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Part I: Theory and Analysis 

 

Chapter 1  
Introduction – Oscillators and 

Synchronization 
Oscillation is among the simplest of dynamic behaviors to describe 
mathematically and has thus been conveniently used in modeling a wide variety 
of physical phenomena ranging from mechanical vibration to quantum 
mechanical behavior and even neurological systems. Certainly not the least of 
these is the area of electronic circuits. Many years ago, van der Pol created his 
classical model of an oscillator including the nonlinear saturation effects that 
determine the amplitude of the steady-state oscillation. [9] Soon afterward, 
Adler provided a simple theory of what is now known as injection locking and 
coupled oscillators became a valuable design resource for the electronics 
engineer and the antenna designer. [10] Moreover, circuit theorists were able to 
apply these principles to long chains and closed rings of coupled oscillators to 
model biological behaviors such as intestinal and colorectal myoelectrical 
activity in humans. [11] [12]. 

1.1 Early Work in Mathematical Biology and Electronic 
Circuits 

Biologists, in trying to understand how neurons coordinate the movements of 
animals, have defined what is known as a “central pattern generator” or “CPG” 
for short. A CPG in this context is a group of neurons that produce rhythmic or 
periodic signals without sensory input. Biologists have found that CPGs are 



2 Chapter 1 

conveniently modeled mathematically if treated as a set of oscillators that are 
coupled to each other, most often using nearest neighbor coupling but 
sometimes using more elaborate coupling schemes. Taking this viewpoint and 
performing the subsequent mathematical analysis has enabled biologists to 
fruitfully study the manner in which vertebrates (such as the lamprey) 
coordinate their muscles in locomotion (swimming) and how bipeds (such as 
you and I) do so in walking or running. The muscles are controlled by signals 
from a CPG. [13] [14] Electronics engineers have also found oscillators to be 
useful but more as a component of a man-made system rather than a model of a 
naturally occurring one as in biology. Legend has it that the first electronic 
oscillator was made by accident in trying to construct an amplifier and 
encountering unwanted feedback that produced oscillatory behavior. In any 
case, to deliberately make an oscillator, one starts with an amplifier and 
provides a feedback path that puts some of the amplifier output into its input 
whence it is amplified and again returned to the input, and so on. The feedback 
signal is arranged to arrive at the input in-phase with the pre-existing signal at 
that point so the feedback is regenerative. Thus, the amplitude of the circulating 
signal would continue to increase indefinitely. However, the amplification or 
gain of practical amplifiers decreases as the signal amplitude increases. Thus, 
an equilibrium is quickly reached where the amplitude is just right so the 
amplifier gain balances the losses in the loop. Then the oscillation amplitude 
stops increasing and becomes constant. This equilibrium occurs at a particular 
frequency of oscillation depending on the frequency response of the amplifier 
and the phase characteristics of the feedback path. Thus, the amplitude and 
frequency become stable and constant. These can be controlled by changing the 
circuit component values. 
 
Before long it was realized that an oscillator could also be controlled by 
injecting a signal from outside the circuit into the feedback loop. This, in a 
sense, adds energy to the circuit at the injection frequency making it easier for 
the circuit to sustain oscillation at that frequency. Therefore, if the injected 
signal is strong enough, the oscillator will oscillate, not at its natural or free 
running frequency but, rather, at the injection signal frequency and the 
oscillator is said to be “injection locked.” If the injection signal comes from 
another oscillator similar to the one being injected and the coupling is 
bidirectional, the pair is said to be “mutually injection locked.” 
 
If many oscillators are mutually injection locked by providing signal paths 
between them, mutual coupling paths, they can be made to oscillate as a 
synchronized ensemble. The ensemble properties of such a system are both 
interesting and useful, and it is this aspect that so intrigued the mathematical 
biologists. However, some years ago, it was noted by antenna design engineers 
that these ensemble properties may be exploited in providing driving signals for 
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phased-array antennas. This is because, the phases of the oscillators in a 
coupled group are coordinated and form useful distributions across the 
oscillator array. These phase distributions will be discussed in great detail in the 
remainder of this book, but, for now, we only note that in, for example, using a 
linear array of mutually injection locked oscillators coupled to nearest 
neighbors, one may create linear phase progressions across the array by merely 
changing the free-running frequencies of the end oscillators of the array anti-
symmetrically; that is, one up in frequency and the other down by the same 
amount. Such a linear distribution of signal phases, when used to excite the 
elements of a linear array of radiating antenna elements, produces a radiated 
beam whose direction depends on the phase slope. This slope is determined by 
the amount by which the free-running frequencies of the end oscillators are 
changed. Electronic oscillators can be designed so that their free-running 
frequencies are determined by the bias applied to a varactor in the circuit. These 
are called voltage-controlled oscillators or “VCOs.” So we have now described 
an antenna wherein the beam direction is controlled by a DC bias voltage, a 
very convenient and useful arrangement that is, in large part, the subject of this 
book. 

1.2 van der Pol’s Model 
Although having published some related earlier results, in the fall of 1934, 
Balthasar van der Pol, of the Natuurkuedig Laboratorium der N. V. Philips’ 
Gloeilampenfabricken in Eindhoven published, in the Proceedings of the 
Institute of Radio Engineers, what has become a classic paper on his analyses 
of the nonlinear behavior of triode vacuum-tube based electronic oscillators [9]. 
The beauty of his work lies in the fact that he included in his model only the 
degree of complexity necessary to produce the important phenomena observed. 
Thus, his mathematical description remained reasonably tractable permitting 
detailed analytical, and more recently computational, study of all the salient 
behaviors of such circuits.  
 
An important aspect that was missing from the earlier, linear treatments was 
that of gain saturation. Recall that it is this saturation of the gain that produces a 
stable steady-state amplitude of oscillation. van der Pol included this as a 
negative damping of his oscillator which depends quadratically on the 
oscillation amplitude and becomes positive for sufficiently large amplitude. He 
also allowed for a driving signal with a frequency different from the resonant 
frequency of the oscillator. The inclusion of these two features in his model will 
enable us to use it to describe in this book both the steady-state and the 
transient behavior of coupled oscillator arrays. 
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Consider the oscillator of Fig. 1-1 and let YL be a resonant parallel combination 
of an inductor, a capacitor, and a resistor. Application of Kirchhoff’s current 
law to the node at the top of YL , using phasors with tje ω time dependence, 
yields, 

 21( ) 0D
jj I C V

L R
ωω ω+ + − =  (1.2-1) 

Now, van der Pol recognized that the active device current, id, would be a 
nonlinear function of the node voltage and modeled that nonlinear function in 
the time domain as, 

 ( )3
1 3( ) ( ) ( )Di t g v t g v tε= − −  (1.2-2) 

using the constants ε, g1, and g3 for consistency with Section 7.5 where the van 
der Pol model is revisited in the context of circuit parameter extraction. Thus 
we have that, 

 2
1 3( ) ( ) 3 ( ) ( )D

d d di t g v t g v t v t
dt dt dt

ε ε= − +  (1.2-3) 

or in phasor notation, 

 ( )2
1 33Dj I j g g V Vω ωε= − −  (1.2-4) 

capital letters denoting phasors. Substituting this into Eq. (1.2-1) yields, 

 ( )2 2
1 3

13 0jj g g V V C V
L R

ωωε ω − − + + − = 
 

 (1.2-5) 

which may be rewritten in the form, 

 ( )2 2
1 3

13 0jj g g V C V j YV
L R

ωωε ω ω − − + + − = =  
 (1.2-6) 

 

 
Fig. 1-1. An oscillator as a negative admittance. 

ACTIVE 
DEVICE

Re(YD)<0
YL Y=YD+YL=0
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where, 

 ( )2
1 3

1 13Y g g V j C
j L R

ε ω
ω

= − − + + +  (1.2-7) 

  
Now, expanding this admittance in a Taylor series about the resonant 
frequency, 

 0
1
LC

ω =  (1.2-8) 

results in, 

 
( )

( ) ( )

2
1 3

2
1 3 0

0

1 13

23

Y g g V j C
j L R

jQg g V
R

ε ω
ω

ε ω ω
ω

= − − + + +

≈ − − + −

 (1.2-9) 

  
where, 

 0Q RCω=  (1.2-10) 

  
is the traditional quality factor of the oscillator. Use of this expression for the 
admittance is how we will introduce the van der Pol model into our analysis of 
an injection locked oscillator below.  

1.3 Injection Locking (Adler’s Formalism) and Its 
Spectra (Locked and Unlocked) 

To analytically describe the injection locking phenomenon, an oscillator can be 
viewed as an admittance with a negative real part connected to a resonant load 
admittance with a positive real part as shown in Fig. 1-1. Using this 
representation we proceed now to develop a differential equation for the 
dynamic behavior of the phase of the oscillation.  
 
The voltage across the load admittance can be written in time varying phasor 
form as, 
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 ( )( ) j tV A t e θ=  (1.3-1) 

 

where, 

 0( ) ( )t t tθ ω ϕ= +  (1.3-2) 

Note that V may also be written, 

 [ ( ) ln ( )]j t j A tV e θ −=  (1.3-3) 

   
Kurokawa [15] suggested that the time derivative of this phasor be written in 
the form, 

 0 lndV d dj j A V
dt dt dt

ϕω = + −  
 (1.3-4) 

and that the quantity in brackets be identified as the “instantaneous frequency,” 

instω . That is, 

 inst
dV j V
dt

ω=  (1.3-5) 

where, 

 0 lninst
d dj A
dt dt
ϕω ω = + −  

 (1.3-6) 

The negative admittance of the device, YD, is a function of both the frequency 
and the amplitude of the oscillating voltage across it. The oscillator operates at 
the frequency and amplitude that makes this negative admittance equal to the 
negative of the load admittance, YL, so that the total admittance is zero. 
Following Chang, Shapiro, and York [16], we may expand the admittance in a 
Taylor series about this operating point in the form, 

 
0

0 0 0( , ) ( , ) ( )inst L D inst
YY A Y Y A

ω
ω ω ω ω

ω
∂

= + + − +
∂

  (1.3-7) 

where we have neglected the amplitude dependence of YD. Multiplying by V we 
obtain Kirchhoff’s current law at the top node of Fig. 1-1.  
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0

0 0 0

( , )

( , ) ( ) 0

inst

L D inst

Y A V
YY V Y A V V

ω

ω

ω ω ω
ω

=

∂
+ + − + =

∂


 (1.3-8) 

In steady state, the oscillator will oscillate with frequency ω0 and amplitude A0 
making the derivative term zero. Then the load current cancels the oscillator 
current for a total of zero current exiting the node. However, if a signal is 
injected at the node from an external source, this equilibrium is changed to, 

 

0

0 0 0

( , )

( , ) ( ) 0

inj inst

inj L D inst

I Y A V

YI Y V Y A V V
ω

ω

ω ω ω
ω

+ =

∂
+ + + − + =

∂


 (1.3-9) 

Inserting Eq. (1.3-6) for the instantaneous frequency results in, 

 
0

0 0( , ) ln 0inj D L
d d YI Y A V Y V j A V
dt dt ω

ϕω
ω
∂ + + + − =  ∂ 

 (1.3-10) 

or, 

 

0 0

0 0( , )ln 0injIY Ad dj A
Y Ydt dt V

ω ω

ωϕ

ω ω

 − + + =  ∂ ∂ 
∂ ∂

 
(1.3-11) 

We will now substitute the negative admittance appropriate to the van der Pol 
oscillator model and analyze the oscillator assuming that a current, Iinj, is 
injected. 
 
Recall that near ω0 van der Pol’s model gives, 

 ( ) ( )2
1 3 0

0

23
osc

jQY g g V
R

ε ω ω
ω

= − − + −  (1.3-12) 

so that, 
 

 
0 0

2

osc

Y jQ
Rωω ω

∂
=

∂
 (1.3-13) 

Taking the real part of (1.3-11) using (1.3-13) yields, 
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0

Re 02
inj

osc

Id
jQdt V
R

ϕ

ω

 
 
 + =
 
 
 

 (1.3-14) 

Letting inj osc injV R I= , 

 0 Im 0
2

injVd
dt Q V

ωϕ  
+ = 

 
 (1.3-15) 

Using phasor notation for the injection signal, injj
inj injV A e θ=  and using 

(1.3-2), 

 ( ) ( )0 0
0 0Im sin

2 2
injjinj inj

inj
A Ad e

dt Q A Q A
θ θω ωθ ω ω θ θ−

= + = + −  (1.3-16) 

Defining, 0
2

inj
lock

A
Q A
ω

ω= ∆ , the so-called “locking range,” we have, 

 ( )0 sinlock inj
d
dt
θ ω ω θ θ= + ∆ −  (1.3-17) 

known as Adler’s equation [10]. Taking the imaginary part of Eq. (1.3-11) 
leads in the same manner to a differential equation for the amplitude dynamics 
but, treatment of that aspect will be postponed until Chapter 7dealing with 
nonlinear analysis of oscillator arrays. For clarity and simplicity in the initial 
description of the array properties, the amplitude variation will be assumed 
negligible. If you are particularly interested, however, you may wish to consult 
Nogi, et al. [17], Meadows, et al. [18] , and Seetharam, et al. [19] which discuss 
some aspects of amplitude behavior. 
 
Although the differential equation given by Eq. (1.3-17) is first order, it is 
nonlinear. Remarkably, however, it can nevertheless be solved analytically. 
Once the solution is obtained, it can be used to describe the dynamic behavior 
of the locking process and, very interestingly, the spectrum of the oscillations 
under both locked and unlocked conditions. We begin by solving Eq. (1.3-17) 
and then proceed to exhibit the spectral properties of the solution. 
 
First, we define, 
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 ( ) ( )0inj inj inj tψ θ θ ϕ ϕ ω ω= − = − + −  (1.3-18) 

so that Eq. (1.3-17) may be written, 

 sin inj
lock

lock

d
dt

ωψ ω ψ
ω
∆ 

= −∆ + ∆ 
 (1.3-19) 

where 0inj injω ω ω∆ = − . Now defining inj

lock
K

ω
ω
∆

=
∆

 and locktτ ω= ∆ , we 

have the deceptively simple looking differential equation, 

 ( )sind K
d
ψ ψ
τ
= − +  (1.3-20) 

Integrating from an initial time, τ 0 , to an arbitrary subsequent time, τ ,  

) dψ τ
 ( )0 0

(

( ) sin
d

K
ψ τ

ψ τ τ
τ

ψ
= −

+∫ ∫  (1.3-21) 

we arrive at, 

 ( )0

( )
0 ( ) sin

d
K

ψ τ

ψ τ

ψτ τ
ψ

= −
+∫  (1.3-22) 

and it remains to carry out the integration. Using the substitution, 

 tan
2

u ψ =  
 

 (1.3-23) 

the integral may be cast in the form, 

 0 2

1 2
2 1

u

u
du

uK u
K

+ +
∫  (1.3-24) 

where, 

 0
0

( )tan
2

u ψ τ =  
 

 (1.3-25) 
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By factoring the denominator of the integrand and expanding in partial 
fractions, the integral, Eq. (1.3-24), can be expressed in terms of the natural 
logarithm function in the form, 

 
0

0

2
22 1

1 2 1 ln2 11

u
u

u
u

u udu
uK u uKu

K

 −
=  − −+ +

∫  (1.3-26) 

where u1 and u2 are the roots of the quadratic in the denominator of the 
integrand. That is, Eq. (1.3-22) becomes, 

 

( )

( )
( )

0

0

( )

( )

( )
2

02 2

( )

sin

tan 1 1
1 2ln

1 tan 1 1
2

d
K

K K

K K K

ψ τ

ψ τ

ψ τ

ψ τ

ψ
ψ

ψ

τ τ
ψ

=
+

   + − −     = −
  − + + −    

∫

 (1.3-27) 

Recall that the natural logarithm function is related to the inverse hyperbolic 
tangent function by, 

 ( )11ln 2 tanh
1

x x
x

−+  = − 
 (1.3-28) 

if 10 2 <≤ x . Upon using Eq. (1.3-28) in Eq. (1.3-27) we obtain, 

 

0

( )

2
1

0 2

( )

2 1tanh
1 tan 1

2

K

K K

ψ τ

ψ τ

τ τ
ψ

−

 
 − = +

  − +    

 (1.3-29) 

provided 2 1K < . This condition is equivalent to, 

 inj lockω ω∆ < ∆  (1.3-30) 

which means that the injection signal frequency is within one locking range of 
the free-running frequency of the oscillator corresponding to the so-called 
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“locked” condition. If 2 1K ≥ , the oscillator is said to be “unlocked” and the 
solution given by Eq. (1.3-27) becomes, 

 

0

( )

2
1

0 2

( )

2 1tan
1 tan 1

2

K

K K

ψ τ

ψ τ

τ τ
ψ

−

 
 − = −

  − +    

 (1.3-31) 

Now, rewriting Eqs. (1.3-29) and (1.3-31) explicitly evaluated at the limits and 
rearranging a bit results in, 

 

( )2
0

2 2
1 1

0

1 1
2

1 1tanh tanh
( ) ( )tan 1 tan 1
2 2

K

K K

K K

τ τ

ψ τ ψ τ
− −

− − =

  
  − −   −

     + +            

 (1.3-32) 

and,  

 

( )2
0

2 2
1 1

0

1 1
2

1 1tan tan
( ) ( )tan 1 tan 1
2 2

K

K K

K K

τ τ

ψ τ ψ τ
− −

− − − =

  
  − −   −

     + +            

 (1.3-33) 

We now make use of the following pair of identities. 

 1 1 1 0
0

0
tanh ( ) tanh ( ) tanh

1
x xx x

xx
− − −  −

− =  − 
 (1.3-34) 

 1 1 1 0
0

0
tan ( ) tan ( ) tan

1
x xx x

xx
− − −  −

− =  + 
 (1.3-35) 

Applying these to Eqs. (1.3-32) and (1.3-33), respectively, we obtain, 
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( )2
0

0

0 0

1tanh 1
2

( )( )tan tan
2 2
( ) ( )( ) ( )tan tan tan tan

2 2 2 2

K

K K

τ τ

ψ τψ τ

ψ τ ψ τψ τ ψ τ

 − − =  
   − −        

      + + +            

 (1.3-36) 

 

 

( )2
0

0

0 0

1tan 1
2

( )( )tan tan
2 2

( ) ( )( ) ( )tan tan tan tan
2 2 2 2

K

K K

τ τ

ψ τψ τ

ψ τ ψ τψ τ ψ τ

 − − =  
    −        

      + + +            

 (1.3-37) 

These equations may now be solved for ( )ψ τ . The results are, 

 
( )

( )

20 0
0

1

2 0
0

( )

( ) ( )1tan tanh 1 tan
2 2 2

2 tan
( )11 tanh 1 1 tan

2 2

K K

K K

ψ τ

ψ τ ψ ττ τ

ψ ττ τ

−

=

      − − − +            
 

    + − − +          

 (1.3-38) 

 

 
( )

( )

20 0
0

1

2 0
0

( )

( ) ( )1tan tan 1 tan
2 2 2

2 tan
( )11 tan 1 1 tan

2 2

K K

K K

ψ τ

ψ τ ψ ττ τ

ψ ττ τ

−

=

      + − − +            
 

    − − − +          

 (1.3-39) 

These represent the exact analytic solution of Eq. (1.3-20) giving the dynamic 
behavior of the phase of an externally injection locked oscillator for all time 
subsequent to 0τ . While they are actually the same solution, Eq. (1.3-38) is 
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conveniently applied when 2 1K < , and Eq. (1.3-39) is conveniently applied 

when 2 1K > . When 12 =K , Eqs. (1.3-38) and (1.3-39) are identical. 
 
We will now proceed to study the spectral properties of this solution. It will be 
expedient to return to the logarithmic representation in Eq. (1.3-27). For the 
locked condition we have,  

 

( )
( )

( )
( )

( )

22 0

2 20

2
0

( )( ) tan 1 1tan 1 1
22ln

( ) ( )tan 1 1 tan 1 1
2 2

1

K KK K

K K K K

K

ψ τψ τ

ψ τ ψ τ

τ τ

       + + −+ − −             = 
      + + − + − −            

− −

 
(1.3-40) 

 

Exponentiating both sides yields, 

 

( )
( )

( )
( )

( ) 2
0

22 0

2 20

1

( )( ) tan 1 1tan 1 1
22

( ) ( )tan 1 1 tan 1 1
2 2

K

K KK K

K K K K

e τ τ

ψ τψ τ

ψ τ ψ τ

− − −

       + + −+ − −             = 
      + + − + − −            

 
(1.3-41) 

 

For simplicity of notation, the second factor in the curly brackets, being a 
constant that depends on the initial conditions, will be defined to be 1/C0. Thus, 

 
( )
( )

( ) 2
0

2

1
0

2

( )tan 1 1
2
( )tan 1 1
2

K
K K

C e
K K

τ τ

ψ τ

ψ τ
− − −

   + − −     =
  + + −    

 (1.3-42) 

Now solving for ( )ψ τ , 

 
( )

( )

2
0

2
0

12
1 0

1
0

11 1( ) 2 tan
1

K

K

C eK
K KC e

τ τ

τ τ
ψ τ

− − −
−

− − −

  +−  = −
  

−   
 (1.3-43) 

Recall that, 
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 1tan ( ) ln
2
j j xx

j x
−  +

=  − 
 (1.3-44) 

So that Eq. (1.3-43) may be written in the form, 

 

( )

( )

( )

( )

2
0

2
0

2
0

2
0

12
0

1
0

12
0

1
0

11 1

1
( ) ln

11 1

1

K

K

K

K

C eKj
K KC e

j
C eKj

K KC e

τ τ

τ τ

τ τ

τ τ

ψ τ

− − −

− − −

− − −

− − −

  +−  + −
  −  =  

  +−  − +   −  

 (1.3-45) 

Again exponentiating both sides, 

 

( )

( )

( )

( )

2
0

2
0

2
0

2
0

12
0

1
0( )

12
0

1
0

11 1

1

11 1

1

K

K
j

K

K

C eKj
K KC e

e
C eKj

K KC e

τ τ

τ τ
ψ τ

τ τ

τ τ

− − −

− − −

− − −

− − −

  +−  − +
  −  =  

  +−  + −   −  

 (1.3-46) 

This can be rearranged as, 

 ( ) ( ) ( )

( ) ( ) ( )

2
0

2
0

( )

12 2
0

12 2
0

1 1 1 1

1 1 1 1

j

K

K

e

jK K jK K C e

jK K jK K C e

ψ τ

τ τ

τ τ

− − −

− − −

=

 + − − − + + − 
 
 − + − − − − −
 

 (1.3-47) 

Equation (1.3-47) gives the dynamic behavior of the oscillator voltage as the 
phase evolves from )( 0τψ to )(τψ . This behavior is exponential, not 
oscillatory, and the steady-state value of the phase at infinite time is 

)(sin 1 K−− . Returning to Eq. (1.3-1) and using Eq. (1.3-18) we find that the 
oscillator voltage in steady state is, 

1( ) ( sin ( )( )( ) inj inj injj j K tj t
ssV A t e Ae Aeψ θ ϕ ωθ −+ − + += = − =

(1.3-48) 
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Thus, the spectrum is a single line at frequency injω  and there is a steady-state 
phase difference between the oscillator signal and the injection signal of 
sin −1 (K ) . 
 
Suppose we allow K to become larger than unity in magnitude. In such a case, 
the injection signal frequency lies outside the locking range around the free 
running frequency and the oscillator will be in the “unlocked” condition 
described by Eq. (1.3-39). Now, however, the spectral properties of the solution 
become more interesting. We follow an approach suggested by Armand. [20] In 
this situation, Eq. (1.3-47) becomes, 

 ( ) ( ) ( )

( ) ( ) ( )

2
0

2
0

( )

12 2
0

12 2
0

1 1 1 1

1 1 1 1

j

j K

j K

e

jK j K jK j K C e

jK j K jK j K C e

ψ τ

τ τ

τ τ

− − −

− − −

=

 + − − − + + − 
 
 − + − − − − −
 

 (1.3-49) 

or, 

 ( ) 1 2 0

1 2 0

jT
j

jT
A A C ee
B B C e

ψ τ
−

−

 − =  
−  

 (1.3-50) 

where, 

 

2
1

2
2

2
1

2
2

1 1

1 1

1 1

1 1

A jK j K

A jK j K

B jK j K

B jK j K

= + − −

= + + −

= − + −

= − − −

 (1.3-51) 

 

 ( )2
01T K τ τ= − −  (1.3-52) 

and, 
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   ( )
K jtan 0

   1 K 2
 1

 2 
 C0     (1.3-53) 

   ( )
tan 0

 K j    1 K 2 1
  2

Expanding Eq. (1.3-49) in a geometric series yields, 

  
0


4) e Cj ( ) A A  1 1 A2  B
   2   

B B B B1 1 2 n1 1
 (1.3-5e

n

s is, Now, the magnitude of the common ratio of the serie

B2 C 
B 0

1

  ( )0

jK 1 1j K 2 K jtan    
    2  1 K 2 1


jK 1 1j K 2      ( )

 K jtan 0   1 K 2
  1 (1.3-55) 
 2

 21 1 K K 2 

2
1 1  K K 2 

This is less than unity for positive K and the series converges for all T. If, on 
the other hand, K is negative, we instead expand the reciprocal of Eq. (1.3-49), 

 j ( )   B B1 2 C0e jT

e   
C  jT

  A A1 2 0e
  (1.3-56) 

   n
B B  1 1 B

  2  A2 C e jnT
   

A A 0
1 1 A2 n1 A1 

and the magnitude of the common ratio is, 

jnT
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( )
( )

( )
( )

2
0

1

20
2

2 20

2
2

2
2

( )tan 1 1
1 1 2

( )1 1 tan 1 1
2

1 1

1 1

A C
A

K j K
jK j K

jK j K K j K

K K

K K

ψ τ

ψ τ

=

  + − − + + −   =
 + − − + + − 
 

+ + −

+ − −

 
(1.3-57) 

which is less than unity for K negative. Expressions (1.3-54) and (1.3-56) thus 
provide convergent series representations of the solution for the phase 
dynamics under unlocked conditions and we note that they are actually Fourier 
series. As such, the coefficients are the amplitudes of the harmonics of a line 
spectrum representing the oscillator signal. This spectrum has a well-known 
classic form that is easily observed experimentally using a spectrum analyzer 
and is depicted schematically in Fig. 1-2. 
 
 
 

 
Fig. 1-2. Spectra of an unlocked injected oscillator. 
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(This K is Kurokawa’s [15], which is the negative of Adler’s [10] and 
Armand’s [20].) 
 
These mirror-image spectra have a number of interesting features. The most 
obvious feature is that they are one-sided, which may seem puzzling, but is a 
natural result of the analysis. Secondly, the amplitudes decrease linearly on a 
logarithmic scale as one progresses away from the injection frequency. This is a 
consequence of the geometric nature of the series representing the solution. 
Finally, the spacing between the spectral lines decreases with the proximity of 
the injection frequency to the oscillator free running frequency and, when the 
injection frequency differs from the free running frequency by exactly one 
locking range, the spacing goes to zero and the oscillator locks, reducing the 
spectrum to a single line at ωinj. 
 
Before we can legitimately call this analysis of injection locking complete, 
there remains one important issue to consider. The oscillator model shown in 
Fig. 1-1 exhibits a parallel resonance. It is, of course, possible to design an 
oscillator that exhibits a series resonance, and the question then becomes: How 
is this difference manifest in the formalism presented? This question has been 
studied in detail by Chang, Shapiro, and York [16]. They pointed out that the 
Taylor series for the admittance in the parallel resonant oscillator, Eq.(1.2-9), is 
identical in form to the Taylor expansion of the impedance in the series 
resonant case. We can see this by considering the series resonant oscillator 
shown in Fig. 1-3. In this case the resonant load, ZL, on the active device is a 
series combination of an inductor, a capacitor, and a resistor.  
 
The output signal here is the current through this resonant series combination 
rather than the node voltage used in the parallel case. Application of 
Kirchhoff’s voltage law around the oscillator loop yields, 
 
 
 
 
 

 
Fig. 1-3. An oscillator as a negative impedance. 

ACTIVE 
DEVICE

Re(ZD)<0
ZL Z=ZD+ZL=0
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1( ) 0DV j L R I

j C
ω

ω
+ + + =  (1.3-58) 

Using a van der Pol type nonlinearity, the analog of Eq. (1.2-2) is, 

 ( )3
1 3( ) ( ) ( )Dv t r i t r i tε= − −  (1.3-59) 

and the analog of Eq. (1.2-7) is, 

 ( )2
1 3

1 13Z r r I j L R
j C Y

ε ω
ω

= − − + + + =  (1.3-60) 

Expanding Y in a Taylor series about the resonant frequency, we arrive at 

 ( ) ( )02
01 3

1 2
3

jQY
RR r r I

ω ω
ωε

≈ − −
− −

 (1.3-61) 

Comparing with Eq. (1.2-9) we see that the salient difference is the change in 
sign of the linear term in frequency. This in turn induces a change in the 
algebraic sign of the sine term in Eq. (1.3-17) resulting in, 

 ( )0 sinlock inj
d
dt
θ ω ω θ θ= −∆ −  (1.3-62) 

and the remainder of the analysis proceeds as for the parallel resonant case 
above. We will further describe the implications of this when we consider more 
than one oscillator. 

1.4 Mutual Injection Locking of Two Oscillators 
Consider now two parallel resonant oscillators, identical except for free-running 
frequency, coupled together so that each injects a signal into the other. Such a 
system was considered by Stephan and Young [3] in which the coupling was 
due to free-space mutual coupling between radiating elements excited by the 
oscillators. We may describe this situation using Adler’s Eq. (1.3-17) for each 
oscillator. That is, 

 ( )1
01 2 1sinlock

d
dt
θ ω ω θ θ= + ∆ −  (1.4-1) 
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 ( )2
02 1 2sinlock

d
dt
θ ω ω θ θ= + ∆ −  (1.4-2) 

where the subscripts identify the oscillators. Subtracting these equations yields, 

 ( ) ( ) ( )1 2
01 02 2 12 sinlock

d
dt

θ θ
ω ω ω θ θ

−
= − + ∆ −  (1.4-3) 

We now define, 

 1 2ψ θ θ= −  (1.4-4) 

 

 02 01
2 lock

K ω ω
ω
−

=
∆

  (1.4-5) 

 

 2 locktτ ω= ∆  (1.4-6) 

so that Eq. (1.4-3) becomes, 

 ( )sind K
d
ψ ψ
τ
= − +








 (1.4-7) 

which is identical with Eq. (1.3-20) except for the tildes and all of the preceding 
results apply. Note that the locking range is replaced by twice the locking range 
in this equation. This happens because the injecting oscillator frequency is 
permitted to change under the influence of the oscillator being injected. The 
result is that the two oscillator frequencies can differ by nearly twice the 
locking range and still maintain lock. This is true because it will turn out that 
the steady-state oscillation frequency of the pair is the average of the two free-
running frequencies, and we can show this as follows. 
 

Recall that in steady state, if 1~ <K  so the oscillators are locked, 1sin Kψ −= − 



, a constant, so its time derivative is zero. Further, from Eq. (1.4-4) we have, 

 1 2θ θ ψ= +   (1.4-8) 

so that, in steady state, 
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 1 2 2d d dd
d d d d
θ θ θψ
τ τ τ τ
= + =



   

 (1.4-9) 

Therefore, 

 1 2 12 d d d
d d d
θ θ θ
τ τ τ
= +

  

 (1.4-10) 

or, 

 01 021 1 2
2 2

d d
d d

ω ωθ θ θ
τ τ

++ = = 
  

 (1.4-11) 

Similarly, 

 01 022 1 2
2 2

d d
d d

ω ωθ θ θ
τ τ

++ = = 
  

 (1.4-12) 

Thus, we conclude that the steady-state frequency of the two oscillators, when 
mutually locked, that is, the “ensemble frequency,” is the average of their free-
running frequencies. 
 
It now becomes clear how it is that the locking range for the two oscillators is 
twice that for one. One may visualize each oscillator differing from the 
ensemble frequency of the pair by one locking range so that the total difference 
between the free-running frequencies of the two oscillators is, not one, but two 
locking ranges. The term “ensemble frequency” has no relevance when one of 
the oscillators injection locks the other and is not influenced by the injected 
oscillator as discussed previously. In that case, as was demonstrated, the steady-
state frequency is the injection frequency. 
 
Now suppose that the coupling between the oscillators is accomplished via a 
transmission line so that there is a phase delay associated with the coupled 
signal. This coupling phase changes the phase relationship between the coupled 
signal and the oscillator that produced it and thus modifies the behavior of the 
oscillator pair. We can account for this in our formulation by inserting the 
coupling phase shift through the transmission line, 12Φ , into Eqs. (1.4-1) and 
(1.4-2) resulting in, 

 ( )1
01 2 1 12sinlock

d
dt
θ ω ω θ θ= + ∆ − −Φ  (1.4-13) 
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 ( )2
02 1 2 12sinlock

d
dt
θ ω ω θ θ= + ∆ − −Φ  (1.4-14) 

have assumed that the transmission line is reciprocal so that the 
ase is the same in both directions. Using trigonometric identities, 

3) and (1.4-14) may be re-written in the form, 

where we 
coupling ph
Eqs. (1.4-1

 
( )

[ ] ( )

1
01 12 2 1

12 2 1

sin cos

cos sin

lock

lock

d
dt
θ ω ω θ θ

ω θ θ

 = − ∆ Φ − 

+ ∆ Φ −
 (1.4-15) 

 
( )

[ ] ( )

2
02 12 1 2

12 1 2

sin cos

cos sin

lock

lock

d
dt
θ ω ω θ θ

ω θ θ

 = − ∆ Φ − 

+ ∆ Φ −
 (1.4-16) 

Again by subtraction we obtain, 

 ( ) ( ) ( ) ( )1 2
01 02 12 1 22 cos sinlock

d
dt

θ θ
ω ω ω θ θ

−
= − − ∆ Φ −  (1.4-17) 

Comparing with Eq. (1.4-3) we see that the locking range has been modified by 
the cosine of the coupling phase. We define this effective locking range to be, 

 12coseff lockω ω∆ = ∆ Φ  (1.4-18) 

and using this in place of the unmodified locking range, the preceding theory 
may be applied to the case having non-zero coupling phase. One obvious 
consequence of this is that, if the coupling phase is 90 degrees (deg) or an odd 
multiple thereof, the effective locking range becomes zero and the two 
oscillators cannot be made to lock. 
 
If, instead of subtracting Eqs. (1.3-15) and (1.3-16), we add them, we obtain 

 ( ) ( ) ( ) ( )1 2
01 02 12 1 22 sin coslock

d
dt

θ θ
ω ω ω θ θ

+
= + − ∆ Φ −  (1.4-19) 

and we note that the ensemble frequency Eq. (1.4-12) is replaced by, 

 ( ) ( )01 02
12 1 2sin cos( )

2ens lock
ω ω

ω ω θ θ
+

= − ∆ Φ −  (1.4-20) 

which varies sinusoidally with coupling phase. This variation of ensemble 
frequency with coupling phase has been studied in somewhat more detail by 
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Sancheti and Fusco in the context of an active radiator coupling with its image 
in a reflecting object [21] [22]. 
 
Before moving on to study arrays of oscillators we take a quick look at the 
stability of the behavior of two coupled oscillators. Much more detail on this 
subject may be found in Chapter 7. The stability of the solution can be assessed 
by assuming that the oscillators are evolving according to a solution of 
Eq. (1.4-17) and perturbing the phase difference away from that solution by a 
small amount, δ . This results in the following differential equation for the 
time dependence of the perturbation. 

 ( )12 1 22 cos coslock
d
dt
δ ω θ θ δ = − ∆ Φ −   (1.4-21) 

This equation has the solution, 

 ( )12 1 22 cos cos( ) lock tt e ω θ θδ  − ∆ Φ − =  (1.4-22) 

The solution for the oscillator phase difference is stable against the 
perturbation, δ, if the exponent is negative. That is, 

 ( )12 1 2cos cos 0θ θΦ − >  (1.4-23) 

This means that, if the magnitude of the coupling phase is less than 90 deg, the 
oscillators will lock such that their phases differ by less than 90 deg; while if 
the magnitude of the coupling phase is greater than 90 deg, the oscillators will 
lock such that their phases differ by more than 90 deg; that is, they will tend to 
oscillate out of phase. This behavior was predicted and observed by Stephan 
and Young [3] and formulated and studied in more detail by Humphrey and 
Fusco [23] [24] using an earlier theoretical construct they formulated for linear 
chains of coupled oscillators [25].  
 
Conversely, for series resonant oscillators, the stability condition is, 

 ( )12 1 2cos cos 0θ θΦ − <  (1.4-24) 

and the behavior of the oscillators will be opposite that described above. These 
properties have been exploited by Lee and Dalman in switching pairs of 
coupled oscillators from symmetric to antisymmetric phase by changing the 
coupling phase [26]. All of these effects have been observed experimentally as 
reported by Chang, Shapiro, and York [16]. Thus, the optimum coupling phase 
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for parallel resonant oscillators is an even multiple of 180 deg, while that for 
series resonant oscillators is an odd multiple of 180 deg. 
 
Very recently, it was pointed out that a given oscillator can present either series 
or parallel resonance depending upon where in the oscillator circuit the 
coupling is implemented [27].  

1.5 Conclusion 
In this Chapter we have developed a theory of oscillator behavior that admits 
the possibility of coupling the oscillators together such that they can mutually 
injection lock and thus oscillate as a coherent ensemble. This behavior is 
central to the remainder of the book as it forms the basis of the applications to 
be discussed. In Chapter 2 this theoretical framework will be applied in 
describing the behavior of arrays containing many oscillators coupled together 
in linear and planar configurations. The coupling for the most part is with 
nearest neighbors only. More elaborate coupling schemes have been studied in 
mathematical biology but remain as a potentially fruitful but largely untapped 
resource in the arena of phased-array antennas.  
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