission of American
Geophysical Union from [48], ©2008 American Geophysical Union.)
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Fig. 5-9. Time derivative of the phase of the third nearest neighbors of
the detuned oscillator. (Reproduced by permission of American
Geophysical Union from [48], ©2008 American Geophysical Union.)
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Fig. 5-10. Time derivative of the phase of the fourth nearest neighbors
of the detuned oscillator. (Reproduced by permission of American
Geophysical Union from [48], ©2008 American Geophysical Union.)
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Notice that the more distant the oscillator from the detuned one, the later the
response by exactly two inverse locking ranges (one delay time) per oscillator.
Moreover, the influence of the nearest neighbors of the detuned oscillator does
not impact that oscillator until four inverse locking ranges (two delay times)
have elapsed. Similar delays of two delay times are visible in all of the curves
corresponding to round-trip delays between the oscillators. All of these
behaviors are consistent with a causal solution.

We return now to the previous analysis of the location of the branch points to
highlight two properties that may not have been obvious in the earlier
discussion. First, as the delay time is decreased, there is a critical value at
which the distribution of the branch points changes character. If the delay time
is equal to 0.139232271 inverse locking ranges the smallest circle type branch
points merge at o =-9.18224297. For delays less than that, say for a delay of
0.12 inverse locking ranges, the branch point locations are as shown in
Fig. 5-11.

Second, as the delay approaches zero, all of the branch points move to infinity
except two, one at the origin and one at —4. Thus, in this zero-delay limit we
have from Eq. (5.2-22), taken to be the exact solution, that,

ok

g(s,%,y) Zm

which, perhaps surprisingly, does not agree with Eq. (3.1-6). It does agree in
the limit of small s so one can expect that the time functions will agree for late
times, but there will be a difference at early times. When x = y; that is, for the
detuned oscillator, the inverse Laplace transforms of Eqgs. (3.1-6) and (5.3-31)
can be computed analytically, and we thus obtain from Eq. (5.3-31),

g ny)=re” [10(21) +]1(2T):| (5.3-32)

where I, is the Bessel function of imaginary argument and from Eq. (3.1-6),

(5.3-31)

2(©,),)) :\/;Tr (5.3-33)
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Fig. 5-11. Branch point locations for d = 0.12
inverse locking ranges. (Reproduced by
permission of American Geophysical Union
from [48], ©2008 American Geophysical Union.)

For comparison, these two functions are plotted in Fig. 5-12. The solid curve is
Eq. (5.3-32), and the short dashed curve is Eq. (5.3-33) while the long dashed
curve is the difference. Note that, although Eq. (5.3-33) neglects the alternating
sign solution, it is nevertheless a very good approximation to the exact solution

Eq. (5.3-32).

5.4 Beam Steering in the Continuum Model with
Coupling Delay

In this section we apply what we have learned so far regarding the analytical

treatment of coupling delay to the analysis of beam-steering of oscillator arrays

embodying such delay. We begin with the continuum generalization of the

linearized discrete model solution for one detuned oscillator in an infinite array

given by Eq. (5.2-22); that is,
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Fig. 5-12. Comparison of the single branch point solution (dashed) with the two
branch point solution (solid). The difference is shown in long dashes.
(Reproduced by permission of American Geophysical Union from [48], ©2008
American Geophysical Union.)

—sd

~ -1 26‘
0],
Js+2)* —4e72

P(s,x,y) =

Our approach will be to devise a differential equation having Eq. (5.4-1) as its
Green’s function. When x is not equal to y, this solution satisfies the differential
equation,

d2¢ 2e—Sd 2
o sech ™! || #=0 (5.4-2)
S

However, at x = y there will be a discontinuity in the slope of the phase that
gives rise to a delta function. Evaluating the magnitude of this slope
discontinuity we determine that the Green’s function Eq. (5.4-1) satisfies,
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s+2

2sech™! [26_de (5:4-3)

= Ay, () S(x—)

J(s+2)F —de

We may now follow the procedure of Section 3.1 to express the finite-array
Green’s function as a sum of the eigenfunctions of the differential operator in
this equation. In order to do this we will need the boundary conditions at the
ends of the array. Recall that the reflection coefficient at the array ends was
given by Eq. (5.2-20) which is a fairly complicated function of s. However,
following Pogorzelski [49], we may simplify matters by assuming the addition
of half-length coupling lines at the ends of the array. If this is done, the
reflection coefficient becomes unity because the array boundary then becomes
an image plane. (See Pogorzelski [47].) A reflection coefficient of unity
corresponds to the familiar Neumann condition of zero phase slope. Using this
boundary condition, the even and odd normalized eigenfunctions are seen to be,

v = \/5 COS(2n7zxj
" 2N +1

2N +1
5.4-4
\/E . (2n+1)7rx ( )
Vo = sin
2N +1 2N +1

Choosing the detuning time dependence to be a unit step at time zero and
following he approach of Section 3.1, the Laplace transform of the phase
distribution may be written in terms of the eigenfunctions as,
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4sech”! ﬂ
s+2

2N +1)sy/(s +2) — 42

2nry 2nmx
cos 2N +1 cos 2N +1
Xy hi

P(s,x,y) =

n | onr Y 2\ T (5.4-5)
+|sech! ’
2N +1 s+2
) (2n+1)7zy ) (2n+1)7zx
sin sin
2N +1 2N +1

+ > 5
2n+1 —sd
7( n )ﬂ +| sech™! 2
2N +1 s+2

We will obtain the inverse Laplace transform via residue calculus. The poles
are determined by,

i 2e7 (i
sech! =+ 5.4-6
[ s+2 ] (N + 1) ( )
Taking the hyperbolic secant of both sides and then the reciprocal we obtain the
equivalent condition,
s+2 %1
— | =cos (5.4-7)
2¢ " 2N +1
This equation can be solved in terms of the Lambert ¥ function defined by,
z=W(z)d"® (5.4-8)
In terms of this function, the solution of Eq. (5.4-7) is,
1 l
Sy =—W | m, 2de* cos d -2 (5.4-9)
- d 2N +1

These pole locations are plotted in Fig. 5-13.
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Fig. 5-13. Pole locations for delay of two inverse locking ranges. Black

dots denote odd values of {and gray dots denote even values of /.
(Reproduced by permission of American Geophysical Union from, [49]
©2008 American Geophysical Union.)

The overall array time constant is determined by the poles closest to the origin.
We therefore set about solving Eq. (5.4-9) approximately for small s. To do this

we expand the Lambert W function in a Taylor series about 2de*? .
W(z2)=W(2d*)+ W' (2de™ )(z—2dezd ) Fe (54-10)

Now, W satisfies the differential equation,
w

W(z)=——— -
(2) ) (5.4-11)

So that the first two terms of the Taylor series yield,
z-2de*

W(z)=2d+——— 5.4-12
=) > (2d +1) G412

and, using Eq. (5.4-9),
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S, ) = z=2de™" (5.4-13)
A 4-
" 2d +1)
Recall that z is the argument of the W function so from Eq. (5.4-9),
%1
z=2de* cos (5.4-14)
2N +1
Substituting Eq. (5.4-14) into Eq. (5.4-13) and setting m = 0,
2de* cos . 2de*?
2N +1 -4 2( % J (5.4-15)
SOZ = 2d = Sin —
e (2d +1) 2d +1 2N +1

The pole at ¢ =0 together with the denominator s from the step detuning
function produce the double pole at the origin leading to the linear time
dependence or shift in ensemble frequency due to the detuning. For the

antisymmetric detuning used in beam-steering, the even [/ poles do not
contribute, so the dominant pole is the one for £ =11ying on the real axis at,

2
So1 = —4 sin2 7/2 ~ —1 4 (5.4—16)
2d +1 2N+1) 2d+1\ 2N +1
so the time constant of the array is,
T, (Zd + 1)(

or just (2d+1) times the time constant without coupling delay. (Compare with
Eq. (2.2-40).)

(5.4-17)

2N+1j2
T

Returning now to Eq. (5.4-5), we form the solution for beam-steering by
combining two solutions of the form Egq. (5.4-5), one for detuning of the
oscillator at —NV and one for detuning of the oscillator at N, each end of the
array.
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—sd
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@Saxa _(DS,X,— =
(N +1)sy(5+2)% —4e 2

sin ((2’“_1)7[}}} sin ((2’“_1)7”} (5.4-18)

2N +1 2N +1
2 2
n ((2n+1 —sd
7( n+l)z +|sech™ 2
2N +1 s+2
To obtain the residues, we define g(s) to be the denominator,

(2n+1)7Y’ 20 \[
q(s)=| ———| + sech™!| 26— (5.4-19)
2N+1 s+2

and expand in the Taylor series,

X

q(8) = q' (S 2011 (S =Sy 241) + 0((S —Sm,2n+1)2) (5.4-20)
We thus obtain the aperture phase a function of time in the form,
o(r,x,N) = p(r,x,~N) =
4 (esm,z,mr o Smannd/4 )

o QN 15, 0,00 Sy apnd +(2d +1) | (5421

xsin(Mjsin(Mj

2N +1 2N +1

X

Recall that at each oscillator, x is an integer and that the phase only has physical
meaning at these integral values of x. As a result, the sum on n need only
extend from 0 to N — 1 because for integral x, these terms are equal to those for
n = N + 1 through 2N with the order reversed. Higher order terms in #n only
affect the phase values between the oscillators and thus are not relevant.

Typically, the time at which the time function becomes non-zero is determined
by when the Bromwich contour used in the inverse Laplace transform integral
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can be closed in the left half plane, thus enclosing the poles. Prior to that time,
the contour may only be closed in the right half plane, and since it encloses no
poles there, the solution is zero. This is the usual way in which causality enters
such analysis. In this case, however, Eq. (5.4-18) reveals that the contour may

be closed in the left half plane beginning at 7=—d . Causality dictates that the

solution remain zero until 7=0. Thus, it turns out that the residue sum remains
zero even though the contour is closed in the left half plane and only becomes

non-zero after 7=0. This is illustrated in Eq. (5.4-21), in which the contour
was closed in the left half plane beginning at 7=—d /4 leading to the

d/4
term. Figure 5-14 shows the resulting solution for each oscillator of

a 21-element array with coupling delay of two inverse locking ranges. Causality
is obviously satisfied regardless of this unusual closing of the contour. Figure
5-15 shows the same solution extending to later times showing that in steady
state the phase increments between oscillators become equal, implying a linear
phase progression as needed for beam-steering.

esm,2n+1

The data in Figs. 5-14 and 5-15 are re-plotted in Figs. 5-16 and 5-17,
respectively. Here one may view the aperture phase distribution at all values of
time simultaneously.

Finally Fig. 5-18 shows a particular range of time specifically for comparison
with Fig. 5-19, which is the same case but with no coupling delay. Pay
particular attention to the time scales in these plots.

The point made by comparing Fig. 5-18 with Fig. 5-19 is that the coupling
delay of two inverse locking ranges has slowed the response of the array by
2d + 1 or a factor of five, just as predicted by Eq. (5.4-17).

We now compute the far-zone radiated field when the oscillators in this
21-element array with coupling delay are used to excite the elements of a
phased array with half-wavelength element spacing. The result is shown in
Fig. 5-20 where we see beam behavior very similar to that of arrays without
delay but slower by (2d + 1).
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Fig. 5-14. Phase evolution of the oscillators in a 21-element linear array with
coupling delay of two inverse locking ranges. (Reproduced by permission of
American Geophysical Union from, [49] ©2008 American Geophysical Union.)
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Fig. 5-15. Phase evolution of the oscillators in a 21-element linear array with
coupling delay of two inverse locking ranges over a longer duration. (Reproduced
by permission of American Geophysical Union from, [49] ©2008 American
Geophysical Union.)



166 Chapter 5

AD Oﬁc}'@"d

Fig. 5-16. Three dimensional representation of the phase evolution
in a 21-element array at early times. (Reproduced by permission of
American Geophysical Union from, [49] ©2008 American

Geophysical Union.)

Radiang

Fig. 5-17. Three dimensional representation of the phase
evolution in a 21-element array at later times. (Reproduced
by permission of American Geophysical Union from, [49]

©2008 American Geophysical Union.)
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Fig. 5-18. Phase evolution over 250 inverse
locking ranges for a 21-element array with
coupling delay of two inverse locking
ranges. (The vertical scale is from -10 to 10
radians as in Fig. 5-19.) (Reproduced by
permission of American Geophysical Union
from, [49] ©2008 American Geophysical
Union.)
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Fig. 5-19. Phase evolution over 250 inverse
locking ranges for a 21-element array with no
coupling delay. (Reprinted from [38] with
permission, ©2000 IEEE.)
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Fig. 5-20. Dynamic behavior of the far-zone radiated field for a
21-element array with coupling delay of two inverse locking ranges.
(Reproduced by permission of American Geophysical Union from, [49]
©2008 American Geophysical Union.)

The final value theorem applied to Eq. (5.4-18) gives the steady-state phase
distribution as,
. (2n+1)7zy . (2n+1)7zx
sin| ———— [sin| ——
Z N+1 N+1
(N+D) % [(2n+1)7rjz (5.4-22)

Py (X) =

N+1
=x for —-N/2<x<N/2

and for half-wavelength spacing of the radiating elements, we find that the
steady-state beam position is at,

@=sin"" (%] =sin"! (lj =18.56° (5.4-23)

T T
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This one-radian inter-oscillator phase difference stresses the linear
approximation a bit in that the error in linearizing the sine function is about 19
percent. However, the dynamic behavior is still qualitatively approximated.

In the above analysis a large number of residues are required for early times
and very few are required for late times. However, returning to the discrete
model, an alternative formulation is available that provides for more efficient
computation for early times. Returning to Eq. (5.2-19) and specializing to the
present case of a 21-element array, we have that,

) | (Qx+Q—21Q—x)(Q—10+Q—21Q10)
f(Sax)—S\/m (1—Q742)
(Q—IO+Q—21Q10)(Q—x+Q—21Qx) (5424

(o)
0" 1+0 ) x  oox
ZS\/a2—4b2 [1++Q21](Q ¢ )

where as before, q =s+1, a=s+2,and b= —e*  We now expand this

expression in powers of —b, and as before, the inverse Laplace transform of
each term in the expansion can be computed analytically. The number of terms
required is determined by the time interval over which the response is desired

because each term has a delay factor e ” 54 where p is the power of —b in the
term in the expansion, and d is the coupling delay. So, for sufficiently large p,
the term will be zero for the interval in question. Thus, in contrast with the
eigenfunction expansion, for early times very few terms are required.

This approach was applied to the 21-element array with coupling delay treated
earlier, and the results are plotted in Fig. 5-21 for comparison with Fig. 5-14.
Interestingly, this power series approach is a bit more flexible in terms of
boundary conditions. Recall that without the added half-length coupling lines at
each end of the array, the previous method was complicated. Here, however,
the use of Eq. (5.2-20) in Eq. (5.2-19) to model an array without the added lines
poses no difficulty. The expansion in powers of b proceeds as before and the
result is plotted in Fig. 5-22. Notice the difference in the early time ripples due
to this alternative boundary condition when compared with Fig. 5-21.
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Fig. 5-21. Phase evolution in a 21-element array with coupling delay of two inverse
locking ranges via expansion in powers of b. (Reproduced by permission of
American Geophysical Union from, [49] ©2008 American Geophysical Union.)
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Fig. 5-22. Phase evolution via expansion in powers of b for a 21-element array with
coupling delay of two inverse locking ranges but without the added half-length
coupling lines at the ends. (Reproduced by permission of American Geophysical
Union from, [49] ©2008 American Geophysical Union.)
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5.5 Conclusion

The primary motivation for this chapter was the issue of causality in coupled
oscillator arrays. Because the continuum model leads to a diffusion equation,
the response to an excitation always begins immediately regardless of the
physical separation of the two. Here, by appropriately introducing a delay factor
in the Laplace transforms, we render the solutions causal in that there appears a
finite “propagation delay” between the excitation and the response. The result is
a more realistic representation of the array response not to mention some rather
interesting inverse Laplace transforms encountered along the way.
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Part ll: Experimental Work and
Applications

Chapter 6
Experimental Validation of the Theory

Much of the very early work in coupled oscillators for phased-array applications
involved both theory and experiment. Probably the earliest was the work of Karl
Stephan in which he studied a linear array of coupled oscillators for beam-
steering of a linear array of radiating elements [1]. In his concept, the phasing
was controlled by injection locking the end oscillators to signals whose relative
phase was controlled with a phase shifter. While still earlier work was
published, Stephan points out that it did not involve mutual injection locking,
the defining feature of the concepts treated in this book.

6.1 Linear-Array Experiments

Stephan’s pioneering experiment in 1986 involved three very high frequency
(VHF) transistor Colpitts oscillators coupled together by a network of lumped
elements. The end oscillators were also injected with external signals derived
from a master oscillator signal that was split into two signals, one of which was
phase shifted relative to the other by a variable length transmission line (coaxial
line stretcher). Stephan measured the oscillator phases with varying amounts of
phase shift of the injection signals and verified that the behavior conformed
qualitatively to the theory. However, he noted several issues that have persisted
throughout the ensuing development of this technology. He noted that
manufacturing variation among the oscillators resulting in variation in their free-
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running frequencies causes nonuniformity in the array behavior and indicated an
appreciation of the fact that in his VHF oscillators this can be compensated for
with tuning, but that in a monolithic microwave integrated circuit (MMIC) such
adjustment would be more difficult. He did some statistical studies of this issue,
and such studies were more recently extended by Wang and Pearson [50]. Their
approach to mitigating this problem was to design the oscillator to minimize the
phase slope of the open-loop gain. The impact of free-running frequency
variation on beam pointing was studied by Shen and Pearson [51]. In his early
work Stephan also discussed high-frequency application in spatial power
combining and beam-steering, pointing out that there is potential for graceful
degradation in the event of oscillator failure. Interestingly, he used a gradual
phase shift of the injection signals (as discussed in Section 3.4 above) rather
than a step-phase shift in time. The next year, Stephan and Young published
theoretical and experimental results concerning two mutually injection-locked
oscillators where the coupling was provided by the free-space mutual coupling
between the radiating elements excited by them. [3] The coupling was
represented by a two-by-two admittance matrix, and the stability of the two
modes, even and odd, for the system was treated. The radiation patterns as a
function of coupling phase; that is, element separation, showed behavior
consistent with the analysis.

Three years later, Robert York, then a student working under Professor Richard
Compton at Cornell University, published the results of a study of power
combining in mutually injection locked Gunn diode oscillators arranged in a
four-by-four planar array with Cartesian coupling [4]. Beam steering, however,
was not considered; probably at least partly motivated by the publication by
James Mink, the emphasis was on power combining [8]. Shortly thereafter,
York and Compton published a description of mode locking in arrays of coupled
oscillators [5]. They also described excitation of a linear array of radiating
elements with a set of mode-locked oscillators [6]. The experiment described
involved three Gunn-diode oscillators at 11 GHz. Although beam-steering is
discussed, the concept is not the usual phased-array approach to scanning.
Rather, mode locking is used to obtain a train of pulses that continuously scan at
a rate determined by the spacing of the spectral lines of the periodic pulse train.
(See Section 6.5)

Later in 1992, Hall and Haskins described a two-oscillator element designed for
implementation of Stephan’s external locking scheme for beam-steering [52]. A
four-element array of 2.28-GHz elements was constructed, and beam-steering to
40 deg from normal was demonstrated.

A turning point was reached in 1993 with the publications by York and his
student Peter Liao, in a special issue of the IEEE Transactions on Microwave
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Theory and Techniques edited by Mink and Rutledge on Quasi-Optical
Techniques [53] [28]. The reported analysis and experiment marked the first
application of mutually injection-locked oscillator arrays to beam-steering via
detuning of the end oscillators and no external injection. Liao and York
constructed a four-element linear array of 10-GHz field effect transistor (FET)
oscillators driving radiating elements that also served as resonators for the
oscillators. Inter-oscillator coupling was due to mutual coupling among these
radiating elements and fell in the weak-coupling regime. Beam steering to
15 deg from normal was achieved, and the theoretical and experimental results
agreed quite well.

In the same special issue discussed above, Nogi, et al. described analysis and
experimental work with strongly coupled Gunn-diode oscillators at 12.45 GHz
[17]. They showed analytically that the array could oscillate in a number of
modes, only one of which had constant amplitude across the array as might be
desirable in excitation of a phased-array antenna, and they suggested that a
resistor at the center of each coupling line would favor this desired mode and
suppress the others.

By 1994 the use of coupled oscillators to excite phased array antenna elements
and steer the radiated beam had become a vital and growing area of research.
Liao and York reported a six-element microstrip patch array at 4 GHz that could
steer to 40 deg from normal [54]. This array did not depend on mutual coupling
between the radiating elements for coupling. Rather, the coupling was achieved
with transmission lines connected between neighboring patches. This was the
first attempt at decoupling the oscillator array design from the radiating aperture
design. Later the same year a similar five-element array was reported that
steered from —30 to +40 deg from normal. The associated theoretical treatment
was based on a general admittance matrix description of the coupling network
[33]. In 1997, a similar coupling scheme was used by Ispir, et al. in
demonstrating the first planar array steered via detuning of the edge oscillators
[55]. The array was three elements by three elements and coupled in a Cartesian
topology. Thus, all but one element are edge elements. The beam was scanned
10 deg in the E plane and 15 deg in the H plane. Experiments with and without
half-length coupling lines at the ends of a linear array were conducted, and it
was found that the scan range was larger with the added lines. Kagawa, et al.
demonstrated beam-steering in arrays with two and three circularly polarized
elements [56], and Ispir, et al. experimented with unidirectional coupling in a
three element array [55]. They showed that extended inter-oscillator phase range
could be had by switching between two different values of coupling phase while
steering via detuning the free running frequencies [57]. A very nice
compendium of the work prior to 1997 is provided by Lynch, et al. in the book
by York and Popovic on power combining [58].
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During the development of these oscillator arrays, there was a concern about the
phase noise of the oscillators and the possibility that arrays of many oscillators
of wide-locking range might have prohibitively large phase noise. As a result an
injection signal from an external stable oscillator might be needed. This was
investigated by Chang, et al. [59]. Using a five-element array at 8.5 GHz, they
demonstrated reduction of the array phase noise to the level of the injection
source phase noise near the carrier frequency.

In August of 2000, Pogorzelski, et al. reported a seven-element linear array
feeding a radiating aperture consisting of seven microstrip patches at 2.5 GHz
[60]. Commercial MMIC voltage-controlled oscillators [Pacific Monolithics PM
2503] were used. This array is shown in Fig. 6-1. The coupling lines are visible
on the circuit board as are the shorting bars used to adjust the coupling phase.

Fig. 6-1. Seven-element linear array. (Reprinted from [60]
with permission, ©2001 IEEE.)
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Initially, tuning of the oscillators was accomplished by using a network analyzer
to measure the phase difference between adjacent oscillators, one pair at a time,
and adjusting the free running frequencies to achieve the desired phase
distribution. This process was impractically time consuming so a multichannel
phase comparator system was devised that measured the phase differences
between all adjacent oscillators simultaneously. This system consisted of a set of
quadrature hybrid couplers and mixers arranged as shown in Fig. 6-2. The
oscillator output signals from neighboring oscillators were mixed, and the lower
hybrid frequency was at zero frequency. This DC output voltage was taken to be
a measure of the relative phase of the oscillator signals. The hybrid couplers
introduced a 90-deg phase shift in one of the signals so that zero output voltage
from the mixer corresponded to zero relative phase. The output voltages from
the mixers were then integrated from the center outward using a virtural
instrument implemented in LabView™ to produce a graphical representation of
the aperture phase distribution as shown in Fig. 6-3. The mixer outputs are
shown in the bar graph, and the phase distribution is shown in the line graph
below.

This seven-element array was evaluated on an antenna measurement range, and

the patterns compared with predictions for both unscanned and scanned beams.
The results are shown in Fig. 6-4.

Phase as Voltage

= Mixers
90 90| |90 90 90 (00| ~ Hybrids

>j >ﬂ| h >_1 >T > Radiating Elements
Couplers
@ T e @ Yy o Oscillators

-N 1 2 3 p N

Fig. 6-2. Phase measurement system. (Reprinted from [61]
with permission, ©2000 IEEE.)
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display. (Reprinted from [62] with permission, ©2006 IEEE.)
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Fig. 6-4. Unscanned and scanned beams from the
seven-element array with amplitude plotted against
angle for unscanned and scanned beams at (a) 0-deg
scan angle and (b) 12.84-deg scan angle. (Reprinted

from [60] with permission, ©2000 IEEE.)
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In Section 3.1 we obtained the transient behavior of the oscillator phases under
step detuning of one oscillator. The seven-element array described above was
also used to experimentally confirm that result [63]. One oscillator was
repeatedly detuned by applying a tuning signal from a pulse generator, and the
repeated transient behavior was recorded digitally using a multi-channel
oscilloscope. The results, both experimental and theoretical, for detuning one
end oscillator are shown in Fig. 6-5. Figure 6-6 shows a similar comparison
when one interior oscillator is step detuned.

Recently, preliminary results on coupled oscillator arrays implemented using
substrate integrated waveguide technology (SIW) have been reported. Substrate
integrated waveguide (SIW) technology allows for compact, low cost, light
weight, and high performance implementation of microwave active and passive
circuits, including active antennas and coupled oscillator arrays. SIW structures
were initially proposed in the mid-1990s [64]. SIWs are waveguide-like
structures fabricated by using two periodic rows of metallic vias or slots
connecting the top and bottom ground planes of a dielectric substrate. An SIW
cavity backed coupled oscillator antenna array, shown in Fig. 6-7 was proposed
by Giuppi et al. [65].

SIW strucutres share advantages of both microstrip and waveguide technology
[66]. Similarly to planar structures, SIWs are compact, light weight, and cost
effective due to the fact that they can be easily fabricated on single substrates
using conventional fabrication techniques such as the ones used for their planar
counterparts. Similarly to waveguide structures they exhibit increased shielding,
low loss, high quality factor, and high power-handling capability. Finally, they
allow for high integration by implementing multilayer architectures. SIW
technology allows for compact, low cost implementation of coupled-oscillator
arrays, suitable for large array configurations.

Giuppi et al. demonstrated a single substrate implementation of a cavity-backed
coupled-oscillator antenna array [65]. A two-element slot-array prototype that
was implemented is shown in Fig. 6-7. Cavity-backed antennas have received
interest due to attractive properties such as isolation, reduction of backward
radiation, and surface-wave suppression [67].
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In the work of Ref. [65], SIW technology was used to fabricate cavity-backed
slot-antenna oscillators and additionally control the coupling among the
oscillator elements. The effect of the coupling aperture size A on the coupling
strength is shown in Fig. 6-8. It was found that a double aperture symmetrically
placed around the middle of the cavity wall, such as the one used in Fig. 6-7,
leads to a smoother variation of the coupling factor as a function of the aperture
size, compared to a single aperture at the center of the cavity wall, and therefore
is less sensitive to fabrication tolerances.

Fig. 6-7. Single-substrate two-element cavity backed coupled oscillator antenna
array in SIW technology, a) top (active circuit) side, b) bottom (antenna) side, c)
passive antenna array. Reprinted with permission from [65]; copyright EurAAP
2010; used with permission.
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Fig. 6-8. Coupling factor versus the aperture size between the cavities of
Fig. 6-7. Reprinted from [65]; copyright EurAAP 2010; used with
permission.

Finally, it is possible to control the oscillation frequency of the active oscillator
antenna by varying the resonance frequency of the cavity. This is achieved by
removing one of the vias from the cavity wall and placing a varactor diode in the
cavity providing a capacitance between the top cavity conductor and the bottom
ground conductor. Using this topology a frequency tuning of approximately 2
percent was demonstrated by Giuppi et al. in [68] (Fig. 6-9).

6.2 Planar Array Experiments

A planar three-by-three oscillator array was reported by Pogorzelski in 2000
[61]. Recall that Ispir also reported a three-by-three array in 1997 using coaxial
transmission line coupling between the radiating elements [55]. However, the
2000 array by Pogorzelski had no radiating aperture Its purpose was to
demonstrate phase control by perimeter detuning via a phase diagnostic system
similar to that developed for the seven-element linear array. Basically, the linear
array diagnostic system was “woven” through the planar array one row at a time,
and the computer-based virtual instrument was reprogrammed to display the
computed phase values in a planar representation. This array is shown in Fig. 6-
10. The precision potentiometers control the tuning bias of each oscillator.

The phase distributions over the array with various oscillator detuning
distributions are shown in Fig. 6-11.



Experimental Validation of the Theory 185

Fig. 6-9. SIW cavity-backed active-oscillator slot antenna
with frequency tuning capability. (Reprinted with
permission from [68], IET.)

Fig. 6-10. Nine-element planar oscillator array. (Reprinted from
[62] with permission, ©2006 IEEE.)
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Fig. 6-11. Screen captures of phase distributions for beam-steering in a planar array.
(Note: The tonal scale redundantly duplicates the phase vertical scale). (Reprinted
from [61] with permission, ©2000, IEEE.)

As discussed earlier, the maximum phase difference between adjacent oscillators
is 90 deg, at which value the oscillators lose lock. This limits the attainable
beam-steering angle from normal. However, as described by York and Itoh, this
range may be extended by frequency multiplication, which also multiplies the
phase excursion [40]. To demonstrate this technique, frequency triplers were
added to the above nine-element array, and the resulting 8.4-GHz output was
used to drive a nine-element micristrip patch array. The aperture phase was
inferred by tripling the outputs of the mixers in the slightly more sophisticated
diagnostic system shown in Fig. 6-12, and the resulting far-zone radiation
patterns were measured on an antenna range. Note that, unlike its predecessor,
this diagnostic system uses attenuators to equalize the input amplitudes at the
mixers. The measurement set-up is shown in Fig. 6-13 wherein the coaxial line
stretchers equalize the phases of the transmission lines to the radiating elements.
The resulting measurements are shown in Fig. 6-14 where the “X’s” label a
pattern that corresponds to steering 90 degrees from normal which is not
achievable without frequency multiplication. Note that this pattern is symmetric
indicating that the main lobe points 90 deg to the left while the similar looking
lobe on the right is a grating lobe. The element pattern is shown as the dashed
curve and indicates why all of the patterns have a null 90 deg from normal.

In 2005, Pogorzelski reported construction and demonstration of a five-by-five
element planar array using using the same S-band MMIC oscillators used in the
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earlier seven-element linear array and microstrip patch radiating elements [70].
This MMIC contained a buffer amplifier at its output, thus isolating the
oscillators and patches and completely separating the coupled oscillator array
design from the radiating aperture design. In this array, the oscillators were
located on one side of a Duroid™ board, and the patches located on the other
with a coaxial pin connecting each oscillator output to the corresponding patch.
The phase-measurement system was mounted on a phenolic board for physical
support and connected to the oscillators via stripline couplers obviating the need
for direct physical connection and rendering the measurement system
removable. The assembled array and phase measurement system is shown in
Fig. 6-15. The Duroid™ circuit board is located between the aluminum plate
and the phenolic board.

Voltages Indicate
Phase Differences

lo ot Mixers

Attenuators

>

Hybrids
VWW\ Terminations
Amplifiers
Couplers

Triplers

Radiating
Elements

Fig. 6-12. Phase measurement system for the frequency-tripled array. (Reprinted
from [69] with permission, ©2004 IEEE.)
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’ ,..*_..Il ; gl
Enlarged Quadrature
Portion (right) Hybrids

10 dB Couplers Amplifiers

Fig. 6-13. Experimental set-up for evaluation of the nine-element frequency tripled
planar array. The white box of the lower left picture is enlarged in the lower right
picture. (Reprinted from [69] with permission, ©2004 IEEE.)
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Fig. 6-15. Five-by-five S-band array and phase-measurement system. (Reprinted
from [62] with permission, ©2006 IEEE.)

The Duroid™ board and aluminum plate attached to the measurement fixture are
shown in Fig. 6-16. The array of potentiometers controls the power supplied to
each oscillator and were used to approach an untapered aperture distribution for
the array. Fig. 6-17 shows the assembled array on the measurement range and
Fig. 6-18 shows an example measured result for aperture phase distribution and
steered beam.

A similar five-by-five element array was reported by Heath, et al. [71] of the
Georgia Tech Research Institute (GTRI) using a new phase comparator chip that
rendered the phase measurement system much more compact. In fact it was
integrated with the oscillator array shown in Fig. 6-19. The GTRI group used a
LabView™-based display sytem very similar to that of Pogorzelski [70].
However, unlike Pogorzelski, GTRI also used a LabView™ user interace for
tuning the oscillators.(See Fig. 6-20.) This GTRI array was similar to the three-
by-three frequency tripled array discussed earlier in that the oscillators were
connected to the radiating aperture via cables visible in Fig. 6-21 showing the
near-field test set-up at GTRI. However, it did not use frequency multiplication
as did the three-by-three array. Figure 6-22 displays an example near-field
measurement transformed to the far-zone showing the beam steered to
—20 deg.
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Fig. 6-16. Five-by five oscillator array and radiating aperture on measurement
fixture. (Reprinted from [62] with permission, ©2006 IEEE.)

Fig. 6-17. Five-by-five array on the measurement range. (Reprinted from [62] with
permission, ©2006 IEEE.)

The ability to electronically control the phase differences among the
synchronized elements of a coupled oscillator array by varying the free-running
(uncoupled) frequency of each element has been used by Yen and Chu in order
to simultaneously scan and control the polarization of a linear antenna array
[72].
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Fig. 6-18. Five-by-five array (a) Measured aperture phase and (b) Steered beam.
(Note: The tonal scale redundantly duplicates the phase information in (a).)
(Reprinted from [62] with permission, ©2006 IEEE.)

The block diagram of the proposed architecture is shown in Fig. 6-23. A linear
dual linearly polarized patch antenna array of N elements is used as the radiating
structure. A two-dimensional coupled oscillator array consisting of two rows of
N oscillators is connected to the 2N antenna ports. The phase difference
between the oscillator elements within each row is used to generate a
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progressive phase distribution and steer the main beam of the array. The phase
difference between the two rows controls the phase difference between the two
orthogonal polarization states and therefore the polarization of the array.
Frequency doublers are used at each oscillator output in order to produce a
stable phase variation of up to 360 deg. A prototype consisting of a four element
antenna array was successfully demonstrated [72] (Fig. 6-24).

Fig. 6-19. Both sides of GTRI five-by-five oscillator array
board. (Reprinted from [71] with permission, ©2005 IEEE.)
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famanak

Fig. 6-20. Screen captures of the GTRI LabView virtual instrument for

tuning (above) and phase measurement (below). (Reprinted from [71]
with permission, ©2005 IEEE.)
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Fig. 6-21. The GTRI test set-up for near-field measurement of the five-by-five array.
(Reprinted from [71] with permission, ©2005 IEEE.)
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Fig. 6-22. Far zone steered beam of the GTRI five-by-five array. (Reprinted from [71]
with permission, ©2005 IEEE.)



Experimental Validation of the Theory 197

In-phase coupling at fundamental
oscillating frequency

Control signals

Oscillati? doublers

H-row
X 2 Patch
antennas

1_\ Antenna element Control signals

Fig. 6-23. Polarization agile, beam scanning coupled oscillator antenna array
architecture. (Reprinted with permission from [72], ©2005 IEEE.)

6.3 Receive Array Experiments

As early as 1995 it was suggested by Cao and York that oscillator arrays could
be used to steer the beam of a receiving antenna. [73]. The concept is illustrated
in Fig. 6-25. Basically, the oscillators are used as local oscillators to down
convert the signals received by each of the elements in antenna aperture. The
phasing of the local oscillator signals may then be adjusted to cancel the phasing
of the element signals due to the angle of arrival of the incident wave. Thus, the
phasing of the oscillators as determined by detuning of the end oscillators may
be said to steer the receive beam.
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Patch antenna array

Coupling
network

Fig. 6-24. Photo of a four-element prototype of the polarization agile, beam-
scanning coupled oscillator antenna array (H-row = horizontal row and V-row =
vertical row). (Reprinted with permission from [72], ©2005 IEEE.)

Receiving
Elements

Mixers

Coupled

s0 0 Oscillators

-N  -N+1 -N+2 p N

Fig. 6-25. Receive concept using coupled oscillators.
This concept was demonstrated experimentally by Pogorzelski and Chiha [74]
using a 15-element array of L-band oscillators [Modco CM1398MST] coupled
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in a linear configuration. In the absence of a receiving aperture, the received
signals were simulated using a 16-way power divider. These 1.95-GHz output
signals from the power divider were, of course, in-phase. They were mixed with
the 1.265-GHz outputs of the linear array oscillators producing intermediate
frequency signals at 685 MHz. These intermediate frequency signals were then
combined using another 16-way power divider in reverse. The testbed set-up is
shown in Fig. 6-26 together with a closeup of one of the oscillator circuits. By
using only every other oscillator in the array, the maximum phase difference
between adjacent local oscillator signals was extended to 180 deg. Thus, only
eight signals are combined. The combined output at 685 MHz is plotted versus
beam-steering angle in Fig. 6-27. The solid line is the theoretically predicted
result. The phase distributions across the array corresponding to points A and B
are shown in Fig. 6-28.

This apparatus was also used to demonstrate a very interesting scheme patented
by Kott for the reduction of sidelobes [75]. Kott proposed the placement of an
additional element at each end of an array positioned and excited so as to
provide an interferometer pattern with null spacing matching the null spacing of
the sidelobes of the array. Then by properly combining the interferometer signal
with the array signal, entire regions of sidelobes could be canceled. It turns out
that the receive-array testbed described above provides just the proper phasing
of the end elements to achieve this cancelation [76] The concept is shown in Fig.
6-29. The attenuators at each end oscillator permit proper weighting of the
interferometer signal relative to the receive array signal to achieve cancelation.
Fig. 6-30 shows the output of the intermediate frequency combiner versus beam-
steering angle for the center elements (solid), the interferometer pattern of the
end elements (short dashes), and the coherent combination of the two (long
dashes) showing that the left sidelobe has been removed while the right one has
been enhanced. The beamforming capabilities of coupled oscillator arrays are
studied in more detail in Chapter 9.
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Fig. 6-26. L-band receive array test-bed with close-up of one oscillator. (Reprinted
from [62] with permission, ©2006 IEEE.)
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Fig. 6-29. Circuit arrangement to implement the Kott scheme using the fifteen
element receive array testbed. (Reprinted from [62] with permission, ©2006 IEEE.)

Receive Patterns

10

10 b

Relative Gain [dB]

,20 L

-30 :
-40 -20 0 20 40

Interoscillator Phase Difference [Deg.]

—— Center 13 Elements
------ End Elements
— — - Combined Pattern
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permission, ©2006 IEEE.)
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It should be recognized that using the same oscillator array for both transmit and
receive poses a certain complexity. This is true because in the proposed receive
array, the oscillator signals are used to down convert the signal, so it is the lower
hybrid frequency of the mixers that is combined to produce the output. Thus the
oscillator phases are subtracted from the phases of the signals received at the
array elements. The result is that the receive phasing of the oscillators is the
conjugate of the phasing required to transmit a beam in the same direction by
using the oscillator signals to excite the elements. If instead the upper hybrid
frequency were combined on receive, this would not be the case, but the
combining for receive would then be done at approximately twice the oscillator
frequency rather than at a low intermediate frequency.

In closing this section on receive arrays it should be noted that an array of self-
oscillating mixers when properly coupled is synchronized in frequency forming
a coupled oscillator array. Coupled self-oscillating mixer (SOM) arrays have
been used in retro-directive array applications such as the work by Shiroma et al.
[77]. Additionally, the use of coupled SOM arrays in receive phased-array
applications has been investigated by Sanagi et al. [78] and ver Hoeye et al.
[79]. The array topology proposed in Ref. [78] is shown in Fig. 6-31.

Injection source IF output
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(§] | M-way Power combiner

oooooooo

Directional
coupler |

|

20.79mm
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==
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| o——el|
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11 #H2 N

Fig. 6-31. Coupled self-oscillating mixer array.
(Copyright ©2005 IEICE [78].)

The SOM element consists of an amplifier and a branch line coupler providing
the necessary feedback to obtain the oscillation. A varactor diode in the
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feedback loop is used to provide frequency tuning of the individual SOM
element. A linear array is considered where the various elements are unilaterally
coupled using directional couplers. The RF signal at 17.1 GHz is mixed with the
second harmonic of the SOM circuit at 8.5 GHz in order to obtain an IF output
at 100 MHz. The SOM array is synchronized to an external injection signal
coupled to one of the edge array elements. Sub-harmonic mixing using the
second harmonic component results in phase tuning capability of 360 deg. The
IF outputs of the SOM array elements are combined using a power combiner.
Small prototypes of two and three elements were used to demonstrate the beam-
steering capabilities of the proposed architecture. The antenna elements are
placed 14.12 millimeters (mm) apart which corresponds to approximately 0.84,
at 17.1 GHz. As a result, the maximum beam scanning angle that can be
achieved by this topology is 38.4 deg. Measured radiation patterns of a three
element array are shown in Fig. 6-32.
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Fig. 6-32. Measured radiation patterns of three-element coupled
SOM array. (Copyright ©2005 IEICE [78].)

Radiation patterns were obtained for different (free-running) frequency
difference values between the array elements. Variation of the free-running
frequency of the synchronized array elements results in variation of the relative
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phase among the elements. The frequency difference between successive array
elements is experimentally mapped to the inter-element phase difference
according to Fig. 6-33. As an example, a frequency difference of 28 MHz
corresponds to the in-phase state leading to a radiation pattern with a main beam
along the broadside direction.

Finally, a four-element receive SOM array was demonstrated by ver Hoeye et al.
in Ref. [79]. The circuit topology is shown in Fig. 6-34, followed by the
implemented prototype in Fig. 6-35. Each array element is an SOM circuit
designed by the authors in [80] and described in Section 8.7. An input RF signal
of 11.25 GHz is mixed with the third harmonic of the oscillator at 3.25 GHz,
producing an IF output at 1.5 GHz. Using the third harmonic in the mixing
product allows for a theoretical phase-tuning range of 540 deg for an individual
externally injection locked SOM element. In the proposed circuit topology, an
external injection locking signal is applied to all SOM elements using a
Wilkinson power-divider network. The SOM elements are not coupled to each
other directly; therefore, the array topology can be visualized as a star network
where the external injection signal synchronizes all array elements. Each
oscillator is connected to a patch anrtenna and the array outputs are combined
using an IF Wilkinson combiner network. A measured beam-scanning range of
23.5 deg was reported.
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Fig. 6-33. Array element phase difference versus frequency
detuning. (Copyright ©2005 IEICE [78].)
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Fig. 6-34. Four-element coupled SOM array block diagram
(HSOM = harmonic self-oscillating mixer; VNA = vector
network analyzer; VSA = vector signal analyzer). (Adapted
from and used with permission [79], ©2009 IEEE.)

6.4 Phase Noise

Throughout the early development of coupled oscillator arrays there was a
concern about stability in terms of phase noise. It was recognized that phase
control can be enhanced by designing oscillators to have wide locking range
because by this means the phase change for a given change in VCO tuning bias
is reduced. However, associated with this wider locking range will be lower
oscillator Q and an increase in phase noise. Thus, means were sought to mitigate
this situation. For example, Chang, et al. were able to double the locking range
of a VCO while reducing the phase noise below that expected for such a wide
locking range by means of an amplified feedback path [81]. Zheng, et al.
reduced the phase noise of an individual oscillator by coupling it to a resonant
cavity [82]. Similarly, Colwell and Pearson achieved enhanced locking range via
passive feedback [83].
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Aside from the internal design of the oscillators, phase noise is inherently
reduced via the coupling and mutual injection locking of a number of oscillators
countering the phase noise associated with wide locking range. This
phenomenon was studied by Chang, et al. who verified theoretically and
experimentally that mutually injection locking N oscillators results in an N-fold
reduction in phase noise relative to that of a single one of the oscillators by
itself. [84] (See Fig. 6-36.) This happens because the noise signals of the
oscillators are incoherent, whereas the carriers are coherent by virtue of the
locking. Thus, the carrier voltages add resulting in output power N* times that of
a single oscillator, whereas the noise powers add resulting in noise power only N
times that of a single oscillator. They also showed that the noise increases near
the edges of the locking range and reported that no corresponding reduction in
phase noise results if the inter-oscillator coupling is unidirectional. An overview
of phase noise analysis of coupled-oscillator arrays is presented in Section 7.10.

Recently, a significant decrease in phase noise with increasing coupling strength
into the strong coupling regime was reported by Seetharam and Pearson [19].
Interestingly, the behavior of coupled oscillators has been proposed as an
alternate means of measuring phase noise rather than the use of a delay line
discriminator. [85]
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A common method of reducing phase noise is injection locking with a signal
from a quiet (stable) external oscillator. As mentioned earlier in Section 6.1, this
approach has been investigated in the context of arrays of coupled oscillators by
Chang, et al. [59]. They theoretically investigated injection of one or of all of the
oscillators and experimented with injection of the center oscillator of a five
element array of X-band metal semiconductor field-effect transistor (MESFET)
VCOs. They found that near the carrier frequency the noise is reduced to the
level of the injection signal, while far from the carrier frequency it reverts to that
of the array without external injection. The experimental results are shown in
Fig. 6-37.

Dussopt and Laheurt designed a four-element array in a two-by-two
configuration using unidirectional coupling to produce circular polarization at
4 GHz. [86] They reported that this configuration produced the expected factor
of four reduction in phase noise, but that with unidirectional coupling, this
reduction is independent of the coupling phase [87]. Yang, et al. fabricated and
tested a similar four-element ring array of linearly polarized elements using
bi-directional coupling via lumped capacitors to produce circular polarization at
4.4 GHz [88]. They also experimented with an external injection locking signal.
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Fig. 6-36. Phase noise of coupled oscillators. (Reprinted with permission from
[84], ©1997 IEEE.)
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Fig. 6-37. Phase noise of externally injected coupled oscillators. Reprinted
with permission from [59]. (©1997 IEEE.))

6.5 The Unlocked State

In the early days of research in microwave coupled oscillators for antenna
applications, when spatial power combining was the primary objective, York
and Compton observed a phenomenon closely related to mode locking in lasers
[5]. The laser cavity supports a large number of modes of oscillation equally
spaced in resonant frequency. By modulating a parameter such as the cavity Q at
a frequency equal to the mode spacing, these modes can be coupled so that the
phases of the oscillations become coherent. Under such conditions the sum of
the modal signals form a Fourier series, and the laser output becomes a periodic
sequence of equal-amplitude pulses. The energy in each pulse is proportional to
the square of the number of modes summed because the combining is coherent.
York and Compton showed that a similar effect occurs in a coupled oscillator
array if the mutually injection-locked state discussed here in connection with
beam-steering is avoided. In their array, the oscillators were tuned to a set of
equally spaced frequencies separated by more than the locking range. Thus, the
spectrum of the resulting spatially combined signal consists of a finite number of
equally spaced spectral lines, one for each oscillator. The spectral lines are
evenly spaced and tend to remain that way. This may be understood on an
intuitive level by recalling that the spectrum of an injected but unlocked
oscillator has the form shown in Fig. 1-2. In the limit of injection frequency far
from the free-running frequency of the oscillator, the line spacing of the



210 Chapter 6

unlocked spectrum is approximately equal to the difference between the
injection frequency and the free-running frequency. That is,

N (65-1)

Thus, because the injection signals come from the nearest neighbors, this means
that the line spacing of the unlocked spectra is approximately equal to the
difference in the free-running frequencies of the neighboring oscillators. In
effect then, the oscillators each lock to a line of the unlocked spectrum of their
neighbors, and the line spacing of the array becomes uniform. The stability of
such mode-locked states has been studied in some detail by Lynch and York
[89]. Note that as the differences in the tuning of the neighboring oscillators
approach the locking range, the approximation Eq. (6.5-1) fails, the line spacing
approaches zero, and the array becomes mutually injection locked, producing a
monochromatic output. Maintenance of the mode-locked condition requires that
mutual injection locking be avoided. As described in Section 1.4, the locking
range can be controlled by adjusting the coupling phase, and in fact, if the
coupling phase is 90 deg, the locking range becomes zero, and mutual injection
locking is precluded. Thus, from a mode-locking perspective, a 90-deg coupling
phase is to be preferred as noted by Lynch and York [89] [90].

One may view the finite line spectrum of the combined output as an infinite line
spectrum filtered by a bandpass filter passing only the lines corresponding to the
range of oscillator tunings. From Fourier theory, the corresponding time
function will be an infinite sequence of equally spaced pulses whose shape is the
inverse Fourier transform of the filter bandpass characteristic. For example, if
the filter is a square pulse in frequency, the temporal pulses will be sinc
functions. York and Compton demonstrated this with an array of three
oscillators [5].

A few months later, York and Compton published additional results showing
that, when a mode-locked array of oscillators is used to feed a linear array of
radiating elements, the resulting beam scans as a function of time [6]. This is a
consequence of the fact that the radiating elements are fed with slightly differing
frequencies. The frequency differences may be viewed as relative phases
changing linearly with time. Thus, the inter-element phasing of the array of
elements changes linearly with time, resulting in a beam that scans with time.
The repetition rate of the scan is just the period of the pulse output of the array,
and at any given angle in the far-zone pattern, the received signal will repeat
temporally with this same period as the beam repeatedly scans past that angle.
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More recently, the unlocked state of such arrays has been studied as a generator
of a chaotic output signal. The array is controlled by modulation of the coupling
parameters with the objective of embedding information in the transitioning of
the signal between the various unstable periodic orbits [91].

As indicated by York and Itoh [40], all of the phenomena observed for coupled
voltage controlled oscillators (VCOs) may also be produced by coupled phase-
locked loops (PLLs); one merely has more design flexibility when using PLLs.
Section 7.12 contains an introduction to the analysis of coupled phase-locked
loops. These principles were demonstrated in a two-element array by Martinez
and Compton [92]. This also holds true for mode-locked arrays [93].

6.6 Conclusion

In this chapter we have outlined the experimental work leading to the current
level of understanding of the design and fabrication of coupled-oscillator arrays
and associated radiating apertures and their performance characteristics. Of
course the work has continued as we write, and much of the most recent work
severely taxes the capabilities of the linear approximation in explaining the
results. Thus, the current trend favors full nonlinear design and analysis. While
more complex, such an approach more accurately describes the expected
behavior and permits exploitation of the nonlinear effects. These are aspects
discussed in Part III of this book.
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Part lll: Nonlinear Behavior

Chapter 7
Perturbation Models for Stability, Phase
Noise, and Modulation

The complex dynamics of coupled-oscillator arrays lead to the existence of a
multitude of steady-state solutions. In addition to finding or selecting a desired
steady-state solution, one further needs to guarantee its stability. In this section,
perturbation methods are described that allow the designer to examine both the
existence as well as the local stability of the various steady-state solutions of
coupled oscillator arrays. An introduction to stability analysis of nonlinear
dynamical systems is presented [94], followed by its application to coupled
oscillator systems [95] [96].

The perturbation nature of noise, leads to phase-noise analysis methods that are
closely related to the formulation used in the stability analysis. Analytical
models are presented that demonstrate the attractive properties of coupled inter-
injection locked oscillator systems, among them improved phase-noise
performance compared to single elements [97].

A straightforward application of coupled-oscillator arrays has been in power-
combining arrays where, by controlling the phase shift within an array of
synchronized oscillator elements, one can direct the radiated beam towards a
desired direction taking advantage of free-space power combining and
eliminating the use of lossy power-combining networks. The simple topologies
associated with such arrays have led to their consideration in communication

213
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system applications where one introduces modulation into the oscillator signals
[98,99]. Thus, methods to introduce modulation in such arrays are presented.
These architectures are distinguished from mixer-oscillator arrays where the
modulation is not applied in the oscillator signal. Finally, an introduction to the
analysis of coupled phase-locked loops is provided.

7.1 Preliminaries of Dynamical Systems

We have demonstrated in Part I of this book that coupled-oscillator arrays are
able to synchronize in frequency while maintaining a fixed distribution of the
relative phases between their elements, and that, despite the complex nature of
their dynamics, there are simple methods to control the phase relationships
among the array elements, which require a small number of control parameters.
It was also demonstrated that as the number of elements increases, there exist
many different synchronized solutions, with different ensemble frequency
values and different phase distributions. In order to be able to study the
behavior of the various solutions as selected parameters of the array are varied,
we must first provide a theoretical framework from nonlinear dynamical system
theory. This will allow us to classify the types of the solutions and the
phenomena that lead to creation or elimination of solutions as well as to
changes in the solution stability.

In this section, principles of stability analysis of nonlinear dynamical systems
are presented. The theory can be found in standard literature on dynamical
systems [100] [101] and nonlinear differential equations [94].

Following Parker and Chua [101] an autonomous continuous time dynamical
system is described by the system of differential equations

i = f(x) (7.1-1)

where the N-dimensional vector x € RN contains the state variables of the
system, and f(x): RN — RY is the vector field describing the dynamics of the
system. The order of system Eq. (7.1-1) is N. An initial condition x(t,) = x, is
assumed, where typically t, = 0 is set, since the vector field does not depend
explicitly on time.

In contrast, a non-autonomous continuous time dynamical system is described
by a system of equations of the form
x = f(x,t) (7.1-2)

where the vector field depends explicitly on time. A non-autonomous system
with period T can be expressed in the format of Eq. (7.1-1) by extending the
state vector by one more dimension 6 defined by 6 = 2m/T, with
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6(t,) = 2mt,/T. In the following a dynamical system defined by Eq. (7.1-1)
will be considered. A solution of Eq.(7.1-1) for a given initial condition is
called a trajectory or orbit.

A free-running oscillator and a coupled-oscillator array are autonomous
dynamical systems. They become non-autonomous when an external injection
source is present.

A steady state is the asymptotic behavior of a dynamical system governed by
(7.1-1) when t = oo, when the transient behavior has decayed to zero. A steady
state is also called a limit set. The mathematical definition of a limit set
includes the asymptotic behavior of a dynamical system both as time progresses
forward (t = +o0) and backward (t — —o0), distinguishing between w-limit
sets and a-limit sets, respectively.

Steady states can be classified into four different types, equilibrium points,
periodic solutions, quasi-periodic solutions, and chaotic solutions.
Equilibrium points x,, correspond to the solution of
f(x,) =0 (7.1-3)
An equilibrium point is the DC solution of an oscillator circuit.

A periodic solution x,(t), is a solution of Eq.(7.1-1) that has a minimum
period T, such as

x,(t+T) =x,(t) (7.1-4)
for every ¢. A periodic solution of an autonomous system is also called a limit

cycle.

A quasi-periodic solution is a solution that is equal to a countable sum of
periodic solutions with non-commensurate periods, in other words:

M
x,(t) = Z hy(t) (7.1-5)
i=1

where h;(t) are periodic solutions with minimum period T;. The various
frequencies f; = 1/T; form a linearly independent set of dimension p with
I1<p<M.

Finally, any bounded steady-state behavior that cannot be classified in one of
the previous types is a chaotic steady state.
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An N-dimensional dynamical system can be efficiently analyzed using a
Poincare map [101] [102]. The Poincare map is a transform that maps an
N-dimensional continuous system to an (N — 1) dimensional discrete time
system. This is illustrated in Fig. 7-1. Let us consider a continuous time
autonomous dynamical system described by Eq. (7.1-1), which has a periodic
solution denoted by L. At some point x,, of the periodic orbit, we define locally
a cross-section X that is a surface of dimension N — 1 intersecting L at a non-
zero angle. The periodic orbit returns to the point x, on the cross-section
¥ every T second. The sequence of points on the cross-section defines a discrete
time system, which is equivalent to the original continuous time system.
Furthermore, the limit cycle of an N-dimensional dynamical system is
represented by a point on an N — 1 dimensional surface. The reader is referred
to the literature for a precise mathematical definition of a Poincare map for both
cases of an autonomous and a non-autonomous system [101] [102]. It should be
noted that the computation of a Poincare map for autonomous systems is
complicated by the fact that the period of the limit cycle is not known a-priori;
whereas in the case of non-autonomous systems, the sampling period T is
known in advance due to the explicit dependence of Eq. (7.1-2) in time.

Having provided the fundamental definitions related to dynamical systems, and
the various types of existing solutions, the stability analysis of these solutions is
presented in the next section.

Fig. 7-1. Poincare map of a periodic orbit.
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7.1.1 Introduction to Stability Analysis of Nonlinear Dynamical
Systems

There exist different types of stability. For the precise mathematical definitions
and types of stability, the reader is referred to the literature [94] [101]. For the
purposes of this work, a rather qualitative definition is provided. A steady state
X, is (Lyapunov) stable if and only if there exists a neighborhood V' of x, such
that every trajectory with initial condition x € V' remains within V at all
times t > 0. Furthermore, a steady state is asymptotically stable if and only if
there exists a neighborhood V of x, such that every trajectory with initial
condition x € V reaches arbitrarily close to x, given enough time t > 0. In
other words, the w-limit set of any initial condition within V is x,. Conversely,
a steady state x, is unstable if there exists a neighborhood Vof x, such that x,,
is the a-limit set of all initial conditions in V. Finally, a steady state x,, is called
non-stable if for every neighborhood V, there exists at least one point whose
w-limit set is x, and one point whose a-limit set is x,,.

7.1.2 Equilibrium Point

The stability of an equilibrium point x, is examined by considering the linear
perturbation of the vector field f(x) at x,. The eigenvalues of the Jacobian
J(x,) of the vector field determine the stability of the solution.

df
dx,

with 6x(0) = 8x representing an initial perturbation from x,. The solution of
the linear differential equation Eq. (7.1-6) generally takes the form

ox =

ox =J(x,)0x (7.1-6)

N

Sx(t) = Z cielita; (7.1-7)
i=1
where A; and a; are the eigenvalues and eigenvectors of J(x,), respectively.
The constants c;are determined by the initial condition 8xy.

For a given N-dimensional vector field f(x) the N X N Jacobian matrix J has
N eigenvalues. An equilibrium point whose eigenvalues do not have a real part
equal to zero is called hyperbolic. If all eigenvalues have negative real parts, the
point x, is asymptotically stable. Correspondingly, if there exists one
eigenvalue with a positive real part, x, is unstable. Finally, if there exists one
eigenvalue with a real part equal to zero, the equilibrium point is non-
hyperbolic, a condition that is equivalent to the determinant of J being equal to
zero, and the eigenvalues of J are not sufficient to determine its stability.
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In the case of an N = 2-dimensional system, the Jacobian matrix has two
eigenvalues A, which satisfy the following characteristic equation [102]

2 —6A+A=0 (7.1-8)

where o is the sum and A the product of the two eigenvalues. The classification
of the hyperbolic equilibrium points and their stability for different values of 4
is shown in Fig. 7-2 [102].

7.1.3 Periodic Steady State

In order to determine the stability of a periodic solution x,(t) the linear
perturbation of Eq.(7.1-1), also called a linear variational equation, with
respect to the time varying x,(t) is formed, leading to a system of linear
differential equations with periodic coefficients.

_df(®
dx,

with 8x(0) = 8xq and for J[x,(t + T)] = J[x,(t)].

ox ox = J[x,(t)]6x (7.1-9)
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Fig. 7-2. Hyperbolic equilibria of a
two-dimensional system.
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The solution of Eq. (7.1-6) is derived using Floquet theory [94]
N N

8x(5) = ) amlpit) = ) celipy(t)  (1.1-10)

i=1 i=1

~l e

where m; are the Floquet multipliers and p;(t) are periodic vector functions.
The Floquet exponents A; are related to the multipliers by

m; = eh’ (7.1-11)

It is seen from Eq.(7.1-11) that there is not a unique mapping between
multipliers and exponents, as adding to any exponent a complex factor jk 2 /T
with k an arbitrary integer results in the same multiplier.

The stability of x,(t) is determined by the Floquet multipliers m;. They can be
calculated by direct integration of Eq. (7.1-9) for one period T with initial
condition éx(0) = Iy where Iy is the identity diagonal square matrix of
dimension N. The result of the integration is the monodromy matrix C whose
eigenvalues are the desired Floquet mutlipliers m; [94].

A periodic solution x,(t) of an autonomous system has at least one Floquet
multiplier with magnitude equal to 1, or equivalently a Floquet exponent equal
to zero. Furthermore, a periodic solution x,(t) is stable if the remaining
multipliers have a magnitude less than one (|m;|<1). Correspondingly, if one
multiplier with magnitude larger than 1 exists, the solution is unstable.

7.1.4 Lyapunov Exponents
The Lyapunov exponents are defined as follows
1
Ui = tlim ?ln|e’1it| (7.1-12)

and can be considered a generalization of both the characteristic eigenvalues of
the equilibrium point and the Floquet multipliers of the periodic steady state
[101]. In fact, the Lyapunov exponents can be used to determine the stability of
quasi-periodic and chaotic steady-state solutions.

One can easily see from Eq.(7.1-7) that the Lyapunov exponents of the
equilibrium point correspond to the real part of the characteristic eigenvalues.
Hieq = Re{A;} (7.1-13)

Correspondingly the Lyapunov exponents of the periodic steady state are equal
to the natural logarithm of the magnitude of the Floquet multipliers divided by
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the period of the solution which is equal to the real part of the Floquet
exponents.

In|m;|
Hipss = Tl = Re{l;} (7.1-14)

7.2 Bifurcations of Nonlinear Dynamical Systems

A dynamical system described by Eq. (7.1-1), in practice depends on a set of
parameters & of dimension k (£ € R¥) which enter the definition of the vector
field

x=f(x$) (7.2-1)

A parameter corresponds to some circuit control voltage or bias voltage/current
or any other physical parameter such as the dimension of a transmission line.
As the parameter vector varies, the solutions of Eq. (7.2-1) change. The change
of stability of a specific steady-state solution, the creation of new steady-state
solutions or elimination of existing ones, as one or more parameters of a
nonlinear system vary is called a bifurcation [100,102]. The corresponding
parameter values for which a bifurcation occurs are called bifurcation values. A
bifurcation diagram is a plot of a selected state variable(s) corresponding to a
limit set versus the system parameter(s). An example of a bifurcation diagram
is the plot of the DC voltage at a selected circuit node or the oscillation
amplitude versus the external bias voltage of the oscillator. Bifurcations are
classified into /ocal and global. Local bifurcations are detected by studying the
vector field £ in a neighborhood of a limit set. In contrast, local information is
not sufficient to detect global bifurcations. Typically in this book we study
systems where one parameter is varied (k = 1).

7.2.1 Bifurcations of Equilibrium Points

Let us consider such a continuous time system with one parameter that has a
hyperbolic equilibrium point. As the parameter varies, there are two ways that a
hyperbolic point can become non-hyperbolic. In the first one, a simple real
eigenvalue becomes zero (4; = 0). In this case the system is going through a
bifurcation known as fold bifurcation. Fold bifurcation is also known as
turning-point or saddle-node bifurcation. In a fold bifurcation the equilibrium
point curve presents an infinite slope at the parameter value & = £, where one
real eigenvalue becomes zero. This is seen in the bifurcation diagram of a one-
dimensional system shown in Fig. 7-3.



Perturbation Models 221

\:
It
4
K
o
o

g6 &

Fig. 7-3. Fold bifurcation.

S

The infinite slope at &, corresponding to a real zero eigenvalue leads to a
folding, a turning point of the solution curve. For larger values of the parameter
& > &, no solutions exist, whereas for § < &, two solutions exist. In fact, one
solution branch contains stable nodes indicated by a solid line, whereas the
other unstable (saddle) solutions, and this is indicated by a dotted line [102]. In
the case of a one-dimensional system, the unstable solution is a node, whereas
in the general case it is a saddle. At the critical value & = &,, the node and
saddle collide, hence the name saddle-node bifurcation.

In the second case, a pair of simple complex eigenvalues fall on the imaginary
axis (A, = tjw, with w, > 0). In this case, the system undergoes a Hopf
bifurcation, and a limit cycle is born or is extinguished. It is straightforward to
see that a Hopf bifurcation requires that the system be at least second order
(n=2).

An example of a Hopf bifurcation in a two-dimensional system is shown in
Fig. 7-4. In a supercritical Hopf bifurcation (Fig. 7-4 a), a stable limit cycle is
born as the parameter goes through the bifurcation value &,. At the same time
the stable equilibrium solution becomes unstable. In subcritical Hopf
bifurcation (Fig. 7-4 b), an unstable limit cycle is created while an unstable
equilibrium point becomes stable.
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7.2.2 Bifurcations of Periodic Orbits

Correspondingly, a hyperbolic limit cycle is a limit cycle that does not have any
Floquet multipliers with magnitude equal to one [102]. A periodic steady state
of an autonomous system has one Floquet multiplier equal to one, and
therefore, it is hyperbolic if the remaining multipliers do not have magnitude
equal to one.

Given a periodic steady state with frequency w = 21 /T, there exist three types
of bifurcations for one-parameter systems [102], corresponding to three distinct
possibilities that a multiplier crosses the unit cycle as the parameter is varied,
shown in Fig. 7-5.

In the fold bifurcation (Fig. 7-5 a), a real multiplier takes the value m = 1. In
this case the frequency of the limit cycle remains the same, something that can
be inferred from Fig. 7-5 a) and Eq. (7.1-10), which describes the linear
perturbation of the dynamical system around the periodic steady state. A
Floquet multiplier equal to 1 leads to a perturbation that evolves as

8x(t) = cel®tp(t) (7.2-2)

with n integer and therefore it does not perturb the oscillation frequency of the
system. A fold bifurcation leads to a change in the stability of the periodic
steady-state solution, much as the fold bifurcation of an equilibrium point does
for the equilibrium point.
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Fig. 7-5. Bifurcations of periodic orbits, a) fold, b) flip, and
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A flip bifurcation occurs when the multiplier becomes m = —1 (Fig. 7-5 b). In
contrast to the fold bifurcation a flip bifurcation leads to the existence of a new
limit cycle whose oscillation frequency is half of the original one. Due to this
fact, a flip bifurcation is also known as a period-doubling bifurcation. The
contribution to the linear variational equation of the m = —1 multiplier is

8x(t) = ce’2p(1) (7.2-3)

where one can observe the appearance of a term with a frequency half of the
original one.

Finally, in a Neimark-Sacker or torus bifurcation, a pair of complex conjugate
multipliers appear on the unit cycle (Fig. 7-5 ¢). As a result a new frequency,
which is not harmonically related to the orininal one, appears in the system,
leading to the onset of a quasi-periodic solution. The contribution to the linear
variational equation of this Floquet multiplier is expressed as

8x(t) = celV®tp(t) (7.2-4)

where v is not an integer.
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7.3 The Averaging Method and Multiple Time Scales

The averaging method is typically used to analyze the periodic steady-state
solutions of weakly nonlinear systems

x = ef (x,€) (7.3-1)

and perturbations of the linear oscillator systems [103] [100], with
€ K 1. It was originally developed by Krylov and Bogoliubov [104]. The
method is particularly suitable to analyze the perturbed linear oscillator
problem described by

¥+ w?x = gf (x) (7.3-2)

where w, x, f € R. The van der Pol differential equation belongs to this class of
systems with f(x) = (1 — x?)x. In the case of weakly coupled oscillators, an
equation of the form Eq. (7.3-2) is used to describe each oscillator, and f (x)
contains the nonlinear term of the free-running (uncoupled) oscillator as well as
contributions from external coupled signals from other oscillators, which can be
linear or nonlinear. The averaging theorem [100] Uc585947 states that there
exists a change of coordinates x = y + ew(y, €) which transforms Eq. (7.3-1)
to the averaged system

y=ef(3) (7.3-3)
where

21

- 1
o) =+ . f(¥(2),0)dz (7.3-4)

The system given by Eq. (7.3-3) is an autonomous system, whereas Eq. (7.3-1)
can be non-autonomous. The essential property of the averaged system that is
extensively applied in the study of coupled oscillator systems is that a
hyperbolic periodic steady state of Eq.(7.3-3) corresponds to a hyperbolic
equilibrium point of Eq.(7.3-1) and that both steady states have the same
stability [100]. This essentially means that the eigenvalues of the linearized
system of an equilibrium point of Eq. (7.3-3) determine its stability. This is
quite useful as obtaining the Floquet multipliers of a microwave oscillator may
not be a trivial task. Furthermore, for the cases that are considered in this book,
the bifurcations of the averaged system are the same as those of the original
system [100].

In order to transform the perturbed linear oscillator problem in the standard
form Eq. (7.3-1), the following transformation (known as the van der Pol
transformation [100] [103]) is commonly applied to Eq.(7.3-2) before
averaging,
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x = Acos(wt + ¢) (7.3-5)

X = —wAsin(wt + ¢)
In this case Eq. (7.3-2) becomes

A= —%sin(wt +@)f (A pe) =egi(A ¢e)  (7.3-6)

. €
¢~ ——cos(wt + )f(A ¢,€) = eg2(A, ¢, )
Applying Eq. (7.3-4), the averaged solution is obtained
A=eg,(A$) (7.3-7)

¢ =eg2(A ¢)

It should be noted that the transformation given by Eq. (7.3-5) and subsequent
application of the perturbation method limits the analysis of the system given
by Eq. (7.3-2) locally near the oscillation frequency w in the frequency domain.
The system can be studied near a different harmonic by modifying
appropriately the transformation, that is, setting nw in place of w where n is the
desired harmonic order. In practice, considering the oscillator behavior near the
fundamental frequency is sufficient for the study of high Q oscillators because
higher harmonics are small and therefore can be ignored in the analysis.
Specifically, the averaged Van del Pol differential equation for which
f(x) = (1 — x2)x becomes [103]

- A?
A=A <1 _ —) (7.3-8)

The above system leads to a nontrivial steady-state oscillation with amplitude
A = 2 obtained by requiring that A = 0.

7.4 Averaging Theory in Coupled Oscillator Systems

Kurokawa considered the oscillator equivalent of a series resistance,
inductance, capacitance (RLC) resonator connected in series with a negative
resistance and applied the averaging theory to study the properties of noisy
oscillators and injection locked oscillators [105].
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The theory of Kurokawa applied to the study of coupled oscillator arrays was
introduced to the antennas and microwaves communities by Stephan [1] with
an aim towards antenna-array applications such as power-combining arrays and
phased arrays. The work of Stephan focused on taking advantage of the
dynamical properties of coupled oscillator array topologies in order to generate
constant phase shift distributions among the array elements in a continuously
variable manner. A parallel RLC resonator in parallel with a negative resistance
was used to model each oscillator, leading to a dual form of the one used by
Kurokawa.

It should be noted that there is significant theoretical work in the literature
regarding coupled oscillator systems, also called distributed and ladder
oscillators, considering the various operating modes and stability of one- and
two-dimensional arrays. Notable references are [106] [107] [108] [109]. The
latter work by Endo and Mori [109] presented an elegant way to obtain a
formulation equivalent to a perturbed van der Pol equation in vector form for an
array of coupled oscillators modeled as a parallel RLC resonator with a
negative resistance, and it will be given in the next section. An efficient
analysis of coupled oscillator arrays for quasi-optical power combining and the
stability of the various existing operating modes was proposed by York and
Compton [110] utilizing only the phase dynamics of the array, or in other words
the second equation of Eq. (7.3-7).

We may distinguish among power-combining applications where the stability
of the various operating modes of coupled oscillator systems is with an aim to
secure excitation of only the in-phase mode, and applications where an arbitrary
phase distribution among the oscillator elements is required (such as
beamforming and phased arrays). The latter may be viewed as a generalization
of the former.

Following their initial work, York produced a general formulation for coupled-
oscillator arrays based on the fundamental harmonic approximation and the
averaging method that is essentially used to date in most approximate analysis
methods for such systems [111], [95]. Furthermore, York introduced an elegant
way to achieve constant progressive phase shifts among the array oscillator
elements in a continuous fashion by only modifying the oscillation frequency of
the end elements of the array. In 2004, Heath presented an elegant and unifying
formulation of the application of the method of averaging (specifically the
Lindstedt method was used to derive the slow time differential equations [94])
in coupled-oscillator arrays along with a detailed stability analysis of various
different coupling network topologies [112]. The latter formulation is given
here
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Am = .U(Agm - A%nI?IAm

+ ) Knmidi cos(; — b + @) T4
2

Amqsm = AwpApy

N
4 KAy Sin(B; = b + Pir)
i=1

where an array of N oscillators is assumed. The variable A,, represents the
slowly varying averaged amplitude of oscillator m, as given in Eq. (7.3-7) with
the bar suppressed for simplicity. Correspondingly, the phase of oscillator m is
given by 0,, = w,t + ¢,, where ¢,,, is the averaged time varying component
of the oscillator phase corresponding to Eq. (7.3-7) (with the bar suppressed).
When uncoupled to the rest of the array elements, each oscillator m has a
periodic steady state with amplitude A,,, and frequency w,, = w, + Awy,.
Furthermore, each individual oscillator satisfies a van der Pol differential
equation of nonlinearity constant &, which appears in Eq. (7.4-1) through
U = € wy,/(2Q) where Q is the external quality factor of the resonator of each
oscillator element calculated using a reference load admittance G;. Coupling
among the oscillator elements is included in the form of a square complex
matrix T = [t,,;] of dimension N, with t,,; = T,,;e/®mi. Note that T is a
transfer function (unitless). If for example an admittance matrix is used to
express the coupling among oscillator elements, then T is the admittance matrix
normalized to the reference load admittance G;. In Eq. (7.4-1) the coupling
coefficients also appear in normalized form setting

K= [Kmi] = [Kmiej¢mi] = [tmiwm/zQ] (7.4-2)

Finally, Eq. (7.4-1) can be written in a complex valued compact format letting
Ay = ApelPm

N
U = JAW A, + U(ASy — |am|P)ay, + Z Komi Qi (7.4-3)
i=1

Under weak coupling conditions, the phase dynamics alone are sufficient to
analyze the behavior of the coupled oscillator system. We may then consider
only the second equation of Eq.(7.4-1) and assume that the oscillator
amplitudes are approximately equal to their uncoupled values A4,, = 4,. The
system of equations pertaining to the phase dynamics provide significant
insight and a very computationally efficient method to analyze arrays with a
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large number of elements. In fact, the analysis results of Part I of this book have
focused on the phase dynamics of coupled oscillator arrays. The system of
equations limited to the phase dynamics was introduced as the “generalized
phase model” by Heath in [112]:

N
(i)m = Awy, + z K sin(¢; — ¢m + Poyy) (7.4-4)

=1

When no coupling phase ®,,; is considered, the model is the well known
Kuramoto model [113]. In the special case where a bi-directional symmetrical
coupling matrix with k;, = K;,; is considered, the generalized phase model
coincides with the phase model introduced by York in [111].

A fixed point of Eq. (7.4-1) corresponds to a periodic steady-state solution,
defined for A,, = 0 and ¢,,, = ¢ with c an arbitrary constant. Letting ¢ take
nonzero values still corresponds to synchronized solutions of the array but for a
different frequency than w,.

.U(Atz)m - A%n)Am +

4

=0

KmiA;i cos(p; — by + Piy)

N
=1

(7.4-5)

N

(Bom = VA + ) KAy Sin(i = b + Pi)
i=1

=0

Every set (4,,, ¢,,) that satisfies the above conditions corresponds to an
oscillating mode of the array. In principle there exist up to 2= modes [111]. It
should be emphasized that, due to the autonomous nature of the coupled
oscillator system, it is possible to translate all oscillator phases ¢,,, by the same
arbitrarily large value and still obtain the same steady-state solution. This is
evidenced by the fact that only phase differences appear in Eq. (7.4-5). In other
words, the steady state is defined by the oscillator phase differences and not
their absolute phase.

The stability of the oscillating modes is examined by considering the linear
perturbation (4,, + 64, ¢m + S¢,,) of Eq. (7.4-1), which leads to a system
of linear differential equations
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§Am = u(A%m — 3‘1?]1211)5Am
D Kot 05y = G + Prui) 04,
i=1

N (7.4-6)
- z KmiA; sin(¢p; — ¢ + Ppi) (8¢,
i=1

- Srd)m)

N
Am6¢5m = _d)mé‘Am + 2 Kmi Sin(¢i - ¢m + (Dmi) 6Ai

i=1
N
D KA c05( = b + Pnt) (50
i=1
- 6¢m)
In the case of the generalized phase model one has

N
Odm = ) Ky €OS(hi = i + Opu) (5 = 8)  (7:4-7)
i=1

Because the steady state is defined by phase differences and not absolute phase
values, the perturbation phase values §¢,, of the steady state may not be small.
Their differences, however, are assumed to be small, and this allows one to take
the linear approximation of the cosine and sine terms in Eq. (7.4-1) and obtain
Eq. (7.4-6).

7.5 Obtaining the Parameters of the van der Pol
Oscillator Model

A useful analytical method is presented, that allows one to obtain the van der
Pol differential equation from a parallel resonator with a nonlinear voltage
dependent current source. The procedure follows the development presented by
Endo and Mori in [108], and it represents a time-domain formulation of van der
Pol’s model described in Section 1.2. This model has very low complexity, and
it can be easily incorporated into analysis of large arrays or proof of concept for
various topologies of coupled oscillators. In addition, it can be easily
introduced into circuit simulators.
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Given a nonlinear voltage dependent current source i, = f(v) with time
derivative di/dt = g,(v)v, where g,(v) = df(v)/dv is a nonlinear
conductance and applying Kirchhoff’s current law in the circuit of Fig. 7-6, one
has

1
C1'7+gLv+Zi1+in+iinj =0 (7.5-1)
which, after differentiating becomes
v

Defining the natural frequency of the tank w? = 1/LC, setting e = g,/(Cw,)
and scaling time t = w,7 the differential equation takes the form

" gv ’ € ]
vVitell+=|v +v+—i'y; =0 (7.5-3)
gL gL

where ()’ indicates the scaled time derivative d/d T

If we consider a nonlinear current source modeled by a third order polynomial,
the equation corresponding to the free-running oscillator (i;; = 0) can be
transformed to the van der Pol equation. Let a voltage-dependent current source
be of the form

in=fW) =—gyv+ gsv? (7.5-4)
so that
gy (v) = —gy +3g3v? (7.5-5)
Setting
91—9r 91— 9. 1
A=¢ = =— 7.5-6
gL Cw, Q ( )

one obtains:

in(v) = f(v)

l t L J,il C=—= gL Linj

Fig. 7-6. Oscillator model consisting of a parallel RLC resonator
and a nonlinear voltage dependent current source.
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393
91— 9L
The parameter 4 is equal to the inverse of the loaded quality factor, Q, of the
oscillator circuit of Fig. 7-6.

v’ =2 (1 - vz) v +v+ i'inj =0 (7.5-7)
- 9L

g1

Finally, scaling the voltage as

393
x=,pv= v (7.5-8)
\/— 91— 9L

the differential equation takes the desired form:

’ 3
x" =21 —x®)x"+x+ 2 ﬁilm}. =0 (7.5-9)

When no injection signal is present, i;;; = 0, and this equation becomes the
well known van der Pol equation.

X" =21 =x>)Dx"+x=0 (7.5-10)

The approximate solution to the van der Pol oscillation is [94]

2
X =2C0ST =V =—sinw,t (7.5-11)
JB
which is identical to the solution provided by the averaging method in
Section 7.3.

The approximate parallel model for the oscillator can be extracted using a
nonlinear simulator and calculating the admittance at a selected circuit node
[114]. Several authors have proposed experimental techniques to evaluate the
model parameters [114,115]. Measurement of the oscillator amplitude can be
used to obtain the scaling parameter [5. Injection locking the oscillator to an
external signal and measuring the locking bandwidth can be used to estimate
the Q and subsequently the second parameter 4 of the van der Pol model [114].
Alternatively, a low-frequency sinusoidal modulating signal can be introduced
in the bias circuitry of the oscillator, resulting in a phase modulated oscillator
output. The parameter A can then be obtained by measuring the relative
amplitude of the modulation sidebands [115].
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7.6 An Alternative Perturbation Model for Coupled-
Oscillator Systems

It is possible to formulate an alternative practical model for analyzing coupled
oscillator arrays by considering that the periodic steady state of the coupled
system is a perturbation of the free running steady state of the individual
oscillator elements when they are uncoupled to each other. This assumption
holds when the coupling is weak, as is typically the case when designing such
systems. The model described in this section was proposed in Ref. [116].

An advantage of this formulation is that there is no underlying assumption
about the oscillator nonlinearity model, such as for example a third-order
nonlinearity used in the van der Pol model, and each individual oscillator can
be designed using any numerical technique. The uncoupled free-running steady
state is expressed in the slow time (at the fundamental frequency component) as

Y,(V, w, w)V,el®o =0 (7.6-1)

where Y, is the admittance looking into a properly selected node of the circuit
and I/, the oscillation amplitude at that node (Fig. 7-7).

This is merely application of Kirchhoff’s current law at the node under
consideration. Y, typically contains both linear and nonlinear terms, and
depends on the oscillation frequency w = w, and amplitude V = V,. Generally,
one may assume that Y, depends on a number of additional circuit parameters,
such as bias voltages. In Eq. (7.6-1) a single parameter y = u, is considered
which corresponds to some DC voltage that allows for frequency tuning.
Assuming a nonzero periodic steady-state amplitude V,, Eq. (7.6-1) is satisfied
for Y, = 0. A free-running oscillator is an autonomous system characterized by
an arbitrary time reference, which translates in an arbitrary phase reference in
the frequency domain. As a result ¢, = 0 maybe set without loss of generality.

A coupled oscillator array of N elements is then described by

«—— 1

Oscillator Load T

Y, m chm IT’ (_| Yo

Fig. 7-7. Oscillator 1-port equivalent circuit.




Perturbation Models 233

N
Yo Vel ®m + Z YemiVie?®i =0 (7.6-2)
i=1

where the coupling is represented by the admittance matrix Y. (w) = [V (w)]
which typically is frequency dependent. The coupling results in a steady state
that can be expressed as a perturbation of the individual oscillator free-running
steady state as follows:

Vi =V, + AV, (1) (7.6-3)
bm = Pom + Admy (1)
Um = Hom T D

. iv

W = W, +¢m(t)_v—m
m

chi (

dw,

Yomi(@) = Yo (o) + w— w,)

oY,

ay,
Y (V, 0, 1) = = (Vi = V) + -
0]

V%
oY,

+ = (m — o)
auo m (]

((U - (1)0)

The perturbation assumption has been used in the first place by York, Liao, and
Lynch [33], and it is described in Section 1.3 dealing with the injection-locked
oscillator. However, in their analysis they proceed to assume a specific
nonlinear dependence of the adminttance on the amplitude V},, whereas here no
such assumption is made. Furthermore, it should be noted that the frequency
expansion has been done using the well known Kurokawa transformation [105]
introduced in Section 1.3. The commonly used coupling networks have a
broadband frequency response relative to the oscillator locking bandwidth,
which allows us to consider a constant coupling term Y.,,;(w) = Yo (@,).
Narrowband coupling networks were studied by Lynch and York [117]. After
some straightforward manipulation, one obtains
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aY,, Yy,
aw _]V + m¢m]+a Aﬂme

2y,
al}" (Vi = Vo Vi
’ (7.6-4)
+ Z chi (wo)Viej(¢i_¢m) =0
i=1

This system of differential equations represents the basis for an alternative
model formulation for a system of coupled oscillators. This formulation has
been essentially introduced in Ref. [116] and refined in Ref. [118] as well as
subsequent works as a basis to study several properties of coupled oscillator
arrays.

In order to appreciate the similarities and differences with the original model of
Section 7.4, the amplitude and phase equations are decoupled by first dividing
with dY,,/0w, and then considering real and imaginary parts. Let for
simplicity

ay ~tay
— = 7.6-5
Cy ]E)a)o 8V =Cl+jc) ( )
-1
__ay aY—CR+'C’
”_]60)0 o, * Jou

ay 7!
Ce = [Ccmi] = []% mz(wo)] = [lCcmzle] ml]

[ cmi le]

Using the above, Eq. (7.6-4) becomes
Vip + CE(Vpy, — )V + CR At Vi

+ Zlccmllv COS(¢0L ¢om + l‘”mz) (7 6- 6)
i=

=0



Perturbation Models 235

Vm(;bm + C[i' (Vm -

~

Wi + CiAtt Vi

+ ICcmilvi Sin(¢oi - ¢om + qlmi)

i

Furthermore, letting v,,, = V,,e/®m it is possible to express Eq. (7.6-6) in a
compact complex form

N
U+ Gy (V| = V)0 + GtV + D Comiv =0 (1:67)
i=1

The corresponding generalized phase model associated with this formulation is
obtained considering only the phase dynamics which results in

N
B + Chm + ) |Comil SNt = bom + ¥ =0 (1.6:8)

i=1

The periodic steady-state solution is obtained by setting V,, = 0 and ¢,,, = Aw
leading to

C{I/e (Vm - Vo)Vm + C;fA:ume
N

+ Zlccmilvi COS(¢oi - ¢om + qlmi) (7'6_9)
i=1

=0

Vnbw + Cf (Vi = Vo)V + ChAum iy
N

+ Z|Ccmilvi Sin(d)oi - ¢om + qjmi)

=1

o~

or in complex notation

CV(Vm - Vo)Vm + jVmlbw + CuA.ume
N

n Z C. Vied @oi=om) = @ (7.6-10)
i=1
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As was the case with the model represented by Eq. (7.4-1) the steady state of
the array is defined by phase differences and not absolute phases. In order to
study the stability of the steady-state solution, we form the linear perturbation
of Eq.(7.6-4) using V, + 8V, ¢ + ¢,), where small-amplitude
perturbations 8V;, and small-phase perturbation differences (8¢, — §¢p;) are
considered leading to

6Vm + [le(ZVm - V;)) + C;f(llm - .uo)]avm
N

+ ZlCcmil cos(¢o;i — Pom + Pmi) OV;

i=1
N

- ZICcmilVi sin(@o; — Pom + Pmi) (6¢; (7.6-11)
i=1

~ 8hm) = 0

Vmgqsm + [Aw + Cl?(zvm - VZ)) + C/,IL(.um - .uo)]6Vm
N

+ ZlCcmil sin(¢o; — Gom + ¥mi) OV;
i=1

N
+ ZlCcmilvi cos(¢o; — Pom + Pmi) (09;
i=1

- 5¢m) =0
Correspondingly, the generalized phase model stability is then determined by

N
8¢m + ) [Cemil €OS(ot = Bom + ¥imi) (55 = 6b) =0 (7.6-12)
i=1
The eigenvalues of the linear variational equation determine the stability of the
steady-state solutions. In practice, it is more computationally efficient to
formulate and process the array equations as matrix equations, and this is the
topic of the next section.

7.7 Matrix Equations for the Steady State and Stability
Analysis

It is easier from a computational point of view to express the various systems of
equations of the previous sections in matrix form. In order to do so, the
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following notation and properties are used. Bold letterface indicates a column
vector or a matrix. The dimension of the vector or square matrix is N unless
noted otherwise, 0 and 1 indicate a vector of zeros and a vector of ones,
respectively. The notation [a,,] and [a,,;] define a vector and a matrix a,
respectively. The function dg() converts a vector to a square diagonal matrix
of size N. It is straightforward to show that for any two vectors a and b,
dg(a)b = dg(b)a. The superscript ( )¥ indicates the conjugate transpose of a
matrix or vector, whereas superscripts ()® and ()! indicate real and imaginary
part. One can then rewrite Eq. (7.4-1) in matrix form

A+ jdg(A)¢ = dg(p,(A) + jAw)A + ®HrdA (7.7-1)

where @ = dg[ej¢m]. The system given by Eq.(7.7-1) can be integrated
numerically after separating real and imaginary parts,

o atmllgl-

where the vector function p;(A) is defined as p;(4) = [u(42,, — A%)]. The
generalized phase model (7.4-4) is then given by

dg(p:(4)A + (®Hkd) A

; (7.7-2)
dg(Aw)A + (®Hkd) A

$ = Aw + (PHd)'1 (7.7-3)

The steady state of Eq.(7.7-2) is computed by setting A =0 and ¢ = c1
which, when substituted in (7.7-2), result in the trivial solution A = 0 or

dg(p1 (@) + (@"e@)" | _ [°] (7.7-4)
dg(Aw — c1) + (@Hxd)'| 'O '
The linear variational equation of Eq. (7.7-1) is also written as a matrix linear
differential equation as follows
54 + jdg(A)8¢ = D,8A + Dy 8¢ (7.7-5)
with

D, =dg(g:(4) +j(Aw — c1)) + Pk (7.7-6)

Dy = j[®" Kk dg(A) — dg(@" kP A)]

where g4(A) = [u(42,, — 34%2)]. The complex system of Eq.(7.7-5) is
separated into real and imaginary parts as

N B I



238 Chapter 7

or

[5/'1] SA] _ [ D} D§ ] [5,4 (178)

o¢ 5¢]  [dg(a)'D} dg(A)lD}| 8¢
where dg(4)™! is a diagonal matrix with the inverse of the steady-state
oscillator amplitudes in its diagonal. The inversion operation is guaranteed to

exist under the assumption that the steady-state solution corresponds to nonzero
amplitudes for all oscillators.

Correspondingly, the linear variational equation of the generalized phase model
is
8¢p = Do = [@HK ® — dg(®k @1D)]REp  (7.7-9)

The matrix differential equation pertaining to the coupled-oscillator dynamics
according to the alternative model Eq. (7.6-4) becomes

V+jdg(N@ + Cypy(V) + C,dg(V)Ap + @HC @V =0  (7.7-10)

where py (V) = (dg(V) — V,I)V. After separating into real and imaginary parts
one obtains

o ast][3)
0 dg)lé
CEpy(V) + CRAg(V)Ap + (0 C, @) V
Clpy (V) + CLdg(V)Ap + (@7 C @)V

(7.7-11)

The steady-state solution is then given by the nonlinear system of algebraic
equations

CBpy (V) + CRAg(V)Ap + (0F C @) V
dg(V)Awl + Chpy (V) + CLdg(V)Ap + (@7 C D)V

(7.7-12)

Due to the perturbation assumption, one may consider a linear approximation of
the steady state as follows
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1
[cRr + (@ c.®)" cki|

o

(@7c.®)"1 ]
Aol + (®HC @)1 (7.7-13)

o]

1 I
il +—(@fc.®) LI
[ 14 + Vo ( c ) B J

_ [0

- [0]
For a given frequency offset Aw and phase distribution along the array elements
contained in @, one may solve the above linear system of 2N equations for the
N steady-state oscillator amplitudes and N control perturbations. Alternatively,
one may fix the control parameter of one arbitrarily selected oscillator and

solve the steady-state system for the N steady-state oscillator amplitudes, N — 1
remaining control perturbations and frequency offset Aw.

The stability of the steady-state solution is obtained taking the linear variational
equation of Eq.(7.7-10) leading to the following linearized system of
differential equations

8V + jdg(V)6¢ = DyéV + Dy 5¢ (7.7-14)
where

Dy = —jAwl — dg(Cygy (V) + CiAp) — ®HC @ (7.7-15)

Dy = —j[®"C pdg(V) — dg(@"C V)]

where gy(V) = 2V —V,I. One then separates real from imaginary parts to
obtain the desired system of linear differential equations

[(I) dg(()V)] [gg]=[zf ﬁg] [gg (7.7-16)
or
[5' [ [ de (V)" 1D1 dg(v)- 101“ (7.7-17)

The 2N eigenvalues of the square matrix K determine the stability of the
solution. It should be noted that due to the autonomous nature of the coupled-
oscillator array one eigenvalue of K is always zero. The solution is stable if all
remaining eigenvalues of K have negative real parts.

One can easily verify that K is unchanged to phase shifts that are common to all
oscillators. This is due to the fact that matrix Dy = Dg +j Dfl, contains only
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phase differences between the various elements. It is then possible to reduce the
system by one, thus eliminating the zero eigenvalue. Selecting an arbitrary
element (for example, element j) as a reference, the N phase equations of
Eq. (7.7-17) can be reduced by one by subtracting row (N + j), the equation
which corresponds to the phase of oscillator j, from every other equation. The
equation that corresponds to the phase of oscillator j can then be eliminated.
Furthermore, the elements of column (N + j) from row (N + 1) to (2N) are
multiplied by zero. In addition, in the amplitude equations, due to the fact that
Df; contains only phase differences, it is possible to subtract §¢; from all
phases forming D§,8¢ « Dg,(&]) —6¢;1). As a result column (N + j) can
also be eliminated because it is being multiplied by zero. The remaining square
matrix K of dimension N — 1 has the same eigenvalues with K minus the zero

eigenvalue. Matrix K corresponds to the system of 2N — 1 linear differential
equations

[‘W =K [‘W] (7.7-18)

sp| Lo
where the vector 8¢ of dimension N — 1 contains phase difference terms
relative to oscillator j. The spectral abscissa of a square matrix is the maximum

real part of its eigenvalues [119]. Therefore a steady-state solution is stable if
the spectral abscissa of K is negative.

7.8 A Comparison between the Two Perturbation
Models for Coupled Oscillator Systems

The similarity of the two models is made obvious by comparing the two
expressions corresponding to the generalized phase model Eq.(7.4-4) and
Eq. (7.6-8). The first model is defined for a parallel RLC tank with a nonlinear
voltage-dependent current source that exhibits a third-order nonlinearity similar
to the one described in Section 7.5 and shown in Fig. 7-6. In this case, the
admittance looking at the output node of the circuit is given by

1
Y(V,w) = (Yy(V) + G, + o tice (7.8-1)

where Yy (V) contains the nonlinear admittance of the current source at the
fundamental frequency component. The total admittance contains a real
nonlinear admittance term that is amplitude dependent, plus the load
admittance, and an imaginary term which is frequency dependent. As a result, a
real derivative versus the amplitude and an imaginary admittance derivative
versus the frequency are obtained:



Perturbation Models 241

ov _ (7.8-2)
v v

ay o

dw J

Furthermore, if we consider that for a parallel resonant circuit the external
quality factor is given by

w,C
Gy,
it is straightforward to verify that the Eqs. (7.4-4) and (7.6-8) are identical.

Q= (7.8-3)

In general, active devices in microwave frequencies exhibit nonlinear
susceptance as well as admittance, in addition to a nonlinear admittance that is
frequency dependent. In other words a more general expression for the
admittance at an oscillator circuit node is

Y(V,w) = Gy(V,w) + jBy(V, w) (7.8-4)

As a result, it is possible to view the alternative model (7.6-4) using complex
admittance derivatives as a generalized version of (7.4-1).

7.9 Externally Injection-Locked COAs

The coupled-oscillator array is an autonomous system that behaves like a single
distributed oscillator. However, there are several applications that require the
array to be injection-locked to an external signal. The reason can be to control
the phase distribution among the array elements [1], to reduce the array phase
noise [97], to fix the array frequency [120], or to introduce modulation to the
array [121] [122].

An external injection signal introduces an additive forcing term in the time-
domain expression of the perturbed oscillator equation. In Section 7.5, it was
demonstrated that the topology of a parallel RLC tank with a nonlinear voltage-
dependent current source and an external-injection current term leads to the
forced van der Pol equation.

The coupled-oscillator system of differential equations is derived by applying
Kirchhoff’s current or voltage law at a selected circuit node or loop of each
oscillator circuit in the array. Specifically, in the parallel-tank topology, the
corresponding equations are obtained by applying Kirchhoff’s current law at
the output nodes of each oscillator. In addition, these nodes correspond to the
nodes where the coupling network is connected to each oscillator. However,
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this does not always have to be the case, and the coupling network maybe
connected to a different oscillator node.

The external-injection signal typically may not be applied at the circuit node
where the coupled oscillator system is derived. In this case it is necessary to
derive analytically, or using a circuit simulator, a transfer function, which
relates the applied injection signal to an induced current or voltage at the node
or loop where the system equation is applied. Alternatively, it is possible to
consider that the nonlinear-oscillator admittance is a function of the injection
signal. It should be noted that in the general case there maybe more than one
injection signal applied, and that the injection signal may be coupled to the
coupled-oscillator array using different topologies, such as direct injection or
radiation coupling, as shown in Fig.7-8 [123].

Following the formulation of Chang et al. [123] where the authors assume a
parallel resonance model for the oscillator elements, and they consider the
external injection signal in the form of an additional current source in parallel
with the oscillator tank, one has

inj

BN

Radiated wave

Radiated wave

S S

Fig. 7-8. Externally injection-locked coupled-oscillator array
topologies, a) globally injected array, b) middle element
injection.
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N
Am = #(A(Z)m - A?n)Am + Z KmiA;j cos(¢p; — pp + Pni)
i=1

= (7.9-1)
+ KmpAp cos(d)p — ¢y + Cbmp)

N
Am‘ﬁm = AwpAm + Z KmiA;sin(@; — o + i)
i=1
+ Knp Amp SI0(Pmp — P + Prp)

where it is assumed that oscillator m is being injected by an external source
mp. The transfer function kK, = tp,wn/2Q = K,,,”,,ejq’ml7 consists of a
complex normalized term t,,, multiplied with a scaling factor w,,/2Q as is
done for the coupling terms from the other oscillator elements in the array. For
the case of an injection-current term in parallel with the oscillator tank
tmp = 1. Furthermore, when a single oscillator is considered, Eq.(7.9-1)
reduces to Adler’s equation.

Alternatively, it is possible to assume that the nonlinear oscillator admittance
Yo (vm, w, U, amp) at the node under consideration additionally depends on the
injection signal a,,, = Appe’/®mr = af, + jal,, present at an arbitrary node
of the oscillator circuit. Assuming a low amplitude-injection signal relative to
the oscillator amplitude pp,, = App/Am < 1, a Taylor expansion of the

oscillator admittance around the free running steady state gives, to first order,
[124]

Ym(vm: w, N, amp) = Yy (Vi w0, 10) + Yip ((pm' amp) (7.9-2)

with
ay,
Ymp (¢m: amp) = ﬁ“lmp COS(‘Pmp - ¢m)
Y, (7.9-3)
+5 T Ay SIN(Prp — Bm)
mp

The first term Y, (V;,, 0, 1) is the one considered in Eq. (7.6-3), where no
external injection signal is present. The second term Y;,,,, (d)m, amp) is a linear
perturbation term due to the external injection signal, which depends on the
relative phase between the oscillator and the injection signal. The admittance
expression is then introduced in the model presented in Section 7.6 and
repeated here for convenience
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N
Yo Vel ®m + Z YemiVie?®i =0 (7.9-4)
i=1

in order to derive the desired system of equations. As the injection power
increases, additional terms in the Taylor expansion can be included in order to
improve the accuracy of the approximation [124].

7.10 Phase Noise

Perturbation theory is applied in noise analysis of oscillators as typically noise
is modeled as a stochastic forcing term in the oscillator differential equation.
The stochastic nature of noise and the nonlinear nature of the oscillator circuits
make noise analysis a challenging problem. Applying the averaging theory,
Kurokawa [105] presented an elegant analysis of phase noise of free-running
and externally injection locked oscillators. A fundamental assumption in his
formulation is that noise, described by a time-domain stochastic process n,, (t)
can be expanded in a Fourier series around the arbitrarily chosen fundamental
frequency w,as

+00
() = Z N, (t)ei@ot (7.10-1)

n=—oo

with Ny, (t) = Gy (t) + jBinn (t) a complex noise process. In the following it
is assumed that n,,,(t) is a zero-mean white Gaussian process, which results in
Gmn(t) and By, (t) being uncorrelated white zero-mean Gaussian processes as
well [105].

Extending the work of Kurokawa, Chang et al. [97] studied phase noise in
mutually injection-locked coupled-oscillator arrays. Application of the noise
expansion and averaging allows us to include the effect of noise in the
oscillator formulation Eq. (7.4-1) in terms of Ny, (t) = Gpq () + jBp1 (t). In
the following, the subscript 1 is dropped for simplicity.

N
Am = ﬂ(Acz)m - A%n)Am + Z KmiA; cos(p; — ¢y + Prpi)
=1 (7.10-2)

w, B
Gm(t)

206,
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Amqsm = AwpApy

N
+ Z KmiAL' Sin(¢i - ¢m + cI)mi)

i=1
a)O

206, Bn(®
The solution of Eq.(7.10-2) is found in the form of a perturbation
(Vo + 6V, b + 8by) where (V,, ¢,,) is the solution to the noise-free system
of Eq. (7.4-1), leading to a forced variational system, which is the same as was
considered in the study of the stability of the steady state with the addition of a
noise-forcing term. As before, small amplitude-noise perturbations 6V, and
small phase-noise- perturbation differences (8§¢,,, — 8¢;) result in the forced
linear system of differential equations

§Am = u(A%m — 3‘3%1)814771

+ Z Kmi C05(¢i - ¢m + cI)mi) 6Ai
i=1

N
- 2 KA sin(¢p; — ¢ + Pppi) (6, (7.10-3)
i=1

0)0
206G,

— ) — G (1)

Am(sd)m = (Awm — )84y,
N

£ Ko Sy = o + Pyut) 84y
i=1

N
+ Z KmiA; 05 (; — by + i) (5h;

=1

— 8b) — == By (8)
206,

Correspondingly, the alternative model in the presence of noise is modified by
including an additive complex noise term N, (t) = G,,(t) + jBpy(t) in
Eq. (7.6-4), which leads to forcing terms G,,(t) and B, (t) in the left hand side
of the first and second equations of Eq. (7.6-11), respectively. For compactness,
the formulation is not repeated here.
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Following Chang [97], we proceed to solve Eq. (7.10-3) by first applying a
Fourier transform

JOS Ay, = u(A%y — 345)84,
N

+ Z K cos(¢; — pm + Pim) 64;

i=1
N
- Z Kot 5in(i — b + ) (56 (7109)

¢m)—m

JOA,, 6¢m—(Awm )84,

+ Z Kmi Sin(¢i - ¢m + cI)mi) 6Avi
i=1

N
+ Z KmiA; cos(¢; — pm + Pmyi) (66;

5¢m) _ZQ—G

The frequency () indicates offset from the fundamental w,, and the hat
indicates a Fourier transformed variable. The linear system of Eq. (7.10-4) is
processed easier in matrix form. Using the formulation of Section 7.7, it is
possible to write Eq. (7.10-4) in the form

. 64 64] _|G
QI—D[V]=N[V]= < 7.10-5
Gor -} |51 =N |55 = |5 (7.10-5)
or
871] G,
<| =P~ 7.10-6
I [Bn 109
with P = N 1 =[jar-D]! where the noise terms have been normalized as
G, = m] and B ] for compactness. It should be

ZQG QGL m
clarified that the identity matrix in Eq. (7.10-5) is of dimension 2N.
Correspondingly, the formulation pertaining to the generalized phase model is

{jQl — Dg}6¢p = N6 = B, (7.10-7)
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or
8¢ = PGB, (7.10-8)
with Pg = Nz = [jQI — Dg] .
The noise correlation matrix $(2) of the oscillator array is given by
84 .~ - Saa Sap
s(Q) = [v] A" s¢H]) = ] 7.10-9

where the superscript ()" denotes the conjugate transpose operation. The
various noise contributions AM-AM AM-PM, PM-AM, and PM-PM are easily
identified.' The operator ( ) denotes ensemble average, and following [97], for
white Gaussian processes one has

= =K = wH Wy0 \?
(GnGn)=(Ban)=(2QGL) I (7.10-10)

(Enﬁg) = (Enb,’{) =0
with o2 as the noise variance. Identical oscillators have been assumed and

identical noise sources have been applied at each oscillator for simplicity. The
spectral density of the oscillator array is given by the diagonal of S(Q).

The noise correlation matrix is then given by

Wy0 \?
S(Q) = ( - ) ppH 7.10-11
@ = (356 (7.10-11)
The generalized phase model expression can be used to obtain an approximate,
more simplified, expression for the correlation matrix Sg(Q), without
considering amplitude noise:

Se(Q) = (woa >2P j 24 (7.10-12)
Note that S¢(Q) is a square matrix of dimension N containing all correlation
terms among the noise quantities of the individual oscillators. The phase noise
spectra S () of the individual oscillators in the array are given by the

diagonal elements of S (L), or

2
Sep(Q) = ( 2“(’2“;) dg{PsPE}1 (7.10-13)

' AM is amplitude modulation, and PM is phase modulation.
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The phase noise spectrum S;4 () of a single oscillator element uncoupled to
the rest of the array corresponds to Dg = 0, and is given by

W, 0 )2 1
2Q0G,) Q2
This expression is in agreement with the one given by Kurokawa in Ref. [105]

and demonstrates the dependence of Q~2of the phase-noise spectrum for the
case of white Gaussian noise sources.

S16(Q) = ( (7.10-14)

The expression for the phase noise spectrum vector Sgq(Q) of each oscillator
element in the array finally can be written

Sep() = 5, ()Q2dg{PcPE}1 (7.10-15)

In addition to the phase noise of the individual coupled oscillator elements
8¢,,, in quasi optical power combining applications, one is also interested in
the phase noise of the combined output of the oscillators §¢p . Assuming small
perturbations, one may write the combined far-field amplitude V (t) as [97]

N
V(t) = Z A cos(wot + drm)
m=1

N (7.10-16)
~ NA Z cos(wot + ¢7)
=1
with
N
1
8¢y =1 2 1T8¢ (7.10-17)
m=1

The phase noise spectrum S;(Q) of the combined output is given by
Ser(Q) = (6¢r6¢7) = (1T8(p6 Hy) (7.10-18)

which, with the help of Eq. (7. 10—15) becomes

5. ()02
Sor(@) = 0% qrp pity (7.10-19)

Evaluation of the individual oscillator phase noise and the combined output
phase noise is generally possible only by numerically evaluating Eqs. (7.10-15)
and (7.10-19) respectively. Nonetheless, Chang et. al. [97] were able to
analytically study several cases commonly found in the literature.
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One of the results obtained by Chang, et al. [97] corresponds to the case where
D; = [®Hkd — dg(®HKrd1)]R, repeated here for convenience, is a
symmetric matrix (Dg = D¢). As one can see, Dg depends both on the
coupling network through K, and on the steady-state phase distribution of the
various oscillator array elements, through @. It can be easily verified that
D;1 = 0, which reflects the fact that the steady state is unchanged to within a
common constant phase term added to all oscillator elements, or in other words,
the fact that the steady state is defined by the phase differences of the various
elements. Using the above two properties, Chang et al. [97] have shown by
analytically evaluating P P¥ that 1TP;PHE1 = Q=2N, which results in

5:(Q)
N

This is an important result indicating that the phase noise of the combined array
output is reduced by a factor N compared to the individual free-running
oscillator phase noise (as indicated in Section 6.4). It remains to identify under
which conditions Dg is symmetric. One characteristic example is when an in-
phase steady-state solution is assumed (® = I) and a reciprocal coupling
network matrix with zero coupling phase k! = Kk = kX.

(7.10-20)

Ser(Q) =

In the case of a reciprocal coupling network of near-neighbor bilateral coupling
with zero coupling phase, D¢ is symmetric for any constant phase distribution
among the oscillator elements. It was also shown that in this case the individual
oscillator phase noise is also reduced by a factor N when the oscillators are in-
phase. The oscillator phase noise for steady states with phase distributions with
non-zero progressive phase A¢,, degrades with increasing A¢,, up to the point
where the array loses stability and the phase noise becomes equal to the free-
running oscillator phase-noise value.

Finally, it was shown by Chang et al. [97] that there is no phase noise
improvement in the case of unilaterally coupled oscillators, both for the
individual elements and the combined-array output (as indicated in Section
6.4).

The phase noise of externally injection-locked oscillators has been investigated
by Kurokawa in [105], where it was shown that the injected oscillator phase-
noise spectrum follows the phase-noise profile of the injection-locking signal
for small frequency offsets near the carrier, and it converges to the free-running
oscillator phase-noise spectrum for large frequency offsets. The formulation of
Kurokawa [105] was extended to externally injection locked coupled oscillator
arrays by Chang, et al. [123]. It is straightforward to obtain the formulation
pertaining to the externally injection-locked coupled-oscillator arrays by



250 Chapter 7

properly including in Eq. (7.10-2) terms due to injection sources as shown in
(7.9-1). Chang et al. [123] investigated several topologies including a globally
injected linear array, and arrays where a different single elements within the
array are injected. In summary, the results showed that for small offsets the
array phase-noise profile follows the injection-locking source phase-noise
profile. However, for large offsets from the carrier the globally illuminated case
showed a different behavior than the single-element illumination topology. In
the former, the phase noise improves with increasing number of array elements,
whereas in the latter the phase noise degrades with increasing number of
elements. Furthermore, the array phase-noise performance of the single-element
injection case improves as one injects an element closer to the array center.

7.11 Modulation

Several authors have considered the use of coupled-oscillator arrays in
communication system applications. It is possible to distinguish among
architectures where the coupled-oscillator array signal is modulated or
architectures employing a coupled-oscillator array as the local oscillator in a
multi-antenna up-converting or down-converting transceiver. The first topology
has been studied by Kykkotis et. al. in [99]. Due to the limiting properties of
oscillators, modulation formats that lead to large variations in the signal
envelope are not recommended as the oscillator dynamics will tend to smooth
these variations and introduce distortion. However, constant envelope
modulation formats (such as constant phase modulation (CPM) and Gaussian
minimum shift keying (GMSK)) represent excellent candidates to be employed
in such systems. In Ref. [99], the modulation is applied in the coupled-
oscillator array through an external injection signal. Additionally, it is possible
to introduce modulation through the frequency-tuning bias voltage of the
individual oscillators, as was proposed by Pogorzelski in Ref. [63].

A formulation based on Eq. (7.9-3) where the effect of the external-injection
signal is included in the oscillator admittance was used by Collado and
Georgiadis [124] to analyze the performance of such systems as the modulation
bandwidth increases. The effect of the modulation on the maximum stable
progressive constant phase shift among the oscillator elements was
investigated, and it was shown that the presence of modulation leads to a
reduction of the maximum achievable scanning range. In Fig. 7-9, the effect of
sinusoidal phase modulation in the maximum scanning range of a two-element
coupled oscillator array is shown. The maximum stable phase difference
between the first harmonics of the two oscillators is obtained using the
aforementioned model (denoted by RoM in Fig. 7-9), in good agreement with
measurements as well as simulation results obtained using a commercial
envelope transient circuit simulator. (The principles of nonlinear-circuit
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simulation methods, such the envelope transient, are described in Chapter 8.) In
addition, measurements of the maximum phase difference of the second
harmonics of the oscillators are presented, and compared with the results using
the envelope transient simulator. As can be seen from Fig. 7-9, extended
scanning range can be obtained by considering the phase variation of an
oscillator harmonic frequency rather than the fundamental frequency. Such
architectures used to provide extended phase-scanning range are described in
Section 8.6.

On the other hand, the use of coupled-oscillator arrays to provide the local
oscillator signal in multi-element communication transceivers has been studied
by Pogorzelski and Chiha in Ref. [74] and Pogorzelski in Ref. [125]. The
coupled-oscillator array is used to provide a local-oscillator signal to a mixer
with a desired phase distribution in order to appropriately steer the array
beam without the need for phase shifters and a complex local-oscillator
distributed feed network. In addition, more compact front ends can be
implemented employing an array of coupled self-oscillating mixers as was
proposed by ver Hoeye et al. [79].
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Fig. 7-9. Two-element coupled-oscillator array. Effect of
phase modulation index B on stable phase shift among the
oscillator elements. Sinusoidal phase modulation of 1 MHz
frequency is applied by external injection locking to the one
oscillator of the array. The results of the model developed
based on Eq. (7.9-3) are denoted by RoM. (Reprinted with
permission from [124], ©2001 IEEE.)
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7.12 Coupled Phase-Locked Loops

A phase-locked loop (PLL) is typically used in frequency-generation
applications, as well as in phase recovery and phase/frequency modu-
lation/demodulation applications where one oscillator is required to track the
phase of a signal present at its input. Therefore, it presents an excellent
candidate for generating phase distributions among oscillator elements, which
are required in electronic beam-steering applications. Martinez and Compton
[126] first proposed the use of a coupled phase-locked loop for phased arrays.
Subsequently, Buckwalter et. al. [127] extended their work to study the
synchronization properties of such loops, and Chang presented a phase noise
analysis [128].

The topology of a coupled PLL system is shown in Fig. 7-10, where a linear
array of oscillators is considered. An error signal e is formed by a mixing
operation where the outputs of adjacent oscillators are multiplied together. The
mixers are used as phase detectors; however, other more sophisticated
topologies can also be used where the oscillator outputs are first passed through
a frequency divider and are subsequently fed to a digital phase detector, as is
typically done in PLL architectures. Finally, the loop is closed by feeding the
error signal to each oscillator-control input after it has passed through a loop
filter. The relative phases between the oscillator elements are controlled by
introducing additional external signals in the error signal path such as x; and
Xy, shown in Fig. 7-10.

In the following, an introduction to the equations describing the dynamics of a
two-element coupled PLL system is presented, following the formulation by
Buckwalter et al. [127], and based on the topology indicated in Fig. 7-10.
Identical oscillators are assumed where, for simplicity, a linear voltage-to-
frequency model relation is considered

b = w; + K, y; (7.12-1)
The index i = 1,2 runs through the set of two oscillators. Furthermore, a first-
order loop filter is assumed with gain a, one zero 7,, and one pole 7,, having a
transfer function given by
1+ jwr,

H =—qg——>203* -
(w) = a7 ¥ jor, (7.12-2)

Identical loop filters are considered for both oscillators.
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X1

Fig. 7-10. Coupled phase-locked loop architecture.

Based on Fig. 7-10, and considering two oscillators the following system of
equations is derived

Tp¥1 +¥1 = aft,(é — %) + (e; — x1)] (7.12-3)
Y2 +¥2 = a[t,(X; — é;) + (x; — ;)] (7.12-4)
1 = w, + Ky, (7.12-5)

¢, = wy + Ky, (7.12-6)

e; = K, sin¢; sing, = %Kp cos(¢p, — ¢q) (7.12-7)

It should be noted that for the sake of simplicity the higher frequency mixing
product is not considered in the error signal e; as it is assumed that it will be
greatly attenuated by the loop filter.

Using the above equations, it is possible to derive one equation governing the
dynamics of the phase difference A¢ = ¢, — ¢p;. The external signals x; and
X, can be used to introduce modulation to the loop or simply set some desired
phase difference by introducing some offset to the equilibrium point of the
loop. Setting external signals equal to zero (x; = x, = 0) it is straightforward
to derive the differential equation that the phase difference between the
oscillators satisfies
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TpAP + [1 — 7,GsinAp]Ap + GcosAp —Aw =0 (7.12-8)

where Aw = w, — w; and G = aK,K,. The equilibrium points of the coupled
PLL correspond to A¢p = A¢ = 0 and are derived by solving

GcosAp —Aw =0 (7.12-9)

It is easy to verify that two solutions exist within the phase interval [0, 2), and
perturbation analysis of Eq. (7.12-8) can be used to show that only the one of
the two that falls in the interval [0, ) is stable [127]. This fact implies that the
phase difference of the two oscillators for the topology under consideration can
be tuned in the range [0,m), by varying the relative frequencies of the two
oscillators Aw.

The hold-in range ), of the coupled PLL is the range of the frequency
difference among the oscillator elements for which the system remains in a
stable equilibrium. The pull-in range on the other hand, is the range of the
frequency difference for which the system will eventually evolve to a stable
equilibrium. The hold-in range presents an upper bound to the pull-in range.
Based on the above analysis and the stability analysis of the equilibrium points,
it was determined by Buckwalter, et al. [127] that the hold-in range is equal to

Q, = 2G (7.12-10)

Furthermore, they calculated an approximate value for the pull-in range as

given by Eq. 7.12-11 [127]
’ 262 _
0~y 1+416° -1 (7.12-11)

P 21'12,

Finally, Buckwalter, et al. [127] studied the effect of circuit delay on the hold-
in and pull-in range of the system. Such delays are present in the system due to
the filter characteristics of the circuit, and they result in complex dynamic
behavior and instabilities. We remark that such filter characteristics may be
fruitfully interpreted as time delays if the delay is small. Unlike Chapter 5 of
this book, the analysis of Buckwalter, et al. does include the nonlinear behavior.
Recall that in Chapter 5 we introduced coupling delay in oscillator arrays via an
exponential of the Laplace transform variable. There the analysis was done in
the linear approximation, and thus the solutions did not exhibit any of the
complex dynamical behavior arising from nonlinearity. The delay introduced
was a true time delay due to propagation through the coupling lines and was not
constrained to be small. However, the late time behavior in that situation
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corresponds to solution at time equal to many delay times, a condition which
may be satisfied either by large t or small delay or both.

The model described in this section can be made progressively more complex,
by taking into account the high-frequency mixing product at the output of the
phase detector in the formulation, or by using a higher order loop filter and
digital phase detectors.

7.13 Conclusion

In this chapter we revisited the analysis of coupled-oscillator arrays and
presented two approximate models that describe the amplitude and phase
dynamics at the fundamental frequency of oscillation of the coupled oscillator
arrays. We presented a compact matrix formulation of the models, which can be
used to efficiently analyze the transient behavior of the arrays, determine the
various steady-state solutions, and examine their stability. In addition we
provided a formulation that enables one to consider external injection-locking
signals to the array, which can be used to introduce modulation into the array.
These models were used to provide an overview of the phase-noise analysis of
coupled-oscillator arrays. Such approximate models can be used to simulate
large coupled-oscillator arrays in a computationally efficient manner. Finally, it
was pointed out that PLLs can be substituted for VCOs in coupled systems,
resulting in behavior quite similar to that of the arrays discussed previously. In
the next chapter we describe nonlinear simulation methods that can be used to
accurately simulate and design oscillator circuits and coupled-oscillator arrays.
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Chapter 8
Numerical Methods for Simulating
Coupled Oscillator Arrays

Coupled-oscillator arrays present a challenge to the designer due to difficulties
both in the accurate simulation of oscillator elements and in the requirement for
computationally efficient simulation techniques for large arrays. In addition,
coupled-oscillator array design is made more difficult by the presence of
multiple operating modes and stability considerations. As a result, a number of
approximations need to be used to reduce the simulation time. Such are
describing function models for non-linear elements [15] [118] [129] [130],
along with perturbation models, infinite array approximations and continuum
models shown in Chapter 3 [38] [39] and in Chapter 4 [42] [43] [44],
respectively.

The progress in recent years in nonlinear simulation techniques has led to more
accurate analysis and optimization methods for nonlinear circuits such as
oscillators and mixers, as well as arrays [120,131]. Furthermore, these
nonlinear simulation tools can be combined with electromagnetic simulation in
order to analyze radiating structures and nonlinear antennas and arrays.

In this chapter, an introduction to numerical methods for simulating nonlinear
circuits is presented [132,131], focused on the simulation of autonomous
circuits such as oscillators, followed by an introduction to convex optimization
principles [133]. Nonlinear simulation techniques are demonstrated in order to
trace the steady-state solutions of coupled-oscillator arrays and investigate their
stability [116].

257
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8.1 Introduction to Numerical Methods

The recent advances in numerical methods for simulating nonlinear microwave
circuits permit one to model oscillator and coupled-oscillator array circuits
efficiently and accurately. In this section a brief introduction to the principles of
commonly used methods will be presented, with an aim towards obtaining the
periodic steady state of oscillator circuits. The reader is prompted to the
literature for an advanced and detailed description of the various methods, such
as for example Refs. [132,131,101,134]. Among the various existing numerical
methods, transient simulation, harmonic balance, and envelope-transient
simulation are described next.

8.1.1 Transient Simulation

A general nonlinear circuit is considered where a vector x of size N contains
the state variables of the circuit, namely node voltages and currents. The circuit
is described by a non-autonomous system of differential equations obtained by
applying Kirchhoff’s current law at the circuit nodes as well as the voltage law
at the circuit branches, as introduced in Eq. (7.1-2) and repeated here for
convenience

i = flxut) (8.1-1)

with an initial condition x(t,) = x,, where typically t, = 0. A vector u of size
P including external, known, forcing terms has been included for generality.

The system is classified as an initial value problem [132], and the computation
of its solution over a given time interval is known as transient simulation. There
exist various discrete time numerical integration methods that are used to
perform a transient simulation [101]. Assuming an integration time step q, the
values of the state variable vector x;, at time t,, = kq are generally computed as
follows [101]

m-1 m-1
Xk+1 = AnXk—n + q Z bnf(xk—n: Uk _n, tk—n) (8-1'2)
n=0 n=-1

The number of evaluations of the state variables and vector field that are
required for the evaluation of the next state k + 1 are called the steps of the
algorithm, and these steps define the order of the algorithm. An algorithm is
called explicit if the future state depends only on past values of the state
variables and the vector field, which corresponds to b_; = 0. If b_; # 0, the
algorithm is called implicit.

A commonly used single-step, explicit integration algorithm is the forward
Euler algorithm, which is defined as
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Xp+1 — X = q f (Xpe Upe, i) (8.1-3)
In contrast, the backward Euler algorithm is a single-step implicit algorithm
Xr1 = X = @ (X1, Wit 1, Lo 1) (8.1-4)

where the evaluation of the state vector at time k + 1 requires the computation
of the vector field at the same time step. The resulting nonlinear system of
algebraic equations maybe solved using some numerical root-finding algorithm.
Typically the Newton-Raphson algorithm is used to compute the solution at
each time step [132]. Assuming a nonlinear system h(x) of algebraic equations
with unknown the steady state x = x4 at time step t, = (k + 1)q,

h(x) = x —x, — q fO, U1, toy1) = 0 (8.1-5)

the Newton-Raphson algorithm is an iterative algorithm that requires an initial
guess Xo as a starting point, and proceeds to find the roots of h(x) by
calculating successive approximations of the unknown steady-state vector as

xU+D = xG) — [jh(x(n)]‘lh(x(i)) -0 (8.1-6)

where j is the iteration index, and jh(x(j)) is the Jacobian of the nonlinear
function h(x(i)) [132]. The steady-state vector at the previous time step j is a
good candidate for an initial guess xo = x}. It can be shown that if the initial
guess is close enough to a solution given by Eq. (8.1-5), if the nonlinear
function h is continuously differentiable, and the Jacobian jh is not singular,
the sequence given by Eq. (8.1-6) converges to a root of h.

Many different numerical integration algorithms (8.1-2) exist depending on the
choice of the various a, and b, coefficients. Selection of the appropriate
integration algorithm depends on computational complexity, accuracy, and
numerical stability considerations [101]. Moreover, modern integration routines
adaptively adjust the integration step and order of the integration algorithm.

In order to obtain the periodic steady state of an oscillator, one needs to
integrate Eq. (8.1-1) for a sufficient time interval in order to allow all transient
responses to decay. As a result, transient simulation is not an efficient method
to analyze the behavior of oscillator and coupled oscillator systems. Conversely
however, transient simulation provides a way to examine the stability of the
solutions, as time-domain integration converges only to stable steady-state
solutions.

There exist time-domain algorithms such as the shooting methods that
minimize the evaluation of the initial transient state in order to efficiently
obtain the desired periodic steady state. In this case, one solves the system of
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differential equations given by Eq. (8.1-1) subject to a periodic boundary
condition x(t) = x(t + T), where T is the period of the steady state. The reader
is prompted to the literature for a description of these methods [101,132].

8.1.2 Harmonic Balance Simulation

Frequency domain methods are particularly suited for the analysis of systems
where a periodic solution exists. In this case it is possible to represent the
steady-state solution by a trigonometric polynomial of degree M. The selected
value of M is a trade-off between accuracy and computational efficiency.
Specifically, assuming a state vector x(t) of size N, and a vector of external
forcing signals u(t) of size P, we can write

M

x(t) = Z X elkot (8.1-7)
k=—M
M

u(t) = Z U elkot (8.1-8)
k=-M

where w is the angular fundamental frequency of the periodic steady state. The
frequency domain state vector and external forcing signal vector are defined by
the N by 2M + 1 matrix X = [X}], and by the P by 2M + 1 matrix U = [U,],
respectively. Similarly, the vector field f(x, u, t) is a periodic function and can
also be expanded in a Fourier series as

M
fx,u,t) = F (X, U) efkot (8.1-9)
2,

where F = [F;(X,U)] is the frequency domain vector field N by 2M + 1
matrix, and depends both on X and U.

In a typical piecewise harmonic balance algorithm implementation [134], the
circuit is divided into a linear sub-circuit and a nonlinear sub-circuit, and
Kirchhoff’s laws are applied in the nodes that connect the two sub-circuits. The
response of the nonlinear sub-circuit is computed in the time domain and a fast
Fourier transform algorithm is used to convert the related data to the frequency
domain. As a result, in order to compute the frequency domain vector field
matrix F, one first applies the inverse Fourier transform to the state X and
external signal U vectors in order to obtain their time-domain expressions x and
u, then computes the time-domain vector field f(x, u, t), and finally applies the
Fourier transform to f(x,u, t) in order to obtain F.
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By introducing Egs. (8.1-7), (8.1-8) and (8.1-9) into the original time-domain
system of differential equations given by Eq.(8.1-1), and balancing the
coefficients of the exponential terms e/*¥®t, a system of algebraic equations is
obtained

HX,U)=QX - F(X,U) =0 (8.1-10)

The matrix £ contains the angular frequency terms generated by the time
derivative operation on the Fourier series expansion in Eq. (8.1-7). The above
system of algebraic equations is efficiently solved using root finding algorithms
such as for example the Newton-Raphson algorithm [134,132] described in the
previous section.

It should be noted, that when the steady state is expanded using only a first-
order trigonometric polynomial (M = 1), the corresponding formulation is
known as the describing function [131], and it can be used to obtain insightful
analytical expressions. The coupled-oscillator models of the previous chapter
are describing function formulations.

Harmonic balance is able to handle quasi-periodic solutions by properly
extending the polynomial basis and the time to a frequency-domain transform
algorithm [132].

8.1.3 Conversion Matrix

In microwave mixer circuits, a quasi-periodic steady-state solution exists with
two or more fundamental frequency components. In the simplest scenario, two
fundamental frequencies need to be considered corresponding to the local
oscillator signal and the RF input signal to the mixer. Correspondingly, a two-
fundamental-frequency harmonic balance algorithm needs to be used in order to
evaluate the steady state.

However, in typical mixer operation, the local oscillator signal has significantly
larger power than the RF input to the mixer. As a result, it is possible to
evaluate the periodic steady state in the absence of the RF input signal, defined
by the local oscillator signal and using a harmonic balance algorithm with a
single fundamental-frequency component. The effect of the RF input signal is
then considered as a linear perturbation of the previously defined steady state
leading to a computationally efficient algorithm known as the conversion
matrix method.

Assuming a linear perturbation of the steady-state  solution
x(t) = x,(t) + 6x(t), and an external RF signal u(t), the initial system of
differential equations becomes
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xo(t) = f(xo: 0, t) (8.1-11)

6x(t) = d, f(x,,0,t)0x(t) + d,f(x,,0,)u(t)

where x,(t) is the solution that corresponds to the large local-oscillator signal
in the absence of the RF input, and d,.f and d,,f are the time-varying Jacobians
of the vector field f versus the state vector x(t) and versus the input RF signal
vector u(t), respectively, evaluated at x,(t) and u(t) = 0. Both equations of
the above system are solved in the frequency domain by applying the harmonic
balance algorithm as Eq. (8.1-10). The frequency domain coefficients of the
Jacobian matrices involved in the second equation are obtained at no additional
computational cost during the Newton-Raphson harmonic balance computation
of the large signal steady state corresponding to the first equation of
Eq. (8.1-11) [131] [134].

8.1.4 Envelope Transient Simulation

The envelope transient simulation is a combination of the transient and
harmonic balance simulation methods proposed D. Sharrit [135] and E. Ngoya
and R. Larcheveque [136]. In effect, one represents the state variables, external
forcing terms, and vector field by Fourier-series expansions of time-varying
phasors

x(t) = X, (t)elket (8.1-12)
2,
M
u(t) = Uy (t)e/ket (8.1-13)
2,
M
flout) = Z Fo(X(0), U(t)) elkot (8.1-14)
k=—M

Consequently, a transformed system of differential equations is obtained that
has the form

X=-0X+FX,U)=-HX,U) (8.1-15)

The above system is solved using time-domain integration. The advantage of
envelope transient simulation over the traditional transient simulation is that the
time-varying phasors X(t) are slowly varying, allowing one to use a much
larger time step in the simulation. Being a time-domain simulation, envelope
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transient simulation may also be used to verify the stability of a steady-state
solution as it converges only to stable solutions.

8.1.5 Continuation Methods

Once a steady-state solution is obtained, continuation methods can be used to
obtain the families of steady-state solutions that occur as one or more
parameters of the circuit under consideration are varied. Continuation
techniques provide an initial condition that is close to the required steady-state
solution, so that the application of the Newton-Raphson or any other root
finding algorithm that is being used converges quickly and efficiently.

Assuming a parameter p = p, for which the steady-state solution x = x¢ has
been evaluated, it is then possible to obtain the steady-state solution x,
corresponding to the parameter value p = p, by considering a sequence of
values py < p; < py..<p. and progressively evaluating the steady state
corresponding to each parameter value by using the solution at each step as the
initial condition for the evaluation of the next step [132].

In order to reduce the steps of the continuation method, the already obtained
steady-state values are extrapolated. Assuming that the steady-state solution at
step k has been obtained by solving the harmonic balance system Eq. (8.1-10),

H, (X, pr) =0 (8.1-16)

the solution corresponding to py, 1 is approximated by linear extrapolation as

dH,,
JxH(Xpy1 — Xi) +¥(pk+1 —p) =0 (8.1-17)

where JxH}, is the Jacobian matrix of the harmonic balance system. The above
matrix equation can be solved in order to obtain an initial condition for the state
vector Xj 41

_19H;
Xir1 = Xy — UxHy] lﬁ(pk+1 - Pi) (8.1-18)

Continuation methods based on Eq. (8.1-18) may fail due to singularities in the
Jacobian matrix JHy, = [JxH, 0H,;/dp], which result from the existence of
multiple solutions versus the parameter under consideration. In this case,
tracing of the steady-state solutions can be accomplished by parameter
switching [137]. Parameter switching corresponds to tracing the steady-state
solutions versus another, different circuit parameter or steady-state variable, for
which the corresponding Jacobian matrix is not singular.
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8.2 Obtaining Periodic Steady-State Solutions of
Autonomous Circuits in Harmonic-Balance
Simulators

Autonomous circuits, such as free-running oscillators, present an additional
difficulty in harmonic-balance simulators due to the fact that the frequency
basis of the trigonometric polynomial expansion is unknown. The autonomous
nature of the oscillators is expressed in the time domain by the lack of a time
reference, which translates in the frequency domain to an arbitrary phase of one
of the harmonic components of its state variables. This fact is explored by
Rizzoli et. al. in [134], where it is proposed that the harmonic-balance system
of algebraic equations can be extended by one more equation defined by
arbitrarily setting the phase of one of the harmonics of a circuit state variable to
a specific value. As an example, the phase of the fundamental-harmonic
component may be set to zero leading to

Im{X,} =0 (8.2-1)

Augmenting the harmonic-balance system by one equation allows one to
additionally augment the number of unknowns by the fundamental frequency
w. Nonetheless, the Newton-Raphson algorithm may still converge to a DC
(non-oscillating) solution due to the difficulty in selecting a suitable initial
condition that is sufficiently close to the desired oscillating steady state.

Ch.-R Chang proposed an alternative method[138] in which an oscillator circuit
is represented by a one-port equivalent circuit by looking into the terminals of
the oscillator load, as shown in Fig. 8-1. The steady-state oscillation condition
in the frequency domain is expressed by the total resistance or admittance at the
load being equal to zero, known as the Kurokawa condition [129]. This
condition, expressed at each harmonic k, is written as

Iy

Y = V_ = Yi0s¢ T Yi10aa = 0 (8.2-2)
k

Oscillator Load

Yy Y, v T Y

Fig. 8-1. Oscillator 1-port equivalent circuit.
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Enforcing the above condition in addition to the harmonic balance system
enables the algorithm to avoid converging to solutions corresponding to zero
harmonic components V,and I, such as the non-oscillating DC solution. In
fact, in order to avoid the DC solution, it is necessary to impose the admittance
condition only at the fundamental harmonic component [138]

;=0 (8.2-3)
which leads to two additional real equations in the harmonic balance system
Re{V;} =0 (8.2-4)

Im{Y;} =0

As a result, two additional variables can be introduced to the extended
harmonic balance system, the unknown frequency w, and oscillation amplitude
V, at the load. The additional advantage of this formulation is that the designer
may impose in a circuit optimization problem the desired oscillation frequency
and amplitude at the load. A dual formulation may also be obtained by
considering a series one-port equivalent circuit and enforcing the oscillation
condition by setting the total impedance equal to zero.

The condition given by Eq. (8.2-3) was implemented by R. Quere, et al. in
commercial simulators [139], allowing for a practical design and optimization
methodology for autonomous circuits. According to Ref. [139], one needs to
introduce into the simulator an ideal probe circuit such as the one shown in
Fig. 8-2. The probe is connected in parallel to a selected circuit node and
consists of an ideal sinusoidal source of a given amplitude V;, phase ¢, and
frequency f;, connected in series with a current meter /; and an ideal filter. The
filter is such that it presents infinite impedance for frequencies other than the
ideal source frequency f;, thus restricting the effect of the probe to f;.

In free-running oscillator simulation, the phase of the probe is set to an arbitrary
but fixed value, for example zero. An optimization loop is run in order to find
the nonzero amplitude and frequency of the probe that correspond to zero
admittance Y; = I;/V;. Each iteration of the loop is a harmonic-balance
analysis. The result (V;, f;) of the optimization defines the oscillating steady
state. Alternatively, in the case of an externally injection-locked oscillator, the
frequency f; is known and corresponds to the frequency of the external source.
In this case, the pair (V;, ¢;) represents the unknowns of the optimization loop,
as the oscillation phase is not arbitrary any more; rather, it depends on the
injection source.
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Fig. 8-2. Ideal probe circuit used for oscillator simulation
in harmonic balance.

The ideal probe can also be used to initialize an envelope transient simulation
to the oscillating steady state [140]. The optimization loop is first run in order
to obtain the oscillating steady state (V;, f;), and subsequently an envelope-
transient analysis is executed with the probe connected to the circuit only for an
initial small time interval. The probe is then disconnected from the circuit (for
example with the help of a time-dependent switching resistor), and the circuit is
left to evolve for the remaining time interval according to its dynamics. This
way, the envelope-transient analysis can be used to verify the stability of the
steady-state solution. Once the probe is disconnected from the circuit, if the
solution is unstable, the circuit will evolve to a different steady state.

8.3 Numerical Analysis of a Voltage-Controlled
Oscillator

The simulation tools described in the previous section are now used to design a
voltage-controlled oscillator that may serve as the array element in the coupled-
oscillator array numerical analysis examples of the following sections. The
oscillator circuit is based on the pseudomorphic high electron mobility
transistor (pHEMT) device shown in Fig. 8-3.

A series resonator is connected at the gate terminal of the device, and a
feedback capacitor is introduced at the source terminal. The feedback
capacitance guarantees the presence of a negative resistance at the gate
terminal. At the output, a matching network composed of two inductors is
formed at the drain terminal. A frequency-tuning varactor is connected at the
source terminal. The pHEMT device is self-biased, using a resistor placed at the
source terminal of the device. Additionally, a 50-ohm () termination is used at
the gate terminal in order to accommodate a port for an external injection
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signal, and also bias the gate terminal at 0 V DC, ensuring a negative gate-

source (V) voltage. The values of the various circuit components and bias are
shown in Table 8-1.

;; Vad
Ly Lea
Ld Icr Vo
Cy G iy
Ri

Fig. 8-3. Oscillator circuit schematic.

Table 8-1. Oscillator circuit component values

Parameter Value
Lyq (nH) 0.5
Ly (nH) 0.2
C,(pF) 1.0
L, (nH) 3.3
C, (pF) 0.5
C, (pF) L5
R.kQ 5.0
R; (Q) 50.0
R; (Q) 50.0
R, (Q) 25.0
Vaa (V) 1.5
Ve ) 0-15
pHEMT NE3210S01
D, MA46H070-1056

nH = nanohenry, pF = picofarad
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Harmonic balance optimization using an ideal probe to ensure convergence to
the oscillating steady state was used for the design. The probe was connected to
the output node v,; however, other nodes may also be used such as any of the
pHEMT terminals. The use of the output node is convenient because one can
directly optimize the oscillator output power.

The VCO frequency and output power are shown in Fig. 8-4 and Fig. 8-5,
respectively. The oscillator is consuming about 22.5 mW from a 1.5-V supply
for all values of the control voltage. Its DC-to-RF conversion efficiency is
approximately 9.5 percent at . = 0 V and reduces to 6.3 percent as V. reaches
15 V.

The ideal probe is then used to simulate oscillator synchronization properties
when an external injection source is applied at the gate terminal. In the first
case, an external source with fixed power is connected to the circuit and its
frequency is varied in order to obtain the synchronization curves. The control
voltage is fixed to 10 V. The result is shown in Fig. 8-6 for two values of
available power of the injection source. The synchronization bandwidth is equal
to the frequency interval contained between the two edges of the closed curves
defined by the infinite slope of the power versus frequency curves. The free-
running steady state is represented by a point in the plot corresponding to a
frequency of 9.892 GHz and power of 2.9 decibels referenced to milliwatts
(dBm). As the injection power increases, the synchronization curves become
larger, and they eventually open [141].

10.4

0 3 6 9 12 15
V. (Volt)

Fig. 8-4. VCO frequency versus the control voltage.
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3.5

i) 3 6 9 12 15
V. (Volt)

Fig. 8-5. VCO output power versus the control voltage.
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Fig. 8-6. VCO synchronization curves versus the injection
signal frequency for a fixed control voltage V.= 10 V. The
free-running frequency and power are indicated by a point ‘X’
in the plot.

Alternatively, one may fix the injection signal frequency and obtain the
synchronization curves versus the control voltage V., which corresponds to
varying the free-running frequency of the oscillator. The corresponding curves
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obtained for an injection-signal frequency of 9.892 GHz (equal to the free-
running oscillator frequency at V. = 10 V) are shown in Fig. 8-7. It should be
noted that the curves of Fig. 8-6 and Fig. 8-7 are generated by sweeping the
phase difference between the injection signal and the oscillator output by
360 deg.

The points of infinite slope are the turning points of the curve, and due to the
fact that the synchronization curves are closed, for any frequency or control
voltage between them, there exist two solutions for the oscillator power.

In Fig. 8-7, the free-running frequency and power are indicated by a point ‘X’ in
the plot. For every V. value between the turning points, two steady-state
solutions exist (for example points A; and A, correspond to V. = 10.45 V).

It was shown in Section 7.2 that turning points correspond to a change of the
stability of the steady-state solution, and as a result, only one of the two
solution branches joined by the two turning points is stable. Each solution
branch corresponds to a phase shift variation of 180 deg between the injection
signal and the oscillator output. Therefore, in the case of an injection signal
with frequency close to the fundamental frequency of the oscillator, one can
obtain approximately up to 180 deg of (stable) phase shift range between the
injection signal and the oscillator signal.

4 : .
— ij =-35dBm AI
-~ P'm_i = -40 dBm
-3 ~
=
m
Z
ol
2t 4
1 ; :
8 9 10 11

V. (Volt)

Fig. 8-7. VCO synchronization curves versus the control
voltage for a fixed injection-signal frequency f;,; =9.892
GHz, equal to the oscillator free-running frequency at
V.=10V.
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It is possible to determine which one of the branches is stable by selecting one
point on it and running an envelope transient analysis initialized to the steady-
state solution as was described in Section 8.2. For example, for an injection
signal power of —35 dBm, the points A; and A, of output power 2.35 dBm and
3.4 dBm, respectively, correspond to V. = 10.45 (Fig. 8-7). The stability of A,
was examined by envelope transient simulation. A simulation time of
100 nanoseconds (ns) and a time step of 5 ns were used, with a Gear time-
domain integration algorithm [101]. The result is shown in Fig. 8-8, where one
can see that the system evolves to point A;, demonstrating that the upper branch
of Fig. 8-7 is stable. In a similar way, one can also verify that the upper branch
of Fig. 8-6 is the stable one.

Finally, it should be noted that the oscillator admittance derivatives of the
perturbation model of Section 7.6 that is used to model coupled oscillator
arrays, can be easily computed from a harmonic-balance simulation of the
single element with an ideal probe placed at the desired oscillator node. The
oscillator circuit admittance derivatives are equal to the derivatives of the ideal
probe admittance. Once the steady state corresponding to zero admittance
looking into the probe has been determined, the probe admittance derivatives
can be evaluated using finite differences [116]. As an example, the admittance
derivatives for the oscillator of Fig. 8-3, corresponding to the steady state
defined by control voltage V. = 10 V, frequency f, = 9.892 GHz, and
amplitude 0.442 V (P, = 2.9 dBm) are listed in Table 8-2.

4

(U8

P, (dBm)

9]

0 25 50 75 100
t (nsec)
Fig. 8-8. Envelope-transient analysis of the steady

state corresponding to A, of Fig. 8-7. A; is unstable
and the system evolves to A;.
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Table 8-2. Oscillator steady state and corresponding admittance partial
derivatives calculated using finite differences.

Parameter Value
P, (dBm) 2.9
f, (GHz) 9.892
V. (V) 10.0
oy (SV-1) 0.0547 +j 0.1957
v
oy -1 0.002 —j 0.008
7 SV J
o -1 -0.015+j0.109
T (SGHz™Y) J

8.4 Numerical Analysis of a Five-Element Linear
Coupled-Oscillator Array

The VCO of the previous section is used here to create a five-element linear
coupled-oscillator array. The array elements are coupled with resistor-loaded
transmission-line sections of 50-Q characteristic impedance and electrical
length of 360 deg at a frequency of 9.89 GHz, which corresponds to a control
voltage of 10 V in the free-running VCO element. The series resistors in the
transmission line coupling sections control the coupling strength among the
array elements, as was proposed by Liao and York in [142]. The schematic of
the array is shown in Fig. 8-9. The coupling network is connected at the
oscillator outputs and each oscillator can be externally injected through its gate
terminals.

Pinjii' Pz Pinz Pinja Pinjs

Fig. 8-9. Five-element linear coupled oscillator array.
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Harmonic-balance simulation is used to trace the various solutions of the
coupled oscillator array, by connecting one oscillator probe at the output node
of each oscillator element. That way, it is guaranteed that the simulator will
properly converge to the periodic steady state of each oscillator in the array.
The five probes extend the harmonic balance system of algebraic equations by
ten real equations; thereby allowing the designer to optimize ten additional
unknowns. The synchronized solutions (which correspond to a constant phase
shift among adjacent oscillator elements) are obtained by sweeping the phase
shift while optimizing the five oscillator-output voltages, the common
oscillation frequency and four control voltages, all except the one
corresponding to the middle oscillator.

The simulation results are shown in Figs. 8-10 through 8-12, where the output
power, the frequency, and the control voltages, respectively, are plotted versus
the oscillator phase shift. The coupling-network resistor is set to R = 270 Q,
and the control voltage of the middle oscillator is fixed at V.3 = 10 V. The
phase shift has been swept from 0 to 180 deg with the oscillator phases
increasing from oscillator 1 to the left and towards oscillator 5 to the right of
Fig. 8-9. Due to the symmetry of the array, the solution curves for the
remaining phase-shift values (0 to —180 deg) can be obtained by considering the
mirror image of the array elements with respect to the central element 3, in
other words replacing element 5 with element 1, and element 4 with element 2.

Figure 8-12 shows the variation of the oscillator-control voltages versus the
phase shift. One can see that the edge element-control voltages present a
significantly larger variation compared to the inner elements. In fact, the control
voltages of elements 2 and 4 remain practically constant for phase shifts up to
90 deg. This represents a numerical verification using a harmonic balance
simulation of the proposition of Liao and York [142] where by only tuning the
free-running frequency of the peripheral elements of a coupled-oscillator array,
it is possible to generate constant phase-shift distributions among the array
elements, thus both minimizing the required number of controls and eliminating
the need for phase shifters.
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Fig. 8-10. Five-element linear coupled-oscillator array.
Output power of each oscillator versus the phase shift

among adjacent elements. The coupling resistor is
R =270 Q.
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Fig. 8-11. Five-element linear coupled-oscillator array. Array

frequency versus the phase shift among adjacent elements.
The coupling resistor is R =270 Q.
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Fig. 8-12. Five-element linear coupled-oscillator array.
Control voltage of the oscillator elements versus the phase
shift among adjacent elements. The middle oscillator
element control voltage is fixed at V.; = 10 V, and the
coupling resistor is R = 270 Q.

However, one can observe from Fig. 8-11 that as the phase shift varies, the
array frequency also varies. One way to maintain a constant frequency for every
desired phase shift is by allowing the control voltage of one more oscillating
element to vary. In this example, one may allow the middle oscillator-element
control voltage (V.3) to vary, thus being able to eliminate potentially undesired
frequency variations. In Figs. 8-13 and 8-14, the five oscillator amplitudes and
control voltages are plotted versus the phase shift for a coupling resistor of
R = 330Q, while the array frequency is fixed at 9.892 GHz. The inner-
oscillator control voltages take very similar values; however, they need to be
varied in order to maintain the frequency of the array constant.

The coupling strength among the oscillator elements is set by the coupling
resistor R. In fact the selection of the optimum coupling strength is a trade-off
among a number of parameters. As the coupling strength increases, the
variation in the output power of the oscillators, the frequency, and the control
voltages with the phase shift all increase. As the coupling strength decreases,
the oscillators eventually desynchronize due to the presence of noise.
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0 45 90 135 180
Phase shift (%)

Fig. 8-13. Five element linear coupled oscillator array.
Output power versus phase shift for a coupling resistor
R = 330 Q. The array frequency is fixed at f = 9.892 GHz,
and the control voltages of all elements are allowed to vary.
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Fig. 8-14. Five element linear coupled oscillator array.
Oscillator control voltages versus phase shift for a coupling
resistor R = 330 Q. The array frequency is fixed at f = 9.892
GHz.



Numerical Methods for Simulating COAs 277

It is easily verified from Figs. 8-10 to Fig. 8-12, that for the value of the
coupling resistor of R = 270 Q, a harmonic balance solution for every
possible phase shift value exists. As the coupling strength increases, it is not
possible to obtain a solution for every phase shift. This is demonstrated in
Fig. 8-15, where oscillator output power of the harmonic balance solutions
corresponding to a coupling resistor of R = 220 Q is plotted. It is easily seen
that solutions exist only up to approximately 120 deg, and they are limited by
the presence of a turning point [116]. As the desired phase shift progressively
increases, the amplitude of oscillator 2 eventually drops to zero.

The stability of the solutions was also verified using envelope transient
analysis, using the method described in Section 8.2. The simulation results
showed that the coupled oscillator array with R = 270 Q loses stability for
phase shift values larger than approximately 58 deg. Additionally, the
perturbation model of Section 7.6 was used to evaluate the constant phase shift
steady-state solutions and their stability. The real part of the largest eigenvalue
of the linear variational equation of the steady-state solution is shown in
Fig. 8-16, where one can see that the perturbation model predicts loss of
stability for a phase shift approximately equal to 63 deg, a value that is in
relatively good agreement with the result obtained from envelope transient
simulation.

4

6 45 90 135 180

Phase shift (°)

Fig. 8-15. Five element linear coupled oscillator array. Output
power versus phase shift for a coupling resistor R = 220 Q .
As the coupling strength increases solutions do not exist for
every phase shift value. The middle oscillator element control
voltage is fixed atV.; = 10 V.
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Fig. 8-16. Stability analysis of the steady-state solution using
the perturbation model of Section 7.8 showing critical
eigenvalue real part versus the phase shift between adjacent
elements.

In Fig. 8-16, positive values of the real part correspond to unstable solutions.
The coupling resistor is R = 270 Q, and the control voltage of the middle
oscillator is fixed at V.3 = 10 V.

Further comparison between the harmonic balance solution and the perturbation
model is made in Figs. 8-17 and 8-18, where the amplitude of oscillators 1 and
3, and the array frequency are plotted versus the phase shift between adjacent
elements obtained using both methods. One can see that the agreement becomes
worse for large phase offsets where the perturbation is larger. The perturbation
model is limited to small perturbations around the free-running steady state,
which in this case is near the 0-deg phase shift (in-phase) solution, and,
additionally, to oscillators with small harmonic content [116,143]. Nonetheless,
the advantage of the perturbation model lies in its computational efficiency
which quickly becomes important as the number of array elements increases.
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Fig. 8-17. Comparison of harmonic balance simulation and

perturbation model

of Section 7.8. Output power of

oscillators 1 and 3 versus the phase shift between adjacent
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8.5 Numerical Analysis of an Externally Injection-locked
Five-Element Linear Coupled-Oscillator Array

Injection locking the array to an external source signal is desirable in several
applications in order to reduce the array phase noise as shown by Chang et al.
[123], or introduce modulation to the oscillator signal as considered by
Kykkotis et al. [99] and Auckland et al. [122].

The dynamics of the system and the stability of the various solutions depend
strongly on the element that is being injected, whether it is located in the center
of the array or near the edges [144,123,120]. Additionally, the number of
elements that are being externally injected strongly influences the number and
behavior of the existing solutions. Commonly used topologies are the one
proposed by Stephan [1], in which the two end elements of a linear array are
injection-locked to an external source, and the topology where the external
signal is illuminating all the elements of the coupled oscillator array leading to
a globally injection locked array [123], such as the case of a reflectarray or
transmit-array antenna.

In the case of an externally injection-locked array, the oscillation frequency is
determined by the frequency of the external source. In contrast, the phase
difference between the injection source and the element that is being injected
must be included in the unknowns of the harmonic-balance system of
equations. Similarly with the free-running array case, a probe must be
connected to each oscillator element in order to guarantee the convergence of
the harmonic balance simulator to the oscillating solution.

The five-element array of Section 8.5 is considered with a coupling resistor of
R = 330 Q. The middle element (3) is injection locked to an external signal
source through its gate termination. The steady-state solutions corresponding to
a constant phase shift among the array elements are traced versus the phase
shift among adjacent elements. The additional unknowns in the harmonic
balance optimization that can be obtained due to the use of the ideal probes are,
the five oscillator amplitudes, the four control voltages corresponding to all the
elements (except the one being injected), and the phase difference between the
injected element and the external source signal. The phase of the injected
element is fixed at 0 deg, and the phase of the injection signal ¢;y; is allowed
to vary. The control voltage of the injected element is fixed at 10 V. Finally, the
frequency of the external signal is 9.892 GHz.

In Fig. 8-19 the phase ¢;yjis plotted versus the phase shift between the
oscillator elements for different injection-signal powers. As was the case in
Section 8.4, due to the symmetry of the array, solution curves also exist for the
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phase shift interval between 0 deg and —180 deg, and they can be obtained by
taking the mirror image of the array elements with respect to the central
element 3. One can see that for a given injection-signal power and oscillator
phase shift it is possible to have two solutions corresponding to two different
values of ¢ ;.

The output power of the middle oscillator is plotted in Fig. 8-20 versus the
inter-oscillator phase shift, for different injection signal-power levels. It can be
seen that for lower injection-signal power levels (Pi,j = —35 dBm) solutions for
every inter-element phase shift in the range [0 deg, 180 deg) do not exist.
Specifically a closed solution curve exists for phase shifts up to approximately
100 deg where a turning point appears. As the injection power increases, the
solution curve widens, and the turning point shifts to a larger phase-shift value.
Finally for larger injection powers, the curve opens, forming two solution
branches. As shown in Fig. 8-20 as many as three solutions may exist for a
given phase shift value.

180 2T
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-90
180, 75 ) 35 180

Phase shift (°)

Fig. 8-19. Externally injection-locked five-element linear
coupled-oscillator array. Injection-signal phase versus
the oscillator phase shift, for different injection-signal
power levels. The injection signal frequency is 9.892 GHz,
and the coupling resistor R = 330 Q. The middle
oscillator element-control voltage is fixed at V,; = 10 V.
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Fig. 8-20. Externally injection locked five-element linear coupled-
oscillator array. Middle oscillator output power versus the phase
shift, for different injection signal power levels. The injection
signal frequency is 9.892 GHz, and the coupling resistor
R = 330 Q. The middle oscillator element control voltage is
fixedatV ; = 10 V.

Subsequently, the stability of the solutions must be examined, in order to
determine which of the multiple solutions are stable and will appear in practice.
The solution stability maybe determined using transient or envelope-transient
simulation, or by examining the eigenvalues of the linear variational system of
equations corresponding to one of the analytical model formulations of the
previous sections. In Ref. [120], Collado and Georgiadis studied the injection-
locked solutions of a two-element array, and it was determined that there exists
an optimum coupling strength that leads to a maximum stable constant phase-
shift range.

8.6 Harmonic Radiation for Extended Scanning Range

When an array of oscillators is coupled at the fundamental frequency, the
maximum stable phase-shift range that can be introduced between adjacent
array elements is 180 deg. In the case of a coupling network that has a coupling
phase of 0 deg, this translates to being able to generate constant phase-shift
distributions A¢ in the —90 deg to 90 deg range. Considering a linear array
where the radiating elements are placed at a half-wavelength distance, its main
beam can be scanned according to A¢ = kdsinf = msinf, where 6 is
measured from broadside, for a maximum of = 30 deg.
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It is possible to extend the phase-scanning range by considering the fact that the
phase variation of the oscillator N harmonic is N times the phase variation of
its fundamental frequency component, where N is the harmonic order. The task
of the designer then becomes that of being able to generate sufficient power in
the desired harmonic component. Essentially there are two ways of
implementing such architectures, either by placing a frequency N-tupler circuit
at the output of each oscillator, or by properly designing the oscillator elements
to have maximum power at the harmonic under consideration.

In Ref. [145], Alexanian et.al. proposed a linear array of five coupled
oscillators, where each oscillator element is followed by a frequency doubler, as
shown in Fig. 8-21. The fundamental frequency of the oscillators is 4 GHz, and
their output power is 9 dBm. The prototype array in Ref. [145] used a compact
field-effect transistor (FET) based frequency doubler circuit with 1 dB
conversion gain. The theoretical phase-tuning range that can be achieved with
this topology is 360 deg.

Based on the same principle, a frequency tripled two-dimensional coupled-
oscillator array operating in X-band was reported by Pogorzelski in Ref. [69].
An inter-oscillator phase difference ranging up to 60 deg was tripled to 180
deg. Thus, this array had a demonstrated H-plane scanning range of £90 deg.
The fabricated prototype additionally contained a diagnostic system used to
evaluate the phase differences between the various oscillator elements. The
array is described in more detail in Section 6.2.

Alternatively, Sanagi et.al. [146] proposed a four-element coupled-oscillator
array, where the oscillator elements were specifically designed in order to have
a high second-harmonic content, thus also obtaining a 360-deg phase-scanning
range. The proposed circuit is shown in (Fig. 8-22).

The oscillators are coupled using directional couplers. Termination circuits
based on the coupler networks are also attached to the edge elements in order to
implement a symmetrical coupling network where all oscillators see
approximately the same load. Sanagi et al. [146] extended the coupled
oscillator model based on the cubic nonlinearity, which was introduced by York
[111], in order to study their proposed circuit architecture. Specifically they
considered a nonzero square term in the cubic polynomial describing the
current-to-voltage characteristic of the nonlinear device used for the oscillators,
and additionally, Sanagi et al. [146] introduced in the formulation an additional
equation pertaining to the second harmonic. The block diagram of the
considered circuit topology is shown in Fig. 8-23, which was used to
investigate the effects in the array performance due to coupling both at the
fundamental frequency and at the second harmonic. It was shown that as the
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second harmonic coupling becomes stronger relative to the coupling at the
fundamental frequency, the achievable phase tuning range is reduced.
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Fig. 8-21. Coupled-oscillator array using frequency doublers for
extended scanning range. (Reprinted with permission from [145], ©1995
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Fig. 8-22. Coupled-oscillator array radiating the second
harmonic frequency component. (Reprinted with permission
from [146]. (This material is reproduced with permission of

John Wiley & Sons, Inc.)
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Fig. 8-23. Model of the coupled oscillator array radiating the
second harmonic-frequency component. (Reprinted with
permission from [146]. This material is reproduced with permission
of John Wiley & Sons, Inc.)

In Ref. [147], Georgiadis proposed a three-element coupled-oscillator array
shown in Fig. 8-24, also optimized in order to radiate the second-harmonic
output wave. The array operates based on the same principle as the one by
Sanagi et al. [146]. In this work however, the alternative perturbation model for
the coupled oscillator array given in Section 7.6 was extended in order to
include the formulation for the second-harmonic frequency component.

Furthermore, harmonic-balance analysis was used to trace the steady-state
solutions corresponding to constant phase shifts between the array elements at
the second-harmonic component. In order to do so, it is necessary to place two
ideal probes at each oscillator output node, one at each harmonic [147]. The
computational load associated with the optimization of the coupled-oscillator
array radiating the second harmonic is increased due to the fact that the number
of ideal probes, and therefore optimization goals, required for the simulation are
doubled.

8.7 Numerical Analysis of a Self-Oscillating Mixer

Self-oscillating mixers (SOMs) are particularly attractive for low cost, compact
implementations of microwave circuits due to the fact that the same circuit is
used to provide a local-oscillator signal as well as for frequency translation.
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Fig. 8-24. Three-element coupled oscillator array prototype, designed to radiate
the second harmonic frequency component. (Reprinted with permission from
[147], ©2007 IEEE.)

The performance parameters of self-oscillating mixer circuits (such as
conversion gain and inter-modulation distortion) can be evaluated using
harmonic-balance simulation provided that an ideal probe is used to enforce the
convergence of the simulator to the oscillating steady state. The probe
equations are set up in order to make sure that the admittance associated with
the probe is equal to zero at the oscillating frequency of the circuit.

The radio-frequency (RF) and intermediate-frequency (IF) signals are treated
by introducing a second fundamental frequency component in the harmonic-
balance frequency basis, thus using a two-fundamental harmonic balance
system of equations. Alternatively, one may consider the effect of the RF and
IF signals as a linear perturbation of the oscillating steady state, and employ the
conversion matrix method to efficiently compute the conversion gain of the
self-oscillating mixer. Finally, the RF and IF frequency signals can be
efficiently treated using an envelope-transient simulation that has been
initialized to the oscillating steady state.
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In Ref. [148], Herran et al. optimized the gain associated with a selected mixing
product of a self-oscillating mixer by using two ideal probes properly
introduced in the circuit and optimizing the reflection coefficients of an ideal
multi-harmonic load connected to the circuit input. The circuit schematic that
was used is shown in Fig. 8-25.

The first probe, called an auxiliary generator in Fig. 8-25, is used to enforce the
oscillation condition at the desired frequency. The admittance looking into this
probe is set to zero in order not to perturb the circuit steady state, and the
complex admittance or reflection coefficient of the multi-harmonic load at the
fundamental frequency that satisfies this condition is found through harmonic
balance optimization.

The second ideal generator probe is connected in series with the gate terminal
of the FET device, and its frequency corresponds to a desired N” harmonic that
is selected for the mixing process. Mixing products involving the second and
third harmonics were considered. The reflection coefficient of the multi-
harmonic load at the desired harmonic is set to —1, corresponding to a short
circuit. The optimization procedure consists of finding the complex amplitude
of the ideal generator which results in a desired mixing gain value. The
corresponding admittance looking into the generator must have a positive real
part in order for it to correspond to a passive load. In this way, the multi-
harmonic load is optimized for a desired mixing gain value and its reflection
coefficient at the fundamental frequency and selected harmonic frequency are
determined. The final design is obtained by implementing the obtained
reflection coefficient values using passive printed or lumped circuit
components [148].

A varactor diode may be appropriately placed in the self-oscillating mixer
circuit in order to provide a frequency-tuning capability. An externally
injection-locked self-oscillating mixer operates both as a mixer and a phase-
shifter element, where the phase shift between the input and output of the mixer
is varied by changing the free-running frequency of the self-oscillating mixer.

Being a synchronized oscillator, the externally injection locked self-oscillating
mixer can be used to provide a continuous phase-shift range of N x 180 deg
where the external injection signal is assumed to have a frequency near the
fundamental frequency of oscillation of the self-oscillating mixer, and the N”
oscillator harmonic is used in the mixing operation. Here, the fact that the
tuning range of the phase of the oscillator N” harmonic is N times the tuning
range of the phase of its fundamental frequency component being used [145].
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Fig. 8-25. Nonlinear optimization of a self-oscillating mixer. (a) Circuit topology: The
input signal of power P, passes through a band-pass filter with center frequency
fin, before it is mixed by the active circuit and collected at the output through an
intermediate frequency filter of center frequency f;r. The optimization procedure
consists of designing a multi-harmonic load with impedance Z,, at harmonic nw,.
Optimization is performed using an ideal auxiliary generator probe AG with
amplitude V,; and frequency w,; defined as in Fig. 8.2, as well as a substitution
generator with amplitude V¥ at the harmonic frequency Nw,. (b) Definition of the
multi-harmonic load using ideal circuit components. The figure indicates the input
reflection coefficients I, corresponding to the load impedance Z, at frequency
nw,. (c) Implementation of the multi-harmonic load using microstrip components
for the cases of a second (2 HSOM) and third (3 HSOM) harmonic self-oscillating
mixer, respectively. (Reprinted with permission from [148], ©2006 IEEE.)

It has been argued in Sections 7.9 and 8.5 dealing with the analysis of
externally injection locked oscillator arrays that such architectures can be used
to transmit information by introducing phase or frequency modulation in the
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external injection signal. Furthermore, the effect of modulation in the array
scanning range was investigated in Section 7.11. Such topologies are limited to
relatively narrowband applications due to the fact that the modulation strongly
affects the steady state of the synchronized oscillator signals. Furthermore,
specific modulation formats leading to small envelope variations are suitable
for such applications due to the fact that the amplitude-limiting properties of the
oscillators tend to introduce distortion to the envelope of the modulating
signals. Continuous phase modulation (CPM) [149], which is a constant
envelope modulation, is a prominent candidate for such systems. A well known
example of CPM is Gaussian minimum-shift keying (GMSK) used in the
Global System for Mobile Communications (GSM), second-generation mobile
(cellular) communication systems.

However, when modulation is introduced through the RF input signal of the
self-oscillating mixer, it does not strongly affect the synchronization state of the
mixer due to the fact that the input signal has a low power level and represents
only a perturbation of the steady state. As a result, self-oscillating mixers can
be used as frequency translation and phase-shifter circuits for input RF signals
of arbitrary modulation. Furthermore, proper design of the mixer can allow one
to obtain broadband gain and therefore the self-oscillating mixer is not limited
to RF input signals with narrowband modulation.

The use of an injection-locked self-oscillating mixer as a downconverter and
phase shifter element was studied by ver Hoeye [80]. The proposed circuit
topology is the same as in Fig. 8-25 with the addition of a varactor diode
connected in parallel with the series feedback shorted stub present at the source
terminal of the active device in order to provide a frequency tuning capability.
The SOM design was performed using the methodology described previously in
this section. An oscillation at 3.25 GHz was obtained, and an RF signal of
11.25 GHz was mixed with the third harmonic of the SOM, resulting in an IF
output of 1.5 GHz. Phase tuning of as much as 3 x 180 deg = 540 deg was
achieved by utilizing the third harmonic mixing product. The obtained
conversion gain was 4.5 dB over a bandwidth of approximately 100 MHz. It is
shown in Fig. 8-26 that the conversion gain depends both on the injection
power level P and on the varactor control voltage V. or, in other words, the
selected phase difference between the input and output SOM terminals. The
results have been obtained using a two-fundamental-harmonic balance
simulation, and one can observe the closed synchronization curves of the
injection locked self-oscillating mixer, which are similar to the ones obtained
for the synchronized oscillator in Fig. 8-7. The synchronization curves open as
the injection power increases, and there exist two solutions for a given control
voltage within the synchronization band limited by the curve edges of infinite
slope. Only one of the two solutions is stable and therefore measured
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experimentally, and in this case it corresponds to the branch with lower
conversion gain.

8.8 Conclusion

In this chapter we provided an introduction to nonlinear analysis methods with
a special focus on methods of analysis applied to nonlinear circuits such as
oscillators, self-oscillating mixers and coupled oscillator arrays. Such tools can
be combined with electromagnetic simulators in order to accurately model the
various passive components of the circuits under consideration such as
transmission lines, interconnects, resonators and antennas. Typically these
methods can be used to analyze small arrays consisting of tens of elements or
fewer due to their increased computational complexity. Additionally, they can
be used to compute the various parameters that are required to formulate the
approximate models of the previous chapter such as the nonlinear admittance
derivatives, which, in turn, can be used for an efficient less time-consuming
simulation and optimization of the arrays.
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Fig. 8-26. SOM conversion gain versus the varactor control voltage for different
injection power levels Ps. (Reprinted with permission from [80], ©2006 IEEE.)



Chapter 9
Beamforming in Coupled-Oscillator
Arrays

In this chapter, convex optimization and other global optimization techniques
are used to demonstrate the beamforming capabilities of coupled-oscillator
arrays and to optimize the stability of the coupled-oscillator array steady-state
solution. An introduction to convex optimization is presented followed by
several optimization problems showing the beamforming capabilities of such
arrays, such as pattern-nulling, difference-beam generation, and multiple-beam
generation [96,118,150,151,152]. A global optimization algorithm is also
presented that permits one to optimize the stability of the steady-state solution,
and therefore leads to more robust solutions and maximizes the obtained stable
beam-scanning limits [153]. Finally, the operation of a coupled-oscillator array
as an adaptive beamforming system is demonstrated [154].

9.1 Preliminary Concepts of Convex Optimization

Convex optimization is a class of optimization problems that has enjoyed an
increased scientific interest in the recent years due to the development of very
efficient algorithms essentially rendering their solution as easy as the solution
of linear programs [133]. As a result convex optimization problems have found
wide application in fields such as control and signal processing, and among
these, in the problem of antenna array beam-steering and beamforming. Due to
this fact, in this chapter we first present a brief introduction to convex
optimization and the mathematical framework required to express the
beamforming problem as a convex optimization problem and additionally

291



292 Chapter 9

introduce the coupled-oscillator array solutions presented in the previous
chapters as constraints to the problem at hand.

An optimization problem is expressed in the form
minimize f,(x)

. (9.1-1)
subjectto fi(x) < b; i=1,...,.M

where x is the optimization variable, a vector of dimension N. The real function
fo is called the objective function of the problem, and real f; are the
M constraints of the problem with limits or bounds b; [133]. The family of
convex optimization problems consists of those optimization problems where
both the objective and the constraints satisfy the property of convexity. In
convex optimization problems, a local minimum is also a global minimum; and
therefore, once a solution is found, it is guaranteed to be optimal. Additionally,
there exist many computationally efficient algorithms for solving convex
optimization problems, such as the interior point methods [155]. As a result,
once an optimization problem is formulated as a convex one, its efficient
resolution is guaranteed.

A set C is convex if for every two points x and y of dimension N that belong to
the set and any real number 6 such that 0< 60 <1, the point
z = 6x + (1 — 0)y also belongs in C. Geometrically this means that any point
z that lies on the line segment connecting x and y must belong to C. If, instead,
6 is allowed to take any real value, then the set C is called affine.
Correspondingly, an affine set contains every point on the line that is defined
by two points x and y. These concepts are illustrated in Fig. 9-1.

0<0<1

0<0

Fig. 9-1. Geometric interpretation of convex
and affine sets.
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Some well known convex sets are line segments and half spaces [133]. A half-
space is the solution set of a linear inequality of the form

{x|aTx < b} (9.1-2)
where a # 0. The hyperplane defined by the linear equality
{x|a"x = b} 9.1-3)

is an affine set (a # 0) that separates the space of N dimensional real vectors
into two convex half-spaces corresponding to the inequalities a’x < b and
a’x > b. A hyperplane is defined by a point x, and a nonzero vector a, and it
contains all vectors x such that the difference vector x — x,, is orthogonal to a
(Fig. 9-2).

A norm ball with center x. and radius 7 is a convex set defined by

{xlllx — x|l < 7} O.1-4)

where ||x|| is a properly defined norm of x, such as for example the Euclidean
norm. Furthermore, a norm cone is is a convex set defined as the set of (x, t)
pairs such that

(& Olllxll < t} (9.1-5)

N

If the Euclidean norm ||x||, = [N, x? is considered then the corresponding

norm cone is called a second-order cone, or ice-cream cone [133].

A real function f; is convex if its domain is a convex set and if for any two
vectors x and y in its domain, the following inequality holds

filax + by) < af;(x) + bf;(y) (9.1-6)

a'x= b=a"x%,

Fig. 9-2. Geometric interpretation of hyperplane
and hyperspace.
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where a and b are non-negative real numbers such that a + b = 1. One can
easily verify from Eq.(9.1-6) that a linear function is convex. Another
commonly used convex constraint is a linear matrix inequality [156]

F(x) = Fo+ XL, x;,F; >0 (9.1-7)

where x = [x,] is a vector of dimension N and F; = F! are real symmetric
matrices of dimension M. A real square matrix F(x) is positive definite
F(x) > 0, if for any nonzero vector u, u’ F(x)u > 0. Many convex constraints
such as linear inequalities, convex quadratic inequalities, and Lyapunov matrix
inequalities can be cast in the form of a linear matrix inequality. According to
Lyapunov theory, the system of differential equations

x = Ax (9.1-8)
is stable if and only if exists a positive definite matrix P > 0 such that
ATP+PA<O0 (9.1-9)

The above inequality is known as a Lyapunov matrix inequality. The inequality
of Eq. (9.1-9) with the matrix P as unknown can be cast in the form of a linear
matrix inequality [156].

The minimization of the maximum eigenvalue of a matrix A subject to a linear
matrix inequality constraint B(x) > 0 is a convex problem defined as [156]

minimize A

. (9.1-10)
subjectto AIy — A(x) > 0,B(x) >0

with A and B symmetric matrices that depend affinely on x. If one defines an
extended unknown vector y =[x A]T and ¢ =[0y 1]7 the eigenvalue
minimization problem can be written as minimization of a linear function
subject to a linear matrix inequality
minimize ¢’y
(9.1-11)
subjectto F(y) > 0

where B(x) > 0 together with AIy — A(x) > 0 have been formulated as a
single linear matrix inequality F(y) > 0.

Linear programming and least-squares optimization are two well known
examples of convex optimization problems. In linear programming, both the
objective and the constraints are linear functions
minimize ¢’ x
(9.1-12)
subjecttoalx < b; i =1,...,M
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In least squares optimization the objective function is a sum of squares which is
a convex function and there are no constraints

minimize [|Ax — |2 = ¥2,(aTx — b;)’ (9.1-13)

Where A = [a,,,] is an M by N matrix, a; is a vector of dimension N
containing the elements of column i of matrix A, and b is a vector of dimension
M.

Finally, the minimization of the maximum generalized eigenvalue of a pair of
symmetric matrices A and B that depend affinely on x, subject to an additional
linear matrix inequality constraint C(x) > 0 is a quasi-convex optimization
problem [156] expressed as

minimize A

(9.1-14)
subject to AB(x) —A(x) > 0,B(x) >0,C(x) >0

A real function f is quasi-convex if and only if its domain is a convex set, and
for any two vectors x and y in its domain, and a real number 8, such that
0 < 6 < 1, the following inequality holds [133]

f(x + (1 - 0)y) < max{f(x), f(3)} (9.1-15)

Convex functions are also quasi-convex but not vice-versa. The standard
formulation of a quasi-convex optimization problem has a quasi-convex
objective and convex constraints. The generalized eigenvalue minimization
problem given by Eq. (9.1-14) can be written in the standard format [156,133].
Similarly to convex optimization problems, quasi-convex optimization
problems can also be solved efficiently.

9.2 Beamfoming in COAs

The ability to generate constant phase distributions among the coupled-
oscillator array elements by tuning the frequency of only the edge array
elements has been one of the most attractive properties of coupled-oscillator
arrays as they can be used in beam-scanning applications eliminating the need
for phase shifters or a complicated local-oscillator feed network. If, however,
one is allowed to tune the frequency of more or all the array elements, then
additional features maybe introduced in the radiated pattern such as placement
of nulls at desired far-field angular directions.

Once a constant progressive phase shift is established among the array
elements, the main beam direction is steered towards a desired direction. In
Ref. [157], Steyskal showed that additional nulls maybe formed in the radiation
pattern at desired angular directions by introducing small perturbations to the
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phases of the array elements. This method was used by Heath [96] in
conjunction with the generalized phase model to demonstrate beamforming
capabilities using coupled-oscillator arrays. Finally, Georgiadis et al. [118]
extended Heath’s work by including both amplitude and phase perturbations. In
the following, a description of this beamforming methodology is provided.

The array factor of a uniform linear antenna-array of N elements is given by
F(0) = g=1 Vnej(nkd sin 0+¢y) (9.2-1)

where the element distance is d, and the angular direction 6 is measured from
broadside. The main beam is steered at 8,when the excitation amplitudes are

equal V,, =V, and the element phases are set as ¢,,, = —nkd sin 8,. The array
factor is then written in compact form
F(6) =Vulfl1y (9.2-2)

where u(0) = [e'j(”dein9+¢0n)]. If one introduces a perturbation in the
excitation amplitudes and phases x = [AVT A@T]" the array factor is
approximated to first order as

F6) =Vull1y +uf'[ly jV,Iy]x (9.2-3)

A constraint in the array factor at angle 6, is introduced by imposing |F (0,)| <
f1 where f; is a desired maximum level at 8;. Given M < N level constraints,
one may form a complex vector U=C+jS=[F(6,)F(@6,)..F(O,)I"
containing all the constraints and a second one containing f = [f; f5 ... fu]”
and combine them in a matrix inequality

V,C1ly — f VOS] —%C1N+f]
e B s L e ©2-4)

which can be written in compact form
[iISFx<f, (9.2-5)

The beamforming problem can be formulated as a convex optimization problem
as follows

min t
X
subject to ||x|| < t (9.2-6)
f[isFx<fy

where the linear objective is subject to a second-order cone constraint and a
linear inequality. Minimizing the norm of x ensures that the perturbation
approximation of the array factor is valid.
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The problem given by Eq. (9.2-6) was analytically solved by Georgiadis et al.
in Ref. [118] for the case where the inequality constraints are null constraints
(f1 = fr = 0). In fact, the analytical solution to this problem when considering
phase perturbations only was given by [157]. In this case [157,118],

tmin = (CLy)T(SST)7T(C1y) (9.2-7)
and
Apin = ST(SST)71(C1y) (9.2-8)

It is interesting to study Eq. (9.2-7), for the simple case of main-beam direction
at 8,with one nulling constraint at angle 8,. One then evaluates t,,;,,as

_— [V cos(nkda)]?
e » N sin2 (nkda)

(9.2-9)

where a = sin 8; — sin 6,. This shows that there exist combinations of 8, and
0,such that the required perturbation magnitude t,,;,, goes to infinity, for which
the optimization problem does not have a solution. These solutions correspond
to mkda = qm where m and g are integers. One such solution is for a = 0,
which corresponds to 8; = 8,; or in other words, when the desired null is in the
direction of the main lobe. A second solution is when

sinf; —sinfg, = (9.2-10)

kd
which corresponds to a desired null direction 8, that depends on the main beam
angle 6,. The existence of such points was also verified numerically for the
case of a coupled-oscillator array in [118,150].

In order to apply the pattern constraints to the coupled oscillator array, one
needs to limit the perturbation vectors x satisfying Eq. (9.2-6) to the set that
corresponds to a coupled-oscillator array steady-state solution. Reference [118]
introduced the coupled-oscillator array steady-state solution in Eq. (9.2-6) as an
additional linear constraint maintaining the convexity of the optimization
problem. The steady-state solution (7.7-12) is first reformulated to reflect the
nature of perturbation x, which contains both amplitude V,, =V, + AV, and
phase perturbations ¢, = ¢, + A, = —nkdsinf, + A¢p,,. Due to the
autonomous nature of the coupled oscillator array, the steady-state solution is
defined by the relative phases of the oscillator elements. In other words, the
phase of one oscillator maybe set to an arbitrary value, or alternatively the
phases of all oscillators can be changed by an equal amount without affecting
the steady state. This is verified by the steady-state expression Eq. (7.6-10)
where only phase differences are present. Consequently, a perturbation of the
steady state is set by considering the terms Ag, such that even though
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individually they may take large values, their relative differences are kept
small. This argument was also used in the early works of Kurokawa [105] when
modeling the externally injection-locked oscillator. It is, therefore, possible to
approximate the phase exponents appearing in Eq. (7.6-10) as

ef(¢n_¢m) ~ ej(¢on_¢om) [1 +J(A¢n — A¢m)]

and obtain the perturbed steady state as
[CvIy + (D”Ccd; 0C¢1N]x +CAp+ jAwly + ®HC D1y ©2-11)
with
Cp = j[®HC D — dg(@"C 1y )] (9.2-12)
The final system of equations is obtained by separating real and imaginary parts
CBIy + (®HC.®1y)" CEIy CRIy | X ]
chly + (@¥c.@1y)  Chly cLiy|'M*
(@Hc.o1y)"
Awly + (@HC d1y)

(9.2-13)

which is written in compact form

(6 Guul[p,] =9 (9.2-14)

Using the above linear constraint for the steady state, it is possible to formulate
the beamforming optimization problem for coupled oscillator arrays [118] as
follows

min t
x,Ap

subject to ||x|| + [|Au| <t
fl <Fx< fh

(G Gapl [AJZI] =9

where the norm of the vector Au is also minimized in order to enforce the
perturbation condition pertaining to the derivation of the steady-state constraint.
The above formulation was extended to planar arrays in Ref. [150].

(9.2-15)
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Once the steady state is obtained, its stability is examined by considering the
linear variational system corresponding to the system of differential equations
describing the coupled oscillator dynamics and evaluating the eigenvalues of
matrix K or K in Eq. (7.7-17).

We may further explore the arbitrary phase reference of the coupled oscillator
array in order to minimize the number of optimization variables in Eq. (9.2-15).
G is a square matrix of dimension 2N. It has one zero eigenvalue due to the fact
that the array steady state is unaffected by applying an arbitrary but constant
phase term to all elements. It is therefore possible, without loss of generality, to
set the phase perturbation of an arbitrarily selected element j to zero A¢; =0

and eliminate the column of G that corresponds to A¢;. Then, a new steady-

state vector y = [AVT AT ij]T of dimension 2N is constructed, where
A¢ contains all phase perturbations except A¢;. Using y, Eq.(9.2-14) is
rearranged in the form

€ Gl A%] = g = Gy = (AR (9.2-16)

where Au; is the control perturbation corresponding to the selected element j. G
is a full rank square matrix of dimension 2N obtained from G by substituting its
column corresponding to A¢; with the column of Gy, corresponding to Ay;.
Similarly Gag, has dimension 2N by N —1 and is obtained from G,, by
eliminating the column that corresponds to Ay;. The matrix g(Ag) is linearly
dependent on Afi. The steady state y is therefore expressed as a function of the
N — 1 independent control variables Afi. Following Georgiadis et al. [153], the
equality constraint of Eq. (9.2-16) is used to eliminate the 2N optimization
variables included in y, and formulate Eq.(9.2-15) in terms of only the
independent N — 1 control variables A

mint
At

subject to |G LG (AR || + AR < ¢ (9.2-17)

fa < FpagAR < fapn

where the equality constraint is now eliminated and the inequality constraints
on the array factor have been appropriately reformulated in terms of the
independent control variables. As an example, let us consider the five-element
coupled oscillator array of Section 8.4, assuming that each oscillator output is
connected to an antenna, and the antenna elements are placed a half free-space
wavelength apart (kd = m). The free-running oscillator steady state
corresponds to an amplitude of V, = 0.442 V (the output power is 2.9 dBm),
and frequency f, = 9.892 GHz obtained for a control voltage of u, = 10 V.
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The coupling network consists of a transmission line section of 360 deg
electrical length at f, and two series resistors R = 150 Q (Fig. 8-9). The
optimization problem given by Eq. (9.2-17) was solved for the case of main
beam direction at 6, = 0 deg (broadside) and an additional null constraint at
0, = —60 deg. The outcome of the optimization procedure is shown in
Table 9-1. The phase perturbation of the middle array element 3 was arbitrarily
set to zero. The steady-state vector y consisted of the five oscillator amplitude
perturbations; the four phase perturbations of oscillators 1,2,4, and 5; and the
control voltage of the middle oscillator 3. Correspondingly, the optimization
variables were the control voltages of elements 1, 2, 4, and 5.

The resulting array factor is shown in Fig. 9-3. In addition to the result of the
optimization problem given by Eq. (9.2-17), the array factor corresponding to
the solution of problem given by Eq. (9.2-6) (which does not contain the array
steady-state constraint) was also included for comparison, as well as the array
factor corresponding to uniform excitation without a null constraint. It can be
verified that the null is successfully imposed in the array factor at the expense
of higher side-lobe levels and a small shift in the main lobe direction. For this
particular case, the solutions of Egs. (9.2-17) and (9.2-6) overlap, which
indicates that there exists a steady-state solution for the coupled-oscillator array
that satisfies the pattern constraints given by Eq. (9.2-6).

The optimization problem given by Eq. (9.2-17) was then solved for different
values of the coupling resistor R, and the solution stability was examined by
calculating the eigenvalues of the linear variational system of differential
equations corresponding to the array steady state. The critical eigenvalue
having the largest real part (spectral abscissa) is shown in Fig. 9-4 for different
values of R. It is seen that, as coupling becomes weaker, the solution eventually
becomes unstable. The change of stability occurs for a coupling resistor value
of 178 Q..

Table 9-1. Pattern nulling optimization of Eq. (9.2-17) applied in a five-element
linear coupled-oscillator array. The main beam direction is 8, = 0 deg (broadside).
A null in the array factor is imposed at 8; = —60 deg.

Amplitude Phase Control
AV (Volt) Ag (°) Ap (Volt)
1 0.0026 ~16.257 —0.093
2 —0.0031 5.292 0.119
3 -0.0001 0 0.004
4
5

Element

0.0033 —6.178 -0.127
—0.0027 16.331 0.097
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9.3 Stability Optimization of the Coupled-Oscillator
Steady-State Solution

The stability of the coupled oscillator steady-state solution is verified by
examining the linear variational equations corresponding to the system of
nonlinear differential equations describing its dynamics. In Section 7.7, a
procedure was described to remove the zero eigenvalue that appears due to the
free-running nature of the oscillator array. The resulting square matrix K of
dimension 2N — 1 was derived in Section 7.7, where N is the size of the array.
The linear variational equation for 6% = [8VT 8¢@T]” is repeated here for
convenience, where 8¢ contains N — 1 phase differences with respect to an
arbitrarily selected oscillator j as a reference

6% = K6% (9.3-1)

By definition, a steady-state solution is stable if the spectral abscissa of K is
negative. The decay rate of K is the negative of the spectral abscissa [156], and
a steady state is stable if K has a positive decay rate. Maximizing the decay rate
corresponds to a more robust steady-state solution, less likely to lose its
stability due to the presence of noise or other perturbations. The matrix K(Afi)
depends on the steady state defined by the perturbation vector
x = [AVT A@T]T of the array, which, following Eq. (9.2-16), is determined
by the (perturbation) vector of N — 1 control voltages Afi. K does not depend
linearly on Afi due to the matrix inversion involved in its derivation and due to
the fact that the phase terms appear in exponential terms. This can be easily
verified following the formulation that leads to the definition of K in
Section 7.7. However, due to the fundamental assumption that x and Afi are
small, we may consider the first order expansion K;(Afi) of K(Af). The
derivation of K (Afi) is straightforward.

A lower bound on the decay rate can be obtained using Lyapunov theory as the
maximum q that solves [156]
Vi (8x) < —2qV (6x) (9.3-2)

for any &x, where Vi (x) is a scalar quadratic potential function defined by a
Oreal symmetrix matrix P with dimension 2N — 1 such that

Vi (6x) = 6xTP8x (9.3-3)
Using Egs. (9.3-1) and (9.3-3) in Eq. (9.3-2), one obtains a matrix inequality
PK, +KIP +2qP <0 (9.3-4)

For a given steady state Afi, finding the symmetric positive definite matrix P
that maximizes the decay rate g is a generalized eigenvalue optimization
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problem. Conversely, given a specific matrix P finding the steady state Afi that
maximizes q is an eigenvalue optimization problem. As noted in Section 9.1,
both such problems can be efficiently solved using convex optimization
algorithms. However, finding the steady state Afi and matrix P that maximize q
is not a convex optimization problem due to the multiplicative terms that appear
between the elements of Afi and P.

It is possible to introduce the decay-rate optimization constraint in the coupled-
oscillator array beamforming optimization algorithm following the approach by
Georgiadis and Slavakis [153], which is given below. The optimization
problem including the stability constraint is written as follows

L(t,q) = minpgp(t — q)
subject to (i) ||G~1g(Am)| + AT <t
(ii) FpgAR < fapn (9.3-5)
(iii) PK (AfD) + KL (AP + 2qP < 0
(iv) P> 0

This is not a convex optimization problem, and its resolution is not
straightforward. In Ref. [153], an algorithm was proposed to obtain a solution
to the above problem by alternative minimization of two sub-problems, an
eigenvalue and a generalized eigenvalue problem. The algorithm proceeds as
follows

Step 1: Let e > 0 be the algorithm termination tolerance and k = 0 be the
iteration number. Find Afi, = Afi,, the vector of control variables that
minimizes the perturbation vector norm t = ¢,, subject to (i) and (ii).
This is the original convex optimization problem of Egs. (9.2-17) and
(9.2-15) that does not include a stability constraint. Obtain the decay
rate g, corresponding to K (Ai,) by evaluating its eigenvalues.

Step 2: Repeat {

P1: Find the real symmetric square matrix Pj,q that minimizes
L(0,q) = —q, subject to (iii) and (iv) for a given Afiy. This is a
generalized eigenvalue optimization problem. The optimization
objective provides a value of the decay rate qy 1.

P2:  Find the control vector Afi,,, that minimizes L(t,q) =t —q
using as input the matrix P4 obtained from the previous step.
This is an eigenvalue optimization problem. Additional outputs
of this step are the norm of the perturbation vector t;,, and the
decay rate q y+1-
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P3: k=k+1
yuntil (@21 = qri+r) < e

The algorithm is demonstrated for the case of the five-element coupled-
oscillator array considered in Section 9.2, where the main beam was directed
broadside (8, = 0 deg) and a null in the array factor was placed at 8; = —60
deg. For a coupling resistor R = 150 Q the beamforming optimization problem
in Eq. (9.2-17) obtained the stable solution indicated in Table 9-1. The decay
rate of this solution was 3.83 Msec™, as shown in Fig. 9-4. Using this solution
as a starting point the above algorithm was run in order to find a solution of
Eq. (9.3-5) with an optimum decay rate. The algorithm converged after 11
iterations using a termination tolerance of 10~°. The result from P1 and P2 for
the various steps of the algorithm is plotted in Fig. 9-5. The final solution of the
algorithm had a decay rate of 13.2 Msec™ (which is more than three times the
initial value).

The perturbation vector of this solution is indicated in Table 9-2, where one can
verify that it is only slightly increased from the original solution of Table 9-1
(t = 0.484 compared to the original perturbation of t = 0.480). Finally, the
radiation pattern of the final solution is almost identical to the radiation pattern
of the original starting point solution, shown in Fig. 9-3.
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Fig. 9-5. Decay rate of the optimization problem Eq. (9.3-5)
versus the iteration number.
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Table 9-2. Pattern nulling and stability optimization in Eq. (9.3-5)
applied in a five-element linear coupled-oscillator array. The
main beam direction is 8, = 0 deg (broadside). A null in the
array factor is imposed at 8; = —60 deg.

Amplitude Phase Control
Element

AV (Volt) A¢ (deg) Ap (V)
1 0.0025 -17.870 —0.089
2 -0.0027 2.868 0.105
3 —-0.0002 0 0.007
4 0.0030 —4.354 —0.114
5 —-0.0026 17.033 0.092

9.4 Multi-Beam Pattern Generation Using Coupled-
Oscillator Arrays
The synthesis of antenna radiation patterns was formulated as a convex

optimization problem by Lebret and Boyd [158]. Considering a uniform linear
array for simplicity, its array factor is given by

F(0) = ¥N_, v,e/nkdsint — gg)Hy (9.4-1)
where the vector v = [v,] = [Vnej ¢n] contains the complex excitations of each
element, the element distance is d, and 6 is measured from broadside. This
formulation is slightly different from the one used in the previous section in

order to emphasize the fact that the array factor is a linear function of the
complex element excitations.

The pattern-synthesis convex optimization problem is written as [151,158]
mvin t
subjectto |F(6;)| <t , Vi €1,..,M
|[F(6, ) <U,,Vk €1,..,P
|F(6,)|=1,vqel,..L

(9.4-2)

The above formulation contains L equality constraints corresponding to L array
factor maxima at angular directions 8,. Moreover, there exist P maximum level
U, constraints and M array factor minimization constraints. As a result, it is
possible to efficiently obtain the complex excitations required to synthesize
arbitrary patterns, such as ones having multiple beams and other beam-shaping
requirements. Furthermore, the number of the optimization variables maybe
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minimized by using the equality constraints to solve for and eliminate
L-dependent variables [158].

Due to the fact that an arbitrary pattern synthesis problem cannot be considered
as a perturbation of some initial reference pattern, such as for example the one
corresponding to uniform in-phase excitation, the linear constraint for the
coupled oscillator steady state given by Eq. (9.2-14) or (9.2-16) cannot not be
used, as the desired steady state may require a large perturbation vector x or y,
especially in terms of the oscillator phase differences. As a result, the general
pattern synthesis problem applied to coupled-oscillator arrays may be
approached in three steps. First one obtains the required complex excitations by
solving the convex optimization problem Eq. (9.4-2). Second, once the desired
amplitude and phase values are found, one uses the steady-state equations
corresponding to the coupled-oscillator models in Eq. (7.7-4) or (7.7-12)
(which do not assume a linear perturbation for the phase terms) in order to find
the coupled-oscillator steady state that closely matches the required amplitude
and phase distribution. For example, when using Eq.(7.7-12), one may
substitute the phase values obtained by solving Eq. (9.4-2) in the previous step
and solve Eq. (7.7-12) for the amplitude and control variables. Alternatively, a
nonlinear simulator (such as harmonic-balance optimization) can be used,
where the phase values are imposed and fixed, and the amplitude values
obtained from convex optimization are used only to initialize the oscillator
amplitudes in the simulation and are allowed to be optimized together with the
control parameters in order to obtain the steady state. Third, once a coupled-
oscillator steady state has been selected, the stability of the solution must be
verified, for example by calculating the eigenvalues corresponding to the linear
variational system of the array dynamics around the steady state. In fact, as will
be seen in the following examples, in this step the designer synthesizes the
coupling network in order to guarantee the stability of the steady-state solution.

Difference pattern generation using coupled-oscillator arrays was demonstrated
by Heath in Ref. [31]. Heath considered a linear coupled oscillator array, and
using the generalized phase model to describe its dynamics, extended the
application of the beam-steering model initially introduced by York [111] to
difference pattern generation and steering. He showed that a stable difference
pattern maybe generated by a simple modification in the coupling network, that
is, by introducing a 180-deg phase shift in the coupling between the central
elements of the array, while maintaining a 0-deg phase shift between all
remaining elements. In order to steer the difference beam pattern, the following
phase distribution should be applied to the array elements [31].

Ox = Po + (kK — 1)Ap + hy (9.4-3)
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where ¢, is an arbitrary phase reference common to all elements, and A¢ is the
necessary phase shift that must be imposed to steer the main (difference) beam
of the array at an angle 8, = kd sin A¢p. The additional phase h; should be
applied only to half of the array elements

b _{n, k>N/2
k=0, k<N/2

Assuming a linear coupled-oscillator array with adjacent element coupling, this
is easily achieved by using an inter-element coupling network with coupling
phase 0 deg between all elements except for the center elements where the
coupling network phase is 180 deg.

(9.4-4)

More importantly, it was further shown by Heath [31] that the difference
pattern can be scanned by simply detuning the free-running frequencies of the

edge array elements, in the same manner that the sum pattern is scanned
(Fig. 9-6).

In Ref. [151], Georgiadis and Collado applied the pattern synthesis
optimization algorithm described in this section in a seven-element linear array,
in order to synthesize a dual-beam pattern with beam directions at 15 deg and
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Fig. 9-6. Difference-pattern demonstration using a N =20
element coupled oscillator array. The beam is steered at
6, =20deg according to Eq.(9.4-3). (Reprinted with
permission from [31], ©2001 IEEE.)
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-25deg from broadside, while imposing a maximum Ilevel constraint
of -20 decibels relative to the carrier (dBc) between the two beams. The array
factor is minimized in the remaining angular directions, imposing the first
constraint given by Eq.(9.4-2). The resulting necessary complex element
excitations are shown in Fig. 9-7.

The desired phase differences are imposed on the coupled-oscillator array by
allowing the free-running frequencies of all oscillators to be tuned. Amplitude
control however, is imposed externally to the oscillator elements by employing
variable attenuators (or variable gain amplifiers) at the oscillator outputs. The
required excitations are introduced in a harmonic-balance simulator as follows.
An ideal probe is connected to the output of each oscillator element, and the
phase information is imposed in the probes. Harmonic balance optimization is
then used to find the steady-state oscillator amplitudes and control voltages that
correspond to the imposed phase distribution. Once the steady state is found,
the oscillator output amplitudes are adjusted using attenuators so that the
desired amplitude distribution is obtained.

It should be noted that after examination of the required excitation phases
obtained from the optimization algorithm (Fig. 9-7), a coupling network was
designed such that the coupling phase between elements 2 and 3, and 5 and 6, is
180 deg while the coupling phase of the remaining elements is 0 deg. The
rationale behind this choice was that when the coupling network phase is
360 deg, a stable solution with phase difference in the range [-90 deg, +90 deg]

BVAN

R

Wil=0.183  |W2|=0.111 |w;|=0.170 |ws=0.349 [ws|=0.170 |we|=0.111 |w~|=0.183
$=-135.77 $,=-150.52 $,=14.74 $:=0  $=-14.74 $=15052 §,=135.77

Fig. 9-7. Multi-beam pattern generation using a seven-element coupled oscillator
array. Element excitations required to synthesize two main beams at
15 and -25 deg from broadside, with a maximum level constraint of —20 dBc
between the two beams. The required coupling network phase shift to ensure a
stable solution is indicated. Taken from [151]; copyright EurAAP 2009; used with
permission.
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can be obtained, whereas if the coupling phase is 180 deg, the stable solutions
can have a phase difference in the range of [+90 deg, +270 deg]. As the
required phase difference among elements 2 and 3, and 5 and 6, is more than
90 deg (see Fig. 9-7), a coupling network with phase of 180 deg was selected in
order to ensure the existence of a stable solution.

The array factor corresponding to the excitations resulting from the solution of
the optimization problem given by Eq. (9.4-2) is shown in Fig. 9-8, where it is
marked as the ideal pattern. The coupled-oscillator array amplitudes found after
the application of the above solution in a harmonic-balance simulator, as
described in the previous paragraphs, were used to compute the coupled-
oscillator array radiation pattern. The resulting pattern shows an excellent
agreement with the ideal pattern. Finally, the array factor corresponding to
uniform amplitude excitation and application of only the phase excitation
values from Eq. (9.4-2) is superimposed in Fig. 9-8, showing that by imposing
the phase condition only it is possible to successfully obtain the two desired
main lobes, but it is not sufficient to maintain the sidelobe levels at a
sufficiently low value.

Furthermore, it was verified that the two beam patterns can be scanned while
maintaining their angular distance of 40 deg by detuning only the free-running
frequencies of the end elements. The result of the harmonic-balance simulation
is shown in Fig. 9-9. This last example may be viewed as a generalization of
the difference pattern synthesis work of Heath [31], in the sense that once a
desired phase and amplitude distribution among the array elements is obtained,
thus synthesizing a desired array factor, a progressive constant-phase shift
distribution may be superimposed by detuning only the end array elements,
thereby permitting one to scan the synthesized pattern accordingly.

9.5 Control of the Amplitude Dynamics

Oscillator amplitude control provides an additional degree of freedom in order
to synthesize more complex radiation patterns with improved performance
capabilities, such as reduced sidelobes. The possibility of controlling the
oscillator free-running amplitudes in order to synthesize a desired pattern was
investigated by Heath [159]. Furthermore, in the works of Georgiadis et al.
[118,150,153] the oscillator amplitude dynamics are included in the
beamforming problem formulation. Recently, control of the amplitude
dynamics of the coupled oscillator array, was also addressed by Jiang et al.
[160], where the generation of triangular amplitude distributions in linear
coupled oscillator arrays was demonstrated.
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Fig. 9-8. Dual beam pattern generation using an N = 7 element
coupled-oscillator array. The solution of the optimization
problem (ideal pattern) is compared with the final solution for
the array using harmonic-balance optimization (amplitude and
phase condition) and with a pattern obtained imposing the
phase excitation and uniform magnitude excitation (phase
condition). Taken from [151]; copyright EurAAP 2009; used with
permission.

Using a complex notation, the oscillator dynamics are described using either of

the two models presented in Sections 7.4 and 7.6. The formulation of Heath
[159] using the model of Section 7.4, is presented here

N
Uy = jJAWy Ay + u(AG, — [Py, + Z Komi G (9.5-1)
i=1

with a,, = A,,e/®m. The periodic steady-state solution is obtained by setting
A,, = 0 and ¢,,, = ¢ with ¢ an arbitrary constant, resulting in
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Fig. 9-9. Dual beam pattern steering using an N = 7 element coupled-
oscillator array. Oscillator control voltages for different scanning
angles. Taken from [151]; copyright EurAAP 2009; used with
permission.

N
Pm = Pm + jAwy zjc‘*‘.ulamlz_kaii (9.5-2)

i=1 4m
with p,, = uA2,,. Parameters p,, and Aw,, allow one to independently tune
the free-running frequency and free-running amplitude of the oscillator
elements in order to synthesize a desired pattern. In Ref. [159], near-neighbor
coupling was considered simplifying the coupling network matrix k. Once a
desired amplitude and phase distribution a,, is selected, one may separate the
above equation into real and imaginary parts and solve for the tuning
parameters, p,, and Aw,,. Finally, the stability of the solution must be
examined through the eigenvalues of the linear variational equation given by
Eq. (9.5-1), as was described in Section 7.4.

9.6 Adaptive Coupled-Oscillator Array Beamformer

In addition to the beamforming capabilities of coupled-oscillator arrays, an
adaptive receive beamformer based on a coupled oscillator array was
demonstrated by Ikuma et al. [154]. The steady-state expression of the coupled-
oscillator array provides a means for controlling the array-element amplitudes
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and phases by adjusting the free-running oscillator frequencies and the coupling
network. Similarly to the previous paragraph, a complex notation for the array
dynamics pertaining to either of the two models of Sections 7.4 and 7.6 may be
utilized.

The formulation of Section 7.4, also shown in Eq. (9.5-1), was followed in
Ref. [154]. The periodic steady-state solution is obtained by setting A,, = 0
and ¢,,, = ¢ with ¢ an arbitrary constant, resulting in

N
PmQm + Z Kmi@i = by (9.6-1)
i=1

wherem =1,2...N
Pm = UAGm + jDwn,
b = (lanl® +jo)an
Finally, in matrix form one has
(p+K)a=b(a) (9.6-3)

where p is a diagonal matrix with p,, in its main diagonal and b is a vector
with b, in its main diagonal. Matrix p contains the oscillator parameters, the
free-running amplitudes, and the free-running frequency offsets from w,. The
frequency offsets can be adjusted, whereas the free-running amplitudes are
fixed and assumed equal for all oscillators. Amplitude control may also be
achieved using, for example, a variable attenuator or variable-gain amplifier at
each oscillator output. The matrix k contains the coupling-network gain and
phase, and it may also be tunable. In Ref. [154], nearest neighbor coupling is
assumed, which results in a bi-diagonal matrix .

(9.6-2)

There are many possible combinations of p and kK that can lead to a desired
complex amplitude vector a. Ikuma et al. [154] considered a reconfigurable
coupling network k and identical oscillators without frequency tuning, leading
to a fixed p matrix. As a result, the coupling matrix k is used to generate the
desired amplitude distributions a.

The proposed adaptive receiver of Ikuma et al. [154] is shown in Fig. 9-10.
Assuming a receiving uniform linear-antenna array of N elements, the received
signal vector from all antennas is r(t).

The received signal is split into two signal paths. The signal in the first path is
mixed with a reference oscillator z,.(t), and after passing through a low-pass
filter to remove unwanted mixing products, it provides the reference vector
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r,(t). In the second path, the received signal vector is mixed with the coupled-
oscillator array vector z(t); and after low-pass filtering, it provides the
demodulated scalar output signal y,(t) of the beamformer. The fixed oscillator
is phase locked to the middle element of the coupled-oscillator array. It should
be noted that in the block diagram of Fig. 9-10, the analytic representation
[149] of the various signals is indicated. As an example, the analytic signal of
the reference oscillator is

z,(t) = w,el@ot (9.6-4)

with w, the reference oscillator frequency and w, its complex amplitude.

The coupled-oscillator array complex amplitudes are adaptively controlled
based on a least-mean-square (LMS) algorithm given by

a = —uMrq(t)y," (t) (9.6-5)

in order to minimize the effect of unwanted interfering signals present in the
received array signal r(t). The operator ()* denotes the complex conjugate.
Matrix M depends on the desired fixed constraints of the beamformer, in other
words, on a set of specified array-factor levels at a number of angular directions

ref. osc.
= (1) LPI
! Y ' r(r)
‘ r(r)[— >
N, L@ —wy (1)
Antenna
Array
) Z(7
(r) 4 I A |
: adaptation
mechanism

CNOA [ :

Fig. 9-10. Adaptive coupled-oscillator array receiver block diagram.
(Reprinted with permission from Ref. [154], ©2001 IEEE.)
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including the direction of arrival of the main beam [154]. Finally, the parameter
i controls the convergence speed of the beamformer. The proposed
beamformer operation was verified by computer simulation.

9.7 Conclusion

In this chapter we introduced several optimization problems, demonstrating the
beamforming capabilities of coupled oscillator arrays. The beamforming
problem has been formulated as a convex optimization problem, which includes
the array steady state as a linear constraint. The results of Chapter 7 have been
used to provide an expression for the steady state of the coupled-oscillator
array. Additionally, the capability of generating and scanning multiple beams
has been verified. Furthermore, a non-convex optimization algorithm, which
optimizes the stability of the steady state solution, has been introduced, and an
adaptive beamformer based on coupled oscillator arrays has been demonstrated.
The combination of optimization and signal-processing techniques (together
with the rich dynamical properties of coupled-oscillator arrays) reveal the
potential and numerous applications of such arrays, which have yet to be
explored.



Chapter 10
Overall Conclusions and Possible Future
Directions

Active integrated antennas have found numerous applications as phased arrays,
retro-directive arrays, and spatial power combiners. Coupled-oscillator antenna
arrays represent a very exciting subset of active integrated antennas both from
an application point of view, as well as from a research and analysis point of
view, due to some very attractive properties, such as their ability to produce
arbitrary phase shift distributions, as well as their capabilities of frequency
conversion and frequency generation. In addition, they inherit the practical
advantages of active integrated antennas, which are compact low-profile circuit
implementations that are compatible with low-cost fabrication technologies
(such as microstrip and coplanar waveguide), using single and multilayer
printed circuit boards.

As we have seen, however, the design of coupled-oscillator antenna arrays, is
far from trivial due to their highly nonlinear nature, which results in a
dynamical behavior that is difficult to simulate and predict accurately and, in
effect, increases the difficulty of designing coupled-oscillator arrays
demonstrating a robust performance. Nonetheless, the progress of nonlinear
circuit simulation and optimization techniques and the increase in
computational power of low cost personal computers has made possible the
accurate analysis of coupled-oscillator arrays with as many as a few tens of
elements via combining sophisticated nonlinear models for the active devices
and electromagnetic analysis for the antenna, transmission lines, and
interconnects, using the various methods described in Chapter 8. Efficient
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analysis of large coupled-oscillator arrays requires the use of approximate
perturbation models, infinite-array approximations, and the continuum model
that enable understanding of the exhibited behavior at a level permitting design
of functional systems. The intuitive understanding of the array behavior and the
gain in computational efficiency resulting from application of such methods
makes them indispensable tools, complementary to the fully nonlinear
simulators. The description and use of such methods has been the focus of
Chapter 1 through Chapter 7.

Interest in low-cost, high-performance radio-frequency systems with
reconfigurable properties in terms of transmitted beam direction or polarization
makes coupled oscillator arrays a strong candidate for many applications
including radar, phased arrays, and imaging in the microwave and millimeter
wave frequencies. There are still numerous challenges to be addressed and
many areas where improvements in coupled-oscillator array technology are
desirable. Among these we specifically note the application of new
implementation technologies in the design of coupled oscillator arrays, such as
substrate integrated waveguide (SIW) technology and the creation of conformal
coupled-oscillator arrays using flexible substrate materials such as paper and
liquid crystal polymers (LCP). Preliminary results concerning coupled-
oscillator arrays using SIW technology were discussed in Chapter 6,
demonstrating the possibility of low-cost single substrate array implementation.
On the other hand, fully integrated coupled-oscillator arrays in the millimeter-
wave frequencies have also appeared in the literature [161] paving the way for
the introduction of coupled-oscillator arrays in millimeter-wave phased-array
sensing and communication applications.

We further note, that successful demonstrations of only small arrays have been
reported in the literature to date, and large arrays employing hundreds of
elements remain to be seen. In such large arrays, perimeter oscillator control of
the radiated beam will be particularly beneficial. Furthermore, the
demonstration of coupled-oscillator arrays using signal processing and
optimization techniques in beamforming, and more importantly adaptive
beamforming, is an area that should be further exploited. Finally, a number of
challenging analysis problems remain to be addressed, such as quantifying the
effect of phase noise on the locking range of the array and more detailed study
of mode locking for pulsed operation of coupled oscillators in the microwave
frequencies.

Despite the progress in the theory and design of coupled-oscillator arrays
during the past two decades, active antenna arrays based on coupled oscillators
have not yet found widespread practical application, although there have been
notable achievements in array implementations such as the ones shown in
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Chapter 6. It is hoped that the material presented in this book demonstrates the
potential of coupled-oscillator arrays and motivates deigners to apply them in
microwave and millimeter-wave array antennas.

We have endeavored to provide the reader with the understanding and the tools
for such application through description of the research to date and mention of
a few areas for further study and technological development. The references to
the archival literature will, of course, provide more detail than could be
included here without rendering the presentation far too cumbersome for the
casual reader. However, the literature sometimes presupposes significant
familiarity with the approaches currently in vogue. Thus, in parts the present
treatment is an overview of the research work while in other parts it provides a
tutorial facilitating access to the literature. We hope to have struck a balance
between these two styles of presentation resulting in a book of somewhat wider
utility in this field than would be the case for either style alone.
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