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Chapter 4  
The Continuum Model for Planar Arrays 

As described in Section 2.6, coupled oscillator arrays can be constructed in a 
planar geometry in which each oscillator is coupled to more than the two 
nearest neighbors of the linear array case. In that section a Cartesian coupling 
topology is described in which each oscillator is coupled to four nearest 
neighbors, and the array boundary is rectangular. In such an arrangement, the 
phase distributions suitable for beam-steering are obtainable either by detuning 
the edge oscillators [42] or by injecting them with external signals with 
adjustable phase [43]. Both of these approaches are treatable via the continuum 
model. Further generalizing the planar arrangement, one may use alternative 
coupling topologies such as the triangular lattice in which each oscillator is 
coupled to six nearest neighbors and the array boundary is triangular or the 
hexagonal lattice in which each oscillator is coupled to three nearest neighbors 
and the array boundary is again triangular [44] [45]. As will be shown in this 
chapter, these coupling topologies are also treatable using the continuum 
model. 

4.1 Cartesian Coupling in the Continuum Model without 
External Injection 

We begin with Eq. (2.6-3) for a 2M + 1 by 2N + 1 rectangular array with zero 
coupling phase replacing the discrete indices i and j with the continuous 
variables x and y, respectively; and we expand the phase function in a two-
dimensional Taylor series retaining terms to second order. By this process, we 
obtain the two-dimensional analog of Eq. (3.1-3); that is, 
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subject to Neumann boundary conditions at the array edges. (These boundary 
conditions may be ascertained via the fictitious additional oscillator artifice 
described in Section 3.1.) Averaging Eq. (4.1-2) over the two dimensional array 
and using the boundary conditions as in Eqs. (3.1-9) to (3.1-13), it can be 
shown that the ensemble frequency of the array is the average of the tuning 
(free running) frequencies of the oscillators. 
 
Laplace transformation of Eq. (4.1-2) with respect to the scaled time, , τ results 
in, 
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  (4.1-3) 

where the tilde denotes the transformed function. As in the one-dimensional 
case, this equation can be solved by postulating a solution as a sum of 
eigenfunctions of the two-dimensional differential operator, the Laplacian 
operator, and solving for the coefficients of this expansion. As indicated in 
[42], the eigenfunctions are, 
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where the eigenvalues are, 
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and the normalization constants are, 

1Nee,mn = (2a b+ +1 2)( 1)η η
2 m n

1Noo,k = (2a b+ +


1 2)( 1)
2  (4.1-6) 
1Nee,m =



(2a b+1 2)( +1)η
2 m

1Noo,kn = (2a b+1 2)( +1)η
2 n

where, 

2 ; m = 0
 ηm =  (4.1-7) 

1; m ≠ 0

The general solution procedure follows that used in the case of the linear array. 
That is, we postulate a two dimensional delta function source to obtain the 
Green’s function as an expansion in the two dimensional eigenfunctions. Then, 
we integrate the product of this Green’s function and the actual source function 
over the array to obtain the phase distribution as an expansion in the 
eigenfunctions. This solution is presented in Ref. [42]. 
 
The Green’s function, g ( ,x y x, ′ ′, y , s) , is a solution of, 

∂ ∂2 2g g 

 + − =sϕ δ − (x x− ′ ′) (δ y − y )  (4.1-8) 
∂ ∂x y2 2

The solution of this equation expressed as a sum of eigenfunctions is, 
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This Green’s function can then be multiplied by the detuning function, 
∆Ω (x′ ′tune , y s, ) , and integrated over the array. The inverse Laplace transform 
is easily obtained as the sum of the residues at the poles as in the one 
dimensional case. Recall that the detuning of the oscillators required to produce 
a desired phase distribution across the array can be determined by merely 
substituting the desired phase distribution into Eq. (4.1-2). From the theory of 
uniformly spaced phased array antennas, the steady-state phase distribution 

necessary to produce a beam steered to spherical coordinate angles, θ ϕ0 , 0 , 
with the polar axis normal to the plane of the array, is 

Ω Ω y ϕss ( ,x y) = x ( x + a − x a− ) + ( y b+ − y −b )  (4.1-10) 
2 2

where, 

h
Ω =x −2π sinθ ϕ0 0cos

λ  (4.1-11) 
h

Ω =y −2π sinθ ϕ0 0sin
λ

and h is the element spacing while λ  is the wavelength. Substituting into 
Eq. (4.1-2) with the time derivative set to zero to obtain the steady-state result, 
we find that, 

 ∆Ωtune = −Ωx δ δ(x + a) − (x a− ) −Ω y δ ( y b+ ) −δ ( y −b)    (4.1-12) 
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Thus, we discover that beam-steering requires detuning of only the edge 
oscillators and that the needed detuning is constant along each edge. This leads 
us to seek dynamic solutions of Eq. (4.1-2) that result from a temporal step 
detuning of the edge oscillators that is constant along each edge. That is, we 
limit ourselves to detuning functions of the general form, 

 
∆Ωtune = Ωx1 2δ (x + a u) ( )τ +Ωx δ (x − a u) ( )τ

y y1 2δ ( b)  (4.1-13) 
+Ω y + u( )τ δ+Ω ( y −b u) ( )τ

For step temporal dependence, the Laplace transform of the detuning is, 

Ω Ω
∆Ω = x1 2( + ) + x

tune δ δx a (x a− )
s s

  (4.1-14) Ω Ω
+ y y1 2δ δ( y + +b) ( y b− )

s s
The presence of the delta functions facilitates integration of the product of the 
Green’s function and the tuning function leading to the solution. 
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which is the solution for the special case of constant detuning along each edge 
of the array. In steady state, this reduces to Fourier series that can be summed 
in closed form resulting in, 
 

 Ω +Ω Ω
ϕ τ( , , ) = x x1 2 1 2+Ω

x y + y y
 τ
 2a b+1 2 1+

 Ω  2 2
+ x x1 2+Ω 2 1a + +a x

 + −  ( x + a + −x a )
 2  6 2 1a +

 Ω
 − x x1 2−Ω     ( x a x a )  

+ − − (4.1-16) 
 2

Ω +Ω  2 2
1 2  2 1b b y

+ y y + +
   + − ( y + b + y b− )
 2   2 1b + 6

 Ω −Ω
− y y1 2  + − y b−   y b( )
 2









which clearly shows that symmetric detuning gives rise to parabolic steady-
state phase distributions whereas antisymmetric detuning results in linear 
steady-state phase distributions. In the antisymmetric case where 

1 2x x xΩ = −Ω = −Ω
 and 1 2y y yΩ = −Ω = −Ω , Eq. (4.1-16) reduces to 

Eq. (4.1-10). 
 
The phase distribution as function of time for beam-steering to 10 deg of polar 
angle at –110 deg of azimuth as given by Eq. (4.1-15) is shown in Fig. 4-1. 
Note that during the transient, the phase distribution is not planar, but in steady 
state at infinite time it becomes planar. Figure 4-2 shows the beam peak and  
3-dB contour of the far-zone radiated field of a half-wavelength spaced array of 
isotropic radiating elements excited by this two-dimensional oscillator array 
during the transient period at intervals of 10 inverse locking ranges. Because 
the phase during the transient is not planar, the directivity of the antenna is 
decreased. Assuming no losses, the gain is equal to this directivity. The gain is 
plotted as a function of time in Fig. 4-3 and compared with the ideal gain were 
the phase planar. The gain reduction observed in steady state relative to the 
initial gain is characteristic of phased-array antennas and is commonly referred 
to as “projected aperture loss” due to scanning. This term derives from the fact 
that for large arrays this loss is quite accurately approximated by the cosine of 
the beam-steering angle from normal as if the effective aperture of the array is 
reduced by projection in the direction of the beam peak. 
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Finally, Fig. 4-4 shows the behavior of the far-zone beam as a sequence of step 
beam-steering detunings is applied. 
 
 
 
 
 
 
 
 
 

 
 

Fig. 4-1. Aperture phase distributions versus time in a two-dimensional array 
(edge oscillators detuned for beam-steering). (Reprinted from [42] with 
permission, ©2001 IEEE.) 
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Fig. 4-2. Beam trajectory detuning during the 
beam-steering transient. (Reprinted from [42] 
with permission, ©2001 IEEE.) 

 

 

Fig. 4-3. Peak gain dynamics during the beam-
steering transient. (Reprinted from [42] with 
permission, ©2001 IEEE.) 
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Fig. 4-4. Sequential bream-steering. (Reprinted from [42] 
with permission, ©2001 IEEE.) 

4.2 Cartesian Coupling in the Continuum Model with 
External Injection 

If beam-steering of a planar array is to be accomplished through external 
injection as proposed by Stephan [1], the continuum model is based on the two 
dimensional generalization of equation Eq. Error! Reference source not 
found.; that is, 

 

2 2

2 2 ( , )

( , , ) ( , ) ( , , )tune inj

dV x y
dx y

x y V x y x y

ϕ ϕ ϕϕ
τ

τ ϕ τ

∂ ∂
+ − − =

∂ ∂
−∆Ω −

 (4.2-1) 

Now, because none of the oscillators are to be detuned,  
0tune∆Ω = . Following Stephan [1], the perimeter oscillators are to be 

injection locked to external signals that are phase shifted with respect to one 
another to steer the beam. Thus, we choose the form,  

 V (x, y) (= CP x) (+CQ y)  (4.2-2) 
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where 
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so that Eq. (4.2-1) becomes, 
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where for notational convenience, we have separated the injection phases 
associated with the P(x) and Q(x) distributions of injection signals into the two 

functions, ,inj xϕ and ,inj yϕ . Laplace transformation gives, 
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 (4.2-6) 

Following [43], we now determine the eigenfunctions of the differential 
operator, 

 
2 2

2 2 ( ) ( )CP x CQ y
x y
∂ ∂

+ − −
∂ ∂

 (4.2-7) 

subject to the Neumann boundary conditions at the array edges. Let the 
eigenfunctions be products of an x dependence and a y dependence; that is, 

( , ) ( , )x yX x s Y y s  so that by separation of variables we have,  

 
0

0
x

y

X CPX s X
Y CQY s Y
′′ − − =
′′ − − =

 (4.2-8) 

where the double primes indicate the second spatial derivative. Using 
Eq. (4.2-4), we obtain, 
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X ′′ −Ω 1 1( )− ′ −Ωx x2 (x x− ′x δ δx x X 2)X − s X = 0
 

1 1 2 2( ) ( ) 0y y yY y y Y y y Y s Yδ δ′′ ′ ′−Ω − −Ω − − =
 (4.2-9) 

First, consider the x dependent part. As in [43] the x region is divided into three 
parts, and a solution is postulated in each of these ranges of x. That is, 
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(4.2-11) 
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 (4.2-12) 

This postulated solution satisfies the Neumann conditions at the array edges. 

The constants, 1A  and 2A  and the eigenvalues xs , are determined by 

continuities across the injection points, 1x′  and 2x′ . That imposing the slope dis
is, 
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These conditions lead to two homogeneous linear equations for 1A  and 2A  
which may be written in the form, 

 11 12 1

21 22 2

0
0

M M A
M M A
     

=     
    

 (4.2-14) 

in which, 

 
11

1 1 1

sinh (2 1)

1 1cosh cosh
2 2

x x

x x x

M s s a

C s a x s a x

 = + 
      ′ ′+ + + + −            

 (4.2-15) 

 12 1 1 2
1 1cosh cosh
2 2x x xM C s a x s a x      ′ ′= + + + −            

 (4.2-16) 

 21 2 1 2
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(4.2-17) 
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 (4.2-18) 

Setting the determinant of the two-by-two matrix in Eq. (4.2-14) equal to zero 
to permit a nontrivial solution for the A’s provides a transcendental equation for 
the eigenvalues, sx. The eigenvalues all lie on the negative real axis of the s 
plane and can thus be easily computed numerically by any one-dimensional 
root finding method, such as the Newton-Raphson method. [46] For each value 
of sx for which the determinant is zero, sm, we have either that, 

 1 12

2 22

A M
A M
=
= −

 (4.2-19) 
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or that, 

A M1 = − 11  (4.2-20) 
A2 = M21

These two possible solutions are, in fact, the same to within a multiplicative 
constant but this constant has no effect once the eigenfunctions are normalized. 
Thus, either Eq. (4.2-19) or (4.2-20) may be used and the ultimate result will be 
the same. Normalization of the eigenfunctions is, of course, accomplished by 
integrating their square over the range of x; that is, from –(2a + 1)/2 to 
(2a + 1)/2. This integration can be carried out giving a rather complicated but 
nevertheless closed-form result for the eigenfunction, X(x,sm). 
 
Proceeding in the same manner one may obtain a corresponding closed form 

~expression for Y(y,sn) and the Green’s function, g , that satisfies, 

∂ ∂2 2g g 

+ −[C 1 ( )x x− ′ ′x δ δ1 2+Cx (x x− 2)]g
∂ ∂x y2 2

 −  C δ δ( )y y− +′ ′C (y y− ) g  (4.2-21) 
 y y1 1 2 2

1
− =sg − δ δ(x − x′ ′) (y − y )

s
may then be expressed in the form, 

∞ ∞

∑ ∑ X (x′ ′, sm ) (Y y , sn )X (x, sm n) (Y y, s )
 g =  (4.2-22) 

n m=0 0= s s( )− sm n+ s

Now the solution to Eq. (4.2-6) is, 

1 1b a+ +
ϕ(x, y, s) = −∫ ∫2 2

1 1 g (x′ ′, y , x, y, s)
 − −b a− −  (4.2-23) 2 2

 P(x′)ϕ ϕ (x′ ′, y , s) +Q(y′) (x′ ′inj x i dx′, y ′ , nj y , , s) dy

where P and Q are given by Eq. (4.2-4). The presence of the Dirac delta 
functions in Eq. (4.2-4) facilitates the integration. Let, 

1
 ϕinj ( ,x y, s) =  (4.2-24) 

s
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so that the injection phase time dependence is a step function. The inverse 
Laplace transform is then computable as a sum of the residues, Rmn(x,y), at the 
poles in Eq. (4.2-22) where s = sm + sn. Thus, the solution takes the form, 

∞ ∞
ϕ τ( ,x y, ) = ∑ ∑ R ( ,x y)  1− e( )s sm n+ τ mn u(τ )  (4.2-25)  

n m=0 0=

Note that while there is a pole at s = 0, its residue is zero so Eq. (4.2-22) does 
not have a double pole at s = 0 and the inverse Laplace transform does not have 
a term linear in time. Therefore, there is no frequency shift as there was in the 
case of perimeter detuning. Because there is no detuning, the ensemble 
frequency of the array does not change. The injection frequencies are all equal 
to this ensemble frequency so all oscillation remains at this same frequency. 
Were the injection frequency different from the ensemble frequency, the 
steady-state oscillation frequency would be equal to the injection frequency and 
a term linear in time would appear in the solution. 
 
The desired steady-state solution (for infinite time) is a planar phase 
distribution. We can determine the injection phases needed to produce that 
steady state directly from Eq. (4.2-5). Let us use uniform-strength injection 
signals so that, 

 Cx2 1= C Cx = y2 = Cy1 = Cinj  (4.2-26) 

At infinite time, Eq. (4.2-5) becomes, 

∂ ∂2 2ϕ ϕss + ss = [C ( )− ′ ′x1δ x x1 2+Cx δ (x x− 2)](ϕ ϕinj − ss )
 ∂ ∂x y2 2

 (4.2-27) 

+  Cy1δ ( )y y− +′ ′1 2C δ (y y− 2) y (ϕ ϕinj − ss )
The right side of this equation is zero except on the extended perimeter of a 
rectangle defined by, 

 (x x− ′ ′1 2)(x x− )( y − y′1 )( y − y′2 ) = 0  (4.2-28) 

Thus, the left side must also be zero except on these four lines. The solution we 
seek is linear in x and y, and will have slope discontinuities on the rectangle 
defined by Eq. (4.2-28). The slope of the phase surface will be set by the 
desired beam direction as in Eq. (4.1-11). Thus, 
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Ω Ω
 ϕss ( ,x y) = x ( x x− ′ ′− −x x ) + y ( y − y′ − y − y′ (4.2-29) 

2 21 2 1 2 )  

Substituting Eq. (4.2-29) into Eq. (4.2-27) , we obtain, 

ϕ nj x [ ′ ′i ,x ( , y) Cx1δ δ(x x− 1 2) +Cx (x x− 2)]
+ϕ  ′ ′inj,y ( ,x y) Cy1δ δ(y y− +1 2) C (y y y − 2) =

 Ω Ω
 −Ω C x ′ ′x x− 1 x2 1− x +C y ( y y− ′ − y y− ′x1 ( )

2 2 1 2 ) δ x − x′1 +
 
 Ω Ω 

C x   Ω +x x2 x′ ′2 1− x +C y ( y y− ′ − y y− ′ ) δ ( )x − x′ + (4.2-30) 2 2x2 1 2 2
 
 Ω Ω
 −Ω y y−C y ′ ′ ′ ′1 y − y C+ x ( x − x′ − −x x ) δ ( )y − y +
 2 22 1 y1 1 2 1

 Ω y Ω′ ′2 2 1 C x
 Ω + ( − ′y Cy y − y + y2 x x1 − x x− ′ ) δ ( )y − ′

2 2 2 y2
 

so that the required injection phases may be written, 

Ω
ϕinj,x ( ,x y) = x ( x x− ′ ′x x )

2 1 2− −

 2 2( ) (  (4.2-31) x x− −′ ′2 1x x ) 
+ + Cx xx x′ ′ ′ ′1 1 2− C 2 x x1 2− 

Ω
ϕ ( ,x y) = y ( y y− ′ ′inj,y − y y− )

2 1 2

 
2 2( )  y y− −′ ′

+ +2 1( y y )   (4.2-32)


C ′ ′ ′ ′y y1 y y1 2− C 2 y y1 2− 

For these injection phases, at late times, Eq. (4.2-25) is very slowly converging. 
However, we may remedy this as follows. If the Fourier series for the steady-
state solution Eq. (4.2-29) is subtracted from the solution Eq. (4.2-25), the 
resulting series converges rapidly for late times. Then to obtain the complete 
late time solution one merely adds the steady-state solution Eq. (4.2-29) to this 
rapidly converging series. This solution conveniently complements the form 
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given by Eq. (4.2-25) that converges rapidly for early times. (Convergence 
acceleration of this sort may also be applied in steering via detuning and in the 
one-dimensional cases treated in Chapter 3 if desired.) 
 

If injC  is large (strong injection), the last two terms in each of Eqs. (4.2-31) 
and (4.2-32) are negligible, and the injection phase equals the desired steady-
state phase at the injection points as in the one-dimensional case. This strong 
injection assumption was implicit in the analyses presented in Refs. [39] and 
[43] because the small terms were neglected in accelerating the series, but this 
fact was not explicitly noted. 
 
As an example, the solution given by Eq. (4.2-25) was computed for a 21-by-21 
element array with injection signals of strength parameter C equal to 0.7 on the 
perimeter phased to steer the beam 10 deg from normal at –110 deg of azimuth. 
This requires that we apply the phase shift gradually as discussed in Section 
3.4. We choose to do this linearly over an interval of 50 inverse locking ranges, 
after which the injection phases become constant. The solution for linear-
injection phase can be obtained from that for constant-injection phase by 
integration with respect to time or division by s in the Laplace domain. The 
phase distributions across the array at four instants of time are shown in  
Fig. 4-5. Figure. 4-6 shows the corresponding trajectory of the beam peak and 
3-dB contour during the beam-steering transient at intervals of 10 inverse 
locking ranges. Here again, as shown in Fig. 4-7, because of the phase 
aberration (deviation from planarity) across the aperture during the transient, 
the directivity of the antenna decreases, but this loss is recovered in steady state 
when the phase distribution again becomes planar. The so-called “projected 
aperture loss” discussed in Section 4.1 is also clearly visible. Finally, Fig. 4-8 
shows the result of applying a sequence of injection phases resulting in 
sequential beam-steering to several angles.  

4.3 Non-Cartesian Coupling Topologies 
The planar arrays presented so far have made use of a Cartesian coupling 
topology in which oscillators on a Cartesian lattice were coupled to four nearest 
neighbors. However, this is by no means the only coupling topology leading to 
planar arrays that admit beam-steering. In this section we treat, via the 
continuum formulation, two other possible topologies, triangular (Fig. 4-9) and 
hexagonal (Fig. 4-10). 
 
In the triangular case, shown in Fig. 4-9, the unit cells are hexagons and each 
interior oscillator is coupled to six nearest neighbors. [44] The oscillators are 
identified with pairs of integer values of the coordinates p and q ranging from 
1 to N. 
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Fig. 4-5. Aperture phase distributions versus time (edge oscillators injection 
locked for beam-steering). (Reprinted from [43] with permission, ©2001 IEEE.) 

 

 
Fig. 4-6. Beam trajectory during the beam-
steering transient. (Reprinted from [43] with 
permission, ©2001 IEEE.) 
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Fig. 4-7. Peak gain dynamics during the beam-steering transient for various injection 
strengths. (Reprinted from [43] with permission, ©2001 IEEE.) 
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Fig. 4-8. Sequential bream-steering (τ varies from 0 to 400 in 
increments of 10). (Reprinted from [43] with permission, ©2001 
IEEE.) 

 

Using these coordinates, the discrete model yields the system of differential 
equations, 

∂ϕ pq =ω
∂t tune, pq −ωref

−∆ω lock sin(ϕ ϕ− ) + sin(ϕ ϕ− )  pq p− +1,q pq p 1,q  (4.3-1) 
+ sin(ϕ ϕpq − p+1, 1q− ) + sin(ϕ ϕpq − p, 1q− )

+ sin(ϕ ϕ− + ) + sin(ϕ ϕ− − + )pq p,q 1 pq p 1,q 1 
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Fig. 4-9. Oscillators coupled on an equilateral triangular 

lattice. (Reprinted with permission from [44], ©2004 IEEE.) 
 

 
Fig. 4-10. Oscillators coupled on a hexagonal lattice. 
(Reprinted with permission from [44], ©2004 IEEE.) 
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where we have assumed that the coupling phases are multiples of 2π. We 
remark that this system of nonlinear equations can be solved numerically to 
yield the full nonlinear solution for the dynamic behavior of the phase 
distribution. However, as mentioned earlier, the analytic solution of the 
linearized formulation provides more insight. Linearizing and expanding in 
Taylor series to second order leads to, 

 ∂ ∂ ∂2 2 2ϕ ϕ ϕ  ∂ϕ
 2 + +  − = −∆Ω  

 t ( , )
p2 2q τ une p q (4.3-2) 
∂ ∂∂ ∂ ∂ p q 

where, as before, τ ω= ∆ lockt  and ∆Ωtune = (ω ωtune − ref ) / ∆ωlock . 

Transforming to Cartesian coordinates, x and y, we arrive at, 

 ∂ ∂2 2ϕ ϕ ∂ϕ 1
  + − = − ∆Ω  

2 2 tune (4.3-3)  ∂ ∂x y ∂  Ttri 3

and Ttri = (3/2)τ. This equation is very much like Eq. (4.1-2) for the Cartesian 
case except for the scaling of the time and the detuning. 
 
In the hexagonal case, shown in Fig. 4-10, the unit cells ar triangular and each 
interior oscillator is coupled to three nearest neighbors [44]. Following a 
procedure analogous to that presented above for the triangular case leads to,  

 ∂ ∂2 2ϕ ϕ ∂ϕ
  + − = − 3∆Ω  

 2 2 tune (4.3-4) 
 ∂ ∂x y ∂Thex

and Thex = τ/4. Again, this equation is very much like Eq. (4.1-2) for the 
Cartesian case except for the scaling of the time and the detuning. 
 
Finite arrays using the triangular and hexagonal coupling schemes may be 
constructed with equilateral triangular boundaries, and the boundary conditions 
on the phase will again be of the Neumann type. Just as was the case for 
rectangular arrays, if the oscillators on the triangular boundary are detuned, the 
steady-state interior phases are governed by Laplace’s equation, and planar 
distributions are an obtainable special case. The desired steady-state solution to 
produce a beam steered to spherical coordinate angles, ( ,θ ϕ0 0) , is, 

2πd N  
 ϕ(x y, ,∞ =) −  x − sinθ0 cosϕ θ ϕ

λ 0 + y sin 0 0sin   (4.3-5) 
 3 
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where d is the separation of the radiating elements in the y coordinate for fixed 
x, and λ  is the wavelength. Substituting this desired steady-state phase 
distribution, Eq. (4.3-5), into the partial differential equations, Eqs. (4.3-3) and 
(4.3-4), gives the required detuning of the perimeter oscillators. 

2 2π πd  ∆Ωtune = − θ ϕ= sin3 αλ 0 0cos −x y  3
2 2π πd   ∆Ωtune = −=− sinθ ϕc  3 0 0os +  (4.3-6)x y  αλ  3
2πd

∆Ωtune = − s nθ ϕ= i 0 0cosx A 3/2 ( )
αλ

where A is the length of a side of the array, Nd , and α is 1 / 3 for the  
triangular coupling and 3  for hexagonal coupling. Note that the sum of these 
detunings is zero for all steering angles so that the ensemble frequency of the 
array is unchanged. 
 
At this point we note for later reference that it is possible to obtain the needed 
tuning for a given planar steady-state phase distribution from the full nonlinear 
formulation Eq. (4.3-1). Inserting the desired phase Eq. (4.3-5) into Eq. (4.3-1) 
and evaluating on the boundary of the triangle we obtain, 

1  2π πd  ∆Ωtune == sin sinθ ϕ 0 0cosx y 3  +
3  αλ  6

1  2π πd  + sin  sinθ ϕ0 0cos +
3  αλ  2

1 2πd  π ∆Ωtune = sin sinθ ϕ= cx 3 0 0 −−  osy  3  αλ  6 
  (4.3-7) 

1 2πd  π + sin θ ϕ sin 0 0cos − 3  αλ  2 
1  2πd  5π

∆Ωtune = sin sinθ ϕ3/2  0 0cosx A=  −
3  αλ  6

1  2π πd  5
+ sin  sinθ ϕ0 0cos +

3  αλ  6
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which reduces to Eq. (4.3-6) for small θ0;. that is, for small inter-oscillator 
phase differences when the linearization is accurate. Note that the sum of these 
detunings is exactly zero regardless of steering angle. 
 
We propose that the solutions of the partial differential equations, Eq. (4.3-3) 
and Eq. (4.3-4), be obtained as series of the eigenfunctions of the differential 
operators subject to Neumann boundary conditions on the triangular boundary 
of the arrays. These eigenfunctions have been studied in the context of 
waveguides of triangular cross section and are thus well known. They are 
expressed as sums of three products of two of the trigonometric functions, sine 
and cosine. These eigenfunctions and their useful properties are summarized in 
the appendix of Ref. [44].   
 
We wish to solve, 

 ∂ ∂2 2ϕ ϕ ∂ϕ
  + − = −α∆Ω  

 2 T tunex y2 (4.3-8) 
∂ ∂ ∂

with the detuning function given by Eq. (4.3-6), and we will assume that the 
detuning is a step function in time. Laplace transformation of Eq. (4.3-8) gives, 

 ∂ ∂2 2ϕ ϕ  α
  + − sϕ = −α∆Ω tune = − ∆Ωt ( ,x y)  4.3-9)   une (

 ∂ ∂x y2 2 s

The solution will be of the form, 

ϕ τ( ,x y ( ) σ
 , ) =∑C H i − mnT

mn mn ( ,x y) (1− e )u(T )  (4.3-10) 
mn

where the H functions are the normalized eigenfunctions on the triangle with 
the superscript denoting even or odd symmetry of the function in y. Thus, the 
unknown coefficients may be found from the desired steady-state phase 
distribution, Eq. (4.3-5), by setting T to infinity in Eq. (4.3-10) and setting the 
resulting sum equal to the steady-state solution. Then, the orthogonality of the 
eigenfunctions permits us to find the coefficients, Cmn. This procedure is 
completely equivalent to expressing the Green’s function as a sum of the 
eigenfunctions and then integrating the product of the Green’s function and the 
desired steady-state phase distribution as was done in the Cartesian case. 
 
As was done in Ref. [44], we now provide a number of computed examples 
demonstrating the dynamic behavior obtained via the various formulations of 
the problem; that is, the nonlinear model, the linearized discrete model, and the 
continuum model for both the triangular and hexagonal coupling topologies. 
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We begin with triangular coupling with N = 28 resulting in a 435-oscillator 
array. We completely preclude the appearance of grating lobes in the visible 
region by selecting the radiating element spacing, d, to be / 3λ . We note, 
however, that, because the maximum permissible phase difference between 
coupled oscillators is 90 deg, the element spacing can be as large as 3 / 2λ  
without the appearance of visible grating lobes. The array size, A, in the 
continuum model is taken to be ( 1)( 2)d N N+ +  instead of Nd because that makes 
the array area equal to the sum of the unit cell areas, resulting in a more 
accurate directivity. Figure 4-11 shows the aperture phase distribution for four 
instants of time computed using the continuum model with perimeter detuning 
given by Eq. (4.3-6) and unit step temporal dependence and steady-state beam-
pointing angles θ0, φ0) = 10 deg, 45 deg). Note the rather severe phase 
aberration at time equal to 10 inverse locking ranges. Figure 4-12 shows the 
directivity (gain in the absence of loss) computed by pattern integration as a 
function of time during the beam-steering transient. The solid curve is the result 
of planar phase distribution, and “projected aperture loss” is again evident. In 
the left plot, the continuum result is compared with the full nonlinear solution 
obtained numerically, and in the right plot the numerical solution of the 
linearized discrete model is compared with the nonlinear solution. Note that the 
dip in gain at about 10 inverse locking ranges correlates with the severe 
aberration at that time in Fig. 4-11. The nonlinear solution used Eq. (4.3-7) 
while the linear ones used Eq. (4.3-6) as detuning. Because the angle from 
normal is only 10 deg, the error in the linear approximation of the sine 
functions is less than 6.5 percent, and the linearized and continuum results 
agree well with the full nonlinear result taken to be the correct behavior. 
Figure 4-13 shows the trajectory of the beam peak and 3-dB contour during the 
beam-steering transient as computed via the three formulations, and, as should 
be expected for this small steering angle, they agree very well. 
 
Now, if the final beam angle is increased from 10 deg to 25 deg, the error in the 
linear approximation of the sine function is almost 49 percent, and the 
discrepancy between the linear and nonlinear results in Fig. 4-14 show the 
impact of this in that the gain error at the dip is about 2 dB, and the curves are 
slightly different in shape. However, there is still qualitative agreement between 
the linear and nonlinear results.  
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Fig. 4-11. Aperture phase distributions for triangular coupling with  
(θ0,φ0) = (10 deg, 45 deg) for τ values of 1, 10, and 50, plus steady state. 
(Reprinted with permission from [44], ©2004 IEEE.) 

 

 

Fig. 4-12. Gain dynamics of gain plotted against percentage of τ for 
triangular coupling with (θ0,φ0) = (10 deg, 45 deg). (Reprinted with 
permission from [44] , ©2004 IEEE.) 
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Fig. 4-13. Beam dynamics for triangular coupling with (θ0,φ0) = (10 deg, 45 deg). 
(Reprinted with permission from [44], ©2004 IEEE.) 

 

 

Fig. 4-14. Gain dynamics for triangular coupling with (θ0,φ0) = (25 deg, 45 deg). 
(Reprinted with permission from [44],  ©2004 IEEE.) 

 
 
 
Figure 4-15 shows the trajectory of the beam peak and the 3-dB contour during 
the beam-steering transient as computed using the three formulations and the 
agreement among them is good even though the accuracy of the linearization is 
questionable. 
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Fig. 4-15. Beam dynamics for triangular coupling with (θ0,φ0) = (25 deg, 45 deg). 
(τ varies from 0 to 600 in increments of 50.) (Reprinted with permission from [44], 
©2004 IEEE.)  

 
Consider now a hexagonally coupled array in which we again choose d to be 
λ / 3 If we choose N to be 28, this hexagonally coupled array will have . 
784 oscillators. This makes the distance between the corner elements a bit less 
than in the triangular case for N = 28. Choosing the array size, A, to be Nd  
here makes the array area equal to the sum of the unit cell areas as was done for 
the triangular coupling example. Assuming that the radiating elements are 
arranged as in Fig. 4-10, the separation between periodic lines of elements will 
be λ/2, and there will be no grating lobes in the visible region. Here again, 
however, the spacing d can be as large as λ 3 / 2  and still not produce 
grating lobes because the phase differences must be less than 90 deg to 
maintain lock.  
 
Figure 4-16 shows the aperture phase distribution at a sequence of times for 
steady-state beam-steering angles of (θ0,φ0) = (20 deg, 45 deg). The behavior is 
very similar to that observed with triangular coupling except for the time scale 
of the response, which is considerably slower for the hexagonal coupling. Of 
course, one must remember that this array has many more oscillators than the 
triangular one. The temporal behavior of the gain of this array is shown in 
Fig. 4-17 as computed using the full nonlinear model, the linearized model, and 
the continuum model. Because for this steady-state beam-steering angle, the 
error in the linear approximation to the sine function is only about 9 percent, 
these results agree quite well. The dip in the gain at about 60 inverse locking 
ranges is consistent with the significant phase aberration seen at that time in 
Fig. 4-16. Finally the trajectories of the beam peak and 3-dB contour as 
computed using the three formulations are shown in Fig. 4-18 for a steady-state 
beam position 20 deg from normal to the array. If this angle is increased to 
30 deg, the approximation error increases to about 20 percent, and Fig. 4-19 
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shows the impact of this in terms of the discrepancies between the full 
nonlinear result taken to be correct and those of the two linearized theories. 
Finally Fig. 4-20 shows the corresponding beam trajectories. 
 
As pointed out in [44], it might seem appropriate to correct the detuning needed 
for a given set of steady-state beam-steering angles as was done for triangular 
coupling in the manner of (4.3-7) but this is not very effective for reasons that 
will become clear as we discuss the true steady-state phase distribution for a 
hexagonally coupled array. [45] For one thing, there is a tendency to choose 
detunings that do not sum to zero thus producing quadratic phase distributions 
instead of planar ones. One may artificially impose a zero sum but the proper 
choice of detuning still lacks a firm theoretical basis. 
 

 

Fig. 4-16. Aperture phase for hexagonal coupling with (θ0,φ0) = (20 deg, 45 deg). 
(Reprinted with permission from [44], ©2004 IEEE.) 
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Fig. 4-17. Gain dynamics for hexagonal coupling with (θ0,φ0) = (20 deg, 45 deg) 
(Reprinted with permission from [44], ©2004 IEEE.) 

 

 

Fig. 4-18. Beam dynamics for hexagonal coupling with (θ0,φ0) = (20 deg, 45 deg) 
(τ varies from 0 to 600 in increments of 50). (Reprinted with permission from 
[44], ©2004 IEEE.) 

 
To obtain the results shown in Figs. 4-19 and 4-20, a correction factor was 
applied to the three detunings of Eq. (4.3-6). The factor was derived at an 
azimuth angle of 30 deg because, as will be seen, it is only at 30 deg plus 
integral multiples of 60 deg that planar phase distributions are rigorous steady-
state solutions for the phase distribution. For reference, this correction factor as 
given in Ref. [44] is, 
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sin sinθ 0 cos 
 αλ  6  (4.3-11) 
2π πd  sinθ
αλ 0 cos 

 6

 2π πd  

 Correction Factor =

and this factor is multiplied by each of the edge detunings in Eq. (4.3-6), thus 
preserving the zero sum. 
 

 

Fig. 4-19. Gain dynamics for hexagonal coupling with (θ0,φ0) = (30 deg, 45 deg) (Reprinted with permission from [44], ©2004 IEEE.) 
 
 

 

Fig. 4-20. Beam dynamics for hexagonal coupling with (θ0,φ0) = (30 deg, 45 deg)  (Reprinted with permission from [44], ©2004 IEEE.)  
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Now let us revisit in more detail the matter of the steady-state phase 
distribution in a hexagonally coupled array. We begin by formulating the full 
nonlinear set of differential equations for such an array. Following Pogorzelski 
[45], we write for each oscillator, 

∂ϕxy =ω
∂ tune,xy −ω ωref −∆t lock

    (4.3-12) 
× sin(ϕ ϕxy − − ϕ ϕ s
 x δ ,y ) + sin( xy − δ δ) + in(ϕ ϕ− )3 3xy

x+ +, ,y δ δx+ −y 2 2 2 2

in which the coupling phase is assumed to be a multiple of 2π and δ = 1/ 3 , the 
spacing between coupled oscillators. We have particular interest in the steady 
state so we set the time derivative equal to zero and get, 

ωtune,xy −ωref =
∆ω

 lock   
sin(ϕ ϕxy − x−δ ,y ) + sin(ϕ ϕxy − δ δ) + sin(ϕ ϕ )3 3xy −

x+ +, ,y δ δx+ −y
2 2 2 2

 (4.3-13) 
 

Recall that the desired phase distribution is given by Eq. (4.3-5). Substituting 
Eq. (4.3-5) into Eq. (4.3-13), we obtain for the non-perimeter oscillators, 

 ( 0 0)   2 2π π   sin D Dcos ϕ ϕ+ +sin cos  + −sin D cos ϕ0 =   0   
  3 3     

 

  (4.3-14) 

2πd
where D = sinθ0 . Now Eq. (4.3-14) can be rewritten in the form, 

λ 3

D D   2 2π π D  
 sin  cos (ϕ ϕ0 ) sin cos + 0  sin cos ϕ

3 0 − = 0  (4.3-15) 
 2   2    2  3 
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and it is clear that for small D; that is, small θ0, this equation holds 
π πnapproximately true. Moreover, it holds exactly true for ϕ0 = ± for integer 
6 3

values of n. However, it does not hold true for arbitrary D and ϕ0 . Thus, we 
conclude that no possible detuning of the perimeter oscillators can result in a 

π πnplanar aperture distribution for azimuth angles other than ϕ0 = ± . 
6 3

 
Pogorzelski noted, however, that if one postulates a phase distribution of the 
form, 

2πdϕ( ,x y) = −
λ

  (4.3-16)  N 
× x y− sinθ0 cosϕ0 + sinθ ϕ0 0sin  ± ∆ϕxy
 3 

in which the ambiguous sign denotes alternation from one oscillator to its 
neighbor, an exact solution for the perimeter detuning that will produce it is 

possible provided ∆ϕxy is set to the proper value. Substituting Eq. (4.3-16) into 

Eq. (4.3-13) yields for the non-perimeter oscillators, 

 2sin 2 xy D Dc s ( 0 0)  π ∆ −ϕ ϕo  + sin ∆ −ϕxy cos +  2 ϕ   3
  (4.3-17) 

  2π
+ sin 2∆ −ϕ ϕxy D cos 0 − =  0

  3

and solving for ∆ϕxy , we obtain, 

1 −1  Num
 ∆ =ϕxy tan    (4.3-18) 

2  Den
where, 

  2πNum = sin   D cos (ϕ ϕ0 0) + +sin  D cos 
  3

  (4.3-19) 
  2π

+ −sin ϕ D cos 0
  3
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  2πDen = cos  D + + cos (ϕ ϕ0 0) cos  D cos 
  3

  (4.3-20) 
  2π

+ −cos  D cos ϕ0
  3

Finally substituting Eq. (4.3-16) with Eq. (4.3-18) into Eq. (4.3-13) yields the 
perimeter detuning required to produce this non-planar phase distribution. The 
result is, 

 2πd  2π
∆Ωtune = −= sin sinθ ϕ3 0 0cosx y   − − 2∆ϕ

3 3 xy
 λ  

 2 2π πd   
 ∆Ωtune = −− sin3  sinθ ϕx= y 0 0cos + − 2∆ϕxy   (4.3-21) 

λ 3  3 
 2πd

∆Ωtune = − θ ϕs − 2∆ϕx N=( − sin sin co3 1) 3/6  0 0( ) xy
 λ 3

for the edge elements and 

 (3N N− −1) 3 ( 1)
∆Ωtune  , = 

 6 2

 2 2π πd   
− sin  sinθ ϕ0 0cos + − 2∆ϕxy 

λ 3  3 
 (3N N− −1) 3 ( 1)  ∆Ω  ,−  =  (4.3-22) tune  
 6 2 

 2πd  2π
− sin si θ ϕ0 0s ∆ϕ n co  − − 2 xy

 λ 3  3

 1 2  πd 
∆Ωtune  ,0 = −sin sinθ ϕcos 2∆ 0 0( ) − ϕxy

 3 3 λ 

for the corner elements. Because of Eq. (4.3-17), the sum of these detunings is 
always zero so that the ensemble frequency of the array remains constant. 
Figure 4-21 shows a typical phase distribution for such an array. Figure 4-21(a) 
shows the phase distribution, and Fig. 4-21(b) shows the deviation, ±4.67 deg, 
from planar. 
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Fig. 4-21. Phase distribution for (θ0,φ0) = (22.3 deg, 57 deg) with 
λ=d  showing (a) phase distribution and (b) deviation from planar. 

(Reprinted with permission [44], ©2005 IEEE.)  
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One would perhaps expect that such a phase aberration would result in a 
decrease in gain. However, as discussed in detail in Ref. [45], this is typically 
not the case. The power that would have been radiated by a planar phase 
distribution is partially shifted by the phase alternation into the invisible region. 
Thus, this part is not radiated, and the power input to the antenna is decreased 
by the same amount. As a result, the directivity is unaffected by the phase 
alternation! The only circumstance resulting in a decrease in the gain is when 
the combination of element spacing and steering angle results in one or more 
grating lobes in the visible region. Analytical estimation of this effect is 
discussed in Ref. [45]. 
 
Finally, we remark that a planar steady-state phase distribution is of course 
attainable if one is willing to detune all of the oscillators in the hexagonally 
coupled array. This would require that alternate oscillators be detuned in 
opposite directions in frequency by an amount that depends on the scan angle. 

4.4 Conclusion 
In this chapter we have discussed a variety of coupling topologies for planar 
arrays, and we have shown that the continuum model can be used to describe 
the dynamic behavior of the phase distribution over these arrays. By this means 
we have demonstrated that beam-steering can be accomplished by detuning the 
perimeter oscillators or in the Cartesian case by injection locking them to 
external signals. Beam-steering by external injection in the triangular case was 
not treated but appears to be possible, though the analysis may become 
somewhat more challenging. 
 
In the next chapter we point out that all of the preceding results are 
fundamentally non-causal in that the response begins immediately upon 
application of the detuning or phase shift of the external locking signal 
regardless of the physical separation of the cause and effect. A modified 
formulation is proposed to render the solutions causal. 
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